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Complexity of Bird Song Caused by Adversarial Imitation Learning

Seiya Yamazaki · Hiroyuki Iizuka · Masahito Yamamoto

Abstract Biological evolution produces complexity through

genetic variations based on randomness. In conventional com-

munication or language simulation models, genetic varia-

tions based on randomness and fitness function rewarding

task achievements play an important role in evolving com-

munication signals to complex ones. However, it is known

that not only genetic variations evolve communication but

also imitative learning during developmental processes con-

tributions to the evolution of communication. What we in-

vestigated here was to find a different principle of generat-

ing complexity which does not rely on the randomness or

external environmental complexity but only on the learning

processes in communication. Our hypothesis is that the con-

tradictory learning mechanism we call the adversarial im-

itation learning can work to increase the complexity with-

out relying on the random processes. To investigate our hy-

pothesis, we implemented the adversarial imitation learning

on a simulation where two agents interact and imitate with

each other. Our results showed that the adversarial imitation

learning causes chaotic dynamics and by investigating the

learning results in different types of interaction between the

two, it was clarified that the adversarial imitation learning is

necessary for the emergence of the chaotic time series.
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1 Introduction

Evolution produces complexities through genetic variations

based on randomness. The produced variations are selected

by screening them to find more suitable variations for the

environment. The selected variations produce the new varia-

tions in the next generations, which are then selected again.

The successive processes of the selections and reproductions

with variations generate sophisticated and complex, but not

random, structures and behaviors of individuals that survive.

There is no explicit fixed fitness function as used in the ge-

netic algorithm [1], but only survivability works as natural

selections. The survivability produces the selection pressure

towards not only individual units but also groups of individ-

uals as a unit within or among species [2,3]. The mechanism

and open-endedness of evolution produces complexity ev-

erywhere [4,5]. This kind of complexity always depends on

the genetic variations brought by randomness intrinsically.

On the other hand, the complexity of bird songs or lan-

guage can also evolve through communication with others

in a community by teaching or imitations [6–8]. The chirp-

ing of birds is neither simple nor random but has grammati-

cal structures and sounds like songs. Ten Cate and Okanoya

show that the grammars of complex bird songs can be rep-

resented as finite-state automaton [9]. It is also shown that

birds that generate more complex songs have the advan-

tage for territorial claims [10] and courtship of females [9].

Those birds change their own song by imitating each other.

There are roughly two kinds of communication or lan-

guage models in terms of different causes that evolve the

communication signals to a complex one. One is that the

models have rich environments and the agents that handle

communication signals need to describe a variety of objects

or situations to achieve given tasks. For example, the nam-

ing game model by Steels investigates how the vocabularies

converge as shared common names for the multiple objects

[11]. Marocco and Nolfi show that communication signals



2 Seiya Yamazaki et al.

can be self-organized and used to express their situations

to achieve a task [12]. In these models, complexity is given

explicitly as the external stimuli and the communication sig-

nals evolve as complexity of the external stimuli.

Another is the communication-based models where there

are no explicit external stimuli but the ways of interaction

make communication complex. Sasahara and Ikegami show

that the bird song evolves to complex ones and the grammat-

ical structure emerges by modeling birds’ interjection com-

munication [13]. In this study, the ethological aspect that

female birds select male birds’ songs according to their fa-

vorite is modeled as interjection communication. Depend-

ing on the mating scores, the grammatical structure evolves

with genetic operations. Hashimoto and Ikegami show that

the grammar of the agents evolved in complexity by mod-

eling the dilemma in which the agent accepts the others’

signal while generating its own original signal not to be ac-

cepted [14]. Suzuki and Kaneko showed that the bird song

time series becomes more complex by modeling the imitat-

ing and not-to-be-imitated processes using the logistic map

and evolutionary techniques [15]. Evolution of a bird song

is directed to the edge of chaos in their model.

In all of these simulation models, the generators of com-

munication signals evolve with random-based genetic oper-

ators and fitness evaluations calculated on the basis of task

achievements or communication. As the long history of evo-

lution has shown, accumulated randomness makes the world

more complex, but even only the learning process works to

make the world complex. What we investigated here is to

find a different principle for generating complexity which

does not rely on the randomness or external environmental

complexity, but only on the learning processes in commu-

nication. Our hypothesis is that the contradictory learning

mechanism used in the imitation game model by Suzuki and

Kaneko can work to increase the complexity without relying

on the random processes. In order to investigate this, we con-

structed a simulation model where two agents interact with

each other and modify their behaviors through the learning

principles that are on the loss of objective functions, which

models the contradictory learning mechanism which we call

the adversarial imitation learning. As a result, we show that

the adversarial imitation learning leads the communication

signals to the complex one, which is chaotic.

2 Simulation model

2.1 Adversarial imitation learning

Adversarial imitation learning involves agents imitating oth-

ers’ songs while their songs should not be imitated by the

others. To imitate the others’ song, the generation models

of the songs need to be similar, but if these models are too

similar, it implies that the others can imitate as well. We

Fig. 1 Top: Generation model of the logistic map used in the conven-

tional model. Bottom: Generation model with an artificial neural net-

work in our model.

postulate that this kind of contradictory learning pressure

produces complex songs.

Our simulation model consists of a time series genera-

tion phase as its own original bird songs and imitation phase

to imitate the other bird songs [16]. The time series gen-

eration is performed by a feedforward neural network. The

artificial neural network is updated based on the bias of the

adversarial imitation learning. Our model is explained using

a case that involves two agents interacting with and imitat-

ing each other, nonetheless, it can be easily extended to a

scenario with a greater number of agents.

2.2 Generation of their own bird songs

Suzuki and Kaneko used the logistic map [15]. The bird

song time series was generated by the following equation,

xt+1 = 1− ax2
t , (1)

where xt is a single phoneme at time t and a is a nonlinearity

parameter. The generators evolve by changing parameter a

with the evolutionary technique. The song dynamics from a

simple to a complex one can be represented by the parameter

but the dynamical system depends on the logistic map.

In order for generators to represent any functions, we

use a feedforward neural network instead of the logistic map

as shown in Fig. 1. The network consists of three layers,

which are the input, hidden, and output layers. There are no

recurrent connections. The output of the neural network is

calculated as follows:

xt+1 = fANN (xt), (2)

= g(

N
∑

i=1

wi(g(vixt + b1i )) + b2), (3)

where wi and vi are weight, b1i and b2 are bias, N indicates

the number of hidden neurons, and g(x) is the activation

function. The tanh function is used here.



Complexity of Bird Song Caused by Adversarial Imitation Learning 3

Fig. 2 Agent B generates its own time series while listening to its own

song, but agent A generates its own time series while listening to B’s

songs.

2.3 Imitation of the other songs

When a bird agent imitates the other bird’s songs, it gener-

ates the bird song time series while listening to the others’

songs. Fig. 2 represents the overview of this imitation pro-

cess.

Let us explain the imitation phase in the case where agent

A imitates B. Agent B generates its own bird song time se-

ries (xB
1 , x

B
2 , . . . , x

B
T ) with its own neural network fB

ANN

while listening to its own songs as follows,

xB
t+1 = fB

ANN (xB
t ). (4)

Agent A generates the bird song time series (xA′

1 ,

xA′

2 , . . . , xA′

T ) with its own neural network fA
ANN while lis-

tening to the songs of agent B, that is, receiving the time

series of agent B as follows:

xA′

t+1 = fA
ANN (xB

t ). (5)

On the other hand, when agent B imitates A, the roles

are exchanged. B generates the bird song time series while

listening to the songs generated by A. These interactions are

expressed as follows:

xA
t+1 = fA

ANN (xA
t ), (6)

xB′

t+1 = fB
ANN (xA

t ). (7)

Each bird agent has a single initial value to start their

own and imitate songs. As well as the weights and the biases

of the network, the initial value is also updated by learning.

The initial value x0 is obtained through the tanh function to

restrict it in [−1, 1] as follows:

x0 = tanh(x
′

0). (8)

The same initial value is used to generate their songs for

both the generation and imitation phases.

Fig. 3 Learning of the initial values of agents’ bird songs using back-

propagation through time (BPTT). The errors are propagated to the

initial values along this flow.

2.4 Objective function

The time series generated in the generation and imitation

phases are evaluated in terms of the adversarial imitation

learning in order to train the agent’s network. Two types of

errors are calculated. One is the imitating-loss and another

is the not-imitated-loss. The imitating-loss is calculated to

evaluate how well the agent could have imitated the others’

songs. The not-imitated-loss evaluates how much the gener-

ated songs could have not been imitated by the others.

The imitating-loss of A indicates how close the time se-

ries generated in the imitation phase of A is to B’s original

song, and is calculated as follows:

EA
imitating =

1

T

T
∑

t=1

(xA′

t − xB
t )

2. (9)

The not-imitated-loss of A indicates how far the original

song of A is from the time series generated in the imitation

phase of B, and is calculated as follows:

EA
not−imitated =

1

T

T
∑

t=1

(2− |xA
t − xB′

t |)2. (10)

The imitating-loss and the not-imitated-loss of B are also

calculated in the same manner, as shown in eq (11) and (12).

EB
imitating =

1

T

T
∑

t=1

(xB′

t − xA
t )

2, (11)

EB
not−imitated =

1

T

T
∑

t=1

(2− |xB
t − xA′

t |)2. (12)

The not-imitated-loss is also used to learn the initial value

x
′

0. The errors are back-propagated to the initial value by re-

garding the generating process of songs as the recurrent neu-

ral network like xt = fANN (fANN (. . . (fANN (tanh(x
′

0))))),

as shown in Fig 3. Therefore, the initial value can be updated

by BPTT [17] such that each value of the two-time series are

more distant.

Those errors are integrated into the total errors of the

agent, which can be expressed as follows:

EA = EA
imitating + EA

not−imitated, (13)
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Fig. 4 Leftmost column: Changes of imitating-loss and not-imitated-loss. The remaining graphs show examples of bird song time series obtained

at 1, 550 and 700 epoch from the left. The upper row is the case where A is imitated by B (B imitates A) and lower is vice versa.

Fig. 5 The bifurcation diagrams of agent B. The right graph shows an

enlarged view of the left.

EB = EB
imitating + EB

not−imitated. (14)

The weights, biases, and initial values of both agents are up-

dated based on these errors, using back propagation. The pa-

rameters of the network are updated by the stochastic gradi-

ent descend algorithm. In order to avoid the exploding gradi-

ent problem, the gradient clipping method is used [18]. The

artificial neural networks of A and B are updated at the same

time after the generation and imitation phases.

3 Experiments

3.1 Experimental setting

We performed the experiment in the following experimen-

tal setup. The length of the generated time series T is 32,

and the number of learning epochs is 1, 000. The number of

nodes N in the hidden layer of the neural network is 32.

3.2 Adversarial imitation learning between two agents

The simulation results of both agents performing the ad-

versarial imitation learning are explained. The losses over

epochs and the examples of the generated time series are

shown in Fig. 4. The imitating-loss is smaller than the not-

imitated-loss in both two agents. At the beginning of the

learning, both agents generate a simple time series which

fall into a fixed-point. At 550 epoch, period-2 time series

are generated by agent B and A’s imitating time series be-

comes period-2, too. On the other hand, the original time

series of A remains a fixed-point. At 700 epoch, B’s original

time series shows more complex dynamics like chaos.

To analyze the changes of the song dynamics through

the adversarial imitation learning, we make the bifurcation

diagram as Fig. 5. The vertical axis shows the convergence

points of the time series that is generated when agent B

generates its own song by itself until 2,000 time steps. The

time series until 200 time steps are removed and the remains

are plotted. If it is converged to a single point, the conver-

gence points are plotted on a single point at the correspond-

ing epoch. The graph shows when and how the dynamics

changes. The results show that B’s song is very simple at the

beginning, but the number of periodicity increase. Then, the

periodicity disappears and it becomes a chaotic-like dynam-

ics. The adversarial imitation learning appears to transform

the songs into chaos.

3.3 Evaluation by Lyapunov exponent

From the bifurcation diagram shown in Fig. 5, we can see

that the adversarial imitation learning makes the songs com-
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Fig. 6 Transitions of the Lyapunov exponents of two agents.

plex. In order to evaluate the obtained bird songs objectively,

we introduce the Lyapunov exponent λ [19].

λ is the degree to which a slight difference in the dy-

namic system is enlarged exponentially and is used to tell

whether it is chaotic. It is defined as follows:

λ = lim
n→∞

1

n

n−1
∑

i=0

ln
∣

∣

∣
f

′

(xi)
∣

∣

∣
, (15)

where f(x) is the dynamical system, and xi is the value of

the time series. When λ > 0, it is a chaotic time series,

but not a chaotic time series otherwise. In this study, n is

1,000, and because our song model is expressed as eq (3), we

calculate the Lyapunov exponent λ with f(x) as the artificial

neural network that each agent has.

The changes of the Lyapunov exponents are shown in

Fig. 6. In the beginning, the Lyapunov exponent becomes

negative, which means that the dynamics is stable. The time

series becomes periodic as shown in Fig. 5. After that, the

stable dynamics is destabilized gradually and the Lyapunov

exponent becomes zero or greater than zero, which means

that the dynamics is chaotic. This chaos is sustained for a

while. After that, the value stays around λ = 0. The reason

why the chaotic dynamics come back to the simple dynam-

ics is not clear, but we think that this is because there is

no pressure in keeping the chaotic dynamics in our current

model. Even when agent B’s own song is chaotic, B must

imitate A’s songs that remain a simple time series. The con-

tradiction of imitating and not-being-imitated can also work

for simplicity after the chaos emerges. Therefore, B’s songs

become periodic and the Lyapunov exponent stays around

λ = 0. This might be the edge of chaos. It is observed that

the chaotic and simple dynamics appear alternately when we

perform the simulations for longer periods.

The analysis of the Lyapunov exponents clearly shows

that the time series, after training with the adversarial imita-

tion learning, become chaotic.

3.4 Different types of interactions

In the experiment of the adversarial imitation learning be-

tween two agents, the generated time series gradually be-

comes complex and the chaos dynamics emerge. To inves-

tigate the conditions for emerging the chaotic time series,

various types of interactions between the two agents were

tested.

The ratios of emerging chaotic time series in agent B’s

song during learning, under different types of interactions,

are shown in Fig. 7. Once the Lyapunov exponent of agent

B’s network, calculated at each epoch, becomes positive un-

til 2,000 epochs, it is counted as the emergence of the chaotic

time series and the ratio of over 100 trials is shown. In the

figure, the arrow from agent A to B shows that agent A im-

itates agent B’s song, which means that Eimitating is in-

cluded in the objective functions. If the arrow is blocked

with the line at the destination, the destination agent is trained

not to be imitated by the origin agent. It means that Enot−imitated

is included in the objective function. The dotted arrow with

the blocked line shows that the origin agent is not trained

to imitate the destination agent’s song but the destination

agent is trained not to be imitated by the origin agent. In

other words, the objective function of the origin does not

have Eimitating and the destination includes Enot−imitated

against the time series generated by the origin. The adver-

sarial imitation learning of the agent can be shown with the

blocked line for solid or dotted arrow from the opponent

and the solid arrow to the opponent. There are three pat-

terns of the agents, i.e., trained with only imitating, only not

to be imitated, or both (the adversarial imitation learning).

In order to investigate whether the mutual learning interac-

tions were required for the emergence of chaotic time series,

the two additional agents were prepared. One was the fixed

agent whose network parameters were never updated since

the initial values were set at the first epoch. Another was the

random agent whose network parameters were randomly set

at the beginning of each epoch.

From the results, the chaotic time series does not appear

at all when agent B has been trained with only imitating

or only imitated, regardless of the types of agent A. Only

when agent B performs the adversarial imitation learning, is

the chaotic time series observed. The adversarial imitation

learning of agent B is required to generate the chaotic time

series in agent B. However, when agent A has been trained

with only imitating or when agent A is the fixed or random

network, the chaotic time series does not appear, or appears

very rarely. It means that the emergence of the chaotic time

series in agent B requires agent A’s training not to be imi-

tated.

The ratio becomes the highest when agent A and B per-

form not-imitated and adversarial imitation learning, respec-

tively. Under this interaction, the time series of agent A never
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Fig. 7 Ratios that agent B generates chaotic time series in the various types of interaction. The number between brackets indicates the ratio of A.

This is calculated over 100 trials. See the main text for the learning types.

Fig. 8 Return maps obtained from the artificial neural networks of

the agents which are trained in different interactions, i.e., (a): not-

imitated and adversarial, (b): not-imitated and not-imitated, (c): imi-

tating and adversarial. The artificial neural networks after trained for

2,000 epochs are analyzed.

becomes chaotic (it is shown in the opposite interaction, i.e.,

A: adversarial imitation learning and B: not-imitated learn-

ing). When both agents perform the adversarial imitation

learning, the time series becomes chaotic with the lower ra-

tio than the previous one. However, this is because there are

possibilities of agents at both sides generating chaotic time

series when both agents perform the adversarial imitation

learning and the chaotic time series at one side, inhibits the

agent at another side, becoming chaotic. In fact, there are no

cases where both agents become chaotic in the experiments.

From these results, we conclude that the adversarial imita-

tion learning causes an increase of complexity of the time

series and makes it chaotic.

In order to analyze how the network has changed to chaotic

by the adversarial imitation learning, we visualize the shapes

of functions of two agents by the return maps. The example

of simple and chaotic functions obtained in the different in-

teractions are shown in Fig. 8. These return maps are made

by giving inputs between -1 and 1 as xt to the network and

obtaining outputs xt+1 corresponding to inputs. Fig. 8 (a)

shows the return maps obtained after 2,000 epoch training

when agent A and B are trained with not-imitated and the

adversarial imitation learning, respectively. (b) is for both

trained with not-imitated learning and (c) for imitating and

the adversarial imitation learning.

In (b), both agents try to sing completely different songs

(not imitated with each other), the functions become oppo-

site and converge. In (c), agent A tries only to imitate agent

B without performing not-imitated learning. The return map

of agent A becomes similar to agent B’s, although agent B

wants to stay away from agent A when it is imitated. (a) is

the case where the chaotic time series are generated in agent

B, most often. The return map must stay away from agent

A but somehow needs to approach to it. Such contradiction

bends the return map, which changes to the shape to gener-

ate the chaotic time series in the end.

3.5 The balance of the learning pressures

We show that adversarial imitation learning encourages com-

plication of the bird song time series, and reveal the condi-

tion of the emerging chaotic time series. However, it is not

clear how much the imitating and not-imitated learning con-

tribute to the emergence of the chaotic time series and if

there is the best-weighted combination of imitating and not-
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Fig. 9 Ratios of emerging chaotic time series in agent B’s song de-

pending on the weight parameter a of imitating and not-imitated learn-

ing.

imitated learning for the chaotic time series. In order to clar-

ify this, we performed simulations with the objective func-

tions with different a as follows,

E = aEimitating + (2.0− a)Enot−imitated, (16)

where a is the learning weight parameter that decides the

balance between imitating and not-imitating learning, and

the bigger this parameter is, the more agent imitates the op-

ponents’ songs. This type of interaction is fixed to the case

where agent A and B are trained with only not-imitated and

adversarial imitation learning, respectively, because only agent

B has a chance to generate the chaotic time series and agent

A never, and we can focus on agent B’s songs. For each

parameter a, we performed the experiments 20 times and

counted the number of cases where the Lyapunov exponent

for agent B’s network became positive.

The results are shown in Fig. 9. If the not-imitated learn-

ing is too strong, the chaotic time series does not emerge.

When agent B only imitates the opponent (a = 2.0), the

chaotic time series is not produced, either. However, if not-

imitated learning is introduced even slightly into imitating

learning, the chaotic time series can emerge. The ratio of

emerging chaos varies greatly depending on the weights of

imitating and not-imitated learning and becomes 0.6 at the

best weights. Our results show that the adversarial imitation

learning works for the emergence of the chaotic time series

and small amounts of not-imitated learning lead to chaos.

4 Discussion

This paper suggests that the complication of time series is

proceeded by the adversarial imitation learning, which is

modeled as the learning that an agent must imitate others’

songs while the agent must generate its own song that is not

imitated by the others using a neural network. The generated

time series is a fixed-point at the beginning of the learning.

However, gradually the time series become periodic, finally,

the chaotic time series is generated.

Several studies have reported that the dilemma gives rise

to complexity in the simulation. It is the case that the dilemma

by the adversarial imitation learning make the dynamics gen-

erated by the neural network more complex. The dilemma

is realized by two contradictory loss functions, which are

the imitating-loss and the not-imitated-loss. This is actually

similar to GAN (Generative Adversarial Network) which

is a popular method to generate complex and realistic pic-

tures with a deep neural network [20]. As with a GAN, the

competing loss functions might help the network to develop

complex structures.

Moran and Pollack present the coevolutionary dynam-

ics of complexity growth in a variety of multi-species sim-

ulations modeled with finite state automata [21]. In their

research, the complexity grows up the most in the contra-

dictory situation where both cooperation and competition

are required at the same time. As well as their results, in

our simulation, the complication only progresses when the

adversarial imitation learning is performed. The difference

from these models is that they use finite-state automata as a

basic structure, which is modulated by the random processes

as genetic mutation. The automata have a discretized struc-

ture and it is rather easy to introduce the complex structure

because it is modularized. In our model, we used an artifi-

cial neural network as a generator function, which only pro-

duced very simple fixed-point dynamics at the beginning.

What we show is that even without the discretized or modu-

larized structures nor abrupt changes given by random mu-

tation, complication comes to be embedded into the network

by the adversarial imitation learning.

Unlike the previous simulation model [15], in this paper,

the complication and chaos emerged by only the contradic-

tory learning processes. This means that the complication

can be produced in a closed system without randomness and

any external events as long as there is the only a contradic-

tory situation.

In our current model, a feedforward neural network is

used for generating time series, which means that the neu-

ral network cannot produce the time-dependent dynamics.

If the adversarial imitation learning enhances the complica-

tion of the time series, generating chaotic dynamics is the

only way to produce complex time series. What we want to

show here is not that the bird songs are chaotic, but that the

adversarial imitation learning enhances the complication of

the time series without external randomness. If a recurrent

neural network that can hold memories is used, the network

would be able to produce complex time series with syntactic

structures as the bird songs can be represented as finite-state

automaton [9].
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From the ethological point of view, the interaction like

adversarial imitation learning has not been reported yet but

it is known that birds generating complex songs are stronger

for the defense of their territory [10] and those songs are ob-

tained by imitation [9]. These findings would imply that the

individuals that can imitate the others and are not imitated

by the others would be able to obtain the highest benefits for

survivability. This could be applied to not only the compli-

cation of bird songs but also behaviors or strategies to get

foods or even body structures that can produce more com-

plex behaviors to imitate the others and not to be imitated by

the others. Our model might be able to explain wider phe-

nomena of complication.

5 Conclusion

Our study showed that the adversarial imitation learning causes

the chaotic dynamics and clarified that it is a necessary con-

dition for the emergence of the chaotic time series by investi-

gating the different types of interaction between the two. Be-

cause the feedforward neural network is used in our model,

the complication is restricted into a spatial dimension of the

bird songs. If the model is extended to the recurrent neural

network, the complication can develop in a spatio-temporal

dimensions. The grammatical structure of the bird songs as

Okanoya shows in Bengalese finch’s songs [9] could be seen

in the temporal complexity in such an extended model.
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