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Bulk-edge correspondence in nonunitary Floquet systems with chiral symmetry
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We study topological phases in one-dimensional open Floquet systems driven by chiral symmetric nonunitary
time evolution. We derive a procedure to calculate topological numbers from nonunitary time-evolution operators
with chiral symmetry. While the procedure has been applied to open Floquet systems described by nonunitary
time-evolution operators, we give the microscopic foundation and clarify its validity. We construct a model of
chiral symmetric nonunitary quantum walks classified into class BDI† or AIII, which is one of the enlarged
symmetry classes for topological phases in open systems based on experiments of discrete-time quantum walks.
Then we confirm that the topological numbers obtained from the derived procedure give correct predictions of
the emergent edge states. We also show that the model retains PT symmetry in certain cases, and its dynamics
is crucially affected by the presence or absence of PT symmetry.

DOI: 10.1103/PhysRevA.102.062202

I. INTRODUCTION

Understanding and controlling open systems are funda-
mentally important problems to be solved. Recently, the
study on non-Hermitian Hamiltonians has attracted great at-
tention from various fields of physics, since non-Hermitian
Hamiltonians can effectively describe open systems [1–23].
Especially, topological phases of such open systems have been
intensively studied, and unique features have been revealed
[24–42]. Non-Hermitian open systems have richer topological
structures in comparison to Hermitian closed systems, be-
cause the number of symmetries increases due to the absence
of Hermiticity [39], and it depends on symmetries of systems
whether nontrivial topological phases can exist or not [43–45].
There are various optical experiments in which non-Hermitian
topological phases are explored, and the associated edge states
are observed [32–36,41,42,46,47].

Among them, photonic quantum walks with effects of gain
and/or loss provide ideal experimental platforms which are
described by nonunitary time-evolution operators. This is be-
cause it is possible to tune various parameters of systems,
and experiments can be carried out in both classical [48–50]
and quantum [36,41,47] regimes. Since quantum walks are
Floquet systems in which time evolves in a discrete manner,
topological phases can be different from those which are
described by time-independent Hamiltonians. Floquet topo-
logical phases of quantum walks have been intensively studied
for the last decade [51–69], and topological edge states have
been observed in experiments of both closed [70–73] and open
[36,47,74,75] systems. Specifically, much attention has been
paid to Floquet systems with chiral symmetry. This is because
a procedure to calculate topological numbers has been estab-
lished in the case of chiral symmetric unitary time-evolution
operators [55]. On the other hand, regarding open Floquet
systems described by nonunitary time-evolution operators, the

microscopic foundation for the procedure has not yet been
clarified, although it has already been utilized in previous
experimental and numerical studies [36,47,74,75]. Also, the
enriched symmetries of non-Hermitian open systems [39]
have not been discussed so much in nonunitary open Floquet
systems.

In this work we study topological phases and the cor-
responding edge states of chiral symmetric open Floquet
systems with gain and loss in one dimension. We derive a
procedure to calculate topological numbers for Floquet topo-
logical phases driven by chiral symmetric nonunitary time
evolution based on discussions about the bulk-edge corre-
spondence. While a method to calculate topological numbers
in chiral symmetric unitary Floquet systems was obtained in
Ref. [55], we generalize the procedure to nonunitary chiral
Floquet systems. We confirm the validity of the bulk-edge
correspondence by using the derived topological numbers for
two different symmetry classes, BDI† and AIII, in the clas-
sification of non-Hermitian topological phases proposed in
Ref. [39]. To this end we construct a chiral symmetric model
of nonunitary quantum walks, whose setting is based on the
experiments in Refs. [47,48]. We find that the model also has
PT symmetry in a specific case. While it is not related to
PT symmetry whether topological edge states exist or not,
we show that PT symmetry plays an important role in the
dynamics of the nonunitary quantum walk with edge states.

The rest of this paper is organized as follows. In Sec. II
we derive topological numbers for chiral symmetric open Flo-
quet systems. In Sec. III we introduce a model of nonunitary
quantum walks. We show symmetries of the model and give
a condition for the existence of quasienergy gaps. In Sec. IV
we calculate topological numbers of the model by using the
method derived in Sec. II. We clarify that the bulk-edge cor-
respondence is satisfied based on the obtained topological
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numbers and discuss the contribution of edge states to dynam-
ics. Section V is devoted to discussion and conclusion.

II. TOPOLOGICAL NUMBERS OF NONUNITARY
FLOQUET SYSTEMS WITH CHIRAL SYMMETRY

We first derive two topological numbers ν0 and νπ of
nonunitary open Floquet systems which highlight the bulk-
edge correspondence in topological phases protected by chiral
symmetry.

A. Biorthogonal basis and quasienergy

A Floquet system is described by a time-evolution opera-
tor, which we write as U . Note that U is generally nonunitary
in the present work, which corresponds to an effective non-
Hermitian Hamiltonian H via the relation U = exp(−iH ).
The state after t time steps is described by

|ψ (t )〉 = Ut |ψ (0)〉, (1)

where |ψ (0)〉 is an initial state and t is an integer. As we
explain later, in order to define chiral symmetry and derive
topological numbers, we need to define two time-evolution
operators fitted in different time frames [55],

U ′ = AB, U ′′ = BA, (2)

where A and B are nonunitary operators. In a specific model
which we treat in Secs. III and IV, A and B are defined as in
Eq. (28). Since U ′ and U ′′ are related by a similarity transfor-
mation A−1U ′A = U ′′, they share the same eigenvalues. Then,
right eigenequations of U ′ and U ′′ are written as

U ′ |φ′
ε〉 = e−iε |φ′

ε〉 , U ′′ |φ′′
ε 〉 = e−iε |φ′′

ε 〉 , (3)

where ε is the quasienergy. Note that quasienergies ε need not
be real since A and B are nonunitary. We also introduce right
eigenequations of (U ′)† and (U ′′)†,

(U ′)† |χ ′
ε〉 = eiε∗ |χ ′

ε〉 , (U ′′)† |χ ′′
ε 〉 = eiε∗ |χ ′′

ε 〉 , (4)

which are equivalent to Hermitian conjugations of left
eigenequations of U ′ and U ′′, respectively. We assume that
eigenstates satisfy the biorthogonal normalization condition

〈φ′
ε|χ ′

ε̃〉 = 〈φ′′
ε |χ ′′

ε̃ 〉 = δεε̃. (5)

While |φ′
ε〉 = |χ ′

ε〉 and |φ′′
ε 〉 = |χ ′′

ε 〉 when time-evolution op-
erators are unitary, right eigenstates and left eigenstates are
not related by the Hermitian conjugation when time-evolution
operators are nonunitary.

B. Chiral symmetry

We define chiral symmetry of Floquet systems through a
constraint on A and B which are components of U ′ and U ′′,

	B	−1 = A†, (6)

where 	 is a unitary operator which satisfies 	2 = 1. Equation
(6) is a sufficient condition that the time-evolution operators
satisfy

	U ′	−1 = (U ′)†, 	U ′′	−1 = (U ′′)†. (7)

Equation (7) is consistent with chiral symmetry of
non-Hermitian Hamiltonians 	H	−1 = −H†, where U =
exp(−iH ) in Floquet systems. Chiral symmetry in Eq. (6),

which is a more strict condition in comparison to Eq. (7),
plays a crucial role for deriving topological numbers, as we
show in the following. Note that chiral symmetry of non-
Hermitian Hamiltonians is distinct from sublattice symmetry
which transforms H to −H , due to H �= H† [39]. From
Eqs. (3), (4), and (6), we can understand that 	 |φ′

ε〉 and 	 |φ′′
ε 〉

are proportional to |χ ′
−ε∗ 〉 and |χ ′′

−ε∗ 〉,
	 |φ′

ε〉 = γ ′
ε |χ ′

−ε∗ 〉 , 	 |φ′′
ε 〉 = γ ′′

ε |χ ′′
−ε∗ 〉 ,

respectively, where γ ′
ε and γ ′′

ε are proportionality coefficients.
In one-dimensional Floquet systems with chiral symmetry,
quasienergies of topologically protected edge states reside in
a real line gap Re(ε) = 0 or Re(ε) = π , since these lines are
symmetric axes of quasienergy spectra. Therefore we consider
eigenstates whose quasienergies satisfy Re(ε) = 0 or Re(ε) =
π , which results in

	 |φ′
ε〉 = γ ′

ε |χ ′
ε〉 , 	 |φ′′

ε 〉 = γ ′′
ε |χ ′′

ε 〉 , Re(ε) = 0, π. (8)

The proportionality constant γ ′
ε takes real values, since eigen-

states satisfy normalization conditions in Eq. (5),

〈χ ′
ε|φ′

ε〉 = 〈χ ′
ε| 	2 |φ′

ε〉 = γ ′
ε

(γ ′
ε )∗

〈φ′
ε|χ ′

ε〉 = 1.

In the same way we can also find that γ ′′
ε is real. Therefore

we can recognize the signs of γ ′
ε and γ ′′

ε as the labels of edge
states, and we refer to the sign of γ ′

ε or γ ′′
ε as chirality of each

edge state.

C. Winding numbers

Winding numbers ν ′ and ν ′′ respectively for U ′ and U ′′
can be calculated by using the method proposed in Ref. [24].
Following the proposed method, we consider situations in
which the chiral symmetry operator is σ3. For simplicity, we
address 2 × 2 time-evolution operators in momentum space
and focus only on Ũ ′(k), which is obtained by Fourier trans-
formation of U ′. The right and left eigenequations of Ũ ′(k)
with eigenvalues λ±(k) are

Ũ ′(k) |φ±(k)〉 = λ±(k)|φ±(k)〉, (9)

〈χ±(k)| Ũ ′(k) = 〈χ±(k)| λ±(k). (10)

We assume 〈χ±(k)|φ∓(k)〉 = 0 and 〈χ±(k)|φ±(k)〉 = 1. From
these eigenstates we define a Hermitian matrix Q̃(k) as

2Q̃(k) =
∑

σ

σ (|φσ (k)〉 〈χσ (k)| + |χσ (k)〉 〈φσ (k)|), (11)

where σ = ±. Since chiral symmetry ensures σ3 |φ±(k)〉 =
γ± |χ∓(k)〉, where we can make the proportionality constant
satisfy |γ±|2 = 1, {Q̃(k), σ3} = 0 is satisfied. Then Q̃(k) can
be written as

Q̃(k) =
(

0 q(k)
q∗(k) 0

)
. (12)

From Q̃(k), the winding number of U ′ is defined as

ν ′ = 1

2π i

∮
dkq−1(k)

d

dk
q(k). (13)

From eigenstates of Ũ ′′(k), ν ′′ can be obtained in the same
way as ν ′. We will explain the method for a specific model
later.
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D. Bulk-edge correspondence

We relate the winding numbers ν ′ and ν ′′ with the number
of edge states which satisfy Re(ε) = 0 or π . To this end we
consider that a system is composed of two adjacent regions
labeled by L and R, and the time-evolution operators in the
region L (R) have winding numbers ν ′

L and ν ′′
L (ν ′

R and ν ′′
R).

Then we assume that the winding numbers satisfy

ν ′
L − ν ′

R = n′
0+ + n′

π+ − n′
0− − n′

π−, (14)

ν ′′
L − ν ′′

R = n′′
0+ + n′′

π+ − n′′
0− − n′′

π−, (15)

where n′
Re(ε)± and n′′

Re(ε)± represent the numbers of edge states
of U ′ and U ′′, whose subscripts denote the real part of ε and
chirality sgn(γ ′

ε ), sgn(γ ′′
ε ). The meaning of Eqs. (14) and (15)

is as follows. When edge states are shifted from Re(ε) = 0
or π due to a perturbation not breaking chiral symmetry, two
states with different chirality must be paired [24]. In this case,
the number of edge states which remain on Re(ε) = 0 (π )
becomes n′

0+ − n′
0− (n′

π+ − n′
π−) for U ′. This is the same for

U ′′. Therefore Eqs. (14) and (15) are relations of the bulk-edge
correspondence, which is confirmed in some situations [24].
To satisfy Eqs. (14) and (15), the winding numbers ν ′ and ν ′′
are either those calculated in homogeneous systems with pe-
riodic boundary conditions without non-Hermitian skin effect
or those calculated using a generalized Brillouin zone when
the skin effect occurs [76–79]. In this work we use the former
winding numbers in Sec. IV. To our knowledge it is empir-
ically known that Eq. (14) is satisfied in chiral symmetric
non-Hermitian systems when winding numbers calculated in
homogeneous systems are used [24], where Eqs. (14) and (15)
are collapsed into a single equation with nπ± = 0. Topological
numbers which we want to derive are ν0 and νπ satisfying

νL
0 − νR

0 = n′
0+ − n′

0−, νL
π − νR

π = n′
π+ − n′

π−, (16)

which predict the numbers of topologically protected edge
states with Re(ε) = 0 and Re(ε) = π , respectively.

We derive ν0 and νπ by clarifying a relation between γ ′
ε and

γ ′′
ε . To this end, we operate B and A† on the right eigenequa-

tions of U ′ and (U ′)†, respectively, which results in

BAB |φ′
ε〉 = e−iεB |φ′

ε〉 , (17)

A†B†A† |χ ′
ε〉 = eiε∗

A† |χ ′
ε〉 . (18)

Then, from Eqs. (2)–(4), (17), and (18), we can see that

B |φ′
ε〉 = b |φ′′

ε 〉 , A† |χ ′
ε〉 = a |χ ′′

ε 〉 (19)

are satisfied. The complex numbers a and b in Eq. (19) are
related by

a = eiε∗

b∗ , (20)

which is obtained by using Eq. (19) and the normalization
conditions in Eq. (5),

〈φ′′
ε |χ ′′

ε 〉 = 〈φ′
ε|

1

b∗ B†A† 1

a
|χ ′

ε〉 = eiε∗

ab∗ 〈φ′
ε|χ ′

ε〉 = 1.

From Eqs. (6), (8), and (19), 	 |φ′′
ε 〉 becomes

	 |φ′′
ε 〉 = 1

b
	B	2 |φ′

ε〉 = γ ′
ε

b
A† |χ ′

ε〉 = a

b
γ ′

ε |χ ′′
ε 〉 . (21)

Equations (20) and (21) mean that γ ′
ε and γ ′′

ε satisfy

γ ′′
ε = eiε∗

|b|2 γ ′
ε. (22)

From Eq. (22), we can understand that edge states with
Re(ε) = 0 (π ) have the same (opposite) chirality in systems
described by U ′ and U ′′. This means that the numbers of edge
states satisfy

n′
0+ = n′′

0+, n′
π+ = n′′

π−, n′
0− = n′′

0−, n′
π− = n′′

π+. (23)

From Eqs. (14)–(16) and (23), we can obtain

ν0 = ν ′ + ν ′′

2
, νπ = ν ′ − ν ′′

2
. (24)

Equation (24) has been employed in nonunitary Floquet sys-
tems [36,47,74,75] based on the analogy to unitary Floquet
systems in which the same formula is proven to be satis-
fied [55]. Our derivation gives the microscopic foundation of
Eq. (24) that has been used empirically so far for nonunitary
open Floquet systems.

III. MODEL

We introduce the time-evolution operator of the one-
dimensional nonunitary quantum walk as an example of the
chiral symmetric open Floquet systems. Our model is similar
to the nonunitary quantum walk realized in the experiment in
Ref. [48] and studied further in Ref. [80], though chiral sym-
metry in Eq. (6) was not mentioned in the previous works. The
basis of the walker is defined from one-dimensional position
space |x〉 and two internal states |L〉 := (1, 0)T and |R〉 :=
(0, 1)T where x ∈ Z and the superscript T is the transpose.
Thereby, a state at a time step t is written as

|ψ (t )〉 =
∑
x∈Z

∑
s=L,R

ψx,s(t ) |x〉 ⊗ |s〉 . (25)

The time-evolution operator U ′ for one time step of the
one-dimensional nonunitary quantum walk is defined by the
product of elemental operators,

U ′ := C(θ1)SG(δ)C(θ2)�(θ3)C(θ2)SG(−δ)C(θ1), (26)

where each elemental operator is defined as

C(θ j=1,2) :=
∑

x

|x〉 〈x| ⊗ C̃[θ j (x)],

C̃[θ j (x)] :=
(

cos[θ j (x)/2] i sin[θ j (x)/2]
i sin[θ j (x)/2] cos[θ j (x)/2]

)
= ei

θ j (x)

2 σ1 ,

S :=
∑

x

|x − 1〉〈x| ⊗ |L〉〈L| + |x + 1〉 〈x| ⊗ |R〉 〈R|

=
∑

k

|k〉 〈k| ⊗ S̃(k),

S̃(k) :=
(

eik 0
0 e−ik

)
= eikσ3 ,

G(δ) :=
∑

x

|x〉 〈x| ⊗ G̃[δ(x)],

G̃[δ(x)] :=
(

eδ(x) 0
0 e−δ(x)

)
= eδ(x)σ3 ,
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FIG. 1. A schematic picture for one time step in the case of
photonic quantum walks governed by U ′ in Eq. (26), where photons
pass through arrayed optical elements. The direction indicated by
yellow arrows in which photons proceed is considered to be the
direction of time. In experiments [36,41,47], combinations of wave
plates correspond to coin operators C(θ1,2) and the phase operator
�(θ3). The shift operator S and gain-loss operators G(±δ) respec-
tively describe effects of beam displacers and partially polarizing
beam splitters.

�(θ3) :=
∑

x

|x〉 〈x| ⊗ �̃[θ3(x)],

�̃[θ (x)] :=
(

eiθ3(x) 0
0 e−iθ3(x)

)
= eiθ3(x)σ3 .

Here, σi (i = 1, 2, 3) are Pauli matrices. The coin operator
C̃[θ j (x)] changes the internal states of walkers through the
position-dependent θ j (x) and the shift operator S shifts a
walker to its adjacent site depending on its internal state. The
gain and loss operator G̃[δ(x)] with positive δ(x) amplifies
(damps) the wave-function amplitude with the internal state
|L〉 (|R〉) by the factor eδ(x) (e−δ(x)), and G̃[−δ(x)] vice versa.
In a similar way, the phase operator �̃[θ3(x)] induces the
phase eiθ3(x) (e−iθ3(x)) to the wave-function amplitude of the
internal state |L〉 (|R〉) at the position x. The time evolu-
tion is described by U ′, following Eq. (1). Figure 1 shows a
schematic picture of U ′ in Eq. (26) implemented by photonic
quantum walks in Refs. [36,41,47]. We write the eigenvalue
of U ′ as λ,

U ′ |φλ〉 = λ |φλ〉 , λ = e−iε, (27)

where ε is the quasienergy. When δ �= 0, U ′ becomes nonuni-
tary and |λ| �= 1, which makes the quasienergy ε complex, in
general.

A. Symmetries

The nonunitary time-evolution operator U ′ in Eq. (26)
has various symmetries, while some of the symmetries ex-
ist only if parameters satisfy specific conditions. We briefly
summarize relevant symmetries which are important to argue
topological phases and dynamics by considering constraints
on the parameters.

1. In the case of no constraints

First, we assume no constraints on the parameters of the
time-evolution operator U ′. Therefore, values of θ j (x) and
δ(x) become arbitrary. In this case the time-evolution operator
in Eq. (26) retains only chiral symmetry in Eq. (6). By decom-

posing the time-evolution operator into U ′ = AB where A and
B are defined as

A = C(θ1)G(δ)SC(θ2)�(θ3/2), (28a)

B = �(θ3/2)C(θ2)SG(−δ)C(θ1), (28b)

chiral symmetry is confirmed with

	 =
∑

x

|x〉 〈x| ⊗ σ2. (29)

Therefore the time-evolution operator without any constraint
belongs to class AIII. It is known that class AIII can have
nontrivial Z topological phases in one dimension [39]. We
remark that nonunitary quantum walks which belong to class
AIII have not been studied so far.

2. In the case of θ3(x) = 0, π

Next we consider the case of θ3(x) = 0 or π , but no
constraints on θ1/2(x) and δ(x). In this case, in addition
to chiral symmetry, U ′ satisfies particle-hole symmetry and
time-reversal symmetry in AZ† classification,

CU ′C−1 = U ′, (30)

TU ′T −1 = (U ′)†, (31)

respectively, where the symmetry operators are

C =
∑

x

|x〉 〈x| ⊗ σ3K, (32)

T =
∑

x

|x〉 〈x| ⊗ σ1K. (33)

Here K is the complex conjugation operator. Particle-hole
symmetry and time-reversal symmetry in Eqs. (30) and (31)
are defined from these symmetries of non-Hermitian Hamilto-
nians CHC−1 = −H and T HT −1 = −H†, respectively, using
U = exp(−iH ). Then the system is classified into class BDI†

in the AZ† classification and possibly possesses nontrivial
topological phases [39]. When δ(x) = 0, the time-evolution
operator is unitary (U ′)† = (U ′)−1 and classified into class
BDI in the AZ classification [43]. Note that Refs. [47,80,81],
which explore similar quantum walks to our model, do not
mention chiral, particle-hole, and time-reversal symmetries in
Eqs. (6), (30), and (31) which we reveal in the present work.

3. In the case of θ j (x) = θ j (−x) and δ(x) = δ(−x)

One of the interesting symmetries for open systems is PT
symmetry, since the presence of this symmetry can result in
real quasienergies. The nonunitary time-evolution operator in
Eq. (26) also retains PT symmetry if parameters θ j (x) and
δ(x) satisfy a specific position dependence. PT symmetry in
open Floquet systems requires the nonunitary time-evolution
operator to satisfy [80,81]

(PT )U ′(PT )−1 = (U ′)−1. (34)

Equation (34) is satisfied by defining PT symmetry operator
as

PT =
∑

x

|−x〉 〈x| ⊗ σ0K, (35)
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with constraints on position dependences of parameters,

θ j (x) = θ j (−x), δ(x) = δ(−x), (36)

where j = 1, 2, 3. When the time-evolution operator pos-
sesses PT symmetry and the eigenstate |φλ〉 is also an
eigenstate of the PT symmetry operator, |λ| = 1 and ε be-
comes real [82]. As we clarify in Sec. IV C, PT symmetry
plays a crucial role in the dynamics of the nonunitary quantum
walk.

B. Spectral properties in a homogeneous system

We study the spectral properties of the nonunitary quantum
walk and clarify a condition for the presence of finite band
gaps of the quasienergy spectrum around Re(ε) = 0 and π .
When both gaps are open, topological numbers for the system
with chiral symmetry are well defined. We assume a homoge-
neous system in which θ j (x) = θ j and δ(x) = δ are constant.
Since the conditions in Eq. (36) are satisfied, PT symmetry
is retained in the homogeneous system and the quasienergies
become entirely real in certain parameter spaces. The time-
evolution operator in momentum space is obtained by Fourier
transformation,

Ũ ′(k) = d0(k)σ0 + id1(k)σ1 + d2(k)σ2 + id3(k)σ3,

d0(k) = cos θ3(cos θ1 cos θ2 cos 2k − sin θ1 sin θ2 cosh 2δ)

− cos θ1 sin θ3 sin 2k,

d1(k) = cos θ3(sin θ1 cos θ2 cos 2k + cos θ1 sin θ2 cosh 2δ)

− sin θ1 sin θ3 sin 2k,

d2(k) = d2 = sin θ2 cos θ3 sinh 2δ,

d3(k) = cos θ2 cos θ3 sin 2k + sin θ3 cos 2k, (37)

where d2
0 (k) + d2

1 (k) − d2
2 + d2

3 (k) = 1 is satisfied. Then the
eigenvalues of Ũ ′(k) are derived as

λ±(k) = d0(k) ± i
√

1 − d2
0 (k). (38)

On one hand, when |d0(k)| � 1 for any k ∈ [0, 2π ), all of
the quasienergies are kept real since |λ±(k)| = 1, although
U ′ is nonunitary. On the other hand, when |d0(k)| > 1 in

a certain range of k, λ±(k) = d0(k) ∓
√

d2
0 (k) − 1 ( �= ±1),

and then the corresponding quasienergies become complex
in the range. The former and latter situations are called an
unbroken PT symmetry phase and a broken PT symmetry
phase, respectively [82]. The condition for the presence or
absence of the quasienergy band gap at around Re(ε) = 0
or π is also discerned by the above unbroken/broken PT
symmetry phases. To derive the condition of the finite band
gaps, we rewrite d0(k) as

d0(k) = α cos(2k + β ) − sin θ1 sin θ2 cos θ3 cosh 2δ,

α =
√

cos2 θ1 cos2 θ2 cos2 θ3 + cos2 θ1 sin2 θ3,

cos β = sin θ1 sin θ2 cos θ3/α, sin β = cos θ1 sin θ3/α.

Since the band gaps are closed at λ = d0(k∗) = ±1 at a spe-
cific k∗, the condition of the finite band gaps is derived as

| sin θ1 sin θ2 cos θ3 cosh 2δ ± 1|√
cos2 θ1 cos2 θ2 cos2 θ3 + cos2 θ1 sin2 θ3

> 1, (39)

where ±1 in the numerator of the left-hand side corresponds
to the condition of the finite band gaps at λ = ±1. In the
following section we use Eq. (39) to draw the phase diagram
of topological numbers in Fig. 2.

IV. BULK-EDGE CORRESPONDENCE

In this section we derive the topological numbers from
the time-evolution operators in Eq. (2) with Eq. (28) and
demonstrate the bulk-edge correspondence in two different
symmetry classes, BDI† and AIII.

A. Topological numbers

Based on the chiral symmetry of U ′, we calculate the
topological numbers (ν0, νπ ) of the system. Since A and B
in Eq. (28) satisfy Eq. (6) with 	 in Eq. (29), we can use
Eq. (24) to derive ν0 and νπ . We note that the bulk-edge
correspondence studied in closed Hermitian systems can be
broken in open systems due to the non-Hermitian skin effect
in which bulk spectra drastically depend on boundary con-
ditions. This occurs when spectra under periodic boundary
conditions form a closed loop in the complex plane [83,84].
However, in our model, spectra without boundaries do not
form any closed loop, and bulk spectra never experience
drastic changes originating from boundary conditions. There-
fore we calculate the winding number ν ′ from eigenstates
of homogeneous U ′ with periodic boundary conditions, i.e.,
eigenstates of Ũ ′(k), using a method proposed in Ref. [24].
Note that PT symmetry exists in the argument below be-
cause the system is homogeneous. The calculation of ν ′′ from
U ′′ = BA = �(θ3/2)C(θ2)SG(−δ)C(θ1)G(δ)C(θ2)�(θ3/2) is
the same as that of ν ′.

In order to follow the procedure explained in Sec. II C, we
apply a unitary transformation to the time-evolution operator,

Ṽ (k) = ei π
4 σ1Ũ ′(k)e−i π

4 σ1 , (40)

which makes the chiral symmetry operator become σ3. When
PT symmetry is preserved and the gaps around Re(ε) = 0, π

are open, the right and left eigenstates of Ṽ (k) with eigenval-
ues λ±(k) are

|φ±(k)〉 = 1√
2 cos 2�k

(e±i�k ,±ie∓i�k e−iϑk )T, (41)

〈χ±(k)| = 1√
2 cos 2�k

(e±i�k ,∓ie∓i�k eiϑk ), (42)

respectively, where ϑk and �k are defined as

|d (k)|eiϑk = d3(k) + id1(k), (43)

cos 2�k =
√

1 −
(

d2

|d (k)|
)2

, sin 2�k = d2

|d (k)| . (44)
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FIG. 2. The top row: The phase diagrams of topological numbers (ν0, νπ ) as functions of θ1 and θ2 of the nonunitary quantum walk in
Eq. (26) with eδ = 1.1 and (a) θ3 = 0, (b) θ3 = π/5, and (c) θ3 = 9π/10. The system for (a) is classified in class BDI†; the systems for (b) and
(c) correspond to class AIII. The regions with topological numbers (ν0, νπ ) correspond to unbroken PT symmetry phases, while black and
white regions represent broken PT symmetry phases with complex quasienergies whose real parts are Re(ε) = 0 and π , respectively. The gray
circle, red rectangle, and green lower triangle, respectively, in (a)–(c) represent (θ (i)

1 , θ
(i)
2 ) = (9π/10, 3π/5), while the blue upper rectangle

in (b) represents (θ (o)
1 , θ

(o)
2 ) = (π/5, π/10), which is used in Fig. 4. The bottom row: The numbers of edge states [N0, Nπ ] appearing at the

quasienergy Re(ε) = 0, π for various values of (θ (o)
1 , θ

(o)
2 ) in the system described in Fig. 3 and Eq. (47) when (θ (i)

1 , θ
(i)
2 ) in Eq. (48) are fixed

at (9π/10, 3π/5) and other parameters are the same as those in the top row.

Substituting Eqs. (41) and (42) into Eq. (11), q(k) in Eq. (12)
becomes

q(k) = − ieiϑk

cos 2�k
, (45)

which results in

ν ′ = 1

2π i

∮
dk

d

dk
ln[q(k)] = 1

2π

∮
dϑk . (46)

Calculating ν ′′ in the same way and substituting ν ′ and ν ′′ into
Eq. (24), we can obtain topological numbers of the system.

The results with eδ = 1.1 are shown in the upper row of
Fig. 2 with various θ3. While the system belongs to class
BDI† in the case of θ3 = 0 [Fig. 2(a)], the system is clas-
sified into class AIII in the case of θ3 �= 0 [Figs. 2(b) and
2(c)]. We note that the topological numbers for the nonunitary
quantum walk defined in Eq. (24) are the same as those for
the unitary quantum walk (δ = 0) as long as both band gaps
around Re(ε) = 0 and π are open. Therefore the topolog-
ical numbers are robust against effects of gain and loss in
the chiral symmetric nonunitary Floquet system. For small
δ, increasing θ3 from 0 to π/5, as shown in Figs. 2(a) and
2(b), the band gaps at around Re(ε) = 0 and π open for

any values of θ2 around θ1 = ±π/2 and the regions with
topological numbers (ν0, νπ ) = (±1,±1) are connected. The
topological numbers (ν0, νπ ) = (±1,∓1) are unchanged as
long as the band gaps are open, while the regions are getting
small as θ3 is increased from 0 to π/2. At θ3 = π/2, the
regions with (ν0, νπ ) = (±1,∓1) vanish. In this case, both
band gaps around Re(ε) = 0 and π are closed only when
θ1 = 0, π , since Eq. (39) with θ3 = π/2 is satisfied excepting
θ1 = 0, π . With increasing θ3, furthermore, the regions with
(ν0, νπ ) = (±1,∓1) appear again as shown in the top panel
of Fig. 2(c), while signs of the topological numbers are differ-
ent from those with −π/2 < θ3 < π/2 due to the band-gap
closing.

B. Counting the edge states

Having established the phase diagrams in the top row of
Fig. 2, we confirm that the topological numbers give the
correct numbers of edge states even for the nonunitary Floquet
topological phases with chiral symmetry. In order to induce
edge states, we spatially change topological numbers through
position-dependent angles θ j (x) of the coin operators taking
the conditions in Eq. (36) into consideration. Accordingly,
the system is separated into three regions, an inner and two
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FIG. 3. A schematic view of the PT symmetric nonunitary
quantum walk defined in Eq. (47).

outer, as shown in Fig. 3, which are discerned by the values
of θ1 and θ2:

θ j (x) ∈

⎧⎪⎪⎨
⎪⎪⎩

[
θ

(o)
j − w j, θ

(o)
j + w j

]
(x � −L − 1),[

θ
(i)
j − w j, θ

(i)
j + w j

]
(−L � x � L),[

θ
(o)
j − w j, θ

(o)
j + w j

]
(x � L + 1),

(47)

where j = 1, 2, 3. The angles θ j (x) are randomly distributed
over the position space obeying box distributions whose
widths are w j with the mean values θ

(i)
j , θ

(o)
j . Also, we make

δ(x) obey δ(x) ∈ [δ − wδ, δ + wδ], which is different from
the position dependence of θ j (x) because δ has no effects on
ν0 and νπ as long as the gaps are open. Since there are two
interfaces near x = ±L at which the topological numbers vary,
the time-evolution operator preserves PT symmetry when
w j = wδ = 0, while nonzero w j,wδ results in the complex
quasienergies due to the absence of PT symmetry. Note that
the existence of two interfaces to induce edge states is in con-
trast to settings in unitary quantum walks [70,73] where PT
symmetry is not taken into account and no spatial constraints
on θ j (x) are required. In the following numerical simulations,
we fix the parameters as

eδ = 1.1,
(
θ

(i)
1 , θ

(i)
2

) = (9π/10, 3π/5). (48)

When we calculate eigenvalues of the time-evolution oper-
ator U ′ by numerical diagonalizations, the periodic boundary
conditions are imposed on two ends of the finite system with
−M � x � M − 1, M = 2L. In Fig. 4 we show the eigen-
values and edge states of the time-evolution operator for the
system in Eq. (47) with θ

(i)
1,2 in Eq. (48), w j/π = wδ = 3/20,

and two sets of θ
(o)
1,2,3 and θ

(i)
3 . Figure 4(a) shows the re-

sults for (θ (o)
1 , θ

(o)
2 , θ

(i)
3 , θ

(o)
3 ) = (9π/10, 3π/5, π/5, 9π/10)

with Eq. (48), corresponding to the red rectangle in Fig. 2(b)
and the green lower triangle in Fig. 2(c) respectively in the
inner and outer regions. We expect the existence of two
edge states on Re(ε) = 0 and π near each interface from
the bulk-edge correspondence. In the same way, two edge
states on Re(ε) = π near each interface are expected to ap-
pear in the case of Fig. 4(b) where (θ (o)

1 , θ
(o)
2 , θ

(i)
3 , θ

(o)
3 ) =

(π/5, π/10, π/5, π/5) with Eq. (48) corresponding to the
red rectangle and the blue upper triangle in Fig. 2(b). The
results of numerical diagonalizations in the top row of Fig. 4
clearly confirm the expectations, since eigenvalues of topo-
logically protected edge states (red crosses) satisfy Re(ε) =
0 or Re(ε) = π , which is consistent with the discussion in
Sec. II. Among four eigenstates corresponding to eigenvalues
on Re(ε) = 0 or π , two states are localized at the left bound-
ary and the other two states reside in the right boundary, of
which some states are shown in the bottom row of Fig. 4.

FIG. 4. The eigenvalues and edge states of the time-evolution
operator with chiral symmetry but without PT symmetry. We set
w j = 3π/20 for all j and wδ = 3/20. (a) Parameters in the inner
and outer regions respectively correspond to the red rectangle in
Fig. 2(b) and the green lower triangle in Fig. 2(c); θ

(o)
1 = θ

(i)
1 =

9π/10, θ
(o)
2 = θ

(i)
2 = 3π/5, θ

(i)
3 = π/5, and θ

(o)
3 = 9π/10. (b) Pa-

rameters in the inner and outer regions are respectively represented as
the red rectangle and the blue upper triangle in Fig. 2(b); θ

(o)
1 = π/5,

θ
(o)
2 = π/10, and θ

(i)
3 = θ

(o)
3 = π/5. In the top row, eigenvalues of

topologically protected edge states are depicted as red crosses. In the
bottom row, intensities of topological edge states are plotted, where
dashed lines represent boundaries at which topological numbers
change.

Thereby the bulk-edge correspondence is satisfied in the chiral
symmetric open Floquet system. The eigenvalues which cor-
respond to bulk states (green circles in Fig. 4) fluctuate around
the unit circle since the randomness of θ j (x) and δ(x) breaks
PT symmetry of the time-evolution operator. For the same
reason, there are no pairs of edge states having the opposite
sign of the imaginary part of quasienergy, ±Im(ε), while such
a pair appears for the chiral symmetric nonunitary Floquet
system with PT symmetry.

Furthermore, we systematically check the above results for
the whole parameter regions of (θ (o)

1 , θ
(o)
2 ) in the following

way. We focus on θ
(i)
3 = θ

(o)
3 , whose value is the same with

each case of the top row in Fig. 2. Therefore the parame-
ters for the inner region are fixed. We count the numbers
of eigenstates with Re(ε) = 0, π for various θ

(o)
1,2 by treating

two different system sizes M = 100 and M = 200. Then we
distinguish edge states from other states on the real axis due to
the closing of band gaps on Re(ε) = 0 or π by the system size
dependence of the numbers. If the numbers of eigenstates with
Re(ε) = 0 and π are unchanged with changing the system size
M, the numbers are recognized as the numbers of edge states
N0 and Nπ , respectively, originating from Floquet topological
phases. In order to explicitly compare the analytical results of
clean systems shown in the top row of Fig. 2 with numerical
results obtained from the procedure explained above, we set
w j = wδ = 0 in the present analysis. The results are summa-
rized in the bottom row of Fig. 2, showing the set [N0, Nπ ].
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Comparing the top and bottom rows of Fig. 2 in the light
of Eq. (48), in unbroken PT symmetry phases, the numbers
of edge states completely agree with the predictions by the
bulk-edge correspondence. In broken PT symmetry phases,
we observe that the numbers of eigenstates with Re(ε) = 0
and/or π increase as the size M is increased, except for a few
points where the numbers show no system size dependence.
However, this would be due to finite-size effects and could be
improved by using larger M. Thereby we conclude that the
bulk-edge correspondence works even for topological phases
in chiral symmetric open Floquet systems classified into class
BDI† and AIII. We remark that Fig. 4 demonstrates the bulk-
edge correspondence for the system without PT symmetry,
which confirms that PT symmetry is not essential to the
bulk-edge correspondence studied in this work.

C. Dynamics

Finally, we study the dynamics of wave functions driven
by the time-evolution operator U ′. From Fig. 4, we can un-
derstand that the eigenstate with the largest |λ| is one of the
topologically protected edge states. This suggests that topo-
logically protected edge states would mainly contribute to the
amplification of

P(x, t ) ≡
∑

s

|ψx,s(t )|2, (49)

which corresponds to the corrected probability to find a pho-
ton in postselected quantum systems [47] or the intensity of
light in classical systems with gain and loss [48] at a site x
and a time step t .

Figure 5 shows the time evolution of P(x, t ) with and with-
out randomness, of which the former and latter respectively
correspond to (b) and (a). When the randomness is absent
and PT symmetry of U ′ is preserved, while almost all of
the eigenvalues are on the unit circle owing to PT symmetry,
eigenvalues of edge states deviate from the unit circle. The
reason why only edge states have complex quasienergy even
when w j = wδ = 0 is that each edge state does not preserve
PT symmetry due to the localization at a boundary. While
eigenstates other than topologically protected edge states can
break PT symmetry in general (see Appendix for more de-
tails), only edge states have complex quasienergies with the
parameter set in Fig. 5(a). In this case the top panel of Fig. 5(a)
clearly shows that P(x, t ) at two interfaces increases with
increasing time steps, although the initial state |ψ (0)〉 = |6〉 ⊗
|L〉 is far from the interfaces. This is a peculiar phenomenon in
PT -symmetric nonunitary quantum walks, since observation
of edge states in unitary quantum walks requires that the
initial state should be very close to the interface [70,71]. On
the other hand, when the randomness is induced and PT
symmetry is broken, signals of topological edge states are
difficult to see due to the amplification of other states, as
shown in the top panel of Fig. 5(b). Thereby the existence
or absence of PT symmetry crucially affects the dynamics.
In the bottom of Fig. 5, we show the corrected probability
near an interface P(−30, t ) with |ψ (0)〉 = | − 30〉 ⊗ |L〉 and
find that P(−30, t ) increases exponentially with time steps
even when there is randomness. Taking Eqs. (1) and (27)
into account, this enhancement of corrected probabilities is

FIG. 5. Dynamics of P(x, t ) where parameters are θ
(o)
1 = θ

(i)
1 =

9π/10, θ
(o)
2 = θ

(i)
2 = 3π/5, θ

(i)
3 = π/5, θ

(o)
3 = 9π/10, and L = 30,

with (a) w j = wδ = 0 and (b) w j/π = wδ = 3/20. The parameter
set is the same as that of Fig. 4(a), except for w j and wδ in (a). Top
row: The contour map of ln P(x, t ) in the position and time-step plane
with |ψ (0)〉 = |6〉 ⊗ |L〉. Since a long time evolution of 150 steps
is experimentally realized in a quantum walk based on optical fiber
loops [48], such amplifications would be observed within the current
experimental techniques. Bottom row: The semilogarithmic plot of
P(−30, t ) when the initial state is put near an interface |ψ (0)〉 =
| − 30〉 ⊗ |L〉. The blue dashed lines represent Eq. (50), with (a) κ ≈
ln(1.06) and (b) κ ≈ ln(1.05).

the manifestation of edge states with the largest Im(ε). The
dashed line in Fig. 5(b), showing

Pe(t ) ∝ exp(2κt ), κ = max[Im(ε)], (50)

confirms that the manifestation originates from PT symmetry
breaking of the edge states.

V. DISCUSSION AND CONCLUSION

We have studied Floquet topological phases driven by
nonunitary time evolution which satisfies chiral symmetry. We
have established a procedure to calculate topological numbers
in chiral symmetric open Floquet systems in Eq. (24), based
on discussions about the bulk-edge correspondence. This
study systematically clarifies features resulting from chiral
symmetry. While the method has been applied to nonunitary
Floquet systems [36,47,74,75] based on the analogy to uni-
tary Floquet systems [55], our study gives the microscopic
foundation for the validity of the procedure in nonunitary
open Floquet systems. We have constructed a model classified
into class BDI† or AIII, depending on parameters, with PT
symmetry in some situations. Using the model, we have con-
firmed that the topological numbers which we have derived
correctly predict the numbers of edge states. While we have
computed winding numbers based on Bloch theory, since the
skin effect is absent in the present case, non-Bloch winding
numbers can also be used if they satisfy Eqs. (14) and (15) in
the case that the skin effect occurs. Then, as a future work, it
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should be interesting to explore the bulk-edge correspondence
based on Eq. (24) when the skin effect is present and Bloch
winding numbers are not applicable. We have also shown that
topological edge states crucially affect the dynamics, since
they break PT symmetry and contribute to amplification of
intensities.

While similar systems to our model in Eq. (26) have been
treated in Refs. [47,74] without mentioning chiral symmetry
in Eq. (6), their topological features originate from chiral
symmetry in Eq. (6). In particular, a postselected quantum
optical system in which amplifications of edge states were ob-
served [47] is classified into class BDI†, and the experimental
outcomes can be understood as phenomena peculiar to PT
and chiral symmetric open Floquet systems. The phenomena
which we have shown can also be investigated from the time-
step dependence of light intensity in the experimental settings
of classical coherent light [48]. Classical systems have several
advantages in comparison to quantum systems [47] from the
viewpoint of controlling open systems, because time steps
can be larger and gain effects can be introduced in classical
systems, and so on [48].
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APPENDIX: UNBROKEN OR BROKEN PT SYMMETRY
PHASES FOR ALL EIGENSTATES

In the case of Fig. 5(a), only edge states with Re(ε) = 0, π

break PT symmetry and have complex quasienergies, while
the quasienergies of all the other bulk states are real due to
PT symmetry. However, depending on the values of parame-
ters, other eigenstates with Re(ε) �= 0 or π can have complex
quasienergies even when PT symmetry of the time-evolution
operator in Eq. (47) is satisfied. We refer to these states
as extra broken states to distinguish them from edge states
originating from nonunitary Floquet topological phases and
explain details of these numerical results.

Figure 6(a) shows eigenvalues of the nonunitary quantum
walk in Eq. (26) satisfying Eq. (47). The specific parameters

FIG. 6. (a) The eigenvalues and (b) squares of wave-function
amplitudes of two extra broken states for the system with the
size M = 200 and parameters θ

(i)
1 = 9π/10, θ

(i)
2 = 3π/5, θ

(o)
1 =

−4π/5, θ
(o)
2 = 9π/10, and eδ = 1.1, with θ

(i)
3 = θ

(o)
3 = w j = wδ =

0. (a) Green dense dots and red symbols represent the eigenval-
ues whose absolute value is 1 and not equal to 1 (quasienergies
are complex), respectively. More precisely, red crosses, triangles,
and rectangles correspond to edge states originating from Floquet
topological phases, extra broken states inside a band gap which
are localized near boundaries, and extra broken states in the bulk
spectrum which are extended throughout the system, respectively.
(b) The squares of wave-function amplitudes of one of the extra
broken states whose eigenvalue corresponds to (b-1) a red triangle
and (b-2) a red rectangle in (a).

are as follows:

eδ = 1.1, θ
(i)
3 = θ

(o)
3 = w j = wδ = 0,(

θ
(i)
1 , θ

(i)
2 , θ

(o)
1 , θ

(o)
2

) = (9π/10, 3π/5,−4π/5, 9π/10).

As shown in Fig. 6(a), eigenvalues corresponding to the ex-
tra broken states shown by red symbols appear not only
within a band gap but also in the bulk spectra. The former
eigenstates shown in Fig. 6(b-1) are localized near bound-
aries, while the latter eigenstates shown in Fig. 6(b-2) are
extended in the whole system. However, we emphasize that
imaginary parts of complex quasienergies of edge states
originating from nonunitary Floquet topological phases are
larger than those for the extra broken states, which we
can understand from Fig. 6(a). Thereby, when we consider
the time evolution for the system even with extra bro-
ken states, edge states originating from Floquet topological
phases dominate the exponential amplification of intensity at
the interfaces.
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