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Abstract

The purpose of the present paper is to analyze correlation structures of the
ground states of the Schrödinger operator. We construct Griffiths inequalities for
the ground state expectations by applying operator-theoretic correlation inequali-
ties. As an example of such an application, we study the ground state properties
of Schrödinger operators.
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1 Introduction

The so-called “Ising model” was introduced by Lenz [20] to study ferromagnetic prop-
erties of a magnet. This model was discussed in his PhD thesis by Ising [16], and
has been actively studied by both mathematicians and physicists. The Ising model on
Λ = [−L,L)d ∩Zd is defind as follows. For each spin configuration σ = {σx}x∈Λ ∈ Ω =
{−1,+1}Λ on Λ, the energy of the Ising system is

H(σ) = −
∑
x,y∈Λ

Jxyσxσy, (1.1)

where Jxy is a nonnegative coupling constant. The thermal average is defined by

〈σA〉 =
∑
σ∈Ω

σAe
−βH(σ)

/
Zβ, Zβ =

∑
σ∈Ω

e−βH(σ), (1.2)

where σA =
∏
x∈A σx for each A ⊆ Λ. In his study of Ising ferromagnets [12, 13, 14],

Griffiths discovered the well-known Griffiths inequalities. Kelly and Sherman refined
the Griffiths inequalities as follows [17]:

• First inequality:

〈σA〉 ≥ 0, A ⊆ Λ; (1.3)
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• Second inequality:

〈σAσB〉 − 〈σA〉〈σB〉 ≥ 0, A,B ⊆ Λ. (1.4)

These inequalities played an important role in the rigorous study of the Ising model
[15]. Accordingly, we can expect that the Griffiths inequalities express the essential
idea of correlation in the Ising system. Therefore, it is logical to ask whether similar
inequalities hold for other models. An attempt to find a solution of this question can be
regarded as an exploration of the model-independent structure of correlations. Ginibre’s
work [10] was a first important step toward understanding this model-independent
structure. His framework of constructing the Griffiths inequalities still hold for several
classical models [34]. However, we know of a few examples of quantum models that
satisfy Griffiths inequalities; it has been actively studied to construct the inequalities
for quantum models, see, e.g., [2, 19, 33].

In recent studies, Miyao established the Griffiths inequalities for both Bose and
Fermi systems [29]. His theory was constructed from the veiwpoint of operator-theoretic
correlation inequalities. According to this theory, we can unify the method of reflection
positivity in the theory of phase transitions [5, 8, 9], Lieb’s spin reflection positivity in
the Hubbard model [22, 26, 30, 38, 40] and Griffiths inequalities. In this way, the new
theory is expected to describe a universal aspect of the notion of correlation.

The Schrödinger operator is undoubtedly one of the most important models in
quantum theory. Hence, we can expect that this model will provide a crucial clue,
leading to better understanding of the universal aspects of correlation. Conversely,
there has been little research on correlation structures of the ground states of this
model.1 The principal aim of the present paper is to analyze correlation properties
of the ground states of the Schrödinger operator in terms of the operator-theoretic
correlation inequalities. This kind of the study is expected to be useful, when we
examine the entanglment structures of many-body systems. Through this analysis,
we clarify the Griffiths inequalities for ground state expectations. As we will see, our
correlation inequalities provide qualitative information on the shape of ground states.
The forms of the obtained results are consistent with (1.3) and (1.4), as we will see
in Section 2. This is more than coincidence because our construction is based on our
previous work [29] which is a generalization of the Griffiths inequalities. Finally, remark
that our method can be applied to many-body Schrödinger operators.

The remainder of this paper is as follows. In Section 2, we display results from the
analysis of operator theoretic correlation inequalities.

In Section 3, we introduce several operator inequalities associated with self-dual
cones. As we will see, these inequalities are very useful to study correlation structures
of the ground states.

Sections 4-9 are devoted to the analysis of the ground states of Schrödinger operators
in terms of the theory constructed in Section 3.

In Appendix A, we construct a general theory of correlation inequalities as operator
inequalities associated with self-dual cones. Although many of the results in this section
are already proved in previous studies [6, 11, 24, 26, 27, 28, 29, 30, 31], we have specified
them here the for readers’ convenience.

1For example, see [1, 21]. In [1], Hydrogen-like atoms in constant magnetic field are studied. In
[21], the Born-Oppenheimer energy is investigated.
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2 Results

2.1 Definitions and assumptions

We will study the Schrödinger operator

H = −∆x − V (2.1)

acting on the Hilbert space L2(Rd; dx). As usual, ∆x is a self-adjoint realization of the
d-dimensional Laplacian, and V is a potential.

To state our results, we need the assumptions (A), (B), and (C) below.
Our first assumption concerns the self-adjointness of H.

(A) The potential V : Rd → R is chosen such that H is self-adjoint on dom(−∆x) and
bounded from below. ♦

Example 1 If V ∈ Ln(Rd; dx) + L∞(Rd; dx) with n = 2 for d ≤ 3, n > 2 for d = 4
and n = d/2 for d ≥ 4, then V satisfies (A), see, e.g., [36, Theorem X. 29]. ♦

As usual, the Fourier transform of f is defined by

f̂(p) := (2π)−d/2
∫
Rd
dx e−ip·xf(x). (2.2)

Our second assumption is stated as follows.

(B) There exists an approximating sequence Vn 6= 0 for V such that (i)–(iii) hold:

(i) Let Hn = −∆x−Vn. Hn converges to H in the strong resolvent sense as n→∞.2

(ii) For all n ∈ N and a.e. p, the Fourier transform V̂n(p) exists and satisfies V̂n ∈
L1(Rd; dp), V̂n(p) ≥ 0 and V̂n(−p) = V̂n(p) a.e. p. Moreover, there exists an

ε > 0 such that suppV̂n ⊃ Bε(0), where suppV̂n = {p ∈ Rd | V̂n(p) 6= 0} and
Bε(0) = {p ∈ Rd | |p| < ε}.

(iii) V̂n(p) is monotonically increasing in n, i.e., V̂n(p) ≤ V̂n+1(p) a.e. p for all n ∈ N.
♦

Remark 2.1 In concrete applications, it often happens that V̂ does not exist, or that
V̂ exists, but V̂ /∈ L1(Rd; dp). Even in these cases, we can apply our theory of operator-
theoretic correlation inequalities on the basis of the assumption (B). This is the prin-
cipal reason for introducing {Vn}∞n=1. ♦

2Let {An}∞n=1 be a sequence of self-adjoint operators on L2(Rd; dx). We say that An converges to
A in the strong resolvent sense if (An − z)−1 converges to (A − z)−1 in the strong operator topology
for all z with Imz 6= 0.
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Example 2 Let us consider the Yukawa potential, V (x) =
e−m|x|

|x|
with m > 0. In the

three-dimensional case, we have V̂ (p) =
21/2

p2 +m2
. Clearly, V̂ (p) /∈ L1(R3; dp). In this

case, we set

Vn(x) = (2π)−3/2

∫
R3

eip·xV̂n(p)dp, (2.3)

where

V̂n(p) =

{
V̂ (p) if |p| ≤ n
0 if |p| > n

. (2.4)

Then, Vn satisfies the assumption (B).3

We can also deal with the case where m = 0 by extending the above arguments. In
this case, we have V̂ (p) = 21/2/p2. Set V̂n(p) = V̂ (p)χIn(p), where χIn is the indicator
function of a set In = Bn(0)\B1/n(0). Then we can readily confirm that V̂n satisfies
the assumption (B). ♦

Example 3 We consider the three-dimensional case: d = 3. Let V be a potential such
that V ∈ S(R3), the Schwartz class, and V (−x) = V (x). We assume that V̂ (p) ≥ 0 for
all p ∈ R3. Then the following properties are readily obtained:

• V̂ (0) > 0;

• V̂ (p) is continuous in p.

Therefore, there exists a number ε > 0 such that suppV̂ ⊃ Bε(0). By setting V̂n(p) =
V̂ (p) for all n ∈ N, we see that the assumption (B) is satisfied. A typical example is
V (x) = V0e

−x2/a2 with V0 > 0 and a > 0.

For a given linear operator A, we denote by σ(A) spectrum of A. The following
assumption concerns the least eigenvalue of H.

(C) There exists an n0 ∈ N such that, for all n ≥ n0, inf σ(Hn) is an eigenvalue of
Hn. In addition, inf σ(H) is an eigenvalue of H. ♦

Example 4 Let us consider the Yukawa potential given in Example 2. If m is small,
then inf σ(H) is an eigenvalue. This is because H(m) converges to H(m=0) , the Hamil-
tonian of the hydrogen-like atom, as m → +0 in the strong resolvent sense. Here, we
clarify the m-dependence of H by expressing H as H(m). Since Hn converges to H in
the strong resolvent sense as n → ∞, inf σ(Hn) must be an eigenvalue, provided that
n is large enough. ♦

3Proof. (ii) and (iii) of the condition (B) are easy to check.
(i) Remark that ‖Vn−V ‖L2 = ‖V̂n− V̂ ‖L2 → 0 as n→∞. Thus, for each ϕ ∈ C∞0 (R3), we see that

‖(Vn − V )ϕ‖L2 ≤ ‖Vn − V ‖L2‖ϕ‖L∞ → 0 as n → ∞, which implies that (−∆x − Vn)ϕ converges to
(−∆x−V )ϕ as n→∞. Because C∞0 (R3) is a common core for −∆x−Vn and −∆x−V , we can apply
a general theorem [35, Theorem VIII. 25 (a)] and conclude that −∆x − Vn converges to −∆x − V in
the strong resolvent sense. 2
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Definition 2.2 We say that the potential V is regular if it satisfies (A), (B), and (C).
♦

Example 5 (i) The Yukawa potential discussed in Example 2 is regular, if m = 0
or m is sufficiently small.

(ii) Let us consider the potantial V concretely given in Example 3. Then V is regular
provided that V0 is large enough. ♦

Definition 2.3 Let A be a self-adjoint operator, bounded from below. If inf σ(A) is
an eigenvalue, then the corresponding normalized eigenvectors are called ground states
of A. ♦

The following proposition is a basic input.

Proposition 2.4 Assume that V is regular. The ground state of H (resp., Hn) is
unique. Let ψ (resp., ψn) be the unique ground state of H (resp., Hn). We have the
following:

(i) ψ(x) > 0 and ψn(x) > 0 a.e. x.

(ii) ψ̂(p) > 0 and ψ̂n(p) > 0 a.e. p.

Remark 2.5 The property (i) is well-known, see, e.g., [37, Theorem XIII.45], however,
as far as we know, the property (ii) is novel. ♦

We prove Proposition 2.4 in Section 4.
We denote by B(H) the set of all bounded linear operators on a Hilbert space H.

Definition 2.6 Let ψ (resp., ψn) be the unique ground state of H (resp., Hn). For
each A ∈ B(L2(Rd; dx)), we define the ground state expectation 〈A〉 by

〈A〉 = 〈ψ|Aψ〉. (2.5)

Similarly, we define 〈A〉n = 〈ψn|Aψn〉. ♦

2.2 First inequalities

In this study, we write the operator Mf , for multiplication by the function f , simply
as f , if no confusion occurs.

For each f ∈ L∞(Rd; dx), a linear operator f(−i∇x) is defined by

f(−i∇x)φ =
(
f(p)φ̂

)∨
, φ ∈ L2(Rd; dx), (2.6)

where ∨ is the inverse Fourier transform.
Let

A =
{
f ∈ L∞(Rd; dx) ∩ L2(Rd; dx)

∣∣ f̂(p) ≥ 0 a.e. p
}
. (2.7)

The following theorem corresponds to the first Griffiths inequality (1.3).

Theorem 2.7 Assume that V is regular.

(i) For all f ∈ A, 〈f〉 ≥ 0. The equality holds if and only if f = 0.

(ii) For all f ∈ A,
〈
f(−i∇x)

〉
≥ 0. The equality holds if and only if f = 0.

We prove Theorem 2.7 in Section 4.
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2.3 Second inequalities

Here, we state some results related to the second Griffiths inequality (1.4). For this
purpose, we introduce the following:

Ae =
{
f ∈ L∞(Rd; dx) ∩ L2(Rd; dx)

∣∣ f̂(p) ≥ 0 a.e. p and f(−x) = f(x) a.e. x
}
.

(2.8)

By the assumption (i) of (B), we can readily expect that 〈A〉n converges to 〈A〉 as
n→∞. The following theorem provides more detailed information on the convergence.

Theorem 2.8 Assume that V is regular.

(i) For all f ∈ Ae, 〈f〉n is monotonically increasing in n and converges to 〈f〉.

(ii) For all f ∈ Ae,
〈
f(−i∇x)

〉
n

is monotonically decreasing in n and converges to〈
f(−i∇x)

〉
.

We provide a proof of Theorem 2.8 in Section 5.
The following theorem is a generalization of the second Griffiths inequality (1.4).

Theorem 2.9 Assume that V is regular. For all f, g ∈ Ae, we have the following:

(i) 〈fg〉 − 〈f〉〈g〉 ≥ 0.

(ii)
〈
f(−i∇x)g(−i∇x)

〉
−
〈
f(−i∇x)

〉〈
g(−i∇x)

〉
≥ 0.

(iii)
〈
f(−i∇x)g

〉
−
〈
f(−i∇x)

〉〈
g
〉
≤ 0.

Remark 2.10 In Section 4.3, we will show the following:

(i)
〈
f(−i∇x)g

〉
is a real number;

(ii) if f(x) ≥ 0 or g(x) ≥ 0, then
〈
f(−i∇x)g

〉
≥ 0.

Thus, Theorem 2.9 (iii) is meanigful. ♦

We provide a proof of Theorem 2.9 in Section 6.

Definition 2.11 Let V (1) and V (2) be regular potentials. Let V̂
(1)
n and V̂

(2)
n be the cor-

responding approximating functions appearing in the condition (B). We write V (1) �
V (2), if there exists an n0 ∈ N such that for all n ≥ n0, V̂

(1)
n (p) ≥ V̂ (2)

n (p) a.e. p. ♦

Example 6 Let W be a regular potential. Assume that λW is regular for all λ ∈ I,
where I is an open subset of (0,∞). We set V (1) = λ1W and V (2) = λ2W . If λ1, λ2 ∈ I
and λ1 ≥ λ2, then V (1) � V (2).

As a typical example, we consider the following. Let W be a potential given in
Example 3: W (x) = W0e

−x2/a2 . The potential W is regular provided that W0 is large
enough. Let I be an open subset of R such that I ⊆ [1,∞). Then λW is regular for all
λ ∈ I. ♦
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Let V (1) and V (2) be regular potentials. We consider Schrödinger operators given
by

H(1) = −∆x − V (1), H(2) = −∆x − V (2). (2.9)

Let ψ(1) (resp., ψ(2)) be the unique ground state of H(1) (resp., H(2)). We set

〈A〉(1) =
〈
ψ(1)|Aψ(1)

〉
, 〈A〉(2) =

〈
ψ(2)|Aψ(2)

〉
. (2.10)

In Section 7, we demonstrate the following.

Theorem 2.12 Assume that V (1) and V (2) are regular.

(i) If V (1) � V (2), then 〈f〉(1) ≥ 〈f〉(2) for all f ∈ Ae.

(ii) If V (1) � V (2), then
〈
f(−i∇x)

〉(1) ≤
〈
f(−i∇x)

〉(2)
for all f ∈ Ae.

2.4 Application I: Ground state properties

We study some properties of the ground states by the correlation inequalities. In Section
8, we will show the following theorems.

Theorem 2.13 Assume that V is regular. Let ψ be the ground state of H. We set

C(V ) = {x ∈ Rd |ψ is continuous at x}, (2.11)

Ĉ(V ) = {p ∈ Rd | ψ̂ is continuous at p}. (2.12)

Assume that 0 ∈ C(V ) and 0 ∈ Ĉ(V ). Then we have the following:

(i) ψ(0) ≥ ψ(x) for all x ∈ C(V ).

(ii) ψ̂(0) ≥ ψ̂(p) for all p ∈ Ĉ(V ).

Taking the above theorem into consideration, we define

δψ(x) =
√
ψ(0)2 − ψ(x)2. (2.13)

Remark 2.14 1. Let us consider the hydrogen-like atom discussed in Example 2:
V (x) = 21/2/|x|. Then we can confirm that all assumptions in Theorem 2.13 are
satisfied.

2. Using [23, Theorem 11.7], we see that 0 ∈ C(V ) under additional assumptions on
V . 4 We can also apply [39, Theorem C.1.1] to check that every potential given
in Example 3 satisfies this condition. ♦

4For example, suppose that V ∈ L1(Br), where Br = {x ∈ Rd | |x| < r}. Suppose that d ≥ 2. If
V ∈ Lp(Br) for d ≥ p > d/2, then for all α < 2− d/p,

|ψ(x)− ψ(y)| ≤ C|x− y|α (2.14)

for some C > 0 and all x, y ∈ Br′ with r′ < r. Hence, C(V ) ⊇ Br′ in this case. Note that all potential
given in Example 3 fulfill the assmptions.
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Theorem 2.15 Assume that V (1) and V (2) are regular. Assume that 0 ∈ C(V (1)) ∩
C(V (2)). If V (1) � V (2), then we have the following:

(i) ψ(1)(0) ≥ ψ(2)(0).

(ii) δψ(1)(x) ≥ δψ(2)(x) for all x ∈ C(V (1)) ∩ C(V (2)).

Next, we define

δψ̂(p) =

√
ψ̂(0)2 − ψ̂(p)2. (2.15)

Theorem 2.16 Assume that V (1) and V (2) are regular. Assume that 0 ∈ Ĉ(V (1)) ∩
Ĉ(V (2)). In addition, assume that ψ̂(1) and ψ̂(2) are bounded. If V (1) � V (2), then we
have the following:

(i) ψ̂(1)(0) ≤ ψ̂(2)(0).

(ii) δψ̂(1)(p) ≤ δψ̂(2)(p) for all p ∈ Ĉ(V (1)) ∩ Ĉ(V (2)).

Example 7 Let W be a regular potential given in Example 6. Let ψλ be the unique
ground state of Hλ = −∆x − λW . For simplicity, we assume that ψλ and ψ̂λ are
continuous on Rd for all λ ∈ I. We have the following:

(i) δψλ(x) is monotonically increasing in λ for all x.

(ii) δψ̂λ(p) is monotonically decreasing in λ for all p.

Roughly speaking, (i) and (ii) above mean that, as λ increases the shape of ψλ(x) be-
comes sharper, while that of ψ̂λ(p) becomes blunter. In other words, the wave function
of the particle is more localized around the origin in the position space as λ increases,
while in the momentum space, it is delocalized. These facts can be regarded as an
expression of Heisenberg’s uncertainty principle. ♦

2.5 Application II: Properties of |ψ(x)|2

Let %(x) = |ψ(x)|2. In the context of quantum mechanics, %(x) is interpreted as the
probability density that the particle is at x. We can apply the correlation inequalities
to investigate properties of %(x). Here, we present some examples of applications.

Since % ∈ L1(Rd; dx), %̂(p) exists for all p ∈ Rd and is continuous in p.
In Section 9, we prove the following three theorems:

Theorem 2.17 Assume that V is regular.

(i) 0 < %̂(p) for all p.

(ii) %̂(p) ≤ %̂(0) = (2π)−d/2 for all p. There is equality if and only if p = 0.

(iii) (2π)d/2%̂(p)%̂(p′) ≤ 1

2
%̂(p− p′) +

1

2
%̂(p+ p′) for all p, p′.

Theorem 2.17 provides information about the shape of the function %̂(p).
Let %n(x) = |ψn(x)|2. By the assumption (i) of (B), we readily confirm that %̂n(p)

converges to %̂(p) as n→∞. The correlation inequalities stated in this section enable
us to obtain further information on the convergence:

8



Theorem 2.18 Assume that V is regular. Then, %̂n(p) is monotonically increasing in
n for all p ∈ Rd.

Theorem 2.19 Assume that V (1) and V (2) are regular, and that V (1) � V (2). Let
%(1)(x) = |ψ(1)(x)|2 and %(2)(x) = |ψ(2)(x)|2. Then, %̂(1)(p) ≥ %̂(2)(p) for all p ∈ Rd.

Theorem 2.19 suggests that, as the strength of V becomes larger, the probability
density has a tendency to localized around the origin in the position space. This result
is consistent with the results in Section 2.4.

Example 8 Let W be a regular potential given in Example 6. Let ψλ be the unique
ground state of Hλ = −∆x − λW , and let %λ(x) = |ψλ(x)|2. Then, %̂λ(p) is monotoni-
cally increasing in λ ∈ I for all p ∈ Rd. ♦

3 Preliminaries

In order to prove the theorems in Section 2, we must introduce several operator in-
equalities associated with self-dual cones.

3.1 Self-dual cones

Let H be a complex Hilbert space. By a convex cone, we understand a closed convex
set P ⊂ H such that tP ⊆ P for all t ≥ 0 and P ∩ (−P) = {0}. In what follows, we
always assume that P 6= {0}.

Definition 3.1 The dual cone of P is defined by

P† = {η ∈ H | 〈η|ξ〉 ≥ 0 ∀ξ ∈ P}. (3.1)

We say that P is self-dual if P = P†. ♦

Definition 3.2 ([6]) Let H be a complex Hilbert space. A convex cone P in H is
called a Hilbert cone, if it satisfies the following:

(i) 〈ξ|η〉 ≥ 0 for all ξ, η ∈ P.

(ii) Let HR be a real closed subspace of H generated by P . Then for all ξ ∈ HR,
there exist ξ+, ξ− ∈ P such that ξ = ξ+ − ξ− and 〈ξ+|ξ−〉 = 0.

(iii) H = HR + iHR = {ξ + iη | ξ, η ∈ HR}. ♦

Remark 3.3 Let P be a Hilbert cone in H. For each ξ ∈ H, we have the following
expression:

ξ = (ξ1 − ξ2) + i(ξ3 − ξ4), (3.2)

where ξ1, ξ2, ξ3 and ξ4 satisfy ξ1, ξ2, ξ3, ξ4 ∈ P, 〈ξ1|ξ2〉 = 0 and 〈ξ3|ξ4〉 = 0. ♦

Theorem 3.4 Let P be a convex cone in H. The following are equivalent:

(i) P is a self-dual cone.
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(ii) P is a Hilbert cone.

Proof. For (i) ⇒ (ii), see, e.g., [4] or [3, Proof of Proposition 2.58].
Suppose that P is a Hilbert cone. We easily see that P ⊆ P† by Definition 3.2

(i). We will show the inverse. Let ξ ∈ P†. By (3.2), we can write ξ as ξ = (ξR,+ −
ξR,−) + i(ξI,+ − ξI,−) with ξR,±, ξI,± ∈ P, 〈ξR,+|ξR,−〉 = 0 and 〈ξI,+|ξI,−〉 = 0. Assume
that ξI,+ 6= 0. Then 〈ξ|ξI,+〉 is a complex number, which contradicts with the fact that
〈ξ|η〉 ≥ 0 for all η ∈ P. Thus, ξI,+ = 0. Similarly, we have ξI,− = 0. Next, assume that
ξR,− 6= 0. Because ξR,− ∈ P, we have

0 ≤ 〈ξ|ξR,−〉 = −‖ξR,−‖2 < 0, (3.3)

which is a contradiction. Hence, we conclude that ξ = ξR,+ ∈ P. 2

Definition 3.5 • A vector ξ is said to be positive w.r.t. P if ξ ∈ P. We write this
as ξ ≥ 0 w.r.t. P.

• A vector η ∈ P is called strictly positive w.r.t. P whenever 〈ξ|η〉 > 0 for all
ξ ∈ P\{0}. We write this as η > 0 w.r.t. P. ♦

Example 9 For each d ∈ N, we set

L2(Rd; du)+ = {f ∈ L2(Rd; du) | f(u) ≥ 0 a.e. u}. (3.4)

L2(Rd; du)+ is a self-dual cone in L2(Rd; du). f ≥ 0 w.r.t. L2(Rd; du)+ if and only if
f(u) ≥ 0 a.e. u. On the other hand, f > 0 w.r.t. L2(Rd; du)+ if and only if f(u) > 0
a.e. u. ♦

3.2 Operator inequalities associated with self-dual cones

In subsequent sections, we use the following operator inequalities.

Definition 3.6 Let A,B ∈ B(H). Let P be a self-dual cone in H.
If AP ⊆ P,5 we then write this as A � 0 w.r.t. P.6 In this case, we say that

A preserves the positivity w.r.t. P. Suppose that AHR ⊆ HR and BHR ⊆ HR. If
(A−B)P ⊆ P, then we write this as A�B w.r.t. P. ♦

Remark 3.7 (i) A� 0 w.r.t. P ⇐⇒ 〈ξ|Aη〉 ≥ 0 for all ξ, η ∈ P.

(ii) Let A ∈ B(H). If AHR ⊆ HR, we say that A preserves the reality w.r.t. P. The
following fact will be often used: if A preserves the positivity w.r.t. P, then A
preserves the reality w.r.t. P. ♦

The following proposition is fundamental to this paper.

Proposition 3.8 Let A,B,C,D ∈ B(H) and let a, b ∈ R.

(i) If A� 0, B � 0 w.r.t. P and a, b ≥ 0, then aA+ bB � 0 w.r.t. P.

5For each subset C ⊆ H, AC is defined by AC = {Ax |x ∈ C}.
6This symbol was introduced by Miura [32], see also [18].
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(ii) If A�B � 0 and C �D � 0 w.r.t. P, then AC �BD � 0 w.r.t. P.

(iii) If A� 0 w.r.t. P, then A∗ � 0 w.r.t. P.

Proof. (i) is trivial.
(ii) If X � 0 and Y � 0 w.r.t. P, we have XYP ⊆ XP ⊆ P. Hence, it holds that

XY � 0 w.r.t. P. Hence, we have

AC −BD = A︸︷︷︸
�0

(C −D)︸ ︷︷ ︸
�0

+ (A−B)︸ ︷︷ ︸
�0

D︸︷︷︸
�0

�0 w.r.t. P.

(iii) For each ξ, η ∈ P, we know that

〈ξ|A∗η〉 = 〈 A︸︷︷︸
�0

ξ︸︷︷︸
≥0

| η︸︷︷︸
≥0

〉 ≥ 0. (3.5)

Thus, by Remark 3.7 (i), we conclude (iii). 2

Definition 3.9 Let A ∈ B(H). We write A � 0 w.r.t. P, if Aξ > 0 w.r.t. P for all
ξ ∈ P\{0}. In this case, we say that A improves the positivity w.r.t. P. ♦

Definition 3.10 Let A ∈ B(H). Assume that A�0 w.r.t. P. We say that A is ergodic
w.r.t. P if for each ξ, η ∈ P\{0}, there exists an n ∈ {0} ∪ N such that 〈ξ|Anη〉 > 0.
Note that the number n could depend on ξ and η. ♦

3.3 A canonical cone in L 2(H)

Let H be a complex Hilbert space. The set of all Hilbert–Schmidt class operators on H
is denoted by L 2(H), i.e., L 2(H) = {ξ ∈ B(H) |Tr[ξ∗ξ] < ∞}. L 2(H) is a two-sided
ideal in B(H). Henceforth, we regard L 2(H) as a Hilbert space equipped with the
inner product 〈ξ|η〉L 2 = Tr[ξ∗η], ξ, η ∈ L 2(H).

Definition 3.11 For each A ∈ B(H), the left multiplication operator is defined by

L(A)ξ = Aξ, ξ ∈ L 2(H). (3.6)

Similarly, the right multiplication operator is defined by

R(A)ξ = ξA, ξ ∈ L 2(H). (3.7)

Note that L(A) and R(A) belong to B(L 2(H)), where B(L 2(H)) is the set of all
bounded linear operators on L 2(H). ♦

It is not difficult to check that

L(A)L(B) = L(AB), R(A)R(B) = R(BA), A,B ∈ B(H). (3.8)

Let ϑ be an antiunitary operator on H.7 Let Φϑ be an isometric isomorphism from
L 2(H) onto H⊗ H defined by

Φϑ(|x〉〈y|) = x⊗ ϑy ∀x, y ∈ H, (3.9)

7We say that a bijective map ϑ on H is antiunitary if 〈ϑx|ϑy〉 = 〈x|y〉 for all x, y ∈ H.
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where the linear operator |x〉〈y| is defined by |x〉〈y|z = 〈y|z〉x for all z ∈ H. Then,

L(A) = Φ−1
ϑ A⊗ 1lΦϑ, R(ϑA∗ϑ) = Φ−1

ϑ 1l⊗AΦϑ (3.10)

for each A ∈ B(H). We write these facts simply as

H⊗ H = L 2(H), A⊗ 1l = L(A), 1l⊗A = R(ϑA∗ϑ), (3.11)

if no confusion arises.
The left and right multiplication operators can be extended to unbounded operators

by (3.10) as follows. Let A be a densely defined closed operator on H. The left
multiplication operator L(A) and the right multiplication operator R(A) are defined
as L(A) = Φ−1

ϑ A⊗ 1lΦϑ and R(A) = Φ−1
ϑ 1l⊗ ϑA∗ϑΦϑ, respectively.

Remark 3.12 (i) Both L(A) and R(A) are closed operators on L 2(H).

(ii) If A is self-adjoint, then L(A) and R(A) are self-adjoint.

(iii) We will also use the conventional identification (3.11). ♦

Recall that a linear operator A on H is said to be positive if 〈ξ|Aξ〉H ≥ 0 for all
ξ ∈ H. We write this as A ≥ 0.

Definition 3.13 A canonical cone in L 2(H) is given by

L 2(H)+ =
{
ξ ∈ L 2(H)

∣∣∣ ξ is self-adjoint and ξ ≥ 0 as an operator on H
}
. ♦ (3.12)

Theorem 3.14 L 2(H)+ is a self-dual cone in L 2(H).

Proof. We now check the conditions (i)–(iii) in Definition 3.2.
(i) Let ξ, η ∈ L 2(H)+. Since ξ1/2ηξ1/2 ≥ 0, we have 〈ξ|η〉L 2 = Tr[ξη] = Tr[ξ1/2ηξ1/2] ≥

0.
(ii) Note that L 2(H)R = {ξ ∈ L 2(H) | ξ is self-adjoint }. Let ξ ∈ L 2(H)R. By the

spectral theorem, there is a projection valued measure {E(·)} such that ξ =
∫
R λdE(λ).

Denote ξ+ =
∫∞

0 λdE(λ) and ξ− =
∫ 0
−∞(−λ)dE(λ). Clearly, it holds that ξ+ξ− =

0, ξ± ∈ L 2(H)+ and ξ = ξ+ − ξ−. Thus, (ii) is satisfied.
(iii) For each ξ ∈ L 2(H), we have ξ = ξR + iξI , where ξR = (ξ + ξ∗)/2 and

ξI = (ξ − ξ∗)/2i. Trivially, ξR, ξI ∈ L 2(H)R. Hence, L 2(H)+ is a Hilbert cone. By
Theorem 3.4, we conclude that L 2(H)+ is a self-dual cone. 2

Proposition 3.15 Let A ∈ B(H). We have L(A∗)R(A) � 0 w.r.t. L 2(H)+.

Proof. For each ξ ∈ L 2(H)+, we have L(A∗)R(A)ξ = A∗ξA ≥ 0. 2

Remark 3.16 As we noted in references [29, 31], Proposition 3.15 is closely related to
spin reflection positivity [22]; see also references [6, 11]. ♦
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4 Proof of Proposition 2.4 and Theorem 2.7

4.1 Proof of Proposition 2.4

Let F be the Fourier transformation on L2(Rd; dx):

(Ff)(p) = (2π)−d/2
∫
Rd
e−ip·xf(x)dx, f ∈ L2(Rd; dx). (4.1)

It is known that F is a unitary operator from L2(Rd; dx) onto L2(Rd; dp).
Let Hn = −∆x − Vn and let Ĥn = FHnF−1. We have

Ĥn = p2 − Vn(−i∇p), (4.2)

where p2 stands for the multiplication operator. Of course, Ĥn acts on L2(Rd; dp).

Remark 4.1 By the condition (B), V̂n ∈ L1(Rd; dp), which implies that Vn ∈ L∞(Rd; dx).
Thus, the linear operator Vn(−i∇p) can be defined by (2.6). ♦

Lemma 4.2 For all n ∈ N, we have the following:

(i) Vn(−i∇p) � 0 w.r.t. L2(Rd; dp)+, where L2(Rd; dp)+ is defined in Example 9.

(ii) exp(−βĤn) � 0 w.r.t. L2(Rd; dp)+ for all β ≥ 0.

Proof. Let ∇p = (Dp1 , . . . , Dpd), where Dpj is the (generalized) differential operator on
L2(Rd; dp).

(i) Since eik·(−i∇p) is a translation, we see that eik·(−i∇p) � 0 w.r.t. L2(Rd; dp)+ for
all k ∈ Rd. Thus, by (ii) of (B) and the fact Feik·xF−1 = eik·(−i∇p) , we have

Vn(−i∇p) = (2π)−d/2
∫
Rd
eik·(−i∇p)︸ ︷︷ ︸

�0

V̂n(k)︸ ︷︷ ︸
≥0

dk � 0 w.r.t. L2(Rd; dp)+. (4.3)

(ii) We know that the multiplication operator e−βp
2

satisfies e−βp
2
�0 w.r.t. L2(Rd; dp)+.

Thus, applying Theorem A.3, we conclude (ii). 2

Before we proceed, we take note of the following fact.

Lemma 4.3 Let Bd be the Borel algebra on Rd. Let B1, B2 ∈ Bd with |B1| > 0 and
|B2| > 0, where | · | is the Lebesgue measure. For any ε > 0, we set

S(`)
ε =

{
(p, p1, . . . , p`) ∈ Rd×(`+1)

∣∣∣ p ∈ B2, p+ p1 + · · ·+ p` ∈ B1, p1, . . . , p` ∈ Bε(0)
}
.

(4.4)

Then, for each ε > 0, there exists an ` ∈ N0 := {0} ∪ N such that
∣∣S(`)
ε

∣∣ > 0.
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Proof. Without loss of generality, we may assume that B1 and B2 are connected sets.
For each p1, . . . , p` ∈ Rd and ε > 0, we set

S(`)
ε (p1, . . . , p`) =

{
p ∈ Rd

∣∣∣ p ∈ B2, p+ p1 + · · ·+ p` ∈ B1

}
. (4.5)

Note that S(`)
ε (p1, . . . , p`) could be empty. For each ε > 0, there exist an ` ∈ N0 and

p1, . . . , p` ∈ Bε(0) such that
∣∣∣B2 ∩ (B1 − p1 − · · · − p`)

∣∣∣ > 0, where B1 − p1 − · · · −
p` = {p − p1 − · · · − p` | p ∈ B1}. Thus, for these ` ∈ N0 and p1, . . . , p` ∈ Bε(0),∣∣S(`)
ε (p1, . . . , p`)

∣∣ > 0. Because
∣∣S(`)
ε (p1, . . . , p`)

∣∣ is continuous in p1, . . . , p`, we have

∣∣S(`)
ε

∣∣ =

∫
(Bε(0))×`

dp1 · · · dp`
∣∣S(`)
ε (p1, . . . , p`)

∣∣ > 0. (4.6)

This completes the proof. 2

Proposition 4.4 For each n ∈ N, Vn(−i∇p) is ergodic w.r.t. L2(Rd; dp)+ (see Defi-
nition 3.10).

Proof. Recall that, by (ii) of the assumption (B), there exists an ε > 0 such that
suppV̂n ⊃ Bε(0).

Let f1, f2 ∈ L2(Rd; dp)+\{0}. Because f1 and f2 are non-zero, there exist B1, B2 ∈
Bd such that |B1| > 0, |B2| > 0, and f1(p) > 0 on B1, f2(p) > 0 on B2. By Lemma

4.3, there exists an ` ∈ N0 such that
∣∣S(`)
ε

∣∣ > 0. In addition, we have

f2(p)
(
ei(p1+···+p`)·(−i∇p)f1

)
(p) = f2(p)f1(p+ p1 + · · ·+ p`) > 0 (4.7)

for all p, p1, . . . , p` ∈ Rd such that (p, p1, . . . , p`) ∈ S
(`)
ε . Therefore, we obtain

〈f2|V `
n(−i∇p)f1〉

=(2π)−nd/2
∫
Rd
dp

∫
(Rd)×`

dp1 · · · dp` V̂n(p1) · · · V̂n(p`)︸ ︷︷ ︸
≥0

f2(p)f1(p+ p1 + · · ·+ p`)︸ ︷︷ ︸
≥0

≥(2π)−nd/2
∫
S(`)ε

dpdp1 · · · dp` V̂n(p1) · · · V̂n(p`)︸ ︷︷ ︸
>0

f2(p)f1(p+ p1 + · · ·+ p`)︸ ︷︷ ︸
>0

>0. (4.8)

This completes the proof. 2

Proposition 4.5 We have exp(−βĤ) � 0 w.r.t. L2(Rd; dp)+ for all β > 0.

Proof. By Lemma 4.2 (ii), Theorem A.6 and Proposition 4.4, we have exp(−βĤn) � 0
w.r.t. L2(Rd; dp)+ for all β > 0 and n ∈ N.

For each m,n ∈ N with n ≥ m, we have, by the assumption (iii) of (B),

Vn(−i∇p)− Vm(−i∇p) = (2π)−d/2
∫
Rd

(V̂n(k)− V̂m(k))︸ ︷︷ ︸
≥0

eik·(−i∇p)︸ ︷︷ ︸
�0

dk � 0 (4.9)

14



w.r.t. L2(Rd; dp)+. By Theorem A.4, we obtain that exp(−βĤn) � exp(−βĤm) w.r.t.
L2(Rd; dp)+ for all β ≥ 0. Taking n→∞, we conclude that exp(−βĤ) � exp(−βĤm)
w.r.t. L2(Rd; dp)+ for all β ≥ 0, where Ĥ = FHF−1. Since exp(−βĤm) � 0 w.r.t.
L2(Rd; dp)+ for all β > 0, we finally arrive at

exp(−βĤ) � exp(−βĤm) � 0 w.r.t. L2(Rd; dp)+ for all β > 0. (4.10)

Thus we are done. 2

Proof of Proposition 2.4

It is well-known that exp(−βH) � 0 and exp(−βHn) � 0 w.r.t. L2(Rd; dx)+ for all
β > 0, see, e.g., [37, Theorem XIII. 45]. Thus, we conclude the uniqueness of ground
states by [37, Theorem XIII. 4.4]. Simultaneously, we obtain (i).

By [37, Theorem XIII. 45] and Proposition 4.5 , we conclude (ii). 2

4.2 Proof of Theorem 2.7

Lemma 4.6 Let f ∈ A.

(i) FfF−1 � 0 w.r.t. L2(Rd; dp)+.

(ii) f(−i∇x) � 0 w.r.t. L2(Rd; dx)+.

Proof. (i) Because FfF−1 = f(−i∇p) and Feik·xF−1 = eik·(−i∇p)�0 w.r.t. L2(Rd; dp)+,
we have

FfF−1 = (2π)−d/2
∫
Rd
f̂(k)︸︷︷︸
≥0

eik·(−i∇p)︸ ︷︷ ︸
�0

dk � 0 w.r.t. L2(Rd; dp)+. (4.11)

(ii) Because eik·(−i∇x) � 0 w.r.t. L2(Rd; dx)+, we have

f(−i∇x) = (2π)−d/2
∫
Rd
f̂(k)︸︷︷︸
≥0

eik·(−i∇x)︸ ︷︷ ︸
�0

dk � 0 w.r.t. L2(Rd; dx)+. (4.12)

This completes the proof. 2

Proof of Theorem 2.7

(i) By Proposition 2.4 (ii) and Lemma 4.6 (i),

〈f〉 = 〈 ψ̂︸︷︷︸
>0

| FfF−1︸ ︷︷ ︸
�0

ψ̂︸︷︷︸
>0

〉 ≥ 0. (4.13)

By Theorem A.7, the equality holds if and only if f = 0.
(ii) By Proposition 2.4 (i) and Lemma 4.6 (ii),

〈f(−i∇x)〉 = 〈 ψ︸︷︷︸
>0

| f(−i∇x)︸ ︷︷ ︸
�0

ψ︸︷︷︸
>0

〉 ≥ 0. (4.14)

By Theorem A.7, the equality holds if and only if f = 0. 2
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4.3 Proof of Remark 2.10

(i) Let J be a natural involution defined by Jψ = ψ for each ψ ∈ L2(Rd; dx). Thus, we
have

〈Jχ|Jϕ〉 = 〈χ|ϕ〉, χ, ϕ ∈ L2(Rd; dx). (4.15)

Because g is in Ae, we have g(x) = g(−x) = g(x), that is, g is real-valued, which implies
that JgJ = g. Because Jeik·(−i∇x)J = eik·(−i∇x), we have Jf(−i∇x)J = f(−i∇x).
Therefore, since Jψ = ψ by Proposition 2.4 (i), we have

〈ψ|f(−i∇x)gψ〉 = 〈Jψ|Jf(−i∇x)gψ〉 = 〈Jψ|Jf(−i∇x)JJgJJψ〉 = 〈ψ|f(−i∇x)gψ〉.
(4.16)

Thus, we conclude (i).
(ii) First, assume that g(x) ≥ 0. Then g�0 w.r.t. L2(Rd; dx)+. Thus, f(−i∇x)g�0

w.r.t. L2(Rd; dx)+ by Lemma 4.6 (ii), which implies that

〈 ψ︸︷︷︸
>0

|f(−i∇x)g︸ ︷︷ ︸
�0

ψ︸︷︷︸
>0

〉 ≥ 0. (4.17)

Next, assume that f(x) ≥ 0. Remark that f(p) � 0 and g(−i∇p) = FgF−1 � 0 w.r.t.
L2(Rd; dp)+ by Lemma 4.6 (i). Hence, by Proposition 2.4 (ii),

〈ψ|f(−i∇x)gψ〉 = 〈 ψ̂︸︷︷︸
>0

| f(p)g(−i∇p)︸ ︷︷ ︸
�0

ψ̂︸︷︷︸
>0

〉 ≥ 0. (4.18)

Thus we are done. 2

5 Proof of Theorem 2.8

5.1 Extended Hamiltonian

Consider the extended Hamiltonian

Hn = Hn ⊗ 1l + 1l⊗Hn (5.1)

acting on the doubled Hilbert space Hext := H⊗ H ∼= L2(Rd × Rd; dx1dx2).
Let us introduce a new coordinate system (X1, X2) by

X1 =
x2 − x1√

2
, X2 =

x2 + x1√
2

. (5.2)

Trivially,

∇x1 = − 1√
2
∇X1 +

1√
2
∇X2 , ∇x2 =

1√
2
∇X1 +

1√
2
∇X2 , (5.3)

implying

−∆x1 −∆x2 = −∆X1 −∆X2 . (5.4)
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We define an antiunitary operator ϑ on L2(Rd; dX) by

(ϑφ)(X) = φ(X) a.e. X (5.5)

for each φ ∈ L2(Rd; dX). Using ϑ, we obtain the following identifications:

Hext = L2(Rd; dx)⊗ L2(Rd; dx)

∼= L2(Rd × Rd; dx1dx2)

= L2(Rd × Rd; dX1dX2)

∼= L2(Rd; dX)⊗ L2(Rd; dX)

= L 2(L2(Rd; dX)). (5.6)

In the last equality, we use the identification (3.11) with ϑ given by (5.5). Taking the
identifications (5.6) into account, we introduce a self-dual cone Pext in Hext by

Pext = L 2(L2(Rd; dX))+. (5.7)

Lemma 5.1 Under the identifications (5.6), we have the following:

(i) Vn ⊗ 1l + 1l⊗ Vn � 0 w.r.t. Pext.

(ii) f ⊗ 1l± 1l⊗ f � 0 w.r.t. Pext for each f ∈ Ae.

Proof. We apply Ginibre’s idea [10].
(i) By the elementary fact

cos a+ cos b = 2 cos
a+ b

2
cos

a− b
2

, (5.8)

we have

Vn ⊗ 1l + 1l⊗ Vn = Vn(x1) + Vn(x2)

= Vn

(
X2 −X1√

2

)
+ Vn

(
X1 +X2√

2

)
= (2π)−d/2

∫
Rd
V̂n(p)

{
cos
(
p · X2 −X1√

2

)
+ cos

(
p · X2 +X1√

2

)}
dp

= (2π)−d/2
∫
Rd

2 V̂n(p)︸ ︷︷ ︸
≥0

L
[

cos
(
p · X√

2

)]
R
[

cos
(
p · X√

2

)]
︸ ︷︷ ︸

�0 by Proposition 3.15

dp

� 0 w.r.t. Pext. (5.9)

(ii) By (5.8) and

cos a− cos b = 2 sin
b+ a

2
sin

b− a
2

, (5.10)

17



we have

f ⊗ 1l + 1l⊗ f = (2π)−d/2
∫
Rd

2 f̂(p)︸︷︷︸
≥0

L
[

cos
(
p · X√

2

)]
R
[

cos
(
p · X√

2

)]
︸ ︷︷ ︸

�0 by Proposition 3.15

dp� 0, (5.11)

f ⊗ 1l− 1l⊗ f = (2π)−d/2
∫
Rd

2 f̂(p)︸︷︷︸
≥0

L
[

sin
(
p · X√

2

)]
R
[

sin
(
p · X√

2

)]
︸ ︷︷ ︸

�0 by Proposition 3.15

dp� 0 (5.12)

w.r.t. Pext. 2

Theorem 5.2 Assume that V is regular. We have e−βHn�0 w.r.t. Pext for all β ≥ 0.

Proof. We set Hn = H0 −Vn, where H0 = (−∆x)⊗ 1l + 1l⊗ (−∆x) and Vn = Vn ⊗ 1l +
1l⊗ Vn. Note that, by Lemma 5.1, we know that Vn � 0 w.r.t. Pext. By (5.4) and the
identifications (5.6), we have

H0 = −∆X1 −∆X2 = L
(
−∆X

)
+R

(
−∆X

)
. (5.13)

Thus, by Proposition 3.15,

e−βH0 = L
[
eβ∆X

]
R
[
eβ∆X

]
� 0 (5.14)

w.r.t. Pext. (Remark that, because eβ∆x is bounded, the RHS of (5.14) is bounded as
well.) Now, we can apply Theorem A.3 and conclude the theorem. 2

Lemma 5.3 Let f ∈ Ae. Under the identifications (5.6), we have the following:

(i) f(−i∇x)⊗ 1l + 1l⊗ f(−i∇x) � 0 w.r.t. Pext.

(ii) f(−i∇x)⊗ 1l− 1l⊗ f(−i∇x) � 0 w.r.t. Pext.

Proof. Note that

ϑ(−i∇X)ϑ−1 = +i∇X . (5.15)

(i) Since f(−x) = f(x), we have

f(x) = (2π)−d/2
∫
Rd
f̂(p) cos(p · x)dp. (5.16)
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By (5.3), (5.8) and (5.16),

f(−i∇x)⊗ 1l + 1l⊗ f(−i∇x)

= f(−i∇x1) + f(−i∇x2)

=
(5.3)

f
( i√

2
∇X1 −

i√
2
∇X2

)
+ f

(
− i√

2
∇X1 −

i√
2
∇X2

)
=

(5.16)
(2π)−d/2

∫
Rd
f̂(p)

{
cos
[
p ·
( i√

2
∇X1 −

i√
2
∇X2

)]
+

+ cos
[
p ·
(
− i√

2
∇X1 −

i√
2
∇X2

)]}
dp

=
(5.8)

2(2π)−d/2
∫
Rd
f̂(p) cos

(−ip · ∇X1√
2

)
cos
(−ip · ∇X2√

2

)
dp

= 2(2π)−d/2
∫
Rd
f̂(p)︸︷︷︸
≥0

L
[

cos
(−ip · ∇X√

2

)]
R
[

cos
(−ip · ∇X√

2

)]
︸ ︷︷ ︸

�0 by Proposition 3.15

dp

� 0 w.r.t. Pext. (5.17)

This proves (i). Similarly, by (5.3), (5.10) and (5.16),

f(−i∇x)⊗ 1l− 1l⊗ f(−i∇x)

=
(5.3)

f
( i√

2
∇X1 −

i√
2
∇X2

)
− f

(
− i√

2
∇X1 −

i√
2
∇X2

)
=

(5.16)
(2π)−d/2

∫
Rd
f̂(p)

{
cos
[
p ·
( i√

2
∇X1 −

i√
2
∇X2

)]
−

− cos
[
p ·
(
− i√

2
∇X1 −

i√
2
∇X2

)]}
dp

=
(5.10)

2(2π)−d/2
∫
Rd
f̂(p) sin

(−ip · ∇X1√
2

)
sin
(−ip · ∇X2√

2

)
dp

= 2(2π)−d/2
∫
Rd
f̂(p)L

[
sin
(−ip · ∇X√

2

)]
R
[
ϑ sin

(−ip · ∇X√
2

)
ϑ−1︸ ︷︷ ︸

=− sin

(
−ip·∇X√

2

)
by (5.15)

]
dp

� 0 w.r.t. Pext. (5.18)

This proves (ii). 2

5.2 Duhamel expansion

Let Ω(x) = π−d/4exp(−|x|2/2) ∈ L2(Rd; dx) and let Zβ,n = ‖e−βHnΩ‖2. We introduce
a vector φβ,n ∈ L2(Rd; dx) by

φβ,n =
e−βHnΩ√
Zβ,n

. (5.19)
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Lemma 5.4 〈A〉n = lim
β→∞

〈φβ,n|Aφβ,n〉.

Proof. By Proposition 2.4, we have 〈Ω|ψn〉 > 0. Hence, we obtain

ψn = strong lim
β→∞

φβ,n. (5.20)

Thus we are done. 2

Lemma 5.5 Under the identifications (5.6), we have Ω⊗ Ω ≥ 0 w.r.t. Pext.

Proof. By (5.2) and (5.6),

Ω⊗ Ω = π−d/2exp
{
− (X2

1 +X2
2 )/2

}
= Ω̃⊗ Ω̃ = |Ω̃〉〈Ω̃|, (5.21)

where Ω̃(X) = π−d/4 exp(−|X|2/2) ∈ L2(Rd; dX). The RHS of (5.21) ≥ 0 w.r.t. Pext,
because the projection |Ω̃〉〈Ω̃| is positive as a linear operator on L2(Rd; dX). 2

Theorem 5.6 Let A ∈ B(L2(Rd; dx)).

(i) If A⊗ 1l− 1l⊗A� 0 w.r.t. Pext, then 〈A〉n is monotonically increasing in n.

(ii) If A⊗ 1l− 1l⊗A� 0 w.r.t. Pext, then 〈A〉n is monotonically decreasing in n.

Proof. Suppose that n ≥ m. Note that

〈A〉n − 〈A〉m = lim
β→∞

Zβ,m
Zβ,n

Iβ, (5.22)

where

Iβ =

〈
e−βHnΩ

∣∣Ae−βHnΩ
〉

Zβ,m
−
〈
e−βHmΩ

∣∣Ae−βHmΩ
〉

Zβ,m

Zβ,n
Zβ,m

. (5.23)

Let δ = Vn − Vm. By the Duhamel formula,

e−βHn = e−β(Hm−δ) =
∑
j≥0

∫
Tj(β)

δ(s1) · · · δ(sn)e−βHmds1 · · · dsn, (5.24)

where δ(s) = e−sHmδesHm and Tj(β) = {(s1, . . . , sj) | 0 ≤ s1 ≤ · · · ≤ sj ≤ β}. The RHS
of (5.24) converges in the operator norm topology.

For each A ∈ B(L2(Rd; dx)), we set

ω(A) = 〈φβ,m|Aφβ,m〉. (5.25)

The following formula is useful:

Lemma 5.7 We have

Iβ =
∑
i,j≥0

∫
Ti(β)

∫
Tj(β)

{
ω
(
Xi(s)AYj(t)

)
− ω(A)ω

(
Xi(s)Yj(t)

)}
ds1 · · · dsidt1 · · · dtj ,

(5.26)

where Xi(s) = δ(si)δ(si−1) · · · δ(s1) and Yj(t) = δ(t1) · · · δ(tj−1)δ(tj).
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Proof. By (5.19) and (5.24), we have〈
e−βHnΩ

∣∣Ae−βHnΩ
〉

Zβ,m

=
∑
i,j≥0

∫
Ti(β)

∫
Tj(β)

Z−1
β,m

〈
e−βHmΩ

∣∣∣Xi(s)AYj(t)e
−βHmΩ

〉
ds1 · · · dsidt1 · · · dtj

=
∑
i,j≥0

∫
Ti(β)

∫
Tj(β)

ω
(
Xi(s)AYj(t)

)
ds1 · · · dsidt1 · · · dtj . (5.27)

As for the term Zβ,n/Zβ,m, we have, by (5.27),

Zβ,n
Zβ,m

=

〈
e−βHnΩ

∣∣1le−βHnΩ
〉

Zβ,m

=
∑
i,j≥0

∫
Ti(β)

∫
Tj(β)

ω
(
Xi(s)Yj(t)

)
ds1 · · · dsidt1 · · · dtj . (5.28)

Inserting these formulas into (5.23), we obtain the desired identity. 2

Thus, to prove the theorem, it suffices to prove the following proposition.

Proposition 5.8 Let A ∈ B(L2(Rd; dx)).

(i) If A⊗ 1l− 1l⊗A� 0 w.r.t. Pext, then we have

ω
(
Xi(s)AYj(t)

)
− ω

(
Xi(s)Yj(t)

)
ω(A) ≥ 0 (5.29)

for all s ∈ Ti(β) and t ∈ Tj(β).

(ii) If A⊗ 1l− 1l⊗A� 0 w.r.t. Pext, then we have

ω
(
Xi(s)AYj(t)

)
− ω

(
Xi(s)Yj(t)

)
ω(A) ≤ 0 (5.30)

for all s ∈ Ti(β) and t ∈ Tj(β).

Proof. (i) For each B ∈ B(L2(Rd; dx)), we set

B± = B ⊗ 1l± 1l⊗B. (5.31)

By (5.8),

δ+ = 2(2π)−d/2
∫
Rd

(V̂n(p)− V̂m(p))︸ ︷︷ ︸
≥0

L
[

cos
(p ·X√

2

)]
R
[

cos
(p ·X√

2

)]
︸ ︷︷ ︸

�0

dp� 0 w.r.t. Pext.

(5.32)

Similarly, δ− � 0 w.r.t. Pext. In addition, A− � 0 w.r.t. Pext by the assumption.
We define

X±(s) =

[ i
←−∏
α=1

δ(sα)

]
⊗ 1l± 1l⊗

[ i
←−∏
α=1

δ(sα)

]
, (5.33)
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where

i
←−∏
α=1

Bα = BiBi−1 · · ·B2B1, an ordered product. Let

δ±[s] = e−sHmδ±e
sHm . (5.34)

Since δ ⊗ 1l = 1
2(δ+ + δ−) and 1l⊗ δ = 1

2(δ+ − δ−), we obtain

X±(s) = 2−i

i
←−∏
α=1

{
δ+[sα] + δ−[sα]

}
± 2−i

i
←−∏
α=1

{
δ+[sα]− δ−[sα]

}
. (5.35)

For each ε = {ε1, . . . , εi} ∈ {+,−}i, we define

δε[s] =

i
←−∏
α=1

δεα [sα]. (5.36)

In terms of this notation,

i
←−∏
α=1

{
δ+[sα] + δ−[sα]

}
=

∑
ε∈{+,−}i

δε[s], (5.37)

i
←−∏
α=1

{
δ+[sα]− δ−[sα]

}
=

∑
ε∈{+,−}i

σ(ε)δε[s], (5.38)

where σ(ε) = (ε11)(ε21) · · · (εi1) = +1 if the number of εα = − is even, σ(ε) = −1 if
the number of εα = − is odd. Thus, we have

X+(s) = 2−(i−1)
∑

σ(ε)=+1

δε[s], X−(s) = 2−(i−1)
∑

σ(ε)=−1

δε[s]. (5.39)

Because, for each s ∈ Ti(β),

e−βHmδε[s] = e−(β−si)Hm︸ ︷︷ ︸
�0

δεi︸︷︷︸
�0

e−(si−si−1)Hm︸ ︷︷ ︸
�0

· · · e−(s2−s1)Hm︸ ︷︷ ︸
�0

δε1︸︷︷︸
�0

e−s1Hm︸ ︷︷ ︸
�0

�0 (5.40)

w.r.t. Pext, we conclude that e−βHmX±(s) � 0 w.r.t. Pext by (5.39). Similarly, we can
prove that Y±(t)e−βHm � 0 w.r.t. Pext.

Because

e−βHmX+(s)︸ ︷︷ ︸
�0

A−︸︷︷︸
�0

Y−(t)e−βHm︸ ︷︷ ︸
�0

�0 (5.41)

w.r.t. Pext, we have, by Lemma 5.5,〈
φβ,m ⊗ φβ,m

∣∣∣∣X+(s)A−Y−(t)φβ,m ⊗ φβ,m
〉

= Z−2
β,n

〈
Ω⊗ Ω︸ ︷︷ ︸
≥0

∣∣∣∣ e−βHmX+(s)A−Y−(t)e−βHm︸ ︷︷ ︸
�0

Ω⊗ Ω︸ ︷︷ ︸
≥0

〉
≥ 0, (5.42)
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implying that

ω
(
Xi(s)AYj(t)

)
− ω

(
Xi(s)Yj(t)

)
ω(A)

+ ω
(
AYj(t)

)
ω
(
Xi(s)

)
− ω

(
Yj(t)

)
ω
(
Xi(s)A

)
≥ 0. (5.43)

On the other hand, we have e−βHmX−(s)A−Y+(t)e−βHm � 0 w.r.t. Pext, which implies

ω
(
Xi(s)AYj(t)

)
− ω

(
Xi(s)Yj(t)

)
ω(A)

− ω
(
AYj(t)

)
ω
(
Xi(s)

)
+ ω

(
Yj(t)

)
ω
(
Xi(s)A

)
≥ 0. (5.44)

Combining (5.43) and (5.44), we obtain the desired result. We can prove (ii) similarly.
2

Proof of Theorem 2.8

By Lemma 5.3 and Theorem 5.6, we conclude Theorem 2.8. 2

6 Proof of Theorem 2.9

We begin with the following proposition.

Proposition 6.1 If n > m, then e−βHn � e−βHm � 0 w.r.t. Pext for all β ≥ 0.

Proof. By (5.32), we already know that δ+ = Vn − Vm � 0 w.r.t. Pext. Because
Hn = Hm − δ+, we conclude the assertion by using Theorem A.4. 2

Let

H = H ⊗ 1l + 1l⊗H. (6.1)

Theorem 6.2 e−βH � 0 w.r.t. Pext for all β ≥ 0.

Proof. By Proposition 6.1, we know that e−βHn � e−βHm � 0 w.r.t. Pext for all β ≥ 0,
provided that n > m. Since e−βHn strongly converges to e−βH by the assumption (B),
we obtain e−βH � e−βHm � 0 w.r.t. Pext for all β ≥ 0 by Proposition A.1. 2

Corollary 6.3 Let ψ be the unique ground state of H. Under the identifications (5.6),
ψ ⊗ ψ ≥ 0 w.r.t. Pext.

Proof. Let Ψ = ψ ⊗ ψ. Since the ground state of H is unique, Ψ is the unique ground
state of H. Thus, by Proposition A.2 and Theorem 6.2, we conclude the assertion. 2

Theorem 6.4 Let A,B ∈ B(L2(Rd; dx)). Under the identifications (5.6), we have the
following:

(i) If A⊗ 1l− 1l⊗A� 0 and B⊗ 1l− 1l⊗B� 0 w.r.t. Pext, then 〈AB〉− 〈A〉〈B〉 ≥ 0.

(ii) If A⊗ 1l− 1l⊗A� 0 and B⊗ 1l− 1l⊗B� 0 w.r.t. Pext, then 〈AB〉− 〈A〉〈B〉 ≥ 0.

(iii) If A⊗ 1l− 1l⊗A� 0 and B⊗ 1l− 1l⊗B� 0 w.r.t. Pext, then 〈AB〉− 〈A〉〈B〉 ≤ 0.
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Proof. (i) By Corollary 6.3,

2(〈AB〉 − 〈A〉〈B〉) =
〈
ψ ⊗ ψ︸ ︷︷ ︸
≥0

∣∣∣ (A⊗ 1l− 1l⊗A)︸ ︷︷ ︸
�0

(B ⊗ 1l− 1l⊗B)︸ ︷︷ ︸
�0

ψ ⊗ ψ︸ ︷︷ ︸
≥0

〉
≥ 0. (6.2)

Thus, we obtain (i). We can prove (ii) and (iii) similarly. 2

Proof of Theorem 2.9

By Lemmas 5.1, 5.3 and Theorem 6.4, we conclude Theorem 2.9. 2

7 Proof of Theorem 2.12

Let V
(1)
n (resp., V

(2)
n ) be an approximating sequence of V (1) (resp., V (2)) in condition

(B). Let

H(1)
n = −∆x − V (1)

n , H(2)
n = −∆x − V (2)

n . (7.1)

Then,

H(1)
n = H(2)

n −Wn, Wn = V (1)
n − V (2)

n . (7.2)

As previously, we study the extended Hamiltonian

H(1)
n = H(1)

n ⊗ 1l + 1l⊗H(1)
n , H(2)

n = H(2)
n ⊗ 1l + 1l⊗H(2)

n . (7.3)

By (7.2),

H(1)
n = H(2)

n −Wn, Wn = Wn ⊗ 1l + 1l⊗Wn. (7.4)

Lemma 7.1 Wn � 0 w.r.t. Pext.

Proof. In a similar manner as in the proof of Lemma 5.1 (i), we see that

Wn = 2(2π)−d/2
∫
Rd

(
V̂ (1)
n (k)− V̂ (2)

n (k)
)︸ ︷︷ ︸

≥0

L
[

cos
(k ·X√

2

)]
R
[

cos
(k ·X√

2

)]
︸ ︷︷ ︸

�0

dk � 0 (7.5)

w.r.t. Pext. 2

Theorem 7.2 Let A ∈ B(L2(Rd; dx)).

(i) If A⊗ 1l− 1l⊗A� 0 w.r.t. Pext, then 〈A〉(1) ≥ 〈A〉(2).

(ii) If A⊗ 1l− 1l⊗A� 0 w.r.t. Pext, then 〈A〉(1) ≤ 〈A〉(2).

Proof. The proof of this theorem is similar to that of Theorem 5.6. Hence, we provide

only a sketch of the proof. Let ψ
(1)
n (resp., ψ

(2)
n ) be the unique ground state of H

(1)
n

(resp., H
(2)
n ). For each A ∈ B(L2(Rd; dx)), we set

〈A〉(1)
n =

〈
ψ(1)
n

∣∣Aψ(1)
n

〉
, 〈A〉(2)

n =
〈
ψ(2)
n

∣∣Aψ(2)
n

〉
. (7.6)
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Corresponding to (5.22), we obtain

〈A〉(1)
n − 〈A〉(2)

n = lim
β→∞

Z
(2)
β

Z
(1)
β

Jβ, (7.7)

where Z
(j)
β =

∥∥e−βH(j)
n Ω

∥∥2
(j = 1, 2) and

Jβ =

〈
e−βH

(1)
n Ω

∣∣∣Ae−βH(1)
n Ω

〉
Z

(2)
β

−

〈
e−βH

(2)
n Ω

∣∣∣Ae−βH(2)
n Ω

〉
Z

(2)
β

Z
(1)
β

Z
(2)
β

. (7.8)

Since 〈A〉(α) = lim
n→∞

〈A〉(α)
n for each α = 1, 2, it suffices to prove that Jβ ≥ 0 for all

β > 0.

Let φ(2)
n = e−βH

(2)
n Ω

/√
Z

(2)
β . We set

ω̃(A) =
〈
φ(2)
n

∣∣∣Aφ(2)
n

〉
, A ∈ B(L2(Rd; dx)). (7.9)

By the Duhamel formula, we obtain

Jβ =
∑
i,j≥0

∫
Ti(β)

∫
Tj(β)

{
ω̃
(
Xi(s)AYj(t)

)
− ω̃(A)ω̃

(
Xi(s)Yj(t)

)}
ds1 · · · dsidt1 · · · dtj ,

(7.10)

where Xi(s) = Wn(si)Wn(si−1) · · ·Wn(s1) and Yj(t) = Wn(t1) · · ·Wn(tj−1)Wn(tj). By
Proposition 7.3 below, the RHS of (7.10) is positive. 2

Proposition 7.3 Let A ∈ B(L2(Rd; dx)).

(i) If A⊗ 1l− 1l⊗A� 0 w.r.t. Pext, then we have

ω̃
(
Xi(s)AYj(t)

)
− ω̃

(
Xi(s)Yj(t)

)
ω̃(A) ≥ 0 (7.11)

for all s ∈ Ti(β) and t ∈ Tj(β).

(ii) If A⊗ 1l− 1l⊗A� 0 w.r.t. Pext, then we have

ω̃
(
Xi(s)AYj(t)

)
− ω̃

(
Xi(s)Yj(t)

)
ω̃(A) ≤ 0 (7.12)

for all s ∈ Ti(β) and t ∈ Tj(β).

Proof. We can prove Proposition 7.3 in a manner similar to that in the proof of
Proposition 5.8. 2

Proof of Theorem 2.12

By Lemmas 5.1, 5.3 and Theorem 7.2, we conclude Theorem 2.12. 2
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8 Proof of Theorems 2.13, 2.15 and 2.16

8.1 Proof of Theorem 2.13

For each f ∈ A and a ∈ Rd, we set

C +
a [f ] = f +

1

2
{f(· − a) + f(·+ a)}, (8.1)

C−a [f ] = f − 1

2
{f(· − a) + f(·+ a)}. (8.2)

Proposition 8.1 C±a maps A into A.

Proof. Let Ĉ±a [f ] be the Fourier transform of C±a [f ]. We have

Ĉ±a [f ](p) = {1± cos(p · a)}f̂(p) ≥ 0. (8.3)

Thus we are done. 2

Proof of Theorem 2.13

(i) Choose a ∈ C(V ) arbitrarily. By Theorem 2.7 (i) and Proposition 8.1, we have
〈C−a [f ]〉 ≥ 0. By a limiting argument,8 we have

ψ(0)2 − 1

2
{ψ(a)2 + ψ(−a)2} ≥ 0. (8.5)

Because ψ(−a) = ψ(a), we obtain the desired result.
(ii) Let p ∈ Ĉ(V ). By Theorem 2.7 (ii) and Proposition 8.1, we have 〈C−p [f ](−i∇x)〉 ≥

0. Since 〈f(−i∇x)〉 = 〈ψ̂|fψ̂〉, we have 〈ψ̂|C−p [f ]ψ̂〉 ≥ 0. By a limiting argument, we
have

ψ̂(0)2 − 1

2
{ψ̂(p)2 + ψ̂(−p)2} ≥ 0. (8.6)

Because ψ̂(−p) = ψ̂(p), we conclude the assertion. 2

8.2 Proof of Theorems 2.15 and 2.16

Proposition 8.2 C±a maps Ae into Ae.

Proof. It is easy to check that C±a [f ](−x) = C±a [f ](x). Thus, the assertion follows from
Proposition 8.1. 2

Proof of Theorem 2.15

8To be precise, take f ∈ C∞0 (Rd) with ‖f‖L2 = 1. Set fε(x) = ε−d/2f(x/ε). Then we have, by the
dominated convergence theorem, ∫

Rd

ψ(x)2fε(x)dx→ ψ(0)2 (8.4)

as ε→ +0. Thus, 〈C−a [f ]〉 ≥ 0 implies (8.5).
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Let a ∈ C(V (1))∩C(V (2)). By Theorem 2.12 and Proposition 8.2, we have
〈
C±a [f ]

〉(1) ≥〈
C±a [f ]

〉(2)
. By a limiting argument, we obtain that

ψ(1)(0)2 ± 1

2
{ψ(1)(a)2 + ψ(1)(−a)2} ≥ ψ(2)(0)2 ± 1

2
{ψ(2)(a)2 + ψ(2)(−a)2}. (8.7)

Because ψ(j)(−x) = ψ(j)(x), we have

ψ(1)(0)2 ± ψ(1)(a)2 ≥ ψ(2)(0)2 ± ψ(2)(a)2. (8.8)

Thus we are done. 2

Proof of Theorem 2.16

Choose p ∈ Ĉ(V (1))∩Ĉ(V (2)) arbitrarily. By Theorem 2.12 and Proposition 8.2, we have〈
C±p [f ](−i∇x)

〉(1) ≤
〈
C±p [f ](−i∇x)

〉(2)
. Because 〈f(−i∇x)〉(j) = 〈ψ̂(j)|fψ̂(j)〉, j = 1, 2,

we have 〈ψ̂(1)|C±p [f ]ψ̂(1)〉 ≤ 〈ψ̂(2)|C±p [f ]ψ̂(2)〉. By a limiting argument, we obtain that

ψ̂(1)(0)2 ± 1

2
{ψ̂(1)(p)2 + ψ̂(1)(−p)2} ≤ ψ̂(2)(0)2 ± 1

2
{ψ̂(2)(p)2 + ψ̂(2)(−p)2}. (8.9)

Because ψ̂(j)(−p) = ψ̂(j)(p), we have

ψ̂(1)(0)2 ± ψ̂(1)(p)2 ≤ ψ̂(2)(0)2 ± ψ̂(2)(p)2. (8.10)

This completes the proof. 2

9 Proof of Theorems 2.17, 2.18 and 2.19

9.1 Proof of Theorem 2.17

(i) By Theorem 2.7 (i),

〈f〉 = (2π)−d/2
∫
R
dpf̂(p)〈ψ|eip·xψ〉 =

∫
Rd
dpf̂(p)%̂(p) > 0 (9.1)

for all f ∈ A ∩ L1(Rd; dx) with f 6= 0. Thus, we conclude (i).
(ii) Since V (−x) = V (x) a.e. x by the assumption (ii) of (B), we know that

ψ(−x) = ψ(x) a.e. x, which implies

〈ψ| sin(p · x)ψ〉 = 0. (9.2)

Using the elementary fact that 1− cos θ = 2
{

sin(θ/2)
}2

, we have, by (9.2),

1− (2π)d/2%̂(p) = 〈ψ|(1l− e−ip·x)ψ〉 = 2
〈
ψ
∣∣∣{ sin

(p · x
2

)}2
ψ
〉
. (9.3)

Note that the multiplication operator
{

sin
(
p·x
2

)}2
satisfies

{
sin
(
p·x
2

)}2
� 0 w.r.t.

L2(Rd; dx)+, and is nonzero if and only if p 6= 0. Hence, by Proposition 2.4 (i) and
Theorem A.7, the RHS of (9.3) is strictly positive if and only if p 6= 0.
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(iii) Note that if f ∈ Ae, then f ∈ Ae as well. Thus, by Theorem 2.9 (i), we have

〈fg〉 ≥ 〈f〉〈g〉, 〈fg〉 ≥ 〈f〉〈g〉. (9.4)

Since 〈g〉 = 〈g〉,

〈fg〉+ 〈fg〉 ≥ 2〈f〉〈g〉. (9.5)

Let C0(Rd) be the set of all continuous functions on Rd with compact support. Observe
that, for all f, g ∈ Ae ∩ C0(Rd),

〈fg〉 = (2π)−d/2
∫
Rd×Rd

dpdp′f̂(p)ĝ(p′)%̂(p+ p′), (9.6)

〈fg〉 = (2π)−d/2
∫
Rd×Rd

dpdp′f̂(p)ĝ(p′)%̂(p− p′) (9.7)

and

〈f〉〈g〉 =

∫
Rd×Rd

dpdp′f̂(p)ĝ(p′)%̂(p)%̂(p′). (9.8)

Since %̂(p) > 0, f̂(p) ≥ 0 and ĝ(p) ≥ 0 for all f, g ∈ Ae ∩ C0(Rd), we arrive at

(2π)−d/2{%̂(p+ p′) + %̂(p− p′)} ≥ 2%̂(p)%̂(p′). (9.9)

This completes the proof of (iii). 2

9.2 Proof of Theorems 2.18 and 2.19

These theorems follow immediately from Theorems 2.8 and 2.12. 2

A General theory of correlation inequalities

In this appendix, we will review some basic results concerning the operator inequalities
introduced in Section 3. Almost all results are taken from the author’s previous works
[24, 26, 27, 28, 29, 30, 31].

Proposition A.1 Let {An}∞n=1 ⊆ B(H) and let A ∈ B(H). Suppose that An converges
to A in the weak operator topology. If An � 0 w.r.t. P for all n ∈ N, then A� 0 w.r.t.
P.

Proof. By Remark 3.7 (i), 〈ξ|Anη〉 ≥ 0 for all ξ, η ∈ P. Thus, 〈ξ|Aη〉 = lim
n→∞

〈ξ|Anη〉 ≥ 0

for all ξ, η ∈ P. By Remark 3.7 (i) again, we conclude that A� 0 w.r.t. P. 2

Proposition A.2 Let A be a self-adjoint positive operator on H. Assume that e−βA�0
w.r.t. P for all β ≥ 0. Assume that E = inf σ(A) is an eigenvalue of A. Then there
exists a nonzero vector ξ ∈ ker(A− E) such that ξ ≥ 0 w.r.t. P.
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Proof. Let η ∈ H. By Theorem 3.4, we can express η as η = ηR + iηI with ηR, ηI ∈ HR.
Now, we define an antilinear involution J by Jη = ηR − iηI . Clearly,

ηR =
1

2
(η + Jη), ηI =

1

2i
(η − Jη). (A.1)

Moreover, HR = {η ∈ H | Jη = η}. Because e−βAP ⊆ P, we see that e−βAHR ⊆ HR for
all β ≥ 0, see Remark 3.7 (i). Hence, for all β ≥ 0, we obtain

Je−βA = e−βAJ. (A.2)

Let ξ ∈ ker(A−E) with ξ 6= 0. ξ can be expressed as ξ = ξR+ iξI with ξR, ξI ∈ HR.
Because ξ 6= 0, we have ξR 6= 0 or ξI 6= 0. By (A.1) and (A.2), we know that
ξR, ξI ∈ ker(A− E) ∩ HR. Without loss of generality, we may assume that ξR 6= 0. By
Definition 3.2 (ii) and Theorem 3.4, we have a unique decomposition ξR = ξR,+− ξR,−,
where ξR,± ∈ P with 〈ξR,+|ξR,−〉 = 0. Let |ξR| = ξR,+ + ξR,−. Because ‖ξR‖ = ‖|ξR|‖,
we have

e−βE‖ξR‖2 = 〈ξR|e−βAξR〉 ≤ 〈|ξR||e−βA|ξR|〉 ≤ e−βE‖ξR‖2. (A.3)

Thus, |ξR| ∈ ker(A− E). Clearly, |ξR| ≥ 0 w.r.t. P. 2

Theorem A.3 Let A be a self-adjoint positive operator on H and B ∈ B(H). Suppose
that

(i) e−βA � 0 w.r.t. P for all β ≥ 0;

(ii) B � 0 w.r.t. P.

Then we have e−β(A−B) � 0 w.r.t. P for all β ≥ 0.

Proof. By (ii) and Proposition A.1,

eβB =
∑
n≥0

βn

n!︸︷︷︸
≥0

Bn︸︷︷︸
�0

�0 w.r.t. P for all β ≥ 0. (A.4)

Hence, by (i) and Proposition 3.8 (ii),(
e−βA/n︸ ︷︷ ︸

�0

eβB/n︸ ︷︷ ︸
�0

)n
� 0 w.r.t. P for all β ≥ 0. (A.5)

Using the Trotter–Kato product formula(e.g., [35, Theorem S. 21]) and Proposition
A.1, we arrive at the desired assertion. 2

Theorem A.4 Let A,B be self-adjoint positive operators on H. Assume that B =
A− C with C ∈ B(H). Suppose that

(i) e−βA � 0 w.r.t. P for all β ≥ 0;

(ii) C � 0 w.r.t. P.

Then we have e−βB � e−βA w.r.t. P for all β ≥ 0.
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Proof. By the Duhamel formula, we have the norm-convergent expansion

e−βB =
∞∑
n=0

Dn(β), (A.6)

Dn(β) =

∫
Sn(β)

e−s1ACe−s2AC · · · e−snACe−(β−
∑n
j=1 sj)A, (A.7)

where
∫
Sn(β) =

∫ β
0 ds1

∫ β−s1
0 ds2 · · ·

∫ β−∑n−1
j=1 sj

0 dsn and D0(β) = e−βA. Since C� 0 and

e−tA � 0 w.r.t. P for all t ≥ 0, it holds that, by Proposition 3.8 (ii),

e−s1A︸ ︷︷ ︸
�0

C︸︷︷︸
�0

e−s2A︸ ︷︷ ︸
�0

· · · e−snA︸ ︷︷ ︸
�0

C︸︷︷︸
�0

e−(β−
∑n
j=1 sj)A︸ ︷︷ ︸

�0

�0 (A.8)

provided that s1 ≥ 0, . . . , sn ≥ 0 and β − s1 − · · · − sn ≥ 0. Thus, by Proposition A.1,
we obtain Dn(β)� 0 w.r.t. P for all n ≥ 0. Accordingly, by (A.6) and Proposition A.1
again, we have e−βB �Dn=0(β) = e−βA w.r.t. P for all β ≥ 0. 2

Remark A.5 By (i), there exists a unique ξ ∈ H such that ξ > 0 w.r.t. P and
PA = |ξ〉〈ξ|. Of course, ξ satisfies Aξ = inf σ(A)ξ. ♦

Theorem A.6 Let A be a self-adjoint positive operator on H, and let B ∈ B(H).
Suppose the following:

(i) e−βA � 0 w.r.t. P for all β ≥ 0.

(ii) B is ergodic w.r.t. P.

Then, e−β(A−B) � 0 w.r.t. P for all β > 0.

Proof. Set H = A−B. We apply Fröhlich’s idea [7] and use the Duhamel expansion:

e−βH =
∑
n≥0

Dn(β), (A.9)

Dn(β) =

∫
Sn(β)

e−s1ABe−s2A · · · e−snABe−(β−
∑n
j=1 sj)A. (A.10)

In a manner similar to that used in the proof of Theorem A.4, we know that

Dn(β) � 0, (A.11)

e−s1ABe−s2A · · · e−snABe−(β−
∑n
j=1 sj)A � 0 (A.12)

w.r.t. P, provided that s1 ≥ 0, . . . , sn ≥ 0 and β − s1 − · · · − sn ≥ 0.
Let ξ, η ∈ P\{0}. Since e−βA � 0 w.r.t. P for all β ≥ 0, we have e−βAη ∈ P\{0}.

Let β > 0 be fixed arbitrarily. Because B is ergodic w.r.t. P, there exists an n ∈ {0}∪N
such that 〈ξ|Bn e−βAη〉 > 0. Now, let

F (s1, . . . , sn) =
〈
ξ
∣∣∣e−s1ABe−s2A · · · e−snABe−(β−

∑n
j=1 sj)Aη

〉
. (A.13)
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By (A.12), it holds that F (s1, . . . , sn) ≥ 0. In addition, we have F (0, . . . , 0) =
〈ξ|Bne−βAη〉 > 0. Because F (s1, . . . , sn) is continuous in s1, . . . , sn, we obtain

〈ξ|Dn(β)η〉 =

∫
Sn(β)

F (s1, . . . , sn) > 0. (A.14)

By (A.9) and (A.11), we see that e−βH � Dn(β), which implies

〈ξ|e−βHη〉 ≥ 〈ξ|Dn(β)η〉 > 0. (A.15)

Since ξ and η are in P\{0}, we conclude that e−βHη > 0 w.r.t. P. Since β is arbitrary,
we obtain that e−βH � 0 w.r.t. P for all β > 0. 2

Theorem A.7 Let A ∈ B(H). Assume that u > 0 w.r.t. P and A�0 w.r.t. P. Then,
〈u|Au〉 = 0 if and only if A = 0.

Proof. We will divide the proof into several steps.

Step 1. Let A ∈ B(H). If Au = 0 for all u ∈ P, then A = 0.

Proof. By Remark 3.3, each u ∈ H can be written as u = v1 − v2 + i(w1 − w2), where
v1, v2, w1, w2 ∈ P such that 〈v1|v2〉 = 0 and 〈w1|w2〉 = 0. Thus, the assumption implies
that Au = 0 for all u ∈ H. 2

Step 2. Let A ∈ B(H) with A 6= 0. Assume that u > 0 w.r.t. P. If A� 0 w.r.t. P,
then Au 6= 0.

Proof. Assume that Au = 0. Then, 〈v|Au〉 = 0 for all v ∈ P, implying that 〈A∗v|u〉 = 0.
Since u > 0 and A∗v ≥ 0 w.r.t. P, we conclude that A∗v must be zero. Because v is
arbitrary, A∗ = 0 by Step 1. 2

Completion of the proof.

Suppose that 〈u|Au〉 = 0. Assume that A 6= 0. Since Au ≥ 0 and u > 0 w.r.t. P, Au
must be zero. However, this contradicts with Step 2. 2

References

[1] J. E. Avron, I. W. Herbst, B. Simon, Schrödinger operators with magnetic fields
III. Atoms in homogeneous magnetic field. Comm. Math. Phys. 79 (1981), 529-
572.

[2] C. Benassi, B. Lees, D. Ueltschi, Correlation inequalities for the quantum XY
model. J. Stat. Phys. 164 (2016), 1157-1166.

[3] O. Bratteli, D. W. Robinson,Operator algebras and quantum statistical mechan-
ics. 1. C∗- and W ∗-algebras, symmetry groups, decomposition of states. Second
edition. Texts and Monographs in Physics. Springer-Verlag, New York, 1987.

[4] W. Bös, Direct integrals of selfdual cones and standard forms of von Neumann
algebras. Invent. Math. 37 (1976), 241–251.

31



[5] F. J. Dyson, E. H. Lieb, B. Simon, Phase transitions in quantum spin systems
with isotropic and nonisotropic interactions. J. Stat. Phys. 18 (1978), 335-383.

[6] W. G. Faris, Invariant cones and uniqueness of the ground state for fermion
systems. Jour. Math. Phys. 13 (1972), 1285-1290.
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