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Summary: Toxicological studies on feline cytochrome P450 associated 

with environmental chemical exposures  

Kraisiri KHIDKHAN, September 2020 

Domestic cats are frequently treated with veterinary drugs and are being increasingly 

exposed to a variety of environmental chemicals. They are known to be particularly sensitive 

to some drugs and chemical exposures. Knowledge regarding the biotransformation of 

xenobiotics in cats is required to better elucidate the species sensitivity to, and toxicity caused 

by, environmental exposures. Cytochrome P450 (CYP) is one of the most dominant 

metabolic enzymes in phase I of xenobiotic metabolism and can be induced by numerous 

substances. Consequently, studies on feline CYP isozyme expression related to chemical 

exposures are necessary to predict the adverse effects during drug development and 

veterinary clinical medication. In this study, polychlorinated biphenyls (PCBs), 

polybrominated diphenyl ethers (PBDEs), and neonicotinoids were chosen as model 

environmental compounds that cats are exposed to worldwide. This Ph.D. dissertation 

includes four chapters as follow:  

Chapter 1 presents the general metabolic background of cats, the importance of 

environmental chemicals they are exposed to, and the role of CYPs in cats. The main 

objective of this study is also included at the end of this chapter.  

Pet cats (Felis catus) are small carnivorous species belonging to the Felidae family 

that have become popular companions for humans. Recently, biomonitoring studies on 

household residues and environmental contaminants in cats are of importance and have been 

reported increasingly (Dye et al., 2007; Henríquez-Hernández et al., 2017; Serpe et al., 2018). 

Therefore, it is necessary to have extensive studies regarding the exposure and metabolism 

of xenobiotics in cats. The knowledge of metabolic pathways related to environmental 

chemical exposure and other drugs will help to protect cats from the toxicities of xenobiotics 

and their metabolites.  

PCBs and PBDEs are synthetic organic compounds that have been extensively 
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detected in environments (Kodavanti and Loganathan, 2017); they consist of 209 different 

compounds that depending on the positions of choline or bromine atoms attached to the 

biphenyl (Siddiqi et al., 2003). The organohalogens, including PCBs 118, 138, 153, 180, and 

187 and PBDEs 47, 99, 153, and 209, are abundant in the sera and hair of domestic cats and 

dogs (Ali et al., 2013; González-Gómez et al., 2018; Mizukawa et al., 2013; Norrgran et al., 

2015; Serpe et al., 2018) as well as in house dust (Braouezec et al., 2016; DellaValle et al., 

2013; Guo et al., 2012; Wang et al., 2013; Whitehead et al., 2014). In cats, many findings 

suggested that the levels of these organohalogen compounds in the blood are linked to feline 

hyperthyroidism or thyroid hormone disturbance (Mensching et al., 2012; Norrgran et al., 

2015; Peterson, 2013).  

The hydroxylated PCBs (OH-PCBs), which are formed by oxidation of PCBs with 

CYP monooxygenase system (Bhalla et al., 2016; Tehrani and Van Aken, 2014), have 

increased critical environmental concerns because	some evidences suggested that they can 

exert various toxic effects, particularly endocrine disruption, at lower doses than the parent 

compounds (Kawano et al., 2005; Purkey et al., 2004). Interestingly, although the 

composition of PCBs is quite similar across all species, the pattern profiles of OH-PCBs in 

the blood of cats differ (Mizukawa et al., 2013). This report indicated that the differences in 

PCB metabolism between cats and other species might be associated with CYP expressions 

and functions. Therefore, determining the interspecies differences of PCB metabolism 

between cats and other species (e.g., dogs) is greatly required. Furthermore, the feline CYP 

expression pattern and induction by organohalogen exposure should be clearly understood to 

determine the risks of PCBs or PBDEs to domestic cats. 

In addition to organohalogens, cats can be exposed to veterinary products, including 

neonicotinoids, which are applied as an effective insecticide to eradicate of ectoparasites 

(Mehlhorn et al., 2001; Mencke and Jeschke, 2002; Rust, 2005; Vo et al., 2010). Since 

neonicotinoids act as neurotoxins, they mainly act on the parasympathetic system and the 

sympathetic system (Selvam and Srinivasan, 2019). Neonicotinoids, especially imidacloprid 

and clothianidin, can cause many adverse effects at sub-lethal doses in wildlife and 

freshwater vertebrates, ranging from genotoxic and cytotoxic effects, impaired immune 
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function, reduced growth and reproductive success (Gibbons et al., 2015). However, the 

toxicity of neonicotinoid exposure in domestic cats and dogs has not been reported in 

veterinary medicine. A number of studies indicated that the toxicities in mammals might be 

related to the metabolic capacity to metabolize neonicotinoids and subsequent accumulation 

of their metabolites in the brain and other tissues (Casida, 2011; Ford and Casida, 2006; Shi 

et al., 2009; Thompson et al., 2020). Therefore, investigating interspecies variations in 

metabolic capacity to neonicotinoid exposure is vital to understand and estimate the toxicity 

of metabolites in each of the exposed species, including pet cats and dogs. To my knowledge, 

no information is available on the domestic pet’s capability for neonicotinoid metabolism.  

CYPs are the biggest superfamily enzymes that are involved in metabolism, such as 

xenobiotic oxidation and clearance of several compounds in phase I (Otyepka et al., 2011; 

Zuber et al., 2002). The purpose of  the CYP biotransformation process is to convert a 

substance into inactive metabolites, which are less lipid-soluble, and highly water-soluble so 

that they are suitable for renal and/or biliary excretion (van Beusekom et al., 2010; Zuber et 

al., 2002). Among the various CYP families, the CYP1, CYP2, and CYP3 families play an 

essential role in detoxifying drugs and exogenous chemicals (Tomaszewski et al., 2008; 

Zanger and Schwab, 2013). The expression and activity of these CYP families for drug uses 

have been primarily elucidated in rodents, such as mice and rats, as a surrogate for humans 

in new drug development (Bogaards et al., 2000; Eagling et al., 1998). However, CYP 

expression and activity differ among age, gender, genetic polymorphism, and animal species 

(Graham and Lake, 2008; Martignoni et al., 2006; Sadler et al., 2016; Tomaszewski et al., 

2008; Zuber et al., 2002). Consequently, investigations on CYP1–CYP3 activities and 

expression profiles will provide valuable information for predicting environmental chemicals 

and the effects of pharmaceutical exposure for each species.		

The objectives in this study were (1) to elucidate the mRNA expression of the CYP1-

3 families in  cat tissues that are useful in defining the specific metabolic capacity in each 

tissue; (2) to investigate the CYP mRNA expression related to in vivo organohalogen 

exposures, including chronic BDE-209 exposure and acute PCB exposure, that can support 

my knowledge on the toxicity and clinical signs of cats exposed to these chemicals; (3) to 
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estimate the pathways of feline CYP-mediated PCB metabolism to clarify the specific CYP 

isoforms for PCB in cats compared to dogs; and (4) to study the interspecies differences in 

CYP metabolic abilities for neonicotinoids between cats and other species that will provide  

significant evidence to evaluate the capacity of CYP activity and clearance of these chemicals 

in cats. These objectives will allow us to better understand the chemically induced CYP, and 

in the future, progress to toxicity prediction and the ability of CYP metabolism after exposure 

to several compounds in cats since they are frequently exposed to drugs and environmental 

pollutants. 

Chapter 2 discusses studies regarding tissue distribution and mRNA expression of 

feline CYP isoforms associated with in vivo organohalogen exposures.  

In this part, I aimed to elucidate the existing isoforms of the CYP1–CYP3 families in 

various cat tissues including the liver, kidney, heart, lung, small intestine (duodenum, 

jejunum, and ileum), and brain (cerebrum, cerebellum, hypothalamus, midbrain, pons, and 

medulla). I also investigated the CYP mRNA expression related to acute PCB exposure in 

cats using the cDNA cloning and quantitative real-time RT-PCR (qRT-PCR) techniques. To 

estimate the possible PCB congener-induced CYPs, the correlation between the CYP mRNA 

expression and DL-PCBs toxic equivalent (TEQ) in the liver was analyzed. Furthermore, I 

examined the hepatic CYP mRNA expression in cats treated BDE-209 for long-term 

exposure. In cats, the greatest abundance of CYP1–CYP3 was expressed in the liver, but 

some extrahepatic isozymes were found in the kidney (CYP1A1), heart (CYP1B1), lung 

(CYP2B11 and CYP2S1) and small intestine (CYP3A131). In cats, CYP1A1, CYP1A2 and 

CYP1B1 were significantly upregulated in the liver as well as in several tissues exposed to 

PCBs, indicating that these CYPs were distinctly induced by PCBs. The strong correlations 

between 3,3’,4,4’-tetrachlorobiphenyl (CB77) and CYP1A1 and CYP1B1 mRNA 

expressions were noted, demonstrating that CB77 could be a potent CYP1 inducer. All 

selected CYP isoforms showed no significant difference in mRNA expressions between 

control and BDE-209 exposure groups. However, CYP3A12 and CYP3A131 revealed a 

trend that was two times higher in the BDE-209 exposure group compared to control group. 

The present results indicate that the acute exposure of PCBs could clearly upregulate CYP1 
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family expression, while chronic exposure of BDE-209 could not alter CYP expression in 

the liver of cats. 

 Chapter 3 describes the interspecies differences in specific CYP isoforms 

responsible for PCB metabolism and investigations on CYP activity for neonicotinoid 

metabolism in cats compared to other species.  

 To be able to understand the interspecies differences among CYPs involved in PCB 

and neonicotinoid metabolism, the objectives of this section were to compare the production 

of OH-PCBs by CYP-mediated metabolism, to examine whether feline CYPs can metabolize 

high Cl-PCBs (7–8 Cl), and to reveal the differences in neonicotinoid metabolites and CYP 

activities among common pet species. The metabolic assay for 12 PCB (3–8 Cl) and highly 

Cl-PCBs (7–8 Cl) mixtures were conducted in vitro using hepatic microsomes of control cats, 

PCBs-exposed cats, control dogs, and PCBs-exposed dogs. The OH-PCB profiles between 

cats and dogs were similar for low Cl-OH-PCBs (3–5 Cl), especially 4ʹOH-CB18 as the major 

metabolite. These results, combined with in silico docking simulation, indicated that cat 

CYP3A and dog CYP3A/1A1 mainly contribute to the metabolism of PCBs, particularly 

PCB18. However, CYP1A1 in cats and CYP1A2/2B in dogs may be minor players for the 

metabolism of some PCB congeners that led to their metabolites being formed in small 

amounts. Variations in neonicotinoid metabolism were found among species; enzyme 

kinetics indicated noticeably high Vmax/Km values in rats and humans in neonicotinoid 

metabolism, while the CYP activity in neonicotinoid metabolism was low in cats and dogs. 

The feline glucuronidation deficiency, together with these findings, suggested that 

neonicotinoids and PCBs were metabolized less in cats compared to other species. Therefore, 

the PCB contaminations in households and using drugs containing neonicotinoids in pets, 

especially cats, should be considered carefully in toxicology and veterinary medicine. 

Chapter 4 concludes all outcomes in this study and provides future perspectives 

based on the results presented in this thesis.   

Overall, CYP3A was the dominant subfamily in the liver. Some CYP isoforms 

(CYP1A1 and CYP2B11) were highly expressed in the extrahepatic tissues, whereas CYP2B, 
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one of the most important isoforms for the metabolism of several substances, was not 

detected in the liver of cats. Chronic oral exposure (one year) to BDE-209 could not induce 

CYP1–CYP3 mRNA expression in the liver of cats, whereas the results after a single 

exposure to twelve PCB mixtures revealed that CYP1A1, CYP1A2 and CYP1B1 mRNA 

expression could be clearly induced by PCBs and may be strongly induced by CB77 in 

several tissues. However, the findings of in vitro PCB metabolism combined with in silico 

docking simulation indicated that feline CYP3A and canine CYP3A/1A1 mainly contribute 

to PCB metabolism, particularly PCB18 to 4ʹOH-CB18, which is the predominant metabolite 

in both cats and dogs. In addition, CYP1A1 in cats and CYP1A2/2B in dogs could be minor 

players for the metabolism of some PCB congeners (PCB28, PCB70, PCB77, PCB101, and 

PCB187) that led to their metabolites being formed at very small amounts. The significantly 

lower concentrations of OH-PCBs formation using the cat microsome suggested that cats 

have a lower capacity for PCB metabolism compared to dogs. The in vitro study on the 

interspecies differences in CYP activities for neonicotinoid metabolism indicated that cats 

and dogs have a low capacity for CYP-mediated neonicotinoid metabolism compared to rats 

and humans. In addition to CYP metabolism, phase II conjugation also plays an essential role 

in detoxification and excretion of chemicals. I suggested that the biotransformation of these 

studied compounds may occur less in cats compared to dogs or other species because cats 

not only have glucuronidation deficiency but also presented missing CYP2B in the liver as 

well as low CYP activity for these substances.  

Recently, cats are popular pets that can be exposed to several environmental 

chemicals like humans, but the information on CYP isoforms involved in exposure and 

metabolism of numerous chemicals in cats is limited. Findings regarding detailed 

mechanisms of feline CYPs induced by environmental contaminants and further studies to 

define specific CYP isoforms for the metabolism of chemicals using recombinant feline CYP 

protein expression are particularly important. Moreover, the in-silico analyses, including 

docking simulation and molecular dynamics, will provide useful data for estimation of 

pathways and possible toxicities of CYP-mediated chemical metabolism in cats.  
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