Title	Effect of Relative Strength of Two Networks on the Internal Fracture Process of Double Network Hydrogels As Revealed by in Situ Small-Angle X-ray Scattering
Author(s)	Fukao, Kazuki; Nakajima, Tasuku; Nonoyama, Takayuki; Kurokawa, Takayuki; Kawai, Takahiko; Gong, Jian Ping
Citation	Macromolecules, 53(4), 1154-1163 https://doi.org/10.1021/acs.macromol.9b02562
Issue Date	2020
Doc URL	http://hdl.handle.net/2115/80360
Rights	This document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.macromol.9b02562.
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Supporting Information Macromolecules53-4_1154-1163.pdf

Supporting Information Internal Fracturing in Double Network Hydrogels During Stretching as Revealed by in situ Small-Angle X-ray Scattering Kazuki Fukao¹, Tasuku Nakajima^{2,3,4}, Takayuki Nonoyama^{2,3}, Takayuki Kurokawa^{2,3}, Takahiko Kawai⁵* and Jian Ping Gong^{2,3,4}* ¹ Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan ² Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan ³ Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan ⁴ Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan ⁵ Graduate School of Engineering, Gunma University, Ota, 373-0057, Japan *Corresponding author E-mail: kawaitakahiko@gunma-u.ac.jp (T. Kawai) and gong@sci.hokudai.ac.jp (J.P. Gong)

1 Small angle x-ray Scattering (SAXS) measurement

- 2 Calculation of the mesh size and the mesh deformation ratio of the first network. To
- 3 calculate the mesh deformation ratio of the first network λ_{mesh} in two different directions, we fitted the
- 4 SAXS profiles of DN gels at various deformation ratio λ (Figure S1) with Ornstein–Zernike (OZ)
- 5 function using Origin Pro software, as follows.

6
$$I(q) = \frac{I_0}{1 + \xi^2 q^2}$$
 (S1)

- 7 where I_0 , ξ and q are the forward scattering intensity, the correlation length and scattering vector,
- 8 respectively. The mesh deformation ratio λ_{mesh} was calculated based on the mesh size at global stretch
- 9 ratio $\lambda = 1$ of the DN gels from following equation.

$$\lambda_{mesh} = \frac{\xi_{\lambda=x}}{\xi_{\lambda=1}}$$
 (S2)

- 11 Calculation of the void long-axis length and the void deformation ratio. To calculate the
- 12 average void length $\langle L_{void} \rangle$ using Ruland streak method, the azimuth angle distribution at any scattering
- vector q was firstly obtained from 2D images by using Fit_2D (v12.077) software, and the data was
- 14 fitted by Lorentzian function using Origin Pro software. Then the radian of full width at half maximum
- 15 (FWHM) in azimuth direction of the streak at scattering vector q was obtained from the fitting curve.
- The void deformation ratio λ_{void} was calculated from following equation.

$$\lambda_{void} = \frac{\langle L_{void (\lambda = X)} \rangle}{\langle L_{void (\lambda = 1)} \rangle}$$
 (S3)

- 1 where $\langle L_{void (\lambda=1)} \rangle$ is the void length at $\lambda_{DN} = 1$. Since $\langle L_{void (\lambda=1)} \rangle$ cannot be obtained from the
- 2 Ruland streak method, we estimated $\langle L_{void}(\lambda=1) \rangle$ of DN-4 by extrapolating the linear relation
- 3 between the $\langle L_{void} \rangle$ and λ to $\lambda=1$. The $\langle L_{void(\lambda=1)} \rangle$ of DN-2 was calculated from $\langle L_{void(\lambda=1)} \rangle$ of DN-
- 4 4 by considering the volume swelling ratio difference between the two DN gels.

5

6

Estimation of the first network mesh size from mechanical test

- 7 Indentation test. To calculate the mesh size of the first network, indentation test was also
- 8 carried out for as-prepared first SN gels (PAMPS, thickness: 3 mm) with different cross-linked density.
- 9 The indentation was performed at 0.25 mm/min using a universal mechanical testing device
- 10 (AUTOGRAPH AG-X, Shimadzu Co., Japan). The Young's modulus E was calculated using the Hertz
- model for indentation between indenter and sample, as follows.

$$h = \left[\frac{3}{4} \left(\frac{1 - \nu_i^2}{E_i} + \frac{1 - \nu_{ii}^2}{E_{ii}}\right)\right]^{\frac{2}{3}} \cdot F^{\frac{2}{3}} \cdot R^{-\frac{1}{3}}$$
 (S4)

- where h, F, R, v_i , v_{ii} , E_i and E_{ii} are displacement, force, radius of indenter, Poisson ratio of indenter,
- Poisson ratio of sample, Young's modulus of indenter and Young's modulus of sample, respectively.
- Since E_i is much higher than E_{ii} , the equation becomes following.

$$h = \left[\frac{3}{4} \left(\frac{1 - \nu_{ii}^2}{E_{ii}}\right)\right]^{\frac{2}{3}} \cdot F^{\frac{2}{3}} \cdot R^{-\frac{1}{3}}$$
 (S5)

In this study, the radius of indenter R was 0.25 mm and v_{ii} was assumed to be 0.5. E_{ii} can be determined

1 from the slope a of the $F^{2/3}$ -h plot at the range of $h = 0.05 \sim 0.25$ mm.

$$a = \left[\frac{3}{4} \left(\frac{1 - \nu_{ii}^2}{E_{ii}}\right)\right]^{-\frac{2}{3}} \cdot R^{\frac{1}{3}}$$
 (S6)

3
$$E_{ii} = \frac{3}{4} (1 - v_{ii}^2) \cdot R^{-1/2} \cdot a^{3/2}$$
 (S7)

- 4 The first network mesh size at the as-prepared state ξ_0 was estimated from the Young's modulus of
- 5 sample, E_{ii} , as follows.

11

$$E_{ii} = \frac{3k_BT}{\xi_0^3} \tag{S8}$$

- 7 where k_B and T are Boltzmann constant and measurement temperature. The mesh size of the first
- 8 networks in DN gels ξ was estimated from the volume swelling ratio Q of the first network in swellen
- 9 DN gels relative to its as-prepared state as follows.

$$\xi^3 = Q \times \xi_0^3 \tag{S9}$$

1 Figure S1.

Figure S1. (a) SAXS 1D profiles of swollen DN gels with various concentration of the first network cross-linker. (b) Comparison of the mesh size of the first network obtained from OZ function fitting and indentation test.

9 Figure S2.

Figure S2. (a) Azimuth angle distribution of DN-2 and its Lorentz fitting curve. (b) The linear plot between the qB_{obs} and q.

Table S1.

Table S1. Summary of sample thickness, volume swelling ratio in relative to as-prepared state, and the monomer molar concentration of the two networks for DN-2 and DN-4 gels. The monomer molar concentrations at as-prepared state are the in-feed values.

		DN-2			DN-4		
		Thickness (mm)	Volume swelling ratio	Monomer molar conc. (M)	Thickness (mm)	Volume swelling ratio	Monomer molar conc. (M)
2nd network 1st network	As-prepared	0.50	-	1.00	0.50	-	1.00
	Swell in DMAAm	1.60	32.77	0.03	1.52	28.09	0.04
	In swollen DN	2.07	70.96	0.01	2.36	105.15	0.01
	As-prepared	1.60	-	2.00	1.52	-	4.00
	In swollen DN	2.07	2.17	0.92	2.36	3.74	1.07