Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water

Cite as: J. Appl. Phys. 126, 124701 (2019); https://doi.org/10.1063/1.5115519
Submitted: 18 June 2019 . Accepted: 26 August 2019 . Published Online: 25 September 2019

Yusuke Matsuya, Takeshi Kai, Yuji Yoshii, Yoshie Yachi, Shingo Naijo, Hiroyuki Date, and Tatsuhiko Sato

ARTICLES YOU MAY BE INTERESTED IN

Depth-sensing using AFM contact-resonance imaging and spectroscopy at the nanoscale
Journal of Applied Physics 126, 124302 (2019); https://doi.org/10.1063/1.5113567

Dynamics of piezoelectric micro-machined ultrasonic transducers for contact and non-contact resonant sensors
Journal of Applied Physics 126, 124502 (2019); https://doi.org/10.1063/1.5100201

Conduction mechanisms in ZnO nanowires based Schottky diode grown under an electric field
Journal of Applied Physics 126, 124501 (2019); https://doi.org/10.1063/1.5117171
Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water

Yusuke Matsuya, Takeshi Kai, Yuji Yoshii, Yoshie Yachi, Shingo Naijo, Hiroyuki Date, and Tatsuhiko Sato

AFFILIATIONS
1 Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
2 Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
3 Central Institute of Isotope Science, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
4 Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0812, Japan

ABSTRACT
DNA strand breaks are induced in cells mainly composed of liquid water along ionizing radiation tracks. For estimating DNA strand break yields, track structures for electrons in liquid water in Monte Carlo simulations are of great importance; however, detailed simulations to obtain both energy deposition and free radical reaction to DNA are time-consuming processes. Here, we present a simple model for estimating yields of single- and double-strand breaks (SSB, DSB, and DSB/SSB ratio) based only on spatial patterns of inelastic interactions (i.e., ionization and electronic excitation) generated by electrons, which are evaluated by the track structure mode of Particle and Heavy Ion Transport code System without analyzing the production and diffusion of free radicals. In the present model, the number of events per track and that of a pair composed of two events within 3.4 nm (10 base pairs) were stochastically sampled for calculating SSB and DSB yields. The results calculated by this model agree well with other simulations and experimental data on the DSB yield and the DSB/SSB ratio for monoenergetic electron irradiation. This model also demonstrates the relative biological effectiveness at the DSB endpoint for various photon irradiations, indicating that the spatial pattern composed of ionization and electronic excitation without physicochemical and chemical stages is sufficient to obtain the impact of electrons on the initial DNA strand break induction.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115519

I. INTRODUCTION
Biological effects after exposure to the ionizing radiation arise from initial damage to the DNA helix structure. A variety of DNA lesions, including single- and double-strand breaks (SSBs and DSBs), are induced along the radiation track. A Monte Carlo code for the track structure simulation at the nanometer scale in liquid water is a powerful tool for the mechanistic investigation of the DNA damage induction. Most of the energy deposition by the ionizing radiation is composed of secondary electrons, thus a reliable code for predicting the track structure of electrons is required for computing the spatial distribution of DNA hits. However, radiation transport qualities in the low energy range below sub-kiloelectron volt remain uncertain. Several codes for simulating electron tracks have been developed based on electron scattering cross sections in water vapor (i.e., PARTRAC derived from MOCA-8 and KURBUC) or on a combination of analytical and interpolated cross sections for liquid water (GEANT4-DNA). In contrast, Particle and Heavy Ion Transport code System (PHITS), which was developed based on the first-principles calculation, can simulate the track structure of electrons in liquid water in a wide incident energy range from 1 meV to 1 MeV. The electron track structure mode (etsmode) has also been released publicly, which enables the evaluation of the impacts of low energy electrons on the DNA strand break induction.

Among DNA strand breaks, DSBs are recognized as fatal lesions due to the complexity of the lesions and the difficulty of repair.
For this reason, many researchers have investigated the DSB yield by means of Monte Carlo codes and biological experiments. To evaluate DNA strand break types, several trials for calculating physical, physicochemical, and chemical processes have been performed. However, obtaining both the energy deposition and the radial reaction within a cylinder of DNA is a time-consuming process. In contrast, by focusing on the spatial analysis of density-based spatial clustering application with noise (DBSCAN), we can evaluate the degree of aggregation (aggregation index) by inelastic interactions for every electron track. Assuming that physical, chemical and stages end close to the inelastic events, the spatial positions of the events and their pairs should enable us to stochastically predict SSB and DSB yields. Thus, our interest is directed to developing a simple model for estimating DNA strand break yields, without considering free radicals.

In this study, we present a simple model for estimating DNA strand breaks (SSB, DSB, and DSB/SSB ratio) based only on the physical processes of electrons. The track structure mode in the PHITS code, which was verified with other simulations and experimental data in this study, was used to obtain the spatial distribution of inelastic interactions. Through this estimation of DNA strand break yields, we show that the spatial pattern of inelastic interactions can be directly linked to the estimation of DNA damage yields.

II. MATERIALS AND METHODS
A. Physical processes in PHITS

PHITS version 3.10 adapting the electron track structure mode (etsmode) was used for simulating electron tracks. The physics processes were composed of elastic scattering, electron ionization, electronic excitation, dissociative electron attachment, vibrational excitation, rotational excitation, and photon excitation. The information on inelastic interactions was output by the use of a tally named "t-interact." To reduce the computational time, the cut-off energy was set depending on the incident electron energy, E_{in}, i.e., 1 eV for $E_{\text{in}} > 2$ eV and 1 meV for $E_{\text{in}} \leq 2$ eV. We transported at least 1000 electrons for each electron kinetic energy to obtain calculation results. The reproducibility was checked by performing the calculation twice.

B. Calculation of physical qualities

To validate the electron track structure in PHITS from the viewpoint of radiation physics, we calculated the range (i.e., path length and penetration), mass stopping power in MeV cm²/g, and dose-mean lineal energy with the site diameter ranging from 2 nm (on the DNA scale) to 1 μm (on the chromosome scale).

As for the two types of ranges, path length means the total length of the path followed by the electron particle, while penetration rests on the radius vector between the starting point and the stopping point. The stopping power is calculated following the report by Ashley as reported previously. The dose-mean lineal energy (y_D) was calculated according to ICRU report 36. The lineal energy y in keV/μm is given by

$$ y = \frac{\varepsilon}{l},$$

where ε is the energy deposited in the site and l is the mean chord length of the site which is defined as $l = 4r_d/3$ (r_d is the site radius in micrometers). Averaging the lineal energy from the viewpoint of the probability density of dose, y_D, in keV/μm is expressed as

$$ y_D = \int y d(y) dy,$$

where $d(y)$ is the probability density of dose in the site. For obtaining $d(y)$, we used the uniform sampling technique along each track, as reported previously.

The calculated results were compared to ICRU reports and published data containing experiments and the other simulation results.

C. Stochastic hit model for strand break induction

To calculate yields of SSBs and DSBs, we assumed that the DNA double helix is randomly placed along the electron track as shown in Fig. 1(a). DSBs are generally defined as the minimum of two strand breaks within 10 base pairs (i.e., 3.4 nm). Assuming that ionization and electronic excitation are potential causes to induce DNA strand breaks, we scored the number of events per track [Fig. 1(b)] and that of the event pair (so-called linkage) within 3.4 nm per track [Fig. 1(c)]. Assuming that the number of events per keV $N_{\text{event}}/E_{\text{in}}$ and that of linkage per keV $N_{\text{link}}/E_{\text{in}}$ are proportional to the induction yield of a SSB and a DSB, respectively, we defined k_{SSB} and k_{DSB} as proportion coefficients for SSB and DSB inductions (keV/Gy/Da), respectively. The yields of SSB Y_{SSB} and DSB Y_{DSB} (/Gy/Da) as a function of electron incident energy are given by

$$ Y_{\text{SSB}}(E_{\text{in}}) = k_{\text{SSB}} \frac{N_{\text{event}}}{E_{\text{in}}},$$

$$ Y_{\text{DSB}}(E_{\text{in}}) = k_{\text{DSB}} \frac{N_{\text{link}}}{E_{\text{in}}}.$$
D. Experimental DSB detected by using γ-H2AX

To further validate the present DNA damage model, we collected experimental DSB data from the literature26,35,49,51–55 and also performed a γ-H2AX focus formation assay. The experimental number of DSBs per nucleus was normalized to be the DSB-deduced relative biological effectiveness (RBEDSB) to the standard radiation of 200 kVp X-rays.

In this in vitro experiment, normal human diploid lung fibroblast (WI-38) cell line (CCL-75, ATCC, Manassas, VA) and Chinese hamster lung fibroblast (V79-379A) cell line (IFO50082, JCRB Cell Bank, Japan) were used for additionally obtaining RBEDSB. Following a previous report,36 WI-38 cells were maintained in the cell culture medium [Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 (DMEM/F12) (D8437, Sigma Life Science) supplemented with 10% fetal bovine serum (FBS, Equitech-Bio Inc.)]. V79-379A cells were maintained routinely in Dulbecco’s modified Eagle’s (D0819, Sigma Life Science) supplemented with 10% FBS and 1% penicillin/streptomycin (Sigma Life Science). These cells were cultured at 37°C in humidified 95% air and 5% CO2. After exposing the cells in the confluent monolayer to various types of X-ray irradiation (i.e., 40 kVp, 60 kVp, 80 kVp, 100 kVp, 120 kVp, and 150 kVp) with 1.0 Gy, we performed a γ-H2AX focus formation assay, as reported previously.35,51 The cells were fixed 30 min after irradiation to observe the initial DNA damage response.

E. Estimation of RBE at DSB endpoints for photon irradiation

After obtaining the experimental RBEDSB, we calculated the yield of the DSB induction for a variety of photon irradiations using PHITS ver. 3.10.13 We divided the calculation into three steps: the first step is calculating the electron spectrum generated by the photon irradiation, the second step is simulating the electron track structure, and the third step is estimating the DSB yield by the DNA damage model.

For the photon procedure, the geometries considered in the PHITS code are the same as the experimental conditions for each photon irradiation.35,49,51–55 The electron gamma shower (EGS)57 mode was adapted into PHITS and 1 keV was set as the cut-off energy. In the same manner, as the case of monoenergetic electron irradiation, we used etsmode for calculating the electron tracks and scored the ionization and electronic excitation sites. Using the output data, we calculated the average yield of the DSB induction based on Eqs. (4) and (5).

The types of photon spectrum simulated in this study were 60Co γ-rays, 6 MV-linac X-rays (in- or out-of-field area), 137Cs γ-rays, conventional X-ray (200 kVp, 250 kVp X-rays), soft X-ray series (150 kVp, 120 kVp, 100 kVp, 80 kVp, 60 kVp, 40 kVp, and 29 kVp X-rays), and ultra-soft X-ray series (TiK, AlK, CuL, and CK). The DSB yield ratios of some photon irradiations and 200 kVp X-rays were calculated as the simulated RBEDSB.

III. RESULTS AND DISCUSSION

A. Physical fundamental qualities of electrons

The range and the stopping power are shown in Figs. 2 and 3, respectively. As shown in Fig. 2, the calculated results were compared to ICRU report 37 in the high electron kinetic energy range and to experimental data reported by Konovalov et al.35 in the low energy range. The Continuous Slowing Down Approximation (CSDA) range similar to the total path length coincides with ICRU report 37, whilst the penetration by PHITS seems to reproduce the experimental data by Konovalov et al.35
The energy loss rate per unit path length was also checked in comparison with published data, as shown in Fig. 3. From these comparisons, it was verified that the etsmode can reproduce the published characteristics of electrons in a wide range of the incident energy. Next, focusing on dosimetry on the nanometer scale, we calculated the dose-mean lineal energy y_D in keV/μm and compared to other simulations by Geant4-DNA (adapting option 5). Figure 4 shows the comparison between the PHITS calculation (present work) and Geant4-DNA data (option 5) for 0.1, 0.5, and 1.0 keV monoenergetic electrons. Scaling down to 2 nm on the DNA scale from 1 μm on the chromosome scale, the y_D value mostly increases, and the degree of the increment agreed well with the Geant4-DNA data. We thus presumed that the electron track structure mode in PHITS is a reliable code for physically predicting the track structure of electrons.

B. DNA damage yields for monoenergetic electrons

Based on the fundamental qualities of electrons (Figs. 2–4), we next estimated the DNA strand breaks (i.e., SSB and DSB) as a function of electron kinetic energy in kilo-electron volts. We present a simple stochastic model for calculating the DNA strand break yields (Fig. 1). The theory is based on hits to the DNA target packaged in the cell nucleus. Figure 5 shows the calculated results of DNA strand break yields, where (a) is the DSB yield per Gy per dalton (Da) (Y_{DSB}), and (b) is the yield ratio of DSB and SSB (Y_{DSB}/Y_{SSB}). Considering the distance between two sites of inelastic interactions (ionization and electronic excitation) within 10 base pairs, the track structure calculated by PHITS can demonstrate the peak of the DSB yield in the electron kinetic energy around 300 eV as shown in Fig. 5(a). By applying the model to the experimental yields of SSB and DSB after irradiation with 220 kVp X-rays, we obtained the coefficients $k_{SSB} = 5.66 \times 10^{-12}$.
and $k_{\text{DSB}} = 1.61 \times 10^{-13} \text{ (keV/Gy/ Da)}$. These coefficients enable us to easily calculate DNA strand break sites from interaction sites according to a standard data format for the DNA damage (SDD format). In comparison among the PHITS calculations, the other simulation results and available experimental data, this model exhibits good performance for reproducing the DSB yield and the ratio of DSB and SSB, suggesting that the spatial pattern of the two inelastic interactions (linkage) obtained by PHITS can be directly linked to yields of DNA strand breaks. However, it has been reported in recent decades that low energy electrons below 20 eV also have enough effect on inducing SSBs and DSBs. Further model development is required in future studies.

Physicochemical and chemical stages were skipped in this study; however, we were successful in reproducing the DSB yield for monoenergetic electrons based only on physical processes. According to a previous report, the maximum action distance of radical species (i.e., 0.0004 to 0.8120 nm) is much shorter than 10 base pairs (3.4 nm). This implies that the spatial pattern of inelastic interactions is sufficient to estimate the yields of strand breaks. However, recombination of radical splices has to be considered for the case of higher linear energy transfer (LET) ionizing radiation (i.e., 12C$^+$) more than electrons. In this regard, it is also necessary to further develop this model so as to reproduce strand break yields for various LET irradiation.

C. DSB yield for continuous energetic electrons generated by photons

We next tried to estimate the relative biological effectiveness (RBE) for a variety of photon irradiations. Concerning the model performance for the case of photons, we checked that the estimated yields of SSB and DSB for 60Co γ-rays [$Y_{\text{DSB}} = 1.48 \times 10^{-11} \text{ (Gy}^{-1} \text{ Da}^{-1})$ and $Y_{\text{DSB}} = 28.3 \times 10^{-11} \text{ (Gy}^{-1} \text{ Da}^{-1})$] agreed with the experimental values (29.0 $\times 10^{-11}$ for SSB and 1.40 $\times 10^{-11}$ for DSB). After this one point verification, we compared the experimental RBEDSB (literature and present work) with those calculated by PHITS for various photon irradiations.

The experimental mean number of nuclear DSBs increases as the mean photon energy becomes higher as listed in Table I. The simulation could reproduce this tendency by using a higher yield of DSBs for low energy electrons close to 300 eV (Fig. 5(a)). Especially for the case of linac in-field irradiation, the dependency of the depth of RBEDSB could not be found from either the experiments or PHITS estimations. Meanwhile, the RBEDSB of the out-of-field linac X-rays was subtly higher than that of the in-field X-rays, which might be attributed to low energy scattered X-rays with relatively high y_D values than in-field X-rays. In addition, the RBEDSB values of the soft X-ray series (40–150 kVp) were relatively higher than conventional X-rays with 200 kVp because the soft X-rays generate lots of low energy electrons. This implies that diagnostic X-rays used in the medical field lead to higher biological impacts on DNA strand breaks induction than conventional and therapeutic X-rays.

Based on the simulation results by PHITS (Figs. 2–5), it was suggested that the biological effects after exposure to electrons should be dependent on the kinetic energy as well as on the energy of secondary electrons generated by the photon irradiation. From these results (Table I), we concluded that the high frequency of double hits caused by lower energy electrons leads to a higher RBE even for the case of electron and photon irradiations.
energy electrons lead to a higher RBEDSB. This code for calculating electron interactions represented as high frequent double hits by lower both electron and photon irradiations suggests that clusters of electron excitation and electronic excitation are directly linked to the DNA strand break (i.e., SSB and DSB) yields, suggesting that calculating physical processes is sufficient to reproduce initial DNA damage responses for a variety of electron kinetic energies. The good agreement of the scale from a single track (micrometers) to DNA (nanometers). PHITS ver. 3.10 enables us to provide precise electron features on the LIonTrack code at the nanometer scale, permitting us to set the LIonTrack code to the nanometer scale.

TABLE I. RBE at the endpoint of DSB for various photon irradiations.

<table>
<thead>
<tr>
<th>Radiation type</th>
<th>Energy (calculation conditions)</th>
<th>RBE_{DSB}</th>
<th>Cell line type</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Co γ-rays</td>
<td>1.13 MeV, 1.33 MeV (6 mm depth)</td>
<td>0.76 0.83</td>
<td>CHO-K1, V79-4, HSF2</td>
<td>Refs. 49, 53, and 55</td>
</tr>
<tr>
<td>Linac X-rays in-field</td>
<td>6 MV (1 cm depth at isocenter)</td>
<td>0.73 0.83</td>
<td>CHO-K1</td>
<td>Ref. 35</td>
</tr>
<tr>
<td>Linac X-rays in-field</td>
<td>6 MV (3 cm depth at isocenter)</td>
<td>0.74 0.84</td>
<td>CHO-K1</td>
<td>Ref. 35</td>
</tr>
<tr>
<td>Linac X-rays in-field</td>
<td>6 MV (5 cm depth at isocenter)</td>
<td>0.76 0.84</td>
<td>CHO-K1</td>
<td>Ref. 35</td>
</tr>
<tr>
<td>Linac X-rays in-field</td>
<td>6 MV (10 cm depth at isocenter)</td>
<td>0.85 0.83</td>
<td>CHO-K1, WI-38</td>
<td>Refs. 35, 51, and 52</td>
</tr>
<tr>
<td>Linac X-rays out-of-field</td>
<td>6 MV (10 cm depth, 10 cm from isocenter)</td>
<td>0.86 0.96</td>
<td>CHO-K1</td>
<td>Ref. 3</td>
</tr>
<tr>
<td>137Cs γ-rays</td>
<td>662 keV (1 mm depth)</td>
<td>0.92 0.89</td>
<td>CHO-9</td>
<td>Ref. 54</td>
</tr>
<tr>
<td>Conventional X-rays</td>
<td>250 kVp (No filtration, 1 mm depth)</td>
<td>1.20 1.09</td>
<td>CHO-K1</td>
<td>Refs. 26, 35, and 51</td>
</tr>
<tr>
<td>Conventional X-rays</td>
<td>200 kVp (1 mm depth)</td>
<td>1.00 1.00</td>
<td>CHO-K1</td>
<td>Ref. 35</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>150 kVp (1 mm depth)</td>
<td>1.07 1.07</td>
<td>WI-38, V79-379A</td>
<td>This work</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>120 kVp (1 mm depth)</td>
<td>1.09 1.07</td>
<td>WI-38</td>
<td>This work</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>100 kVp (1 mm depth)</td>
<td>1.13 1.10</td>
<td>CHO-K1, WI-38, V79-379A</td>
<td>Ref. 35 and this work</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>80 kVp (1 mm depth)</td>
<td>1.10 1.06</td>
<td>WI-38</td>
<td>This work</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>60 kVp (1 mm depth)</td>
<td>1.16 1.11</td>
<td>CHO-K1, WI-38, V79-379A</td>
<td>Ref. 35 and this work</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>40 kVp (1 mm depth)</td>
<td>1.18 1.03</td>
<td>WI-38</td>
<td>This work</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>29 kVp (1 mm depth)</td>
<td>0.87 0.95</td>
<td>HSF2</td>
<td>Ref. 55</td>
</tr>
<tr>
<td>TiK ultrasoft X-rays</td>
<td>4.55 keV (surface)</td>
<td>1.06 1.10</td>
<td>V79-4</td>
<td>Ref. 49</td>
</tr>
<tr>
<td>AlK ultrasoft X-rays</td>
<td>1.49 keV (surface)</td>
<td>1.44 1.41</td>
<td>V79-4</td>
<td>Ref. 49</td>
</tr>
<tr>
<td>CuK ultrasoft X-rays</td>
<td>0.96 keV (surface)</td>
<td>1.75 1.62</td>
<td>V79-4</td>
<td>Ref. 49</td>
</tr>
<tr>
<td>CkK ultrasoft X-rays</td>
<td>0.28 keV (surface)</td>
<td>1.80 1.80</td>
<td>V79-4, HSF2</td>
<td>Refs. 49 and 55</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

We would like to thank Dr. Kenneth L. Sutherland (Graduate School of Medicine, Hokkaido University, Sapporo, Japan) who kindly spared time for the English proofreading of the manuscript. This work was supported by the Japan Society for the Promotion of Science KAKENHI (Grant Nos. 17K07022 and 19K17215). The authors declare that they have no conflict of interest.

REFERENCES

