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Abstract In this article we describe two new characterizations of freeness for hy-
perplane arrangements via the study of the generic initial ideal and of the sectional
matrix of the Jacobian ideal of arrangements.
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1 Introduction

Let V be a vector space of dimension l over a field K. Fix a system of coordinates
(x1, . . . , xl) of V ∗. We denote by S = S(V ∗) = K[x1, . . . , xl] the symmetric al-
gebra. A hyperplane arrangement A = {H1, . . . ,Hn} is a finite collection of hyper-
planes in V .

Freeness of an arrangement is a key notion which connects arrangement theory
with algebraic geometry and combinatorics. There are several ways to prove free-
ness, e.g. using Saito’s criterion [14], addition-deletion theorem [16], etc. However,
it is not always easy to characterize freeness. In [19], Ziegler proved that the mul-
tirestriction (AH0 ,mH0) of a free arrangement A is also free. The converse is not
true in general. However in [17], Yoshinaga gave a partial converse of Ziegler’s work
and characterized freeness for arrangements by looking at properties around a fixed
hyperplane. In [18], Yoshinaga studied arrangements in three-dimensional space and
described a new characterization of freeness for such arrangements given in terms
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of the characteristic polynomial and a restricted multiarrangement. Moreover, with
the idea of unifying [17] and [18], Schulze in [15] proved that if the dimension is
l ≤ 4 (or l ≥ 5 under tameness assumption), the freeness of A is characterized
in terms of multirestriction and characteristic polynomials. With similar goals, Abe
and Yoshinaga in [4] characterized freeness in terms of the multirestriction and the
second coefficient of characteristic polynomials (without posing any conditions on
dimension or tameness).

The purpose of this paper is to give new characterizations of freeness for any
dimension. Namely, we characterize freeness in terms of the generic initial ideal and
of the sectional matrix of the Jacobian ideal J(A) of the arrangement A, making use
of the characterization of Terao [16] of freeness in term of Cohen-Macaulayness of
the Jacobian ideal of the arrangement.

This paper is organized as follows. In §2, we recall the basic facts about hyper-
plane arrangements and their freeness. In §3, we describe the connection between the
study of free hyperplane arrangements and commutative algebra. In §4, we recall the
notion of generic initial ideal of a given homogeneous ideal. In §5, we describe our
first characterization via generic initial ideal. In §6, we recall the notion of sectional
matrix of a given homogeneous ideal and we prove some new results regarding the
sectional matrix. In §7, we describe our second characterization via sectional matri-
ces. In §8, we describe some additional properties of the generic initial ideal of the
Jacobian ideal of a free hyperplane arrangement. In §9, we reverse our point of view
and we describe which strongly stable ideals are generic initial ideals of arrange-
ment’s Jacobian ideals.

2 Preliminares on hyperplane arrangements

In this section, we recall the terminology and basic notation of hyperplane arrange-
ments and some fundamental results.

Let K be a field of characteristic zero. A finite set of affine hyperplanes A =
{H1, . . . ,Hn} in Kl is called a hyperplane arrangement. For each hyperplane Hi

we fix a defining equation αi ∈ S = K[x1, . . . , xl] such that Hi = α−1i (0), and let
Q(A) =

∏n
i=1 αi. An arrangementA is called central if each Hi contains the origin

of Kl. In this case, the defining equation αi ∈ S is linear homogeneous, and hence
Q(A) is homogeneous of degree n.

Let L(A) = {
⋂
H∈BH | B ⊆ A} be the lattice of intersection of A. Define

a partial order on L(A) by X ≤ Y if and only if Y ⊆ X , for all X,Y ∈ L(A).
Note that this is the reverse inclusion. Define a rank function on L(A) by rk(X) =
codim(X). L(A) plays a fundamental role in the study of hyperplane arrangements,
in fact it determines the combinatorics of the arrangement. Define Lp(A) = {X ∈
L(A) | rk(X) = p}. We call A essential if Ll(A) 6= ∅.

We denote by DerKl = {
∑l
i=1 fi∂xi | fi ∈ S} the S-module of polynomial

vector fields on Kl (or S-derivations). Let δ =
∑l
i=1 fi∂xi

∈ DerKl . Then δ is
said to be homogeneous of polynomial degree d if f1, . . . , fl are homogeneous
polynomials of degree d in S. In this case, we write pdeg(δ) = d.
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Definition 2.1 Let A be a central arrangement. Define the module of vector fields
logarithmic tangent to A (logarithmic vector fields) by

D(A) = {δ ∈ DerKl | δ(αi) ∈ 〈αi〉S, ∀i}.

The module D(A) is obviously a graded S-module and we have that D(A) =
{δ ∈ DerKl | δ(Q(A)) ∈ 〈Q(A)〉S}. In particular, since the arrangement A is
central, then the Euler vector field δE =

∑l
i=1 xi∂xi

belongs to D(A). In this case,
D(A) ∼= S·δE ⊕D0(A), where D0(A) = {δ ∈ DerKl | δ(Q(A)) = 0}.

The following is the more used definition of a free hyperplane arrangement. How-
ever in the rest of the paper we will use as a definition the equivalence described in
Theorem 3.3.

Definition 2.2 A central arrangementA is said to be free with exponents (e1, . . . , el)
if and only if D(A) is a free S-module and there exists a basis δ1, . . . , δl ∈ D(A)
such that pdeg(δi) = ei, or equivalently D(A) ∼=

⊕l
i=1 S(−ei).

Remark 2.3 Let A be free with exponents (e1, . . . , el). We can suppose e1 ≤ e2 ≤
· · · ≤ el. Moreover, if A is essential then e1 = 1.

3 Hyperplane arrangements and commutative algebra

The purpose of this paper is to study free hyperplane arrangements in the language of
commutative algebra. For this reason, we start our investigation from the characteri-
zation of freeness described by Terao that connects exactly the theory of hyperplane
arrangements with commutative algebra, see [16].

Definition 3.1 Given an arrangementA = {H1, . . . ,Hn} in Kl, the Jacobian ideal
of A is the ideal of S generated by Q(A) and all its partial derivatives, and it is
denoted by J(A).

Notice that, since J(A) is the ideal describing the singular locus of A, we have that
S/J(A) is 0 or (l − 2)-dimensional.

Remark 3.2 Let A be a central arrangement. Then Q(A) is homogenous and hence
we can write

nQ(A) =
l∑
i=1

xi
∂Q(A)
∂xi

This implies that if A is central, then J(A) is a homogeneous ideal generated by at
most l polynomials all of degree n−1.

Theorem 3.3 (Terao’s criterion) A central arrangementA is free if and only if S/J(A)
is 0 or Cohen-Macaulay.

If an arrangement A is free, then we can easily compute the minimal resolution
of the Jacobian ideal. See [16, p.296] for more details.
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Remark 3.4 Let A be a central, essential and free hyperplane arrangement with
exponents (e1, . . . , el). Then, by [16, p.296], J(A) has a minimal free resolution of
the type

0 −→
l⊕
i=2

S(−n− ei + 1) ∼= D0(A) −→ S(−n+ 1)l −→ J(A) −→ 0.

4 Generic initial ideal

In this section we recall the definition and some known properties of the generic
initial ideal. We also present a new result which is the starting point of our first char-
acterization in Section 5.

Definition 4.1 A monomial ideal B in K[x1, . . . , xl] is said to be strongly stable if
for every power-product t ∈ B and every i, j such that i < j and xj |t, the power-
product xi · t/xj is in B.

Directly from the definition of strongly stable ideal, we have the following lemma.

Lemma 4.2 Let B be a strongly stable ideal in K[x1, . . . , xl] and k ∈ {1, . . . , l}.
Then B has no minimal generators divisible by xk if and only if B has no minimal
generators divisible by xk, . . . , xl.

Definition 4.3 Let σ be a term ordering on S = K[x1, . . . , xl] and f a non-zero
polynomial in S. Then LTσ(f) = maxσ{Supp(f)}, where Supp(f) is the set of all
power-products appearing with non zero coefficient in f . If I is an ideal in S, then
the leading term ideal (or initial ideal) of I is the ideal LTσ(I) of S generated by
{LTσ(f) | f ∈ I\{0} }.

The following theorem is due to Galligo [9].

Theorem 4.4 (Galligo) Let I be a homogeneous ideal in K[x1, . . . , xl], with K a
field of characteristic 0 and σ a term ordering such that x1 >σ x2 >σ · · · >σ xl.
Then there exists a Zariski open set U ⊆ GL(l) and a strongly stable ideal B such
that for each g ∈ U , LTσ(g(I)) = B.

Definition 4.5 The strongly stable idealB given in Theorem 4.4 is called the generic
initial ideal with respect to σ of I and it is denoted by ginσ(I). In particular, when
σ =DegRevLex, ginσ(I) is simply denoted with rgin(I).

Since we are interested in studying free hyperplane arrangements, we need the
following result on Cohen-Macaulay ideals by Bayer and Stillman [5].

Theorem 4.6 Let I be a homogeneous ideal in S = K[x1, . . . , xl]. Then I is Cohen-
Macaulay if and only if rgin(I) is Cohen-Macaulay. Moreover, a regular sequence
for S/rgin(I) is xl, xl−1, . . . , xl−dim(S/I)+1.

We now mention some results about the degree of the generators in rgin(I), con-
cluding with a new corollary. In particular, our goal is to characterize the rgin asso-
ciated to a free hyperplane arrangement in terms of its generators (Theorem 5.4).
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Remark 4.7 Let I be a homogeneous ideal in S. If I has a minimal generator of
degree d, then also g(I) does and then rgin(I) has a minimal generator of degree d.
The converse is not true in general: consider for example the ideal I = 〈z5, xyz3〉 in
Q[x, y, z], whose rgin(I) is 〈x5, x4y, x3y3〉.

Definition 4.8 Let I be a homogeneous ideal in K[x1, . . . , xl]. The Castelnuovo-
Mumford regularity of I , denoted reg(I), is the maximum of the numbers di − i,
where di = max{j | βi,j 6= 0} and βi,j are the graded Betti numbers of I .

Theorem 4.9 ([5]) Let I be a homogeneous ideal in K[x1, . . . , xl]. Then reg(I) =
reg(rgin(I)). Moreover, if B is a strongly stable ideal, then reg(B) is the highest
degree of a minimal generator of B.

Lemma 4.10 ([6] Lemma 4.4) Let I be a homogeneous ideal in S = K[x1, . . . , xl]
generated in degree ≤ D. If there exists i ≤ l such that rgin(I) has no minimal gen-
erators of degreeD in S(i) = K[x1, . . . , xi], then rgin(I) has no minimal generators
of any degree ≥ D in S(i).

Corollary 4.11 Let I be a homogeneous ideal in S = K[x1, . . . , xl] and let D be
the highest degree of a minimal generator of I . Then rgin(I) has at least one minimal
generator of degree d, for all d ∈ {D, . . . , reg(I)}.

Proof If I = S, then the Corollary is trivially true.
Suppose now I ( S. By Remark 4.7, rgin(I) has a minimal generator of de-

gree D, and, by Theorem 4.9 reg(I) is the highest degree of a minimal generator of
rgin(I).

Now, by Lemma 4.10 for i = l we know that if rgin(I) has no minimal generators
of degree d > D then rgin(I) has no minimal generators of any degree ≥ d. Thus
we conclude that d > reg(I).

5 Hyperplane arrangements and generic initial ideals

In this section we present our first characterization of freeness for a central hyper-
plane arrangementA inKl, whereK is a field of characteristic zero. We characterize
freeness by looking at the generic initial ideal of the Jacobian ideal J(A) of A.

Before presenting our first characterization, we describe some of the properties
of rgin(J(A)) without assuming A to be free.

Since J(A) is a homogeneous ideal generated by l polynomials of degree n−1,
the following lemma is just a rewriting of Corollary 4.11 for the case I = J(A).

Lemma 5.1 LetA = {H1, . . . ,Hn} be a central arrangement inKl. Then rgin(J(A))
has at least one minimal generator of degree d, for all d ∈ {n−1, . . . , reg(J(A))},
and no minimal generator outside that range.

Remark 5.2 Notice that in general rgin of a homogeneous ideal may be generated in
non-consecutive degrees. For exampleB = (x2, xy, y5) ⊂ K[x, y] is strongly stable,
thus rgin(B) = B has minimal generators only in degree 2 and 5.
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Lemma 5.3 Let A be a central arrangement in Kl. Then there exist α ≥ 1 such
that xα2 ∈ rgin(J(A)). In other words, using the language of Section 6, the (l − 2)-
reduction number rl−2(S/J(A)) is finite.

Proof By construction, S/J(A) is 0 or (l − 2)-dimensional. Since dim(S/J(A)) =
dim(S/rgin(J(A))), then rgin(J(A)) is J(A) = S or it must contain some powers
of x1 and x2 because it is strongly stable. Hence, in either case, there exists a positive
power of x2 in rgin(J(A)). The second part of the statement then follows from the
Definition 6.10 of the (l − 2)-reduction number in terms of the sectional matrix.

We are now ready to present our first characterization.

Theorem 5.4 Let A = {H1, . . . ,Hn} be a central arrangement in Kl. Then A is
free if and only if rgin(J(A)) is S or its minimal generators include xn−11 , some
positive power of x2, and no monomials in x3, . . . , xl.

More precisely, if A is free, then rgin(J(A)) is S or it is minimally generated by

xn−11 , xn−21 xλ1
2 , . . . , x

λn−1

2

with 1 ≤ λ1 < λ2 < · · · < λn−1 and λi+1 − λi = 1 or 2.

Proof By Theorem 3.3, A is free if and only if S/J(A) is 0 or (l−2)-dimensional
Cohen-Macaulay. Clearly, the ring S/J(A) is 0 if and only if rgin(J(A)) = S.
Suppose now that J(A) ( S. Since J(A) is an ideal generated by l homogenous
polynomials of degree n−1, then xn−11 is a minimal generator of rgin(J(A)). By
Theorem 4.6, J(A) is Cohen-Macaulay of codimension 2 if and only if rgin(J(A))
is Cohen-Macaulay of codimension 2, and this is equivalent to rgin(J(A)) having a
power of x2 as a minimal generator and no minimal generators in x3, . . . , xl.

Under these constrains, the only possible strongly stable ideals are the lex-segment
ideals, minimally generated by xn−11 , xn−21 xλ1

2 , . . . , x
λn−1

2 , with 1 ≤ λ1 < λ2 <
· · · < λn−1. Notice that there must be exactly one generator for each power of x1
from n − 1 to 0, so there are exactly n = #A generators. Finally, if A is free, from
Lemma 5.1 we know that there are no “holes” in the sequence of the degrees of the
minimal generators, and this translates into λi+1 − λi = 1 (same degree) or 2 (con-
secutive degrees).

Example 5.5 Consider the arrangement A in C3 defined by the equation Q(A) =
xyz(x+ y)(x− y). Then the generic initial ideal of J(A) is 〈x4, x3y, x2y2, xy4, y6〉
and hence A is free.

Similarly consider the arrangement A in C3 defined by the equation Q(A) =
x(x+ y − z)(x+ z)(x+ 2z)(x+ y + z). Then the generic initial ideal of its Jaco-
bian ideal is 〈x4, x3y, x2y2, xy4, y5, xy3z2〉. Since z divides a minimal generator of
rgin(J(A)), then A is not free.

Remark 5.6 By Lemma 5.3, the previous theorem is a new proof of the known fact
that any central line arrangement in the plane is free.

We conclude the section with a conjecture about the generic initial ideal of a
central arrangement not necessarily free.
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Conjecture 5.7 Let A = {H1, . . . ,Hn} be a central arrangement in Kl, and d0 =
min{d | xd+1

2 ∈ rgin(J(A))}. If rgin(J(A)) has a minimal generator T that involves
the third variable of S, then deg(T ) ≥ d0 + 1.

Example 5.8 In Example 5.5 we had a non free arrangement whose generic initial
ideal is 〈x4, x3y, x2y2, xy4, y5, xy3z2〉, and we observe that deg(xy3z2) = 6 > 5 =
deg(y5). The previous statement is false in general as shown by the strongly stable
ideal B = rgin(B) = 〈x2, xy, xz, y3〉.

6 Sectional matrix

The definition of the Hilbert function of a homogenous ideal in S was extended in [7]
to the definition of the sectional matrix: the bivariate function encoding the Hilbert
functions of the generic hyperplane sections. In this section, we recall the definition
and basic properties of the sectional matrix for the quotient algebra S/I , as described
in [6]. Then we present some new results that will play an important role in the
characterization of Section 7.

Definition 6.1 Given a homogeneous ideal I in S = K[x1, . . . , xl], the sectional
matrix of S/I is the function {1, . . . , l} × N −→ N

MS/I(i, d) = dimK(Sd/(I + (L1, . . . , Ll−i))d),

where L1, . . . , Ll−i are generic linear forms.

The following result reduces the study of the sectional matrix of a homogeneous
ideal to the combinatorial behaviour of a monomial ideal.

Theorem 6.2 (Lemma 5.5, [7]) Let I be a homogeneous ideal in S = K[x1, . . . , xl].
Then

MS/I(i, d) =MS/rgin(I)(i, d) = dimK(Sd/(rgin(I) + (xi+1, . . . , xl))d).

Remark 6.3 Theorem 6.2 shows that when we have a strongly stable ideal B ∈ S
(and in particular rgin(I) is strongly stable) the sectional matrix of S/B is particu-
larly easy to compute because sectioning B by l−i generic linear forms is the same
as sectioning B by the smallest l−i indeterminates, xi+1, . . . , xl.

The following results show, for a strongly stable ideal B, the link between having
no generators and a recurrence in the sectional matrix.

Proposition 6.4 ([6]) LetB be a strongly stable ideal in the ring S = K[x1, . . . , xl].

ThenMS/B(i, d+1) =
i∑

j=1

MS/B(j, d) if and only if B has no minimal generators

in degree d+1 in x1, . . . , xi.

Theorem 6.5 (Theorem 4.5, [7]) LetB be a strongly stable ideal in S = K[x1, . . . , xl]
with generators of degree ≤ D. Then

1. MS/B(i, d+1) =
∑i
j=1MS/B(j, d) for all d ≥ D and i ∈ {1, . . . , l}.
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2. MS/B(i, d+1) = MS/B(i−1, d+1) +MS/B(i, d), for all d ≥ D and i ∈
{2, . . . , l}.

The equality in Theorem 6.5.(1) was then developed into an inequality for homo-
geneous ideals and investigated in [7] and [6]. In this paper we develop and exploit
the equality in 6.5.(2) (see Theorem 6.6 below).

The remaining of this section is devoted to introducing some new results on sec-
tional matrices and generic initial ideals. These results are the keys for our second
characterization of freeness for hyperplane arrangement, see Theorem 7.1. In partic-
ular, our goal is to identify the minimal number of entries we need to check in the
sectional matrix to ensure that the given ideal is Cohen-Macaulay.

Theorem 6.6 Let I be a non-zero homogeneous ideal in the ring S = K[x1, . . . , xl],
i ∈ {2, . . . , l} and d ≥ 1. Then

MS/I(i, d) ≤MS/I(i−1, d) +MS/I(i, d−1).

Moreover, the equality holds if and only if rgin(I) has no minimal generator of de-
gree d divisible by xi.

Proof Without loss of generality, we may assume I = B strongly stable, because
MS/I =MS/rgin(I), by Theorem 6.2, and also because any strongly stable ideal B
coincides with its rgin.

For the first part of the statement, we start observing that for any ideal I ′ we have
that I ′d ∩K[x1, . . . , xi] must contain all the elements of I ′d ∩K[x1, . . . , xi−1] and all
the elements of I ′d−1 ∩ K[x1, . . . , xi] multiplied by xi, notice that the last two sets
are disjoint. So it follows that

dimK(I ′d ∩K[x1, . . . , xi])

≥ dimK(I ′d ∩K[x1, . . . , xi−1]) + dimK(I ′d−1 ∩K[x1, . . . , xi]).

Then the desired inequalities follow from Theorem 6.2 and

MS/B(i, d) = dimK(K[x1, . . . , xi]d)− dimK(Bd ∩K[x1, . . . , xi])

≤MS/B(i− 1, d) +MS/B(i, d−1).

For the second part of the statement, suppose the equality holds. Then dimK(Bd∩
K[x1, . . . , xi]) = dimK(Bd∩K[x1, . . . , xi−1])+dimK(Bd−1∩K[x1, . . . , xi]) and
this implies that B has no minimal generator of degree d divisible by xi.

On the other hand, suppose that B has no minimal generator of degree d divisible
by xi and let t be a power-product in Bd ∩ K[x1, . . . , xi]. If xi does not divide t,
then t ∈ Bd ∩ K[x1, . . . , xi−1]. Otherwhise t = xi · t′. We claim t′ ∈ Bd−1 ∩
K[x1, . . . , xi]. By hypothesis t cannot be a minimal generator and so t = xj · t′′ for
some j ∈ {1, . . . , i} and t′′ ∈ Bd−1∩K[x1, . . . , xi]. ButB is strongly stable, and so
t′ = xj ·t′′/xi ∈ Bd−1∩K[x1, . . . , xi], as we claimed. This implies that dimK(Bd∩
K[x1, . . . , xi]) = dimK(Bd∩K[x1, . . . , xi−1])+dimK(Bd−1∩K[x1, . . . , xi]) and
henceMS/B(i, d) =MS/B(i− 1, d) +MS/B(i, d− 1).
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The equality in Theorem 6.5.(1), occurring for a homogeneous ideal, was called
in [6] i-maximal growth in degree d. The equality in Theorem 6.6 is weaker (see
Example 6.8), and is crucial in this paper, so we give it a name.

Definition 6.7 Let I be a non-zero homogeneous ideal in the ring S = K[x1, . . . , xl],
i ∈ {2, . . . , l} and d ≥ 1. We say thatMS/I has the triangle equality in position
(i, d) if and only if

MS/I(i, d) =MS/I(i−1, d) +MS/I(i, d−1).

Example 6.8 By the description in [6], ifMS/I(i, d) =
∑i
j=1MS/I(j, d−1) then

we haveMS/I(i, d) =MS/I(i−1, d) +MS/I(i, d−1).
The opposite implication is false. Let S = Q[x, y, z] and I = 〈x4−y2z2, xy2−yz2−z3〉

an ideal of S. Then the sectional matrix of S/I is

0 1 2 3 4 5 6 7 . . .
1 1 1 0 0 0 0 0 . . .
1 2 3 3 2 1 0 0 . . .

1 3 6 9 11 12 12 12 . . .

If we consider i=3 and d=4, then MS/I(3, 4) = MS/I(2, 4) +MS/I(3, 3), but
MS/I(3, 4) <

∑3
s=1MS/I(s, 3). Indeed, rgin(I) = 〈x3, x2y2, xy4, y6〉 has no

minimal generator divisible by z, so the triangle equality holds in the whole 3rd row.

In the case of a homogeneous ideal, putting together Theorem 6.6 and Lemma 4.2,
we have the following corollary showing that a finite number of equalities in the k-th
row implies the equalities hold also for each and whole s-th row, with s ≥ k.

Corollary 6.9 Let I be a non-zero homogenous ideal in the ring S = K[x1, . . . , xl]
and i ∈ {2, . . . , l}. Then the following facts are equivalent:

1. MS/I has the triangle equality in position (i, d) for all d ≤ reg(I).
2. MS/I has the triangle equality in position (s, d) for all d ∈ N and s ≥ i.

Proof Clearly (2) implies (1). On the other hand, by Theorem 4.9 rgin(I) has no
minimal generator of degree > reg(I), and by Theorem 6.6, Claim (1) implies that
rgin(I) has no minimal generator divisible by xi for all d ≤ reg(I). Hence, by
Lemma 4.2, rgin(I) has no minimal generators divisible by xi, . . . , xl, and we con-
clude by applying again Theorem 6.6.

The definition of s-reduction number has several equivalent formulations and we
recall here the one given in [6].

Definition 6.10 Given I a homogeneous ideal in S = K[x1, . . . , xl], we define the
i-reduction number of S/I as

ri(S/I) = max{d | MS/I(l−i, d) 6= 0},

or, equivalently, ri(S/I) = min{d | xd+1
l−i ∈ rgin(I)}.
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Now we apply these results to the Cohen-Macaulay case.

Theorem 6.11 Let I be a non-zero homogeneous ideal in S = K[x1, . . . , xl]. Then
S/I is Cohen-Macaulay of codimension i if and only if the following two conditions
hold:

1. d0 = rl−i(S/I) is finite,
2. MS/I has the triangle equality in position (i+1, d) for all d ≤ reg(I).

Proof By Theorem 4.6, I is Cohen-Macaulay of codimension i if and only if rgin(I)
is Cohen-Macaulay of codimension i. HavingMS/I =MS/rgin(I) by Theorem 6.2,
we may assume I = B, a strongly stable ideal.

Since B is strongly stable, then xαk ∈ B implies xαj ∈ B for all j ≤ k. By
definition of strongly stable ideals and Theorem 4.6, B is Cohen-Macaulay of codi-
mension i if and only if there exists αi ≥ 1 such that xαi

i is a minimal generator
of B and xi+1, . . . , xl is a S/B-regular sequence, i.e. no minimal generator of B is
divisible by xs with s > i. Moreover, in this situation, reg(B) = αi.

In terms of sectional matrix, such αi exists if and only ifMS/B(i, d) = 0 for all
d ≥ αi, in other words, if and only if d0 is finite.

Moreover, the equality in (2) for the i+1 row, and d ≤ reg(B), is equivalent, by
Corollary 6.9, to the equality for each s row with s ≥ i+ 1, and for all degrees. And
this is equivalent, by Theorem 6.6, to B having no minimal generators divisible by
xs with s > i.

Remark 6.12 By Definition 6.1 of sectional matrix and Theorem 6.6, it follows that
MS/I has the triangle equality in position (i+1, d) for all d ≤ reg(I) if and only if

MS/I(i+ 1, reg(I)) =

reg(I)∑
d=0

MS/I(i, d).

The following example shows how easily we can visualize the previous theorem.

Example 6.13 Consider S = Q[x, y, z, w] and the ideal I = 〈xz, yw〉 ∩ 〈x+ z, xy〉
of S. Clearly S/I is Cohen-Macaulay of codimension 2. In fact, reg(I) = 3, d0 = 2,
and the sectional matrix of S/I is

0 1 2 3 4 . . .
1 1 1 0 0 . . .
1 2 3 0 0 . . .

1 3 6 6 6 . . .
1 4 10 16 22 . . .

with the 0 in the second row and the triangular equality in the third one.
If we consider the ideal J1 = 〈x〉 ∩ 〈xz, yw〉 of S, then S/J1 has dimension 3

but it is not Cohen-Macaulay. In fact, reg(I) = 3, d0 = 1 and the sectional matrix of
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S/J1 is
0 1 2 3 4 . . .
1 1 0 0 0 . . .

1 2 2 1 1 . . .

1 3 5 6 7 . . .
1 4 9 15 22 . . .

If we consider the ideal J2 = 〈x2, xy2, xyz, y4〉 of S, then S/J2 has dimension 2 but
it is not Cohen-Macaulay. In fact, reg(I) = 4, d0 = 3 and the sectional matrix of
S/J1 is

0 1 2 3 4 5 . . .
1 1 0 0 0 0 . . .
1 2 2 1 0 0 . . .

1 3 5 5 5 5 . . .

1 4 9 14 19 24 . . .

and we can see that 5 =MS/J2(3, 3) 6=MS/J2(3, 2) +MS/I(2, 3) = 5 + 1.

7 Hyperplane arrangements and sectional matrices

In this section we present our second characterization of freeness for central hyper-
plane arrangements in Kl, where K is a field of characteristic zero. We characterize
freeness by looking at the sectional matrix of S/J(A).

Theorem 7.1 Let A be a central arrangement and d0 = rl−2(S/J(A)). Then A is
free if and only ifMS/J(A) is the zero function or the following two conditions hold

1. MS/J(A)(3, d0) =MS/J(A)(3, d0+1) =MS/J(A)(3, d0 + 2),
2. MS/J(A)(3, d0) =

∑d0
d=0MS/J(A)(2, d), or, equivalently,MS/J(A) has the tri-

angle equality in position (3, d), for all 2 ≤ d ≤ d0.

Proof By Theorem 3.3, A is free if and only if S/J(A) is 0 or (l−2)-dimensional
Cohen-Macaulay. Clearly, S/J(A) is zero if and only ifMS/J(A) is the zero func-
tion.

Suppose now that S/J(A) is non-zero. Let B = rgin(J(A)) and recall that
MS/B = MS/J(A), and reg(B) = reg(J(A)). From Lemma 5.3 we have that,
being A a central arrangement, d0 is finite and xd0+1

2 is a minimal generator of B.
Let A be free, then by Theorem 6.11, MS/B has the triangle equality in position
(3, d) for all d ≤ reg(B), and reg(B) = d0+1, the highest degree of the minimal
generators in B (see Theorem 5.4). Moreover Claim (1) follows from Theorem 6.6,
the hypothesisMS/B(2, d0+1) =MS/B(2, d0+2) = 0, and the fact that B has no
generator divisible by x3 (again by Theorem 5.4).

On the other hand suppose (1) and (2) hold. Then by Theorem 6.6,MS/B(3, d0+
1) = MS/B(3, d0+2) implies that rgin(J(A)) has no minimal generators of de-
gree d0+2 divisible by x3 and hence, by Lemma 4.2, it follows that it has no min-
imal generators of degree d0+2. By Lemma 5.1, it follows that d0+1 = reg(B).
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So the equality MS/B(3, d0) = MS/B(3, d0+1) = MS/B(3, d0+2) implies that
MS/B(3, d−1) =MS/B(3, d) for all d0+1 ≤ d ≤ reg(B).

Hence Claim (2) implies, by Theorem 6.11, that B is Cohen-Macaulay of codi-
mension 2, and we conclude that A is free.

Similarly to Example 5.5 we can consider the following.

Example 7.2 Consider the arrangement A in C3 defined by the equation Q(A) =
xyz(x+ y)(x− y). Then the sectional matrix of J(A) is

0 1 2 3 4 5 6 7 . . .

1 1 1 1 0 0 0 0 . . .
1 2 3 4 2 1 0 0 . . .

1 3 6 10 12 13 13 13 . . .

In this case, d0 = 5,MS/J(A)(3, 5) =MS/J(A)(3, 6) =MS/J(A)(3, 7) = 13, and
MS/J(A)(3, 5) =

∑d0
d=0MS/J(A)(2, d). Hence A is free.

Similarly consider the arrangement A in C3 defined by the equation Q(A) =
x(x+ y − z)(x+ z)(x+ 2z)(x+ y + z). Then the sectional matrix of its Jacobian
ideal is

0 1 2 3 4 5 6 7 . . .

1 1 1 1 0 0 0 0 . . .
1 2 3 4 2 0 0 0 . . .

1 3 6 10 12 12 11 11 . . .

In this case, d0 = 4 and MS/J(A)(3, 4) = MS/J(A)(3, 5) = 12, but we have
MS/J(A)(3, 6) = 11. Hence A is not free.

8 Hyperplane arrangements and resolutions

This section is devoted to prove some additional properties of rgin(J(A)) under the
assumption that A is free. In particular, our goal is to show that if A is free, then
rgin(J(A)), and hence its sectional matrix, is combinatorially determined. Moreover,
we will describe how to compute the free resolution of rgin(J(A)) just from the
exponents ofA, and, vice versa, how to compute the exponents ofA from the degrees
of the minimal generators of rgin(J(A)).

Before proceeding recall that, as seen in the construction of the proof of Theo-
rem 5.4, we have the following

Remark 8.1 LetB be a strongly stable ideal ofK[x1, . . . , xl]. IfB is Cohen-Macaulay
of codimension 2, then

B = 〈xn−11 , xn−21 xλ1
2 , . . . , x1x

λn−2

2 , x
λn−1

2 〉,

for some 0 < λ1 < λ2 < · · · < λn−1.

By the definitions of reduction number and sectional matrix, we have the follow-
ing



New characterizations of freeness for hyperplane arrangements 13

Remark 8.2 Let A = {H1, . . . ,Hn} be a central arrangement in Kl. Suppose that
A is free and rgin(J(A)) = 〈xn−11 , xn−21 xλ1

2 , . . . , x
λn−1

2 〉. Then λn−1 = rl−2(S/J(A))+
1. Moreover, λn−1 is equal to the minimum d ≥ n−1 such thatMS/J(A)(n, d+1) =∑n
i=1MS/J(A)(i, d).

In the next two results we make use of the exact sequence in Remark 3.4, hence
we suppose that A is also essential.

Proposition 8.3 Let A = {H1, . . . ,Hn} be an essential and central arrangement
in Kl. Suppose that A is free with exponents (e1, . . . , el) and that rgin(J(A)) =

〈xn−11 , xn−21 xλ1
2 , . . . , x

λn−1

2 〉. Then λn−1 = el + n− 2.

Proof By the exact sequence in Remark 3.4, reg(J(A)) = el + n − 2. By The-
orem 4.9, reg(J(A)) coincides with the biggest degree of a minimal generator of
rgin(J(A)). We conclude by Theorem 5.4.

In general, given an ideal I and its resolution, we cannot determine the resolution
of rgin(I), see the last section of [6]. However, the following theorem shows that
in the case of free arrangements we can. It shows that rgin(J(A)) is uniquely de-
termined by the exponents of A. In particular, it describes how to compute the Betti
numbers of rgin(J(A)) from the Betti numbers of J(A).

Before stating the theorem, we recall the following result from [8], as described
in Corollary 7.2.3 of [11].

Proposition 8.4 Let B be a strongly stable ideal in K[x1, . . . , xl]. Then

βi,i+j(B) =

l∑
k=1

(
k − 1

i

)
mk,j ,

wheremk,j is the number of minimal generators ofB of degree j such that the biggest
variable that divides them is xk.

Theorem 8.5 Let A = {H1, . . . ,Hn} be an essential and central arrangement in
Kl, with l ≥ 2. If A is free with exponents (e1, . . . , el) then rgin(J(A)) has free
resolution

0−→
n+el−2⊕
j=n−1

S(−j − 1)β1,j+1−→
n+el−2⊕
j=n−1

S(−j)β0,j−→rgin(J(A))−→0,

where β0,n−1 = β1,n+1 = l and β1,j+1 = β0,j = #{i | ei>j−n+1} for all j ≥ n.
In particular, β0,n−1 > β0,n ≥ · · · ≥ β0,n+el−2.

Proof By Theorem 5.4 and Proposition 8.4, we have just to describe the connections
between the exponents of A and the graded Betti numbers of B = rgin(J(A)).

In our situation, we have thatm1,n−1 = 1,m1,j = 0 for all j 6= n−1 andmk,j =
0 for all k ≥ 3. Hence, by Proposition 8.4, we get that β0,j(B) = m2,j = β1,j+1(B)
for all j ≥ n and β0,n−1(B) = m1,n−1 +m2,n−1 = 1 +m2,n−1 = 1 + β1,n(B).

Furthermore, by the Cancellation Principle (see for example [10, Corollary 1.21]),
we have that β0,j(J(A))−β1,j(J(A)) = β0,j(B)−β1,j(B). If j ≥ n, β0,j(J(A)) =
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0 and therefore, β1,j(B) = β0,j(B) + β1,j(J(A)). By the first part of the proof,
β0,j(B) + β1,j(J(A)) = β1,j+1(B) + β1,j(J(A)), and hence by iterating this pro-
cess we can write β1,j(B) =

∑n+el−1−j
k=0 β1,j+k(J(A)). This shows that β0,j(B) =

β1,j+1(B) =
∑n+el−1−j
k=1 β1,j+k(J(A)). Similarly, if j = n− 1, then β0,n−1(B) =

β1,n(B)+1 =
∑el
k=1 β1,n−1+k(J(A))+1 = l. Since β1,j(J(A)) = #{i | n+ei−1=j},

then the statement follows from Remark 3.4,

Remark 8.6 From Theorem 8.5, given A an essential, central and free arrangement
in Kl, we have that B = rgin(J(A)) ⊂ S = K[x1, .., xl] is S or has exactly
n = #A generators, with exactly l generators in degree n − 1. Moreover, there are
n − l generators in higher degrees, at least one in each degree up to the maximum,
giving a bound of 2n− l − 1. Hence, we have that reg(J(A)) ≤ 2n− l − 1.

A direct consequence of the previous theorem and Theorem 5.4 is the following

Corollary 8.7 Let A be an essential and central arrangement in Kl, with l ≥ 2. If
A is free, then rgin(J(A)) is uniquely determined by the exponents of A.

Example 8.8 Consider the essential arrangement A in C3 with defining equation
Q(A) = xyz(x − y). A direct computation shows that A is free with exponents
(1, 1, 2). In fact, J(A) has a free resolution

0 −→ S(−4)⊕ S(−5) −→ S(−3)3 −→ J(A) −→ 0

and the exponents can be computed using Remark 3.4. By Theorem 8.5, we have that
β0,3 = 3, β1,4 = β0,3 − 1 = 2 and β1,5 = β0,4 = #{i | ei > 1} = #{e3} = 1.
Thus, the resolution of rgin(J(A)) is

0 −→ S(−4)2 ⊕ S(−5) −→ S(−3)3 ⊕ S(−4) −→ rgin(J(A)) −→ 0.

Hence, from Theorem 5.4 it follows that rgin(J(A)) = 〈x3, x2y, xy2〉+ 〈y4〉.

Now we show that also the converse of Corollary 8.7 holds true.

Proposition 8.9 Let A be an essential and central arrangement in Kl, with l ≥ 2. If
A is free, then the exponents of A are uniquely determined by rgin(J(A)).

Proof Assume A = {H1, . . . ,Hn}. By assumption A is essential, hence, by Re-
mark 2.3, e1 = 1. Moreover, since A is free, then by Theorem 5.4, we can write
rgin(J(A)) = 〈xn−11 , xn−21 xλ1

2 , . . . , x
λn−1

2 〉, for some 1 ≤ λ1 < λ2 < · · · < λn−1.
By Proposition 8.3, el = λn−1 − n+ 2.

With the notation of Theorem 8.5, β0,j = #{i | λi + n − i − 1 = j}. Again by
Theorem 8.5, we have that #{i | ei = α} = β0,α+n−2 − β0,α+n−1 for all α ≥ 1.

Notice that in this way we have uniquely identified the first
∑λn−1

j=n−1 β0,j −
β0,j+1 = β0,n−1 − β0,λn−1

< l of the ei’s. The remaining ones are now equal to
λn−1 − n+ 2.

It is known that if A is free, then its exponents are combinatorially determined,
see [12]. By Corollary 8.7, this allows us to have the following.
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Corollary 8.10 Let A and A′ be two free arrangements. Suppose that A and A′ are
lattice equivalent, then rgin(J(A)) = rgin(J(A′)).

The converse of the previous corollary is false.

Example 8.11 (cf. Example 2.61 [12]) Consider the following arrangements in C3,
A = {xyz(x−z)(x+z)(y−z)(y+z) = 0} andA′ = {xyz(x+y−z)(x+y+z)(x−
y − z)(x− y + z) = 0}. Then A and A′ are both free arrangements with exponents
(1, 3, 3) and rgin(J(A)) = rgin(J(A′)) = 〈x6, x5y, x4y2, x3y4, x2y5, xy7, y8〉.
However, these two arrangements have non-equivalent lattices.

The following example shows that Corollary 8.10 is false if we do not assume
that A and A′ are free.

(a) (b)

Fig. 1 The arrangements of Example 8.12

Example 8.12 Consider the arrangements A = {z(y − 4z)(y + x− 7z)(y − 7x+
25z)(y + 4z)(y + 2x+10z)(y − 2x− 10z)(3y − x− 5z)(3y + 4x)(3y − 4x) = 0}
and A′ = {z(y − 4z)(2y + x − 11z)(2y − 7x + 29z)(y + 4z)(y + 2x+10z)(y −
2x − 10z)(10y − 3x − 15z)(3y + 4x)(3y − 4x) = 0} in C3. We can see them as
line arrangement in P2. See Figure 1. Then, the first one consists of 10 lines that meet
in exactly 6 triple points all sitting on the conic C = {x2 + y2 − 25z2 = 0}, and
the second one consists of 10 lines that meet in exactly 6 triple points but only 5 of
them sit on the conic C. Now, bothA andA′ are not free but L(A) ∼= L(A′). A direct
computation shows that rgin(J(A)) 6= rgin(J(A′)).

Remark 8.13 The statements of this section, and of sections 5 and 7 can be easily
generalized to the case of reduced homogenous free divisors. For the statements on
essential arrangements, we just need to require that the divisor D is embedded in a
space of minimal dimension, so that in Der(− logD) there are no logarithmic vector
fields of degree 0.
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9 From strongly stable ideals to free hyperplane arrangements

Having in mind Theorem 8.5, one could ask if given a Cohen-Macaulay strongly
stable ideal B of codimension 2, there always exists a free hyperplane arrangement
A such that B = rgin(J(A)). In general, the answer is no, see Example 9.4 for more
details. This section is devoted to characterize the class of strongly stable ideals for
which we have a positive answer.

Clearly if B = 〈1〉, then we can consider A = {H}. Since we are looking for
free hyperplane arrangements, in this section we consider only strongly stable ideals
B ( S = K[x1, . . . , xl] that are Cohen-Macaulay of codimension 2. Then B has a
free resolution of the type

0 −→
⊕
j≥2

S(−j)β1,j −→
⊕
j≥1

S(−j)β0,j −→ B −→ 0.

From now on, we will denote by

dmin = min{j | β0,j 6= 0} and dmax = max{j | β0,j 6= 0}.

Remark 9.1 By Theorem 8.5, if β0,dmin
6= dim(S), then there does not exist a free

hyperplane arrangement A ⊂ Kl such that B = rgin(J(A)).

Example 9.2 Consider the strongly stable ideal B = 〈x3, x2y2, xy4, y6〉 in the ring
S = K[x, y]. Then dmin = 3 and β0,dmin

= 1 < 2 = dim(S). Hence by the
previous remark there does not exist a free hyperplane arrangement A ⊂ K2 such
that B = rgin(J(A)).

Remark 9.3 By Theorem 5.4, in rgin(J(A)) we have no “holes”. Hence if there ex-
ists dmin < j < dmax such that β0,j = 0, then there does not exist a free hyperplane
arrangement A ⊂ Kl such that B = rgin(J(A)).

Example 9.4 Consider the strongly stable ideal B = 〈x31, x21x2, x1x22, x52〉 in the
ring S = K[x1, . . . , xl], where l ≥ 2. Then dmin = 3 and dmax = 5. However,
since B has no minimal generators of degree 4, β0,4 is 0. Hence, by the previous
remark, there does not exist a free hyperplane arrangement A ⊂ Kl such that B =
rgin(J(A)), for any l ≥ 2.

Remark 9.5 By Theorem 8.5, if β0,dmin ≤ β0,dmin+1 or if β0,j < β0,j+1 for some
dmin < j < dmax, then there does not exist a free hyperplane arrangement A ⊂ Kl

such that B = rgin(J(A)).

Example 9.6 Consider the strongly stable ideal B = 〈x31, x21x2, x1x32, x42〉 in the
ring S = K[x1, . . . , xl], where l ≥ 2. Then dmin = 3 and dmax = 4. Moreover, we
have 2 = β0,dmin

= β0,dmin+1 = β0,dmax
. Hence, then there does not exist a free

hyperplane arrangement A ⊂ Kl such that B = rgin(J(A)), for any l ≥ 2.
Similarly, if we consider the ideal B = 〈x51, x41x2, x31x22, x21x42, x1x62, x72〉 in the

ring S = K[x1, . . . , xl], where l ≥ 2. Then we have the same conclusion of before,
since 1 = β0,6 < β0,7 = 2.
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Before stating the main result of the section, we need the following construction.

Proposition 9.7 Given l−1 integers such that 1 ≤ e2 ≤ · · · ≤ el, then there exists an
essential and central arrangementA in Kl that is free with exponents (1, e2, . . . , el).

Proof Consider the arrangement A in Kl consisting of the following hyperplanes

{x1 = 0},

{{x1 − α2x2 = 0} | α2 ∈ {1, . . . , e2}},
...

{{x1 − αlxl = 0} | αl ∈ {1, . . . , el}}.
By construction, the arrangement is essential, central and supersolvable (see [12] for
the definition). By Theorem 4.58 in [12], A is free with exponents (1, e2, . . . , el).

Theorem 9.8 Let B be a Cohen-Macaulay strongly stable ideal in K[x1, . . . , xl] of
codimension 2. Assume that the following conditions hold

1. β0,dmin
= l;

2. β0,dmin > β0,dmin+1 ≥ · · · ≥ β0,dmax .

Then there exists a free hyperplane arrangementA ⊂ Kl such thatB = rgin(J(A)).
In particular, A has dmin + 1 hyperplanes.

Proof Notice that, from the hypothesis, β0,dmin
− β0,dmin+1 ≥ 1. Define ei = 1, for

all i = 1, . . . , β0,dmin
− β0,dmin+1. For all j = dmin + 2, . . . , dmax, define ei = j −

dmin for all i = β0,dmin −β0,j−1+1, . . . , β0,dmin −β0,j . Notice that by construction,
the number of ei equal to j − dmin is β0,j−1 − β0,j .

In this way we have defined the first
∑dmax

j=dmin+1 β0,j−1 − β0,j of the ei. By
construction

dmax∑
j=dmin+1

β0,j−1 − β0,j = β0,dmin − β0,dmax < l.

Define now the remaining ei equal to dmax − dmin + 1. Notice that by construction,
the number of ei equal to dmax − dmin + 1 is β0,dmax

. Notice now that by Remark
8.1, we have

l∑
i=1

ei =

dmax∑
j=dmin+1

(j − dmin)(β0,j−1 − β0,j) + (dmax − dmin + 1)β0,dmax =

=

dmax∑
j=dmin

β0,j = #{ minimal generators of B} = dmin + 1. (1)

In this way we have constructed l integers that satisfy the hypothesis of Proposi-
tion 9.7, and hence there exists an essential arrangement A in Kl that is free with
exponents (e1 = 1, e2, . . . , el). Now, by construction, Theorem 8.5 and equality
(1), B and rgin(J(A)) have the same resolution. By Corollary 8.7, we have that
B = rgin(J(A)).
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Example 9.9 Consider the ideal B = 〈x6, x5y, x4y2, x3y4, x2y5, xy7, y9〉 in the
ring S = K[x, y, z]. Then dmin = 6 and dmax = 9, and β0,6 = 3, β0,7 = 2 and
β0,8 = β0,9 = 1. Using the construction of Theorem 9.8, we obtain (e1, e2, e3) =
(1, 2, 4). Consider now the arrangement A in K3 defined by Q = x(x − y)(x −
2y)(x− z)(x− 2z)(x− 3z)(x− 4z), then B = rgin(J(A)).

Putting together Theorems 9.8 and 8.5, we obtain the following characterization
for the rgin associated to essential, central and free hyperplane arrangements.

Corollary 9.10 Let B be a strongly stable ideal in K[x1, . . . , xl]. There exists an es-
sential, central and free arrangementA of n hyperplanes such that B = rgin(J(A))
if and only if B is minimally generated by

xn−11 , xn−21 xλ1
2 , . . . , x1x

λn−2

2 , x
λn−1

2

with #{i | λi = i} ≥ #{i | λi = i+ 1} ≥ · · · ≥ #{i | λi = i+ λn−1 − n+ 1}.
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