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Abstract 

Snowpack and snowfall are strongly related to snow disasters, climate, and 

water cycle, and they would be affected by the global warming. Therefore, the former 

part of this doctoral dissertation revealed the response of snowpack to global warming 

along with its uncertainty including snowpack amount and quality in Hokkaido, a 

northern island of Japan. The estimation was conducted by using a combination of 

multiple general circulation models (GCMs), a single regional atmospheric model (RAM), 

and a one-dimensional multi-layered snowpack model. The forcing of the snowpack 

model was taken from dynamically downscaled (DDS) data from GCMs for the present 

1990s climate and GCMs in a decade when the global-mean temperature has increased 

by 2 °C from present conditions. The result showed that snow covered days would 

robustly decrease by about a month over Hokkaido. Additionally, the results show that 

the seasonal-maximum snow amount would also decrease by 30–40% in southwestern 

and eastern Hokkaido, mainly due to a decrease in the total precipitation amount until a 

timing of seasonal maximum amount of snowpack. In contrast, the changes in snow 

amount was uncertain in northern and eastern Hokkaido mainly due to the uncertain 

changes in storm tracks, wintertime monsoon, and topological precipitation introduced 

by the different projections among GCMs. The decrease in snow amount would be larger 

in the beginning of ablation period, corresponding to a timing of wetting snowpack from 

bottom to top, and so the peak of snowpack amount would be shifted earlier, and the 

thickness ratio of melt forms would increase as a result. The thickness ratio of hoar 

category would decrease except at high altitude region.  

In the latter part of this doctoral dissertation, a new method to estimate an 

optimal mixed joint probability density function (PDF) from precipitation particle size 

and velocity distribution (PSVD) data was developed looking ahead to an advanced 

forcing data to snowpack model in the future. The new method developed in this study 

searches a locally maximum log-likelihood within a realistic parameter range using the 

expectation-maximization algorithm assuming that the particle velocity followed the 

normal distribution and the particle size followed the Gamma distribution. The 

performance was evaluated by estimating PDF from a PSVD dataset randomly sampled 

from a population prepared in advance and by comparing the estimated PDF with the 
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population. The results showed that the new method successfully estimated the 

populations even if the populations was constructed with multiple type of precipitation 

particles such as graupel and rimed aggregates, not ever estimated previously. 

Furthermore, the method was helpful to discard frequently-observed erroneous data with 

unrealistically large fall-velocity. The new method could also distinguish liquid and solid 

particles.   
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日本語要旨 

積雪と降雪は雪氷災害や地域気候、水循環などと深い関係があり、これら

は地球温暖化の影響を強く受けると考えられる。そこで、本博士論文の前半では

地球温暖化に対する積雪の応答を日本の北海道を対象にその量と質について推

定した。この推定のため、全球気候モデル（GCM）、領域大気モデル（RAM）、

および一次元多層積雪変質モデルの 3つのモデルを組み合わせて使用した。1990

年代および全球平均気温 2℃上昇年代における複数の GCMの結果を力学的にダ

ウンスケーリングしたデータを積雪変質モデルに与えた。その結果、2℃の温暖

化に対し北海道全域で積雪期間が約 1 カ月短くなることが GCM の種類に関係

なく予想された。また、年最大積雪量となるときまでの総降水量の減少により、

北海道南西部および東部で年最大の積雪量が 30%から 40%だけ減少することが

予想された。一方で、GCM の予測するストームトラック、冬季モンスーン、お

よび地域性降水の将来変化が GCM の種類によって異なり不確実なため、降水量

の将来予測も不確実となり、北海道北部および東部の積雪量変化の推定も不確

実性が大きかった。融雪開始時期に積雪量の減少が大きく、結果として年最大の

積雪量となる時期が 1 カ月早くなったほか、全積雪層に占める湿雪の体積比も

増加した。霜ざらめ雪の体積比は、高標高地帯を除いて減少した。 

本博士論文の後半では、積雪モデル入力値の高度化を見据えて、降水粒子

の粒径・落下速度分布（PSVD）データから最適な混合同時確率分布（PDF）を

推定する新手法を開発した。新手法では、粒子の落下速度は正規分布に、粒径は

ガンマ分布に従うと仮定し、期待値最大化法により局所最尤となる PDF を探索

する。新手法の性能評価のため、予め用意した母集団からのランダムサンプリン

グにより得られた PSVD データから PDF を推定し、その推定結果と母集団を比

較した。その結果、新手法では、あられと雲粒付き雪片の組み合わせのような、

複数種の降水粒子で構成された母集団であっても標本からの PDF 推定に成功し

た。これは、従来手法では推定できなかったことである。また、しばしば観測さ

れる非現実的に落下速度の大きい異常値を新手法により判別できた。雨雪判別

も新手法の応用として期待できる。  
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Chapter 1. General Introduction 

Snow and ice science is one of academic fields of earth science to investigate 

snow and ice dynamics and their related phenomena, such as snowfall (fall of solid 

precipitation with various size and mass), snowpack (snow deposited on the land surface), 

glacier, ice sheet, soil frost, and sea ice with a basis of physics. Figure 1.1 schematically 

shows the snow and ice phenomena and their relations. Snowfall occurs when solid 

precipitation particles generated in the atmosphere reach the land surface, and then they 

form snowpack. In enough cold environment like arctic region and high altitudes, 

snowpack permanently exists and forms glacier and ice sheet, whereas snowpack exists 

seasonally in mid-latitudes. Snowpack also plays a role of thermal insulator due to its low 

thermal conductivity: water in soil is not frozen in much snow-covered region even in the 

cold environment while soil frost forms where less amount of snowpack exists. Sea ice 

also plays similar role: sea ice insulates heat and moisture transfer between sea and 

atmosphere. Moreover, snow and ice phenomena are strongly related to earth system and 

disaster science. Snowpack, glacier, and ice sheet delays water cycle process due to their 

storage function. Extremely high albedo of snow introduces ice-albedo feedback which 

causes regional difference of climate. Snow particles blown from snowpack surface, often 

referred as “snow blowing”, remarkably reduce visibility and cause traffic jam and 

accident. Surface part or whole of snowpack slide down on slope (hereafter “avalanche”), 

which breaks road and buildings and sometimes kills people. Snowpack damages road 

and buildings due to its heavy loading. Rapid snow melting make soil water-rich 

Fig. 1.1. A schematic chart for snow and ice phenomena and their relations. 
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condition and cause landslide. Snow and ice science furthermore covers utilization of 

snow such as resources of water, winter tourism, and agriculture. 

One of the most notable points is that snowpack plays the most central role in 

the snow and ice science (Fig. 1.1): the snow and ice phenomena and their related 

disasters are often originated from the intrinsic physical property of snowpack, mainly 

introduced by the atmospheric forcing including snowfall. For example, the diurnal cycle 

of temperature and radiation effectively increases snow grain size in the snowpack and 

decreases the albedo at the surface (Niwano et al. 2012). The diurnal cycle also 

metamorphoses snow grain types to faceted crystals and depth hoar, which may cause 

dry-avalanche in winter (McElwaine et al. 2000). Snowfall determine initial density of 

snowpack layer, which is much variated due to the growth process of precipitation 

particles in atmosphere (Ishizaka et al. 2016). Snowpack layer formed with extremely low 

density is also another factor of dry-avalanche (Nakamura 2019). The increase in the 

liquid water content in the snowpack in spring affects wet-avalanche occurrence (Mitterer 

et al. 2011). Vertically different water retention of inner snowpack might control the 

timing of runoff onset from the bottom (Hirashima et al. 2010, 2017). Hence, a study on 

snowfall and snowpack including its physical property related to meteorological aspects 

promote not only snow and ice science but also understanding of water cycle, mitigation 

of snow disasters and utilization of snow. 

Global warming strongly affects snowpack in the mid-latitudes, where the 

surface air temperature in the cold seasons is near the freezing point under the current 

climate. The amount of snow, properties of snowpack, and the snow-covered days are 

highly sensitive to the air temperature aloft (López-Moreno et al. 2008, 2013) (Fig. 1.2). 

Moreover, global warming also changes solid precipitation (Fig. 1.2), due to not only the 

temperature increase but the change in atmospheric circulation (IPCC 2014), which is 

virtually the unique water supply to snowpack in the mid-latitudes. The possible response 

of physical snowpack properties to global warming is wetting, directly linked to the 

occurrence of wet-avalanche (Mitterer et al. 2011; Castebrunet et al. 2014; Lazar and 

Williams 2008). Considering the utilization of water resources (Beniston 2003), the 

mitigation of snow disaster (Nakai et al. 2012), winter tourism (Beniston 2003; Uhlmann 

et al. 2009), and agriculture (Inatsu et al. 2016; Hirota et al. 2006), the impact of climate 
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change on snowpack dynamics deserve to be examined, even though there is still inherent 

uncertainty in models of the impact of climate change.  

Snowfall also strongly controls physical snowpack property, since it 

determines an initial density of snowpack layer (Ishizaka et al. 2016) and since crystal 

type of solid precipitation particle is related to dry-avalanche (Nakamura 2019), which 

are not enough treated with current snowpack model due to lack of technique to obtain 

information of precipitation particle type (Fig. 1.2). A thermal conductivity, controlling 

snowpack deformation, metamorphosis, and melting, also depends on the density of 

snowpack (Sturm et al. 1997). This problem of lacking information for precipitation 

particle types has impeded the assessment of dry-avalanche and its response to the global 

warming in Japan. Snow crystal formation depends on air temperature and super-

saturation ratio in the clouds (Nakaya 1954) and the riming and aggregation increase the 

density of precipitation particles (Ishizaka et al. 2016; Yamaguchi et al. 2019). The degree 

of riming and aggregation can be diagnosed by the observation of particle size and 

terminal velocity distribution (PSVD; Ishizaka et al. 2013). However, the analysis 

technique of PSVD data has been a long-term lasting problem: almost all of the previous 

techniques are only applicable on PSVD data consisting of a single type of precipitation 

particles. An analysis technique that can be widely applicable to many possible PSVD 

datasets helps us identify the time-series of solid-precipitation types with a rough 

Fig. 1.2. A schematic chart describing how the global warming affects snowpack and what can be 

diagnosed from precipitation particles’ size-velocity distribution. 
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classification, which may be an effective input to a snowpack model (Yamaguchi et al. 

2019). Therefore, the analysis technique for PSVD data should be developed as a first 

step of snowpack model improvement. 

In this study, the global warming response of snowpack is estimated and a new 

method to analyze PSVD data is developed (Fig. 1.2). The former part of this thesis 

consists of Chapter 2 based on Katsuyama et al. (2017) and Chapter 3 based on 

Katsuyama et al. (2020). Herein, the global warming response of snowpack at a single 

site, Kutchan, is estimated with a combination of global and regional climate models and 

a physical snowpack model and then the estimation is expanded over Hokkaido. The latter 

part contains a single chapter (Chapter 4), in which a new method to inversely estimate 

elemental PDFs from arbitrary sampled PSVD data was developed. Chapter 5 provides 

general summary of this thesis.  
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Chapter 2. Global Warming Response of Snowpack in Kutchan 

2.1. Introduction 

Global warming is expected to reduce amount of the seasonal snowpack at low 

altitude and partially at high altitude in mid-latitude due to the temperature increase 

(López-Moreno et al. 2008, 2013; Sun et al. 2016). Long-term observation shows that the 

snowpack has been significantly decreased in low altitude for the last half of 20th century 

in Switzerland (Laternser and Schneebeli 2003), France (Durand et al. 2009), and Japan 

(JMA 2017), corresponding to the increase in air temperature. Recent modeling studies 

have suggested that the amount of snowpack will decrease by the end of the 21st century 

(Kuno and Inatsu 2014; Rousselot et al. 2012); these results were robust, regardless of 

greenhouse gas emission pathway, under a globally warming climate due to the high 

sensitivity of snowpack to temperature (Sun et al. 2016). Changes in precipitation, often 

caused by extratropical cyclone passage and wintertime monsoon around Japan, is also 

another factor that could affect the amount of snowpack especially at high altitude (Sun 

et al. 2016). Because global warming has been predicted not to decrease the amount of 

snowpack (Steger et al. 2013; Rousselot et al. 2012), in high alpine areas of Japan, little 

decrease in the amount of snowpack relative to late 20th century values is predicted even 

in the late 21st century under representative concentration pathway (RCP; Moss et al. 

2010) scenarios 2.6 and 4.5 (Kudo et al. 2017). The physical properties of snowpack 

might be also changed as a result of efficient transformation from solid precipitation 

particles to melt forms in a warmer climate. This transformation of grain types may also 

change the occurrence of wet-avalanche because that of wet-avalanche is related to the 

wetting of snowpack (Mitterer et al. 2011). Although the wet-avalanche sometimes occurs 

in Japan (Akitaya et al. 2015) and changes of the wet-avalanche occurrence have been 

pointed out in the North America (Lazar and Williams 2008) and in France (Castebrunet 

et al. 2014), the transformation of grain types responding to the global warming in Japan 

is not well addressed.  

Several studies have estimated snowpack response to climatic change including 

its physical property along with its uncertainty by the use of one-dimensional and multi-

layered snowpack model (e.g. Rasmus et al. 2004; Lazar et al. 2006; Rousselot et al. 2012). 

They consist mostly of three steps: (ⅰ) climate change projection with general circulation 
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models (GCMs), in which atmospheric concentrations of greenhouse gases are prescribed 

as a function of year (IPCC 2007, 2014); (ⅱ) downscaling, which creates climatic 

variables at a particular site or in a limited area with higher spatial resolution in order to 

compensate for the insufficient resolution of GCMs (Wang et al. 2004; Wilby et al. 2004); 

and (ⅲ) snowpack estimates. For step (ⅰ), there are no other technical choices than using 

GCMs. The GCM projection introduces an uncertainty in evaluating global-mean 

temperature, however, because of differing climate sensitivities among GCMs, mainly 

due to their physical parameterizations, and because future greenhouse gas emissions 

depend on the socio-economic scenario (IPCC 2014). The GCM projections of wintertime 

temperature and precipitation at a particular mid-latitude site are also uncertain, due to 

uncertain changes in storm tracks and jet streams at mid-latitudes and wintertime 

monsoon. The methods of step (ⅱ) can be classified into dynamical downscaling (DDS) 

(Wang et al. 2004) and statistical downscaling (Wilby et al. 2004). The former provides 

higher-resolution climatic variables in a limited area by integrating a regional atmospheric 

model (RAM) with the GCM output imposed as its lateral boundary condition. The latter 

estimates a future state by simply applying a statistical relation between local-site 

information and weather patterns such as the Siberian-Japan pattern that brings much 

snowfall along the Japan Sea side of northern Japan (Takano et al. 2008). The Siberian-

Japan pattern is established based on the singular-value decomposition analysis between 

synoptic weather pattern and local precipitation, for example (Kuno and Inatsu 2014). 

Recently, DDS has been widely used in the community, in spite of the need for additional 

computation, because it has the ability to produce a physically consistent dataset (e.g. 

Wang et al. 2004; Kuno and Inatsu 2014; Inatsu et al. 2015). Multiple RAMs, even with 

a single GCM imposed as the lateral boundary condition, also provide uncertainty, mainly 

due to the variability among the RAMs’ physical parameterizations, but the uncertainty 

is not large for the extratropics in winter because the DDS results are strongly controlled 

by lateral boundary conditions (Kuno and Inatsu 2014; Inatsu et al. 2015). In step (ⅱ) 

when using DDS, a bias correction should be made just before step (ⅲ) because the DDS 

results have the systematic biases in atmospheric variables such as temperature, 

precipitation, and so on, due to physical parameterizations and resolution (Ishizaki et al. 

2012). It should be noted that an alternative choice in step (ⅱ) is the pseudo-global 
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warming (PGW) experiment, in which observed weather time-series are added to the 

climatological difference estimated from GCM integrations so as to form the lateral 

boundary condition of the RAM (Kimura and Kitoh 2007). Finally step (ⅲ) estimates the 

future snowpack change by the use of physically- (e.g. Rasmus et al. 2004) or statistically-

based (Inoue and Yokoyama 2003) snowpack model with the downscaled atmospheric 

data. Although Inoue and Yokoyama (2003) estimated maximum height of snow-cover 

(HS) and major snow type over Japan by using a statistical relation between snowpack 

and meteorological characteristics, recent studies have tended to use one-dimensional 

multi-layered snowpack models, such as CROCUS (Brun et al. 1992), SNTHERM 

(Jordan 1991), and SNOWPACK (Bartelt and Lehning 2002) and its modification for 

wet-heavy snow in Japan (Hirashima 2019). A one-dimensional multi-layered snowpack 

model enables us to calculate the temporal evolution of snowpack structure with multiple 

layers at a particular site, driven by atmospheric variables, such as air temperature, 

precipitation, humidity, wind, and shortwave radiation at the snow surface. Hence, the 

step (ⅲ) can be undertaken on the basis of bias corrected atmospheric variables obtained 

from step (ⅱ).  

Several previous studies have been devoted to an evaluation of future snowpack 

change for particular areas, such as Switzerland (Bavay et al. 2013, 2009), Finland 

(Rasmus et al. 2004), France (Rousselot et al. 2012), and North America (Lazar et al. 

2006). Basically, uncertainty in future snowpack was estimated under multiple emission 

scenarios of greenhouse gases. The emission scenario strongly controls the global-mean 

temperature increase, a factor to which snowpack estimation is sensitive. For example, 

Rousselot et al. (2012) revealed that the snow water equivalent change in the A2 scenario 

of the Special Report on Emissions Scenarios (SRES) was double to that in the B1 

scenario. Bavay et al. (2009) also pointed out a great discrepancy between results for the 

A2 and B2 scenarios. Moreover, under the same emission scenario, different GCMs 

provide different global-mean temperature increases due to climate sensitivity. The use 

of multiple GCMs, therefore, increases the range of estimates of future snowpack (Bavay 

et al. 2013; Lazar et al. 2006; Rasmus et al. 2004). 

When considering the effect of climate change on snowpack, one may desire 

to separate the changes due to differences in global-mean temperature from those due to 
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changes of synoptic-scale climate around a particular site. However, since the temperature 

increase affects snowpack estimation quite strongly, it is difficult to determine the 

uncertainty arising from changes of meso-scale convection, storm tracks, and quasi-

stationary pressure patterns by using a set of arbitrarily chosen GCMs. 

From the point of view of numerical snowpack experiments, biased input data 

can cause problems. For example, a warm bias would shorten the snow season and a dry 

bias would effectively decrease the HS. Hence, we need a rational treatment for bias in 

GCMs and downscaled data. One way to ameliorate this problem is to offset 

climatological differences between present and future conditions assuming that the model 

biases are stationary. This approach has been used in several studies. Rasmus et al. (2004) 

calculated the snowpack difference for present and future climates using DDS without 

any bias correction of input data. Bavay et al. (2013, 2009) and Nakamura et al. (2011) 

estimated a change in snowpack using the PGW strategy. It is also expected that statistical 

downscaling will correct for any bias without requiring additional procedures (Rousselot 

et al. 2012; Lazar et al. 2006). 

The purpose of this chapter is to estimate future snowpack of amount and 

quality along with its uncertainty by a combination of multiple GCMs, a single regional 

atmospheric model (RAM), and a one-dimensional snowpack model (Fig. 2.1). The 

Fig. 2.1. Flow chart of procedure to assess the future change of snowpack. 
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analysis is based on the idea proposed in Inatsu et al. (2015), in which the synoptic-scale 

response was successfully separated from global temperature increase by performing 

DDS for a decade during which the global-mean surface air temperatures increase by 2 °C. 

Here, we use the dataset archived by Kuno and Inatsu (2014) and skip steps (i) and (ii) of 

the procedure in Fig. 2.1. In pre-processing before the snowpack calculation, we make 

bias corrections for temperature and precipitation and height correction for temperature 

in order to discuss differences of the snowpack response with altitude. After pre-

processing, the numerical snowpack calculation is performed for a particular mountain 

range at Mt. Annupuri in Kutchan, Hokkaido, Japan (Fig. 2.2). 

This chapter is organized as follows. Section 2.2 describes the study area 

including its climate. Section 2.3 briefly describes the observation, the downscaled data, 

and the model for numerical snowpack calculation together with the bias correction 

method. Section 2.4 shows the snowpack results for downscaled data under present and 

future climates. We also present the uncertainty of the estimates by using multiple GCMs. 

Fig. 2.2. (a) Surface height above the sea level given to the regional atmospheric model (RAM) 

and the location of Hokkaido in the upper right and (b) realistic topography with about 1-km 

resolution. Outer and inner black solid line in a window of (a) shows RAM’s domain calculated 

and a domain of (a), respectively. The locations of top of Mt. Annupuri (the top; 1,300 m a.s.l.) 

and AMeDAS station (the base; 173 m a.s.l.) are respectively indicated with an open triangle and 

square in (b). Black dashed line in (b) shows an 800 m level of height corresponding to the hillside 

of the mountain slope. Red rectangle in (b) shows the RAM’s grid cell of which meteorological 

data are imposed to the SNOWPACK model. The color-scale is shown between the panels.  
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Section 2.5 discusses how the results can be interpreted. Finally, section 2.6 gives the 

conclusion. 

2.2. Study Area 

We chose Mt. Annupuri as a particular mountain range for three reasons. First, 

the climate at the site is categorized as Dfb in the Köppen-Geiger climate classification 

characterized by cold, no dry season, and warm summer (Peel et al. 2007). The 

climatological air temperature is −4.7 °C and total precipitation attains 500 mm in 

December–February at the observation site of the Japan Meteorological Agency (JMA) 

in Kutchan. The snowfall is heavier than other areas around Kutchan because moisture-

rich air produced above the sea is advected by winter monsoonal wind (e.g. Takano et al. 

2008). The climatological feature holds the snow-cover period exceeding 4 months and a 

maximum HS of 190 cm even at the mountain base. Second, this site encompasses the 

mountain top, at 1,308 m above sea level, down to a wide steep hill with its base around 

200 m above sea level (Fig. 2.2b). The large difference of height at a single mountain 

enables us to facilitate the discussion on snowpack change with different temperature 

baselines. For the estimation, we considered three locations: the top (1,300 m), the hillside 

(800 m), and the base (173 m), which is the level of the JMA’s meteorological station (Fig. 

2.2b). The site is the downwind side of winter monsoon that brings heavy snowfall. The 

slope of Mt. Annupuri directs from southwest to northeast and the part of mountain area 

is leeward, but we do not consider the effect of such small-scale topography on the 

mountain slope. Finally, there is a social demand for the estimation because a famous ski 

resort with high-quality snow is located at the site. 

2.3. Data and Methods 

2.3.1. DDS Data 

A dataset of DDS data provided by Kuno and Inatsu (2014) is used in this study. 

For this dataset, the 1990s in the 20th century experiment (20C3M) was chosen as a 

period of present climate. Periods of future climate were the decades in which each GCM 

estimated the global-mean surface air temperature increase by 2 °C under the Special 

Report on Emissions Scenarios (SRES) A1b condition compared with the present climate. 

This selection of the different decades may distinguish the uncertainty due to changes in 
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synoptic phenomena from the uncertainty due to the climate sensitivity and emission 

scenario (Inatsu et al. 2015). 

In the DDS, three GCMs of the Coupled Model Inter-comparison Project phase 

3 (CMIP3) were chosen as initial and boundary conditions for a RAM of the Japan 

Meteorological Agency/Meteorological Research Institute (JMA/MRI) nonhydrostatic 

model (Saito et al. 2006). The chosen GCMs were the high-resolution version of the 

Model for Interdisciplinary Research on Climate 3.2 (MIROC; Hasumi and Emori 2004), 

the fifth-generation atmospheric GCM of the Max-Planck-Institut für Meteorologie 

(ECHAM5/MPI; Roeckner et al. 2003), and version 3 of the Community Climate System 

Model of the National Center for Atmospheric Research (CCSM3/NCAR; Collins et al. 

2006). These three GCMs were able to reproduce the present climate around Hokkaido 

(Kuno and Inatsu 2014). As for the RAM, the spatial resolution was 10 km and the domain 

size was ~2.1×106 km2, ranging from 135°E to 150°E and 39°N to 49°N (Fig. 2.2a). The 

DDS was performed for the present 1990s climate of 1990–1999 for MIROC, 1990–1999 

for MPI’s GCM, and 1989–1998 for NCAR’s GCM. The DDS was also performed for 

2050–2059 for MIROC, 2060–2069 for the MPI’s GCM, and 2080–2089 for NCAR’s 

GCM, these being the decades in which each GCM estimated that the global-mean air 

temperature would have increased by 2 °C relative to the present levels. These decades 

with a +2°C global warming enabled us to evaluate the uncertainty in synoptic 

phenomena that are independent of climate sensitivity and emission amount (Inatsu et al. 

2015). It should be noted that the 10-year mean (1990–1999) and 20-year mean (1980–

1999) were nearly the same (Inatsu et al. 2015), although the 10-year mean was 

considered too short to compute a climatological value. See Kuno and Inatsu (2014) for 

more details of the DDS calculation. 

For the calculation of snowpack, the DDS data corresponding to a single grid 

point, where approximately includes the three locations of the top, hillside, and base but 

does not exactly include the base, is used as the forcing to snowpack model (Fig. 2.2b) 

for physically continuous calculations among the three locations. Forced variables are 

temperature, precipitation, relative humidity, incoming shortwave radiation, and wind. 

The present and future climate is defined as 1990s and a decade when the global mean air 

temperature would increase by 2°C relative to the present 1990s climate, respectively. 



18 

 

2.3.2. Observed Data 

The temperature, precipitation, relative humidity, incoming shortwave radiation, 

wind, and HS observed with the Automated Meteorological Data Acquisition System 

(AMeDAS) operated by the JMA are basically used for validation of snowpack modeling. 

The validation was done at Sapporo, because all the meteorological data necessary for the 

snowpack model run have been operationally observed there, and because a snow pit 

observation twice a week at Sapporo (Niwano et al. 2012) enables us to validate the model. 

This snow pit observation measured the grain type of snowpack in depth; the type is 

classified into precipitation particles, graupel, decomposed precipitation particles, 

rounded grains, faceted crystals, depth hoar, ice formations, and melt forms (MF). Note 

that faceted crystals and depth hoar are regarded as a single type of hoar category (HC). 

The temperature and precipitation of AMeDAS data at Kutchan were used for the bias 

correction for the DDS data. 

2.3.3. Pre-processing of the Forcing Data 

Bias corrections for DDS precipitation and temperature of data are made by 

comparing the present 1990s climate simulations with the JMA’s observations at the base 

point. A temperature bias is defined monthly as the DDS data climatology minus the 

observed climatology in the present climate, and the bias is simply subtracted from the 

hourly DDS data both in the present and future climates. The temperatures at the hillside 

point and at the mountain top point are estimated by the temperature difference from the 

base decreased by means of the standard lapse rate of 6.5 °C /km. As for precipitation, 

the scaling factor to correct the DDS data is determined month by month from the 

observed climate at the base point. This scaling factor is loaded for all the downscaled 

data (Prudhomme et al. 2002). We assumed no difference of precipitation among top, 

hillside, and base points, because no reference data are available for the hillside and top 

points. We did not make any pre-processing for other climatic variables. 

2.3.4. SNOWPACK Model Setup 

We used version 3.2.1 of SNOWPACK for step (ⅲ) in the procedure (Fig. 2.1). 

SNOWPACK is based on a one-dimensional multi-layered snowpack model and solves 

the mass balance for water vapor, liquid water, and snow, and the energy balance for 
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snowpack. See Bartelt and Lehning (2002) for more details. This model has some 

achievement to be applied to Japan and have been suitable for cold regions including 

Hokkaido (Hirashima et al. 2004; Nishimura et al. 2005; Nakamura et al. 2011). This 

study applied the NIED scheme (Hirashima et al. 2004) for a better representation of the 

wet/heavy snow typically observed in Japan. We forced this model with hourly 

meteorological data of air temperature, relative humidity, wind speed, incoming 

shortwave radiation, and precipitation at the snow surface. Snowfall is discriminated from 

rainfall according to a threshold of 1.2 °C in surface air temperature and a threshold of 

50% in relative humidity in the model. The volume of precipitation particles is estimated 

from precipitation with a snow density parameterization slightly modified from that in 

Lehning et al. (2002a), but this modification is unpublished. Net longwave radiation is 

estimated from externally given air temperature and snow surface temperature as 

calculated in the model, because incoming longwave radiation is not prescribed (Lehning 

et al. 2002a). The soil temperature is fixed at 0 °C. Latent and sensible heat fluxes from 

snow surface to air are calculated under the Monin–Obukhov bulk formulation 

(Michlmayr et al. 2008). The integration period for a single season is from 1 October of 

a year to 25 June in the following year, and the 10-season integration is done for bias-

corrected downscaled data with a particular GCM under present or future climate. 

In SNOWPACK, snow grains are classified into eight types with majority and 

minority forms: precipitation particles, decomposed precipitation particles, rounded 

grains, faceted crystals, depth hoar, surface hoar, ice formations, and MF (Lehning et al. 

2002b). The snow grain type is determined by four parameters in the model: dendricity, 

sphericity, grain size, and grain type history. Precipitation particles have higher 

dendricity; rounded grains are characterized by higher sphericity, while faceted crystals 

are characterized by low sphericity. This study regards faceted crystals, depth hoar, 

surface hoar, and their mixed forms, which were originally differentiated in the model, as 

a single type of HC. The minority forms are also ignored. This study focuses on only the 

ratios of MF and HC as traditional indices of snowpack property, which can be readily 

validated by a comparison with the snow-pit observation because number of layers 

observed is different with that of layers calculated. The ratio of MF is useful to diagnose 

wet avalanches (Techel and Pielmeier 2010), while the HC is recognized as one of the 
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factors for dry avalanches at Mt. Annupuri (Nishimura et al. 2005). In the following 

sections, we define the date of maximum HS as the boundary between the “accumulation 

period” and the “ablation period”. 

2.3.5. Sensitivity Experiment 

This paper has basically excluded the effect of small-scale topography on the 

mountain slope and assumed the uniform precipitation field among top, hillside and base 

points in the pre-processing (Subsection 2.3.3), mainly because we have no reference data 

of precipitation at top and hillside points. However, even the small-scale topography more 

or less contributes to the total amount of precipitation (Houze 2012), so that the amount 

depends on the points where we address. Therefore we conduct an additional sensitivity 

experiment to precipitation at the top in order to discuss an influence of the possible 

orographic effects on the snowpack estimation. In this sensitivity experiment, the 

snowpack model ran with the same DDS data except for hourly precipitation data 

increasing or decreasing by 20%. 

2.4. Results 

2.4.1. Atmospheric Changes 

Figure 2.3 shows the global warming response of the monthly-mean 

temperature and monthly precipitation to the +2°C global warming climate at Kutchan. 

Although the future climate is defined as the decades when global-mean temperature has 

increased by 2 °C compared with 1990s, the DDS results showed a temperature increase 

of about 2.5 °C, probably because of land-sea contrast in the Northern Hemisphere. 

Remember that DDS with MIROC, MPI GCM, and NCAR GCM was performed for the 

future periods of 2050s, 2060s, and 2080s, respectively, and they are compared with the 

reference of present 1990s climate. The DDS results from MIROC show the least month-

to-month variation while the NCAR GCM shows the most; the amount of increase is 

slightly smaller in the MPI case. The precipitation change also has a large seasonal 

variation, but the total amount of wintertime precipitation does not increase. There is a 

small tendency toward increased precipitation in January and April, however. 
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2.4.2. Validation of the Model 

SNOWPACK model was validated by comparing the calculations enforced by 

the atmospheric variables observed at Sapporo with the snow data observed at Sapporo. 

Figure 2.4 shows some snowpack properties at Sapporo for three winters of 2009/2010, 

2010/2011, and 2011/2012 (The winter season is between December and the following 

May). HS was well simulated through the season, except for a slight overestimation in 

March and April 2011 (Figs. 2.4a–c). The ratio of MF for all snowpack layers was also 

well simulated, but the simulated ratio in December and January 2011/12 was twice larger 

than the observed ratio (Figs. 2.4d–f). The ratio of HC was overestimated as well, 

especially in 2010/11 (Figs. 2.4g–i). SNOWPACK could not reproduce the HC 

realistically as in this experiments, presumably because snowpack surface temperature 

tended to decrease in the model. It is remarked, however, that I will show the results of 

HC by regarding it as the diagnosed quantity that is a function of temperature gradient 

inside of the snowpack (Lehning et al. 2002b). 

Fig. 2.3. Global warming response at Kutchan for November to May, based on the dynamical 

downscaling (DDS) results from (red) the high-resolution version of the Model for 

Interdisciplinary Research on Climate 3.2 (MIROC), (blue) the fifth-generation atmospheric 

general-circulation model (GCM) of the Max-Planck-Institut für Meteorologie (ECHAM5/MPI), 

and (green) version 3 of the Community Climate System Model of the National Center for 

Atmospheric Research (CCSM3/NCAR). The bar graph shows the increasing rate of monthly 

precipitation (%; scale on the left) with filled bins denoting a precipitation increase statistically 

significant at the 10% level. The line graph shows the increase in monthly-mean temperature (°C; 

scale on the right).  
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The simulated HS at the base point with the DDS data in 1990s present climate 

at the nearest grid point to Mt. Annupuri is also compared with the HS observed at the 

JMA observatory at Kutchan. Recall that DDS temperature and precipitation data are bias-

corrected but other climatic variables are not. The monthly-mean HS is highly correlated 

with the observations, though it is slightly underestimated in February to March and 

overestimated in April (Fig. 2.5a). This overestimation is consistent with an earlier report 

on the snow ablation period in the Japanese snowy area (Yamaguchi et al. 2004). It is also 

remarked that, though the validation of the HS at the hillside and top points was basically 

difficult for the paucity of observation, the special observation at the hillside by 

Nishimura et al. (2005) did not give much difference from our simulated result described 

below. 

Fig. 2.4. Monthly-mean (a–c) height of snow-cover (HS) and the ratios of (d–f) melt forms (MF) 

and (g–i) hoar category (HC) for all snowpack layers at Sapporo, averaged over the winters of (a, 

d, g) 2009/10, (b, e, h) 2010/11, and (c, f, i) 2011/12. Solid lines with circles show (a-c) AMeDAS 

and (d–i) snow pit observations; dotted lines with crosses show the SNOWPACK model results. 
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2.4.3. Snowpack Estimation 

Figure 2.5 shows the snowpack estimations based on DDS under the present 

1990s climate. The monthly-mean HS attains seasonal maximums of 130 cm at the base 

point, 190 cm at the hillside point, and 220 cm at the top point. The maximum monthly-

mean HS increases by about 8 cm per 100 m in altitude. In addition, the greatest depth 

occurs later at higher altitudes because the freezing environment extends the snowfall 

period. 

Global warming significantly decreases monthly-mean HS at all points 

throughout the season (Fig. 2.6). From December to February, the HS decreases by 30 cm 

at the base and hillside points and by 20 cm at the top point, because the beginning of 

snow season is retarded by a warmer climate. The decrease is then larger for the snow 

ablation period. The HS decrease likely exceeds 60 cm at the base in March, at the hillside 

in April, and at the top in May because the snow ablation period starts much earlier: the 

time of greatest HS is shifted by about a month. These are consistent with obtained a set 

of PGW experiments for another site near Sapporo (Nakamura et al. 2011). 

Figure 2.8 shows the monthly-mean ratio of MF for all snowpack layers in the 

simulation. Under the present 1990s climate, at the base point, MF occupy about 20% of 

all snowpack in November, and the ratio gradually increases throughout the season. This 

Fig. 2.5. Snowpack simulation results with DDS data under the present 1990s climate for (red) 

MIROC, (green) MPI and (blue) NCAR GCMs. Panels show monthly-mean HS on Mt. Annupuri 

at (a) the base point at 173 m above sea level, (b) the hillside point at 800 m, and (c) the top point 

at 1,300 m. HS observed at the JMA’s site at Kutchan is superimposed on (a) in black.  
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pattern does not change substantially under the future climate, but the increase is slightly 

faster and the MF become dominant about a month earlier. Under the present climate, the 

hillside and top points have a ratio of MF that is about 10–20% during the snow 

accumulation season. Since snow ablation starts earlier in the future, MF are dominant at 

the hillside point in March, and at the top point between March and April. This is also 

about a month earlier than in the present-climate case.  

Figure 2.7 shows the ensemble mean of the monthly-mean ratio of HC. Under 

the present 1990s climate, at the base point, the ratio of HC is approximately constant, at 

around 10%, from December to March, and the ratio rapidly declines in the snow-melting 

months. This pattern is also found in the future of +2°C global warming climate, but the 

ratio in mid-winter decreases down to 7%. At the hillside point, the ratio of HC gradually 

decreases from March to May under the present climate.  

Fig. 2.6. Monthly-mean HS in the +2°C global warming climate (solid lines) and the difference 

between the present 1990s and the +2°C climates (dotted lines) at (a) base, (b) hillside, and (c) 

top points on Mt. Annupuri, based on the DDS data for (red) MIROC, (green) MPI and (blue) 

NCAR GCMs.  
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The percentage is slightly less in the +2°C climate case. The ratio of HC is 

about 15% at the top point from January to April under the present climate. Interestingly, 

the +2°C climate case shows no decrease in the ratio of HC throughout the season at the 

top point, though the atmospheric warming weakens the temperature gradient in the 

snowpack. This may be partly because a temperature increase would have little effect on 

the physical properties of the snowpack in a sufficiently low temperature environment. 

This is in line with Inoue and Yokoyama (2003), suggesting that global warming would 

not reduce HC in eastern Hokkaido.  

Fig. 2.7. The ratio of HC at (a) base, (b) hillside, and (c) top, based on the DDS data averaged 

over all GCM cases under (solid line) 1990s present and (dotted) +2°C global warming climates. 

Fig. 2.8. The ratio of MF at (a) base, (b) hillside, and (c) top points, based on the DDS data under 

(solid line) present 1990s and (dotted) +2°C global warming climates. 
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2.4.4. Uncertainty 

There is fundamentally little uncertainty in the effect on HS of global warming 

because we ruled out the uncertainty associated with climate sensitivity and the emission 

scenario (Fig. 2.6). The snow ablation period is uncertain to some extent, however. For 

example, the difference in HS ranged from 30 to 40 cm in January at the base, primarily 

because precipitation change is insignificant in the MIROC case and +25% in the MPI 

and NCAR cases (Fig. 2.3). Although the given climatic variables in February have less 

variation among GCM cases, the snow accumulation process may increase the variation 

of the HS difference; it becomes largest at the snow ablation period (Fig. 2.6a). The 

uncertainty in the HS difference at the hillside and top points is also noticeable after 

March (Figs. 2.6b, c). 

The ratio of MF from base to top points before the snow ablation period has a 

comparable variation among GCMs for both present and future climates (Figs. 2.8a, b). 

However, the variation at the base point in November is relatively larger in the +2°C 

climate. This is probably because a greater temperature increase (Fig. 2.3) promoted the 

deformation to MF in a relatively warm temperature environment for the MIROC case. 

In the snow ablation period, the uncertainty in MF tends to increase in the +2°C climate. 

The ratio at the top in March ranges between 10% and 20% in the present climate but 

between 20% and 40% in the +2°C climate (Fig. 2.8c). The +2°C climate uncertainty in 

March is as much as the present climate uncertainty in April. This time-lag of the 

uncertainty could be related to the earlier start of melting period. 

2.4.5. Sensitivity Experiment 

The results of sensitivity experiment are shown in Figures 2.9 and 2.10. As a 

matter of course, the monthly-mean HS increased (decreased) when precipitation 

uniformly increased (decreased). In the present 1990s climate, for example, the HS on 

March added 30 cm more than the reference in +20% precipitation experiment (Figs. 2.5c, 

2.9a). Because HC is strongly related to the temperature gradient of inner snowpack, the 

ratio of HC is also sensitive to precipitation (Fig. 2.10). However, the difference of the 

HS between present and +2°C climate is basically not sensitive to precipitation baseline 

(Fig. 2.9b). Similarly, neither the difference of the HC ratio nor that of MF is sensitive 

(Figs. 2.9c, d, 2.10). The sensitivity experiment then revealed that a systematic tendency 
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of precipitation at a particular point on the mountain slope might only have a secondary 

effect to the result on the future snowpack change presented here.  

2.5. Discussion 

This study has estimated the snowpack response to the global-warming 

atmosphere in the timing where the global-mean temperature would increase by 2 °C. 

According to the IPCC report (IPCC 2007), the climate sensitivity of GCM to 

atmospheric CO2 doubling is 4.3 °C in MIROC, 3.4 °C in MPI’s GCM, and 2.7 °C in 

NCAR’s GCM. The uncertainty in greenhouse gas emissions could also cause a large 

uncertainty in future air temperature. In our strategy, fixing the temperature increase by 

the use of a different decade for each model, we have described the snowpack simulation 

in a “+2-°C climate world.” However, the uncertainty in temperature increase could be 

linked with the simulated points at different altitudes if the standard atmospheric lapse 

rate were applied. The temperature difference between hillside and top points is 3 °C. 

Moreover the HS difference between the points is about 30 cm (Figs. 2.5b, c). This means 

Fig. 2.9. (a) The monthly-mean HS in present 1990s climate in (solid line) +20% and (dotted) 

−20% precipitation experiments. Red, blue, and green lines indicate MIROC’s, MPI’s, and 

NCAR’s case, respectively. (b) The difference of the HS between 1990s present and +2°C climate. 

(c,d) The ratio of MF in (c) 1990s present and (d) +2°C climate.  
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that a 1-°C uncertainty in temperature increase approximately corresponds to a 10-cm 

uncertainty in monthly-mean HS at Mt. Annupuri.  

Returning to the discussion of climate sensitivity, if we fixed the decade to the 

2050s under the A1b scenario, the uncertainty in temperature among GCMs is 1 °C (IPCC 

2007; Inatsu et al. 2015), so the uncertainty in HS would be 10 cm at Mt. Annupuri 

because a 1-°C uncertainty corresponds to a 10-cm uncertainty. Similarly, by fixing the 

decade to the 2050s again but taking the average over GCM ensembles, the uncertainty 

in temperature is 0.6 °C between A1b and B1 scenarios around Japan (Shin et al., 2012) 

so the uncertainty in HS would be about 6 cm. 

The uncertainty in the HS is affected by the uncertainty not only in the 

temperature increase but also in precipitation change among GCMs and among the 

scenarios. Now, the uncertainty in the HS affected by the uncertainty in precipitation is 

also roughly estimated by the similar way to the above discussion. First, the uncertainty 

in precipitation change among GCMs around Japan is approximately 0% to +15% if we 

fixed the decade of the 2050s under the A1b scenario (Shin et al. 2012). Because a +20% 

uncertainty in precipitation change approximately corresponds to a 30-cm uncertainty 

(Fig. 2.9a), the uncertainty in HS is also about 20 cm. In spite of this relation, the 

uncertainty in the HS would not be affected by the uncertainty in precipitation change 

among the scenarios because its uncertainty is less than a few percent if we fixed the 

decade of the 2050s (Shin et al. 2012). 

Fig. 2.10. The ratio of HC averaged over all GCMs 

in (black) 1990s present and (red) +2°C climate in 

(solid line) +20% and (dotted line) −20% 

precipitation experiments.  
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Moreover, the source of the uncertainty of snowpack change in the +2 °C 

climate may be separated into the uncertainty of temperature increase and others. The 

temperature increases of the three GCM’s cases approximately show a variety of 1 °C 

throughout the season (Fig. 2.3). Because a 1-°C uncertainty in temperature increase 

approximately corresponds to 10-cm uncertainty in the HS, the temperature variation of 

1 °C may produce a 10-cm uncertainty in the HS decrease. Now, the uncertainty in the 

HS decrease at the top point is approximately 25 cm throughout the season (Fig. 2.6c), so 

that 40% of the uncertainty is considered to be affected by the uncertainty in the 

temperature increase. Considering the large sensitivity of snowpack to temperature and 

precipitation (López-Moreno et al. 2008, 2013), residual uncertainty of 60%, i.e. 15-cm 

uncertainty, may be mainly produced by the uncertainty in the precipitation. Similarly, at 

the base and hillside points, 65% and 35% of the uncertainty may be produced by the 

uncertainty in the temperature and precipitation, respectively. 

This study could also be applied to avalanches at the site. The wet-avalanche in 

Switzerland often occurs at the timing of first wetting of snowpack and the arrival of melt-

water at the bottom (Mitterer et al. 2011). Because MF are produced after some parts of 

the snowpack become wet (Lehning et al. 2002b), a season when MF rapidly increase 

roughly corresponds to a season of wet-avalanche. For Mt. Annupuri, the snowpack 

model indicates that a season of wet-avalanche under the global warming is at hillside 

height after February and at the top after March, respectively, probably because MF are 

produced after some parts of the snowpack become wet. Since the dominance of MF 

arrives earlier according to our evaluation of global warming response (Fig. 2.8), we 

speculate that wet avalanches at Mt. Annupuri would be likely to occur in an earlier 

season. As we introduced in Section 2.1, an earlier season of wet-avalanche has been also 

pointed out in the North America (Lazar and Williams 2008) and in France (Castebrunet 

et al. 2014). It should be noted that it is still uncertain whether this expected shift of wet-

avalanche season can be simply applied to Japanese environment. 

2.6. Conclusions 

This study have evaluated the response to global warming of HS and some 

physical properties of snowpack at the mountain range of Mt. Annupuri in Kutchan, 

Hokkaido, Japan (Fig. 2.1), by integrating a numerical snowpack model forced by DDS 
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data with multiple GCMs. First, the numerical snowpack model was validated by 

comparing the results of the hindcast simulation with observation at Sapporo (17 m above 

sea level) in three winters of 2009/10, 2010/11, and 2011/12: in particular, HS was 

successfully reproduced at the site with bias-corrected DDS data. The numerical 

snowpack calculation under 1990s present and +2°C global warming climates suggests 

that monthly-mean HS will decrease by about 60 cm at the beginning of ablation period 

if the global- and local-mean temperature increases by 2 °C and approximately 2.5 °C, 

respectively (Figs. 2.3, 2.6). In addition, monthly-mean HS reaches its peak about one 

month earlier. The monthly-mean ratio of MF tends to increase at all sites, especially 

above the hillside point, while the monthly-mean ratio of HC is likely to decrease except 

at the top point.  
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Chapter 3. Global Warming Response of Snowpack over Hokkaido 

3.1. Introduction 

The global warming would reduce amount of snowpack especially at low 

altitude due to high sensitivity of snowpack to temperature and insignificantly reduce the 

amount at high altitude because the amount of snowfall in such areas were correlated with 

precipitation rather than temperature (Sun et al. 2016). In Chapter 2, we estimated that 

the snowpack response to global warming at a range from mountain base to top, and the 

amount of snowpack would be significantly reduced due to later onset of snow 

accumulation and earlier onset of snow ablation especially at low altitude. Moreover, the 

estimation suggested that snowpack would be wetter at low altitude, which was in line 

with an estimation based on the physical modeling at Finland (Rasmus et al. 2004) and 

an estimation based on the statistical modeling at Japan (Inoue and Yokoyama 2003). 

However, the impact of climatic warming on snowpack would probably depend not only 

on altitude but also on geographical location (Bavay et al. 2013; Rousselot et al. 2012), 

because the change in local atmospheric circulation caused by the temperature increase 

would likely promote snowfall (Kawase et al. 2013; Rasmussen et al. 2011). The impact 

of temperature on snowpack might increase the runoff amount at the catchment scale even 

in mid-winter (Rasmussen et al. 2011; Bavay et al. 2013). Moreover, climate change could 

lead to increased snowpack loss and thereby threaten water resources (Beniston 2003), 

could have an impact on agriculture due to a reduction of soil-frost depth related to height 

of snow cover (HS) (Inatsu et al. 2016), and could lead to a reduction in the number of 

operating days at snow resorts (Uhlmann et al. 2009). 

The important point in snowpack simulation is to assure model performance 

via comparison with observation. If only HS were required, the snowpack model could 

be readily evaluated because HS has been automatically observed at many sites for a long 

period. However, if other snowpack variables were desired, such as snow water 

equivalent (SWE) and snow grain types, the lack of observational data would preclude 

the evaluation of the snowpack model. This is due to the fact that these variables can be 

obtained only by snow-pit observation, the spatial and temporal resolution of which is 

insufficient. Probably as a result of this impediment to model evaluation, Bavay et al. 

(2013) used HS and catchment discharge instead of SWE to estimate SWE for a relatively 
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wide region. In Chapter 2, the snowpack model has been evaluated at a single target site 

by comparing with snow-pit observations from a different site far from the target site. 

Hence, the lack of snow observation is a barrier to performing snowpack estimation over 

large areas, even though the calculation itself can be accomplished merely by looping the 

calculation at a single site. 

In this chapter, the approach of Chapter 2 is expanded to the whole of Hokkaido, 

Japan (Fig. 3.1a) by using the same snowpack model and the same DDS dataset, which 

provided predictions of the characteristics of future snow amount and snow quality with 

a clear separation of uncertainty in the globally averaged temperature change from the 

change in synoptic phenomena such as storm tracks, winter monsoons, and orographic 

precipitation (Inatsu et al. 2015). To relieve the problem of the lack of snowpack 

observations, we use special snow-pit observations from 28 sites over central and eastern 

Hokkaido during 2014–2017 (Fig. 3.1c; Shirakawa and Kameda 2019). Moreover, we 

evaluate the model-predicted climatological snow amount by comparison with long-term 

HS observations from 1990 to 1999 made at 108 stations in Hokkaido operated by the 

Japan Meteorological Agency (JMA; JMA 2013). We attempt to evaluate the snowpack 

model using as much available data as possible to establish the reliability of snowpack 

estimation forced by DDS data over a large area, Hokkaido, where is characterized with 

Table 3.1. Summary of sub-regions names and their abbreviations in Figs. 3.1a, 3.10, 3.11. 

The color in Figs. 3.1a and 3.10 is also shown. 

Sub-region Abbreviation Color 

Oshima and Hiyama OH Red 

Shiribeshi SH Cyan 

Iburi and Hidaka IH Light-green 

Ishikari and Sorachi IS Gray 

Tokachi TO Olive 

Kushiro and Nemuro KN Magenta 

Okhotsk OK Brown 

Kamikawa KA Gold 

Rumoi and Soya RS Green 
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a contrast between much snow amount and predominant rounded grains (RG) in the west 

and little snow amount and predominant depth hoar in the east (Ishizaka 2008; Shirakawa 

and Kameda 2019).  

The remainder of this chapter is organized as follows. Section 3.2 describes the 

methods of snowpack model evaluation and the estimation of snowpack response to +2°C 

global warming relative to the present 1990s climate using observational data and DDS 

data. Additionally, in this section, a simple diagnosis is described which helps us interpret 

the regional variation and uncertainty of snowpack response to this +2°C global warming. 

Fig. 3.1. (a) Sub-regions of the island of Hokkaido, Japan names with their abbreviation and color 

summarized in Table 3.1. The dotted red rectangle shows the area in (c) and the solid red rectangle 

in the inset shows the location of Hokkaido in Japan. (b) Altitude (km) of dynamically downscaled 

(DDS) data. Circles show stations of the Automated Meteorological Data Acquisition System 

(AMeDAS) where the height of snow cover (HS) is observed. (c) Altitude as in (b) showing snow-

pit observation sites (numbered symbols). Symbol color denotes the distance (km) from the 

nearest AMeDAS station, as given in Table A1. Symbol shape indicates the set of variables 

observed at the nearest AMeDAS station: star, the full set; hexagon, the set without shortwave 

radiation; square, the set without shortwave radiation and relative humidity; and triangle, the set 

without height of snow cover, shortwave radiation, or relative humidity.  
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Section 3.3 provides the results of the snowpack model evaluation and the snowpack 

response to +2°C global warming. This section also focuses on the uncertainty arising 

from differences in results among the various boundaries of GCMs for the DDS data as 

well as Chapter 2. The model evaluation and snowpack response are discussed in section 

3.4. Finally, Section 3.5 concludes this chapter. 

3.2. Data and Method 

3.2.1. Snowpack Model 

Version 3.3.1 of the SNOWPACK model, a one-dimensional multi-layered 

Lagrangian model that basically solves mass and energy balance equations via the finite-

element method (Bartelt and Lehning 2002), was used for the snowpack calculations as 

well as Chapter 2. This snowpack model was applied point-by-point on flat terrain, and 

the horizontal transport of snow such as snowdrifts and avalanches was not considered. 

These assumptions might not affect the results because the snow transportation has a 

horizontal scale of 1 km or less, which is much less than the distance between adjacent 

points in the snowpack calculation (see Subsection 3.2.5). The model was forced by 

hourly atmospheric data on precipitation, air temperature, relative humidity, wind speed, 

and downward shortwave and longwave radiation. The output of the model was the hourly 

time-series of each layer’s thickness, density, and snow grain type classified into 

precipitation particles (PP), decomposing and fragmented PP, rounded grains (RG), 

faceted crystals, depth hoar, surface hoar, and MF as well as Chapter 2 (Lehning et al. 

2002b). This study combined PP and decomposing and fragmented PP into a single 

category (simply called “PP”), and also combined faceted crystals, depth hoar, and 

surface hoar into a hoar category (HC). The model settings were basically same as 

Chapter 2, but some were changed in order to estimate snowpack over Hokkaido as 

followings. 

Snowfall should be discriminated from rainfall because the snowpack response 

to each is quite different (Kudo et al. 2017). Regardless of the dataset, we used the 

following formula for the fractions of the amount of liquid phase in precipitation: 



35 

 

 

𝑤 =

{
 

 
1                                         (𝑇 > 𝑇𝑟 or 𝑓 > 𝑓𝑟)

0                                         (𝑇 < 𝑇𝑠 or 𝑓 < 𝑓𝑠)
1

2

𝑇 − 𝑇𝑠
𝑇𝑟 − 𝑇𝑠

+
1

2

𝑓 − 𝑓𝑠
𝑓𝑟 − 𝑓𝑠

                (elsewhere)
, (3.1) 

where 𝑇 and 𝑓  respectively denote air temperature (°C) and relative humidity (%), 

𝑇𝑟 = 4, 𝑇𝑠 = 0, 𝑓𝑟 = 46√7.2 − 𝑇, and 𝑓𝑠 = −7.5𝑇 + 93 (Matsuo and Sasyo 1981). 

The fraction of the solid phase in precipitation is then 1 − 𝑤. This discrimination method 

for solid and liquid precipitation is widely used by meteorologists (e.g. Yasutomi et al. 

2011). 

For an accurate calculation of snowpack parameters in a soil-frost environment 

such as eastern Hokkaido (Hirota et al. 2006), the SNOWPACK model was coupled with 

a simple soil model containing 10 top layers, each with a thickness of 10 cm, five bottom 

layers, each with a thickness of 20 cm, and a bottommost layer with a thickness of 8 m. 

The physical properties of the layers were controlled by conductivity, density, heat 

capacity, and volumetric fraction of pores. Because these parameters were completely 

unknown, we assumed that the bottommost layer of soil was mineral soil and all other 

layers were a 1:1 mixture of mineral soil and organic soil. Based on a report of the 

physical properties of mineral and organic soil (Farouki 1981), the conductivity, density, 

and heat capacity were respectively fixed at 2.9 W m−1 °C−1, 2650 kg m−3, and 1925 J 

kg−1 °C−1 in the bottommost layer, and at 1.575 W m−1 °C−1, 1975 kg m−3, and 2218.5 J 

kg−1 °C−1 in all other layers. For all layers, the volumetric fraction of pores was set to 0.1 

(Iwata et al. 2011) and the soil temperature was initially set as the annual mean surface 

soil temperature at a given point, approximately given by the annual mean air temperature 

plus 2°C (Hirota et al. 1995). The bottom boundary temperature of soil was fixed at the 

initial temperature since the bottom temperature would be approximately constant with 

the annual mean surface temperature according to the soil temperature model with our 

setting of physical soil property (Hirota et al. 2002). 

3.2.2. Snow-pit Observation 

The data of snow-pit observations at 28 sites covering the regions of Ishikari 

and Sorachi, Kamikawa, Tokachi, Okhotsk, and Kushiro and Nemuro (Figs. 3.1a, c) 

which were manually conducted between 2014 and 2017 in late winter (Fig. 3.2), on dates 
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approximately corresponding to the seasonal maximum of SWE (Shirakawa and Kameda 

2019), was used in this study. The observed variables were HS, SWE, layer thickness 

constructing a vertically layered structure of snowpack, and the snow grain type of the 

layer. For the measurement of HS and SWE, three snowpack columns were sampled from 

surface to bottom using a Kamuro-type snow-sampler with a cross-sectional area of 20 

cm2. HS and SWE were then determined by averaging the lengths and weights of the 

samples. The snow grain type in each layer was subjectively determined by observation 

of sampled grains with a magnifying glass after digging a snow pit down to the soil–snow 

interface.  

3.2.3. Height of Snow-cover Observation by AMeDAS 

The JMA has operated the Automated Meteorological Data Acquisition System 

(AMeDAS), a network of ground-based automatic weather stations installed throughout 

Japan. For the data used in this study, HS observations were operationally conducted via 

the measurement of the return time of ultrasonic waves or of a laser emitted downwards 

towards the snow surface. Hourly HS data from 108 sites were used, as shown in Figure 

3.1b. The AMeDAS sites are located in an enough open terrain and flat area with no 

obstacles near the measurement instruments and satisfy the JMA regulation, so that the 

HS at the site can be assumed to be representative of the value in a local area around the 

site with little effect of small-scale wind speed. 

3.2.4. Observation-forced Simulation 

The observation-forced SNOWPACK simulation was performed using hourly 

atmospheric forcing data observed at 28 AMeDAS stations nearest to the snow-pit 

observation sites (Fig. 3.1c). Each winter calculation was made from 1 October to the 

late-winter date when the snow-pit observation was made (Fig. 3.2). The full set of 

atmospheric variables observed at the AMeDAS stations were air temperature, 

precipitation, wind speed and direction, relative humidity, downward shortwave radiation, 

and sunshine duration, meaning that downward longwave radiation was lacking for the 

SNOWPACK experiment (Subsection 3.2.1). Moreover, some AMeDAS stations lacked 

observations of shortwave radiation (marked as hexagons, squares, and triangles in Fig. 

3.1c) and relative humidity (marked as squares and triangles in Fig. 3.1c). Furthermore, 
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errors in the precipitation observed at AMeDAS stations were sometimes found, with 

little consistency between precipitation amount and HS increase, despite quality control 

having already been implemented by the JMA (JMA 2013). It should be noted that our 

additional quality control for precipitation observations could not be implemented at the 

AMeDAS stations where HS was not available (triangles in Fig. 3.1c). Furthermore, the 

AMeDAS observational data had some missing values. The aforementioned lacking 

observations, missing data, and errors were complemented with mesoscale analysis data 

(JMA 2013) and RADAR-AMeDAS precipitation data (JMA 2013), with a basis of 

similarity between AMeDAS data and mesoscale analysis and between AMeDAS data 

and RADAR-AMeDAS data (not shown). A statistical relationship between the lacking 

variables and other available variables was also used to estimate the lacking variables. 

See Appendix A for more details. 

3.2.5. DDS-forced Simulation 

The SNOWPACK simulation was performed with hourly dynamically 

downscaled (DDS) data under the present climate of the 1990s and +2°C global warming 

at all longitude–latitude grid points in Hokkaido with the same procedure of model 

combination performed in Chapter 2: (ⅰ) climate change projection with general 

Fig. 3.2. Local date and time 

when the snow-pit 

observations were performed 

at each site; numbers 

correspond to those of the 

sites labeled in Fig. 3.1c. 

Circles, crosses, triangles, 

and squares respectively 

indicate observation years of 

2014, 2015, 2016, and 2017. 
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circulation models (GCMs), (ⅱ) downscaling with regional atmospheric model (RAM), 

and (ⅲ) snowpack estimates. The calculation ran from 1 October to 31 August of the 

following year. The DDS provided all the atmospheric variables necessary to drive the 

SNOWPACK model, but the DDS data originally had a systematic bias. The air 

temperature and precipitation were bias-corrected by comparing climatic observations 

with the 10-year mean of the DDS data under the present climate as well as Chapter 2, 

since the estimation of snowpack parameters was quite sensitive to air temperature and 

precipitation (López-Moreno et al. 2013). The DDS temperatures were simply offset for 

the monthly mean to match with the MESHCLIM 2010 climate mesh (Kitamura 1990) 

provided by the JMA. In this procedure, a MESHCLIM grid configuration with a 1-km 

spacing was aggregated into the DDS grid configuration with a 10-km spacing. The DDS 

precipitation was simply multiplied by a correction coefficient (Prudhomme et al. 2002) 

for the monthly climate data to match with the monthly climate data of the APHRO_JP 

gridded precipitation data (Kamiguchi et al. 2010) after APHRO_JP data were re-gridded 

into the DDS grid configuration. A bias correction was not performed for wind speed, 

shortwave radiation, or relative humidity, but downward longwave radiation was replaced 

with a statistically estimated value obtained from relative humidity and bias-corrected air 

temperature, following Kondo et al. (1991) (Hirashima et al. 2008), due to the strong 

dependence of longwave radiation on temperature. 

The atmospheric forcing was prescribed as each of three DDS datasets with the 

numerical integration of the JMA/Meteorological Research Institute non-hydrostatic 

model (Saito et al. 2006) with 10-km horizontal resolution imposed with different lateral 

boundaries of the high-resolution version of the Model for Interdisciplinary Research on 

Climate 3.2 (MIROC; Hasumi and Emori 2004), the fifth-generation atmospheric GCM 

of the Max Planck Institute for Meteorology, Hamburg, Germany (ECHAM5/MPI; 

Roeckner et al. 2003), and version 3 of the Community Climate System Model of the U.S. 

National Center for Atmospheric Research (CCSM3/NCAR; Collins et al. 2006), all of 

which contributed to the Coupled Model Inter-Comparison Project Phase 3 (CMIP3) 

(Kuno and Inatsu 2014). The present-climate DDS data was created using MIROC results 

for 1990–1999, MPI results for 1990–1999, and NCAR results for 1989–1998. The 

future-climate DDS data was created using MIROC results for 2050–2059, MPI results 
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for 2060–2069, and NCAR results for 2080–2089, each of which corresponds to a decade 

when the global mean air temperature was predicted to increase by 2°C relative to present 

levels in the Special Report on Emissions Scenarios A1b (IPCC 2007). These decades 

with a +2°C global warming enabled us to evaluate the uncertainty in synoptic 

phenomena that are independent of climate sensitivity and emission amount (Section 2.1; 

Inatsu et al. 2015). See Subsection 2.3.1 and Kuno and Inatsu (2014) for more details of 

the DDS calculation. 

Figure 3.3 shows the bias-corrected climatological air temperature for 

Hokkaido (10-year mean) for December, January, and February (DJF), and its response 

to the +2°C climate. The temperature in the region in these months ranges from −10°C to 

0°C in the present climate, being warmer in the Oshima and Hiyama sub-region and 

Fig. 3.3. (a) Bias-corrected 10-year mean air temperature from the DDS data from December, 

January, and February (DJF) in the present climate and its difference with the temperatures 

predicted for the +2°C global warming climate scenario using the DDS data of the boundary 

conditions of (b) the high-resolution version of the Model for Interdisciplinary Research on 

Climate 3.2 (MIROC; Hasumi and Emori 2004), (c) the fifth-generation atmospheric GCM of the 

Max Planck Institute for Meteorology, Hamburg, Germany (ECHAM5/MPI; Roeckner et al. 

2003), and (d) version 3 of the Community Climate System Model of the U.S. National Center 

for Atmospheric Research (CCSM3/NCAR; Collins et al. 2006).  
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colder in the Rumoi and Soya, Kamikawa, and Okhotsk sub-regions (Figs. 3.1a and 3.3a). 

The global warming response showed a significant increase of 2–4°C in Hokkaido (Figs. 

3.3b–d). Using the DDS with the NCAR GCM, a greater temperature increase was 

predicted in the Rumoi and Soya, Okhotsk, Kushiro and Nemuro, and Tokachi sub-

regions (Fig. 3.1a), while using the DDS with the MIROC and MPI GCMs a more 

uniform increase was predicted across Hokkaido. The large increase in temperature with 

NCAR would be related to an ablation of sea ice, which made temperature warmer 

through ice-albedo feedback and stronger monsoonal northwesterly (Matsumura and Sato 

2011). Figure 3.4 shows the bias-corrected climatological precipitation (also a 10-year 

mean) for DJF and its response to the +2°C climate. In the present climate, high 

precipitation is observed along the Sea of Japan coast, while less precipitation is observed 

along the other coasts (Fig. 3.4a). The DDS results for the +2°C climate showed an 

increase in precipitation in entire Hokkaido (Figs. 3.4b–d) due to the Clausius-Clapeyron 

relation. Precipitation on the western side of the central mountains, anti-correlated with 

the storm track activity passing south of Japan (Nakamura 1992), significantly increased 

in the DDS using the MIROC and MPI boundaries, and increased uniformly in the DDS 

Fig. 3.4. (a) Bias-corrected 10-

year mean daily precipitation in 

DJF in the present climate and its 

difference with the precipitation 

predicted for the +2°C global 

warming climate scenario using 

the DDS of the boundary 

conditions of (b) MIROC, (c) 

MPI, and (d) NCAR. The 

hatched areas denote statistical 

significance at the 5% level.  
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using the NCAR boundary. This feature is consistent with the stronger storm track activity 

responding to the global warming with MIROC boundary (Inatsu and Kimoto 2005). The 

increase in Rumoi and Kamikawa and Kamikawa sub-regions would be partially related 

to the changes in monsoonal northwesterly with NCAR boundary (Matsumura and Sato 

2011).  

3.2.6. Diagnosis of Direct and Indirect Temperature Response 

This study separated the pure direct effect of a rising temperature baseline 

corresponding to a global warming level from other effects. Following Casola et al. 

(2009), a relative increase in SWE is expressed as the sum of the direct effect and the 

residual: 

 𝛿𝑄

𝑄
=
1

𝑄

𝑑𝑄

𝑑𝑇
𝛿𝑇 +

𝛿𝑄′

𝑄
, (3.2) 

where 𝑇 and 𝑄 are the climatological air temperature and seasonal-maximum SWE, 

respectively, and 𝛿𝑇 is the global mean temperature increase, which is 2 °C in this study. 

The residual 𝛿𝑄′ 𝑄⁄  is now called the indirect effect, and includes the uncertainty across 

the GCM boundaries and other effects, such as the change in precipitation that 

accompanies the rise in global mean temperature. Therefore, the indirect effect with 

MIROC and NCAR boundaries may be different with MPI boundary in some sub-regions 

responding to the stronger storm activity and winter monsoon (Subsection 3.2.5). In 

contrast, the direct effect includes only the pure direct effect of a rise in temperature 

baseline of 2 °C. The direct effect does not depend on the GCM projection, but rather 

only on the relative sensitivity of the seasonal-maximum SWE [ (1 𝑄⁄ )(𝑑𝑄 𝑑𝑇⁄ ) ] 

depending on sub-regions, which is always negative because the snow amount must 

decrease by the temperature increase. We obtained this relative sensitivity based on the 

scatter plot of point-by-point climatological air temperatures and seasonal-maximum 

SWEs in each sub-region under the present 1990s climate, which reflects the effect of 

topographic height to sensitivity. The indirect effect is then obtained by subtracting the 

direct effect from the total change (𝛿𝑄′ 𝑄⁄ ) estimated based on the comparison of DDS 

simulation between the present 1990s climate and the +2°C climate. 
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3.3. Results 

3.3.1. Model Evaluation 

The SNOWPACK model was first evaluated by a comparison of values of HS, 

SWE, and the thickness ratio of RG, MF, and HC on a late-winter date obtained by the 

observation-forced simulation with values obtained from AMeDAS atmospheric data 

(Subsection 3.2.4) and special snow-pit observations at 28 sites (Subsection 3.2.2). This 

evaluation revealed that the SNOWPACK model moderately reproduced HS and SWE on 

a late-winter date at the 28 snow-pit sites, with relative errors mostly less than 50% (Fig. 

3.5). With the metric of thickness ratio defined as the ratio of the time-integrated layer 

thickness of a particular snow grain type to the time-integrated thickness of the whole 

snowpack, RG was well reproduced in Hokkaido, while MF was underestimated and HC 

was overestimated at some sites in the Ishikari and Sorachi and Kamikawa sub-regions 

(Fig. 3.6). 

Next, the SNOWPACK model was evaluated by a comparison between the 

seasonal-maximum HS and the number of snow-covered days (SCDs), which is here 

defined as the total number of days with a daily maximum HS larger than 5 cm, obtained 

from the DDS-forced simulation under the present climate (Subsection 3.2.5), and the 

values obtained by routine AMeDAS observation at 108 stations in Hokkaido (Subsection 

3.2.3). Although biases without monthly mean air temperature and monthly mean 

precipitation probably remained even in the bias-corrected DDS data (Subsection 3.2.5), 

Fig. 3.5. A comparison between data from snow-pit observations and those from observation-

forced simulation. (a) Observed mean height of snow (HS), (b) mean error of the calculated HS, 

(c) observed mean snow water equivalent (SWE), and (d) mean error of the calculated SWE.  
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that is, strictly different data among the GCM boundaries, the DDS-forced simulation of 

all GCM boundaries commonly showed that the seasonal-maximum HS reached 150 cm 

along the coast of the Sea of Japan due to moisture advection by the winter monsoon 

(Figs. 3.4a, 3.7a–c), and the SCDs mostly ranged from 100–200 days due to low 

temperatures (Figs. 3.3a, 3.7d–f). It was noted that the seasonal-maximum SWE showed 

a similar distribution to the HS, however this parameter was not used in the model 

evaluation because seasonal-maximum SWE was not measured at AMeDAS stations 

(Figs. 3.7g–i). Comparison with the AMeDAS observations revealed only a few stations 

with an underestimation of HS of more than 50% (Figs. 3.7a–c), and a few stations with 

an overestimation of SCDs of more than 30 days (Figs. 3.7d–f).  

In the model evaluation, the results of the observation-forced simulation and 

the DDS-forced simulation under the present climate were separately compared with the 

observations. These two different comparisons were achieved using a Taylor diagram 

(Taylor 2001) displaying the spatial correlation, standard deviation, and root-mean-square 

error (RMSE) (Fig. 3.8). Note that the standard deviations and RMSEs of the simulations 

were normalized by the standard deviations of the observations. In the Taylor diagram, 

the performance of the model was generally judged by how close a simulation point was 

to the reference point cross-marked at (1, 0) (Fig. 3.8). According to the diagram, the 

climatology of seasonal-maximum HS was best reproduced by the SNOWPACK model, 

with a spatial correlation of 0.9 and an RMSE of 0.5 relative to the standard deviation of 

Fig. 3.6. Mean thickness ratio of 

(a) rounded grain (RG), (c) melt 

form (MF), and (e) hoar category 

(HC) obtained by snow-pit 

observation. b, d, and f: same as (a, 

c, e), but for the observation-forced 

simulation.  
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the observed data. The climatology of SCDs was also well reproduced with slightly worse 

scores than the case of seasonal-maximum HS. Whereas the snow amount at a specific 

time by the observation-forced simulation was worse than the climatology by the DDS-

forced simulation, HS was better reproduced than SWE focusing only on the observation-

forced simulation. This might indicate a better production of climatology of seasonal-

maximum SWE than that of seasonal-maximum HS because of linearity between SWE 

and HS (Shirakawa and Kameda 2019). 

3.3.2. Snowpack Response 

Figure 3.9 shows the response of the seasonal-maximum HS and SWE, and 

Fig. 3.7. The 10-year mean of: (a–c) seasonal-maximum HS and its error based on AMeDAS 

observation; (d–f) snow-covered days (SCDs) and its error from the AMeDAS observation; and 

(g–i) seasonal-maximum SWE obtained by the DDS-forced simulation of the boundary 

conditions of (a, d, g) MIROC, (b, e, h) MPI, and (c, f, i) NCAR, in the present climate. The errors 

in HS is normalized by the observation with the rightmost color scale.  
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SCDs, to the +2°C global warming climate scenario. The SNOWPACK simulation driven 

by the DDS data with any GCM boundary predicted significantly decreased HS (by 30%) 

and SWE (by 40%) in the Oshima and Hiyama, Shiribeshi, and Iburi and Hidaka sub-

regions, probably due to a significant increase in temperatures throughout the winter 

season (Fig. 3.3). In the Kushiro and Nemuro sub-region, the predicted HS and SWE also 

decrease, exceeding a 5% statistical significance level regardless of the choice of GCM 

boundaries, except for the decrease of HS for the MIROC and MPI boundaries, which 

were not statistically significant. Under the +2°C global warming, the number of SCDs 

in Hokkaido significantly declined, by about 30 days. This shortening indicates, for 

example, that the +2°C climate would result in only half as many SCDs in the Oshima 

and Hiyama and the Kushiro and Nemuro sub-regions compared with the present climate. 

Focusing on a variety of results across the GCM boundaries imposed on DDS, the 

uncertainties in HS and SWE were quite large in the Rumoi and Soya sub-region (Fig. 

3.1a); a significant decrease in HS (by 20%) was predicted only for MPI and an 

insignificant decrease in SWE was predicted only for NCAR. The snowpack response in 

terms of HS and SWE significantly depended on elevation; the HS and SWE were 

predicted to decrease slightly on the highest mountain located at the boundary between 

the Kamikawa and Tokachi sub-regions, while the HS and SWE were predicted to 

decrease by 30–40% in the Ishikari and Sorachi sub-region in a flat plain (Figs. 3.1 and 

Fig. 3.8. Taylor diagram showing the comparison 

between simulated and observed parameters. Black 

squares show the comparison between the HS and SWE 

values obtained by snow-pit observation and those 

obtained by observation-forced simulation. Colored 

circles show comparisons between the seasonal-

maximum HS (HSmax) and the snow-covered days 

(SCDs) obtained from AMeDAS observations and 

those obtained from the DDS-forced simulation in the 

present climate. Red, blue, and green denote the 

boundary conditions of MIROC, MPI, and NCAR, 

respectively. The standard deviations and the root mean 

square errors (RMSEs) of the simulations are 

normalized by the standard deviations of the 

observations. Concentric gray lines centered on the 

reference point (indicated by a cross mark) show 

RMSE. 
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3.9). This dependency on elevation is consistent with previous studies (e.g. Kawase et al. 

2013).  

Moreover, we investigated the decrease in the seasonal-maximum snow 

amount and its uncertainty among GCM boundaries using Eq. (3.2) for each sub-region 

(Fig. 3.1a). Figure 3.10 shows a scatter plot of air temperature in DJF approximately 

covering the snow accumulation period (Fig. 3.3a) versus the seasonal-maximum SWE 

(Figs. 3.7g–i) for all GCM boundaries for all grid points in each sub-region under the 

present climate. By linear fitting of the scattered data, the sensitivity of SWE to 

temperature [(1 𝑄⁄ )(𝑑𝑄 𝑑𝑇⁄ ) in Eq. (3.2)] was determined to range from −14% °C−1 to 

−2% °C−1 (Fig. 3.10), which is nearly consistent with previous studies focusing on 

Fig. 3.9. The difference in the 10-year mean of (a–c) seasonal-maximum HS, (d–f) SCDs, and (g–

i) seasonal-maximum SWE, between the +2°C global warming climate scenario and the present 

climate. The difference in HS and SWE is normalized by the present climate. The hatched areas 

show statistical significance at the 5% level. 
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Western North America (Casola et al. 2009) and Japanese main island, Honshu (Kawase 

et al. 2013). The sensitivity of SWE to temperature was statistically stable, with a narrow 

confidence interval of 95% in all sub-regions (not shown).  

By multiplying the 2°C increase in global mean temperature (𝛿𝑇 = 2) by the 

estimated temperature sensitivity of SWE [(1 𝑄⁄ )(𝑑𝑄 𝑑𝑇⁄ ); Fig. 3.10], it was found that 

the 2°C increase would directly decrease SWE by 4%–28%; this is referred to as the direct 

effect [Eq. (3.2); Fig. 3.11]. This direct effect was strongest in the Oshima and Hiyama, 

Kushiro and Nemuro, and Rumoi and Soya sub-regions (Figs. 3.11a, f, i). Additionally, 

the indirect effects (𝛿𝑄′ 𝑄⁄ ) were also calculated as by subtracting the direct effects from 

the total [Eq. (3.2); Fig. 3.11]. The indirect effect for SWE was larger than the direct effect 

in the Shiribeshi, Ishikari and Sorachi, and Okhotsk sub-regions for all the DDS-forced 

simulations, which means that the indirect effect provided the major contribution to the 

total decrease in SWE. In these sub-regions, the variation in the indirect effect among 

GCM boundaries was quite small. In contrast, the indirect effect of only the MPI boundary 

caused the major contribution to the total decrease in SWE, while the indirect effects of 

the other boundaries did not cause the major contribution in the Iburi and Hidaka, Tokachi, 

Fig. 3.10. Scatterplots of the 10-year mean of seasonal-maximum SWE versus the 10-year mean 

of air temperature in DJF under the present climate for all the DDS grid points in the (a) OH, SH, 

and IH sub-regions, (b) IS, TO, and KN sub-regions, and (c) OK, KA, and RS sub-regions. Colors 

as in Fig. 3.1a/Table 3.1. The best-fitting line is superimposed for each dataset, with its slope 

[(1 𝑄⁄ )(𝑑𝑄 𝑑𝑇⁄ ) in Eq. (3.2)] given in the legend.  
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Kamikawa, and Rumoi and Soya sub-regions. This was well consistent with what the MPI 

was a case of less obvious atmospheric response to the global warming such as changes 

in storm track and winter monsoon than the MIROC and NCAR (Fig. 3.4; Subsection 

3.2.5).  

The total decrease in seasonal-maximum SWE was split into that of the total 

amounts of precipitation (𝑃), runoff (𝑅), and evaporation and sublimation (𝐸) integrated 

Fig. 3.11. The difference between the +2°C global warming climate scenario and the present 

climate for seasonal-maximum SWE, precipitation, and runoff amount integrated during the 

accumulation period, averaged over each sub-region. The direct and indirect effects of the 

difference in seasonal-maximum SWE are also shown. Red, green, and blue colors indicate the 

boundaries of MIROC, MPI, and NCAR.  
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during the accumulation period, defined from an initial snow-covering date to the date of 

seasonal-maximum SWE, based on the modeled mass conservation expressed as 𝑄 =

𝑃 − 𝑅 − 𝐸. Because evaporation and sublimation were quite small (not shown), the sum 

of decreases in the precipitation and runoff was nearly equal to the total decrease in SWE, 

that is 𝛿𝑄 ≈ 𝛿𝑃 − 𝛿𝑅. These integrated amounts are controlled by the air temperature 

(Fig. 3.3a), the daily amount of precipitation (Fig. 3.4a), and shortening of snowfall 

season which in turn is SCDs (Figs. 3.7d–f). Figure 3.11 shows that the change in the 

integrated precipitation was the main contributor to the total SWE decrease in most of the 

sub-regions. In Oshima and Hiyama, Tokachi, Kushiro and Nemuro, and Okhotsk sub-

regions where the daily amount of precipitation would not significantly change due to 

uncertain atmospheric changes (Fig. 3.4), the decrease in the integrated precipitation was 

much large. This feature was predicted even in the other sub-regions where the daily 

amount of precipitation would significantly increase (Figs. 3.4, 3.11), though the decrease 

in the integrated precipitation would be less (Fig. 3.11). Therefore, the decrease in the 

integrated precipitation here is mainly attributed to the decrease in the number of SCDs 

(Fig. 3.9). However, the increase in runoff is predicted to contribute as much to the total 

SWE decrease as the precipitation decrease in the Ishikari and Sorachi, Kamikawa, and 

Rumoi and Soya sub-regions (Figs. 3.11d, h, i), even though the runoff should be 

predicted to decrease following the decline in the number of SCDs if the daily amount of 

runoff did not increase. The variations of changes in the integrated precipitation and 

runoff amounts across GCMs are also controlled by that in the air temperature, daily 

amount of precipitation, and SCDs. Then, the decrease in the integrated precipitation 

would be much large with MPI in Iburi and Hidaka sub-region, where was a case of less 

obvious atmospheric response to the global warming such as changes in storm track and 

winter monsoon (Fig. 3.4; Subsection 3.2.5). This feature was recognized in the other 

sub-regions, and the decrease in the integrated precipitation would be mostly uncertain 

(Fig. 3.11). On the other hand, the increase in runoff amount integrated over the 

accumulation period would be fairly certain in most sub-regions (Fig. 3.11). Since the 

decrease in SCDs was not uncertain (Figs. 3.9d–f), it is thought that the uncertainty in the 

seasonal-maximum SWE decrease is mainly attributed to the uncertainty in the daily 

precipitation change related to the atmospheric response. 



50 

 

Figures 3.12 and 3.13 show the response to global warming of the total 

thickness ratio of PP, RG, MF, and HC for whole winter seasons. Considering the bias in 

the SNOWPACK model (Subsection 3.3.1), we only showed the climatological thickness 

ratio averaged over all DDS results weighted by the time-integrated thickness of the 

whole snowpack for each DDS result. The ratio of PP is predicted to increase in the 

Oshima and Hiyama and Ishikari and Sorachi sub-regions in the +2°C climate scenario 

relative to the present climate (Figs. 3.12a, b), even though the temperature is predicted 

to increase (Fig. 3.3). While the ratio of RG is predicted to tend to decrease (Figs. 3.12c, 

d), that of MF is predicted to tend to increase. MF is predicted to occupy more than half 

of the snow amount in the Shiribeshi, Iburi and Hidaka, and Kushiro and Nemuro sub-

regions in the +2°C climate scenario (Figs. 3.13a, b). In contrast, the ratio of MF is 

predicted to decrease by 30–40% in the Oshima and Hiyama sub-region, where MF is 

predicted to exceed that of the present climate by 50%. This indicates that the density of 

the total snow cover will be lower, because PP is lighter than MF. The HC-dominated area 

is predicted to almost completely vanish in the +2°C climate scenario, while HC was the 

dominant snow grain type in the Okhotsk and Tokachi sub-regions under the present 

climate due to the low temperature and low precipitation (Figs. 3.13c, d). The decrease in 

the HC-dominated area is consistent with a rough statistical estimation made in previous 

Fig. 3.12. (a, b) The total 

thickness ratio of precipitation 

particles (PP) under (a) the 

present climate and (b) the +2°C 

global warming climate 

scenario predicted by the DDS-

forced simulation. (c, d) Same 

as (a, b), but for RG. 
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studies (Inoue and Yokoyama 2003), in spite of the moderate model bias in MF and HC 

(Subsection 3.3.1). 

3.4. Discussion 

3.4.1. Model Evaluation 

This study evaluated the SNOWPACK model by comparing the results of the 

observation-forced simulation with the snow-pit observations. There is a potential 

concern about the representativeness of snow-pit sites, especially in mountainous regions 

in which the snowpack state is not always the same as the dominant state in the 

surrounding area. First, observation sites were selected, with all efforts made to exclude 

non-standard sites such as those with buildings nearby, those on top of a hill, those at the 

bottom of a valley, those in the center of a town, or those with restricted access. The sites 

were generally located in homogeneous areas, without any buildings nearby. A pair of 

sites, #18 and #20, which are located near one another in a mountainous region (Fig. 3.1c), 

and for which observations were made at almost at the same times (Fig. 3.2), showed very 

similar observed snowpack states (Figs. 3.5a, c, 3.6a, c, e). Additionally, almost 

simultaneous observations at sites #11 and #12 (Figs. 3.1c, 3.2) also showed a similar 

snowpack states (Figs. 3.5a, c, 3.6a, c, e). These results support the supposition that the 

snow-pit observations well reflected the typical snowpack state around the sites. 

Fig. 3.13. (a, b) The thickness 

ratio of MF under (a) the present 

climate and (b) the +2°C global 

warming climate scenario 

predicted by the DDS-forced 

simulation. (c, d) Same as (a, b), 

but for HC. The gray contour 

indicates a ratio of 50%. 
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In the observation-forced simulation, the forcing data was assumed to be 

unbiased; however, MF was underestimated and HC was overestimated at some sites in 

the Ishikari and Sorachi and Kamikawa sub-regions (Figs. 3.6a–d). In addition, the 

snowpack amount at few sites, #5, #21, #23, and #27 were largely underestimated by over 

50% (Fig. 3.5). There are two possibilities relating to forcing data that might lead to a 

bias in the snowpack simulation. One possibility is the lack of observation of some 

variables at AMeDAS sites, which are complemented with statistical estimation or 

replaced with analytical data from the nearest grid point (Subsection 3.2.4). In particular, 

the precipitation remained biased at some sites with no HS observation. However, the 

error in HS, SWE, and snow grain type has no significant dependence on the extent of the 

lack of observational variables (Figs. 3.5, 3.6). The other possibility for the error is 

distance between AMeDAS stations and snow-pit sites (Fig. 3.1c). However, the results 

suggest that the systematic error was insensitive to this distance (Figs. 3.5, 3.6). Hence, 

we consider that the error in the observation-forced simulation is not basically caused by 

meteorological input, though imperfect quality control on precipitation data was still 

concerned at #23 and #27, where precipitation frequently accompanied strong wind over 

10 m/s (not shown). 

We furthermore discuss the bias in snow grain types of the SNOWPACK model 

that successfully reproduced the SWE. The tendency to overestimate HC is possibly due 

to an unreasonable growth rate of sphericity and/or an overestimation of the snowpack 

temperature gradient (Bartelt and Lehning 2002; Hirashima et al. 2004). The 

unreasonable growth rate of sphericity would only lead to a bias in HC because the growth 

rate is a snowpack microstructural parameter of metamorphosis efficiency (Lehning et al. 

2002b). The overestimation of the snowpack temperature gradient would also lead to a 

bias in HS because the temperature gradient might affect the snowpack settlement (Bartelt 

and Lehning 2002). However, the DDS-forced simulation did not show a bias in the 

seasonal-maximum HS in the present climate (Fig. 3.8). Therefore, we consider that the 

unreasonable growth rate might bias HC, and the thickness ratio of the other grain types 

was biased to keep the sum of ratios unity. If one desired to improve the estimate of HC 

amount in the SNOWPACK calculation, it might be possible to set a different value of 

the growth rate of sphericity for each sub-region. However, we have still given this 
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parameter uniformly over Hokkaido to maintain consistency in the physics of snow 

metamorphosis. 

In the DDS-forced simulation, the SNOWPACK model was forced by the 

dynamically downscaled results from the GCMs of MIROC and MPI, and the GCM of 

NCAR with a single RCM (Kuno and Inatsu 2014). These GCMs were selected by Kuno 

and Inatsu (2014) because the models reasonably reproduced atmospheric circulation 

around Japan under the present climate. We corrected the systematic DDS bias in 

temperature and precipitation, which is quite important for snowpack calculation (López-

Moreno et al. 2013) (Subsection 3.2.5). If the forcing data had biases in other variables, 

such as radiation, the data should have different features among the GCM boundaries. 

However, the results of the DDS-forced simulation were not largely different between the 

different GCM boundaries (Fig. 3.7). 

Comparing the results between the observation-forced and DDS-forced 

simulation, snowpack amount at a specific date and time was worse reproduced than the 

climatology of that (Fig. 3.8), including large error in SWE at #23 and #27 snow-pit sites. 

However, we focused on the climatology of snowpack over Hokkaido in this study, so 

that the best reproduction of climatology of seasonal-maximum HS (Fig. 3.8) strongly 

supported an ability that SNOWPACK could be applied to the climate modeling. 

Fortunately, in the observation-forced simulation, SWE had been better reproduced than 

HS, the best reproduction in climatological time-scale. We had also discarded sites #23 

and 27 in tuning SNOWPACK model because it is unreasonable to tune the model site by 

site considering that the model must follow the physical laws. 

This study performed the snowpack calculation grid point by grid point, 

assuming that a single grid cell is sufficient in an open terrain and that a grid point is 

representative of the surrounding environment (Subsection 3.3.2). However, a realistic 

grid cell contains more complex terrain and varied vegetation. For example, snow is 

largely redistributed in mountainous regions, and then the thinner snowpack rapidly 

diminishes in the snow melting season. This makes it difficult to compare snowpack 

observations with our calculations. A combination of higher-resolution atmospheric 

forcing data and a physical snowpack and snow transport model (e.g. Lehning et al. 2006) 

may resolve the problem, albeit with greatly increased computational cost. 
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3.4.2. Snowpack Response 

We investigated the decrease in the seasonal-maximum SWE based on the 

climate sensitivity to air temperature (Figs. 3.10, 3.11). Then, the direct effect would be 

the major contributor to the total decrease, so that the regional variation of sensitivity of 

seasonal-maximum SWE to climatology of air temperature would be the major causality 

to the decrease in SWE depending on sub-regions (Fig. 3.11). One reason of the regional 

variation of sensitivity was air temperature during the accumulation period when 

precipitation occurred; the sensitivity would be high if the precipitation occurred around 

in the freezing point of air temperature. Another reason was related to a temperature 

profile of inner snowpack. If the snowpack was isothermal condition in vertical, 

snowpack would immediately start to melt above the freezing point. Since warm 

condition in air temperature often coincided with strong incoming shortwave radiation, 

the radiation furthermore promoted the snowpack melting (López-Moreno et al. 2013). 

The isothermal condition is roughly diagnosed by the thickness ratio of MF (Lehning et 

al. 2002b). In Oshima and Hiyama sub-region (Fig. 3.1a), where MF were dominant (Fig. 

3.13a) and much snowfall was given around in the freezing point (not shown), therefore, 

the sensitivity to air temperature was much high (Fig. 3.10a). On the other hand, in 

Okhotsk sub-region (Fig. 3.1a), where MF were merely formed (Fig. 3.13a) and much 

snowfall was produced in enough cold air temperature (not shown), the sensitivity was 

much low (Fig. 3.10c). 

The estimate at the fixed 2°C warming can be extended to any future time in 

any scenario, if the analysis is limited to the direct effect, with the use of the sensitivity 

of SWE to air temperature (Fig. 3.10). For example, the representative concentration 

pathway (RCP; Moss et al. 2010) 8.5 scenario with the new-generation CMIP5 models 

provided a global air temperature increase of 2°C in the 2050s and of 4°C in the 2100s 

relative to the 1990s temperature (IPCC 2014). The direct effect would then be double 

(1 𝑄⁄ )(𝑑𝑄 𝑑𝑇⁄ ) in the 2050s and quadruple (1 𝑄⁄ )(𝑑𝑄 𝑑𝑇⁄ ) in the 2100s [Eq. (3.2); 

Fig. 3.10]. In the Oshima and Hiyama sub-region, the direct effect is predicted to lead to 

a decrease in SWE of 28% in the 2050s (Fig. 3.10a). Similarly, the RCP2.6 scenario 

saturated the temperature increase at 1°C after the 2050s (IPCC 2014). The direct effect 

would explain the SWE decrease saturating at a value of (1 𝑄⁄ )(𝑑𝑄 𝑑𝑇⁄ ). Similarly, the 
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uncertainty in the SWE decrease due to the direct effect would be also estimated as 2%–

14% in the 2050s under the RCP8.5 scenario among 39 GCMs, where the global mean 

temperature increases ranged between 1.5°C and 2.5°C (IPCC 2014). However, we could 

not estimate the total decrease in seasonal-maximum SWE due to the large uncertainty in 

the indirect effect. A large number of GCMs would be needed to evaluate this uncertainty 

accurately, however this study considered only three GCMs. 

As a similar context of our interpretation on the decrease in SWE based on the 

sensitivity to air temperature, the shortening number of SCDs predicted in this study was 

interestingly reviewed by Hantel et al. (2000), who explained SCD normalized by a 

reference SCD based on a sigmoid model. In their model, the sensitivity of the SCD to 

temperature was zero in a fully snow-covered or non-snow-covered case, whereas it was 

a negative maximum in a case where the normalized SCDs is 50%. Our analysis showed 

that SCDs in the Oshima and Hiyama and Kushiro and Nemuro sub-regions would 

significantly decrease by about 50% under the +2°C global warming climate scenario 

regardless of the choice of GCM boundaries (Figs. 3.7g–i, 3.9g–i). This actually 

corresponded to the negative maximum sensitivity of SCDs, so that the uncertainty of 

decrease was expected to be strongly affected by that of increase in air temperature. 

However, the uncertainty would not be large (Figs. 3.9g–i) due to small uncertainty of 

increase in air temperature (Figs. 3.3b–d). On the other hand, in Kushiro and Nemuro 

where the 50% decrease in SCDs (Figs. 3.9d–f) and large uncertainty of increase in air 

temperature (Fig. 3.3) were also estimated, the uncertainty of decrease in SCDs would be 

large due to the strongest sensitivity of SCDs. Interestingly, in Rumoi and Soya where the 

large uncertainty of increase in air temperature was estimated as well as Kushiro and 

Nemuro, the uncertainty of decrease in SCDs was much small because the decrease in 

SCDs was not sensitive to air temperature due to small decrease in SCDs. 

3.5. Conclusion 

This chapter have performed two experiments: observation-forced simulation 

for 28 sites in Hokkaido in the winters of 2013/14 to 2016/17, and DDS-forced simulation 

at all the grid points in Hokkaido for 10 winters of the present climate (1990–1999) and 

for a +2°C global warming climate scenario relative to the present level using three GCM 

boundaries selected from CMIP3 models with the A1b scenario. The comparison of HS, 
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SWE, and the ratios of MF, RG, and HC obtained by the observation-forced simulation 

and those obtained from the special snow-pit observations were used to evaluate the 

snowpack model, even with the moderate bias that the model underestimated the MF and 

overestimated the HC in the Ishikari and Sorachi sub-region (Figs. 3.5, 3.6). Moreover, 

SCDs and seasonal-maximum HS were evaluated by comparing the results of the DDS-

forced simulation with the operational observations of HS at the nearest grid points to the 

AMeDAS stations in the present climate (Fig. 3.7). The snowpack response to global 

warming was estimated by comparing the DDS-forced simulation between the present 

climate and the +2°C global warming climate scenario. The results suggest that the 

number of SCDs would robustly decrease in Hokkaido by more than 30 days, including 

the largest decrease of Hokkaido in Oshima and Hiyama and Kushiro and Nemuro sub-

regions (Fig. 3.9). Additionally, the results suggest that the seasonal-maximum HS and 

SWE would also decrease by 30%–40% in the Oshima and Hiyama, Iburi and Hiyama, 

and Kushiro and Nemuro sub-regions, mainly due to a decrease in the precipitation 

amount integrated in the shortening snow accumulation period (Figs. 3.9, 3.11). The 

decrease in snowfall was uncertain in the Rumoi and Soya, Okhotsk, Kushiro and Nemuro, 

and Tokachi sub-regions, due to uncertainty in the response of synoptic-scale phenomena. 

Additionally, the thickness ratios of PP and MF were predicted to increase by 20% and a 

half of snowpack would be MF in larger area while those of RG and HC were predicted 

to decrease less than 50% all over Hokkaido. (Figs. 3.12, 3.13). However, the estimations 

in Chapters 2 and 3 do not take precipitation particle type and degree of rimming, 

determining an initial density of snowpack layer, into account (Chapter 1). In the next 

chapter, a new analysis method for precipitation particle size-velocity data is developed.  
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Chapter 4. Development of Analysis Technique for PSVD Data 

4.1. Introduction 

The precipitation particle size-distribution (PSD) is already well known for the 

liquid phase (Marshall and Palmer 1948) and for the solid phase (Gunn and Marshall 

1958). The number concentration rate of precipitation particles, 𝑁d (mm-1 m-3), follows 

a parametric Gamma distribution on the diameter 𝐷 (mm) as  

 𝑁d(𝐷) = 𝑁0𝐷
𝜇 exp(−𝜆𝐷) , (4.1) 

where 𝑁0 (mm-1 m-3), 𝜇, and 𝜆 (mm-1) denote the intercept parameter, the distribution 

shape parameter, and the slope parameter, respectively. A long-lasting problem is how 

observed samplings of precipitation particle size are fit to a parametric distribution. Any 

observation instruments available at present tended to miss small-size particles for their 

insufficient sensitivity and resolution, unless disdrometers like Meteorological Particle 

Sensor (Baumgardner et al. 2002) are combined to cover small sizes; this is hereafter 

referred to as truncation problem (Handwerker and Straub 2011). Moreover large-size 

particles were rarely detected, which often brings us a kind of sampling problems. The 

moment method has been widely used for the fitting to size distribution (e.g. 

Vivekanandan et al. 2004; Smith and Kliche 2005; Yuter et al. 2006; Brandes et al. 2007; 

Kliche et al. 2008; Cao and Zhang 2009; Smith et al. 2009; Handwerker and Straub 2011), 

but a shortage of sampling length biases the estimate of parameters (Smith and Kliche 

2005). The maximum likelihood and L-moment method can provide an unbiased estimate, 

but the truncation problem destabilizes the statistics (Kliche et al. 2008; Cao and Zhang 

2009). Smith et al. (2009) showed that the above methods were difficult to fit limited 

sampling data to a Gamma distribution of a small shape parameter. Recently, Yano et al. 

(2018) relieved this problem in the fitting to a Gamma distribution solely on the basis of 

bulk quantities of PSD by applying the maximum entropy principle (Yano et al. 2016). 

Another problem comes up when fitting the mixture of multiple particle types in a single 

sampling (Brandes et al. 2007). For example, sampling data possibly contain graupels and 

aggregates in a single time-interval (Yuter et al. 2006) that should be enough long to avoid 

the sampling problem (Smith and Kliche 2005). 

On the other hand, the particle terminal velocity 𝑉 (m s-1) is assumed to be 

proportional to the power of the particle’s diameter as 
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 𝑉(𝐷) = 𝑎v𝐷
𝑏v, (4.2) 

where 𝑎v and 𝑏v depend on particle phase, shape, and degree of riming (Atlas et al. 

1973; Locatelli and Hobbs 1974). It is remarked that another functional form may be 

possible for liquid particles (Atlas et al. 1973) but the simpler form as Eq.(4.2) to avoid a 

superfluous parameter throughout the paper. Many publications have been devoted to find 

an optimal fitting curve for particle diameter and velocity, on the basis of observed 

sampling data with optical or video disdrometers such as Particle Size Velocity 

(PARSIVEL; Löffler-Mang and Joss 2000; Battaglia et al. 2010; Angulo-Martínez et al. 

2018), Laser Precipitation Monitor (LPM; Angulo-Martínez et al. 2018), and Two-

Dimensional Video Disdrometer (2DVD; Kruger and Krajewski 2002). Recently, 

Molthan and Colle (2012) compared on-site observation with model outputs in every 

separated cell on the diameter-velocity quarter plane, instead of the direct comparison of 

velocity-diameter relationship or probability density function (PDF) on the plane. 

Bernauer et al. (2016) classified snow particles observed by 2DVD into three ranges of 

riming degree and four crystal types. The above fitting to a power law like Eq. (4.2) is 

however quite difficult in a case of mixed particle types because the least-square method 

conventionally used assumed a single type of precipitation particles. Enough a short time-

interval, like 1 minute (Bernauer et al. 2016), could partly, not perfectly, avoid the mixing, 

around the period when two independent distributions are clearly transited, by not 

sampling data from both the distributions, but would cause the sampling problem. A 

fitting to mass flux, a production of size-velocity and size-mass relations, partially 

resolved this problem (Ishizaka et al. 2013), but it is still difficult in a case of a clear 

bimodal distribution due to co-existence of liquid and solid phases (Brandes et al. 2007; 

Yuter et al. 2006) or co-existence of graupels and aggregates. Another problem in the 

fitting to size-velocity relation is a sampling error in small-size particles with an 

unrealistically high speed. This was often found in the output of a single-sensor type 

disdrometers such as PARSIVEL and LPM (Angulo-Martínez et al. 2018), when particles 

passed through the edge of the sensitivity frame (Minda et al. 2016). This was also found 

in a double line-sensor type disdrometer of 2DVD for a failure of matching (Huang et al. 

2010; Bernauer et al. 2015). One inevitably excluded the part of sampling data out of the 

velocity range between 0.5 m s-1 and 5 m s-1 (Huang et al. 2010) and excluded data of 
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small size less than 1 mm (Yuter et al. 2006; Bernauer et al. 2015, 2016), though the 

method filtering drops outside the ±40% of the theoretical fall velocity may be also 

applicable if all particles are guaranteed to be liquid (Kruger and Krajewski 2002). This 

treatment deteriorated the truncation and sampling problems in the fitting to a size 

distribution, however. 

In this chapter, a new method aiming to relieve the above problems of the 

mixing and the erroneous data often observed by disdrometers are developed by fitting 

particle size and velocity distribution (PSVD) data including multiple precipitation 

particle types and phases to mixed joint PDF on the diameter-velocity quarter plane; We 

conveniently utilized the Gamma and normal distributions and the velocity-diameter 

relationship to evaluate the PDF in the comparison with a conventional method and well-

known velocity-diameter relationships previously proposed. The fitting problem can be 

then reduced to a numerical search of an optimal set of parameters of the mixed joint PDF 

from the PSVD data. We here develop the method with an aid of the expectation-

maximization (EM) algorithm (Dempster et al. 1977). A performance of the new method 

is evaluated by a PDF retrieval from test data randomly sampled from a given population 

PDF. We next emphasize the strength of the new method to discern the co-existence of 

precipitation particle types and the sampling error in a subset of 2DVD data. This chapter 

is organized as follows. Section 4.2 describes the observed 2DVD data, and Section 4.3 

elucidates the proposed method including a nutshell of the EM algorithm. A design of 

performance test to check the accuracy of proposed method is also provided. A result of 

performance test is shown in Section 4.4. Moreover, we detect a bundle of erroneous data 

by applying the method to sample datasets obtained by 2DVD measurement. Section 4.5 

discusses the limitation of the new method and Section 4.6 concludes this chapter. 

4.2. Observation Data 

We used PSVD data obtained by a 2DVD installed at a site of Institute of Low 

Temperature Science, Hokkaido University, Sapporo, Japan located at 43.083°N, 

141.339°E (Nagumo and Fujiyoshi 2015; Campbell et al. 2018). The 2DVD (Kruger and 

Krajewski 2002), widely used in the scientific community (Huang et al. 2010; Bernauer 

et al. 2016, 2015), measures precipitation particle diameter and velocity by matching two 

images captured by double line sensors installed at an upper and a lower position of the 
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instrument. Image processing algorithm originally implemented in the 2DVD sensor 

matched the two particle images. As a preprocessing, we discarded erroneous sampling 

particles with their velocity larger than 15 m s-1, much larger than the terminal velocity 

of rain droplets (Atlas et al. 1973). Surface air temperature and precipitation records by 

Sapporo Meteorological Observatory of the Japan Meteorological Agency (JMA) located 

at 43.0605°N, 141.329°E, only 2.6 km away from the 2DVD, are also used (JMA 

2019a,b). 

4.3. Methods 

4.3.1. Mixed Joint PDF 

The PDF of particle diameter was here assumed to be the Gamma distribution, a 

normalized version of Eq. (4.1): 

 
P(𝐷|𝜇, 𝜆) =

𝜆𝜇+1𝐷𝜇

Γ(𝜇 + 1)
exp(−𝜆𝐷) , (4.3) 

where Γ  is the Gamma function. Here P(𝐷|𝜇, 𝜆)  indicates conditional probability 

density of 𝐷  under parameters of 𝜇  and 𝜆 . Assuming that the particle’s terminal 

velocity follows the normal distribution with its mean being Eq. (4.2), the PDF is 

 
P(𝑉|𝐷, 𝑎v, 𝑏v, 𝜎

2) =
1

√2𝜋𝜎2
exp [−

(𝑉 − 𝑎v𝐷
𝑏v)2

2𝜎2
] , (4.4) 

where 𝜎2  is variance of velocity. This assumption was supported by theoretical 

experiments (Schmitt et al. 2019) and observations (Sasyo and Matsuo 1980). 

Multiplying Eqs. (4.3) and (4.4), a joint PDF of particle diameter and velocity is 

 P(𝑉, 𝐷|𝑎v, 𝑏v, 𝜎
2, 𝜇, 𝜆)

=
𝜆𝜇+1𝐷𝜇

√2𝜋𝜎2Γ(𝜇 + 1)
exp [−

(𝑉 − 𝑎v𝐷
𝑏v)2

2𝜎2
− 𝜆𝐷] . 

(4.5) 

Linearly combining independent joint PDFs, a mixed joint PDF with 𝐾 elements was 

written as 

 

P(𝑉, 𝐷|𝜽) = ∑𝜔𝑘P(𝑉, 𝐷|𝑎v𝑘, 𝑏v𝑘, 𝜎𝑘
2, 𝜇𝑘, 𝜆𝑘)

𝐾

𝑘=1

, (4.6) 

where 𝜔𝑘 is a mixing fraction of the 𝑘-th PDF element and should satisfy  

∑ 𝜔𝑘
𝐾
𝑘=1 = 1. 

Now we introduced the vector 𝜽 whose components were conditional parameters as  
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𝜽 = (𝜔1… 𝜔𝐾 𝑎v1…𝑎1𝐾 𝑏v1…𝑏v𝐾 𝜎1
2… 𝜎𝐾

2 𝜇1…𝜇𝐾 𝜆1… 𝜆𝐾)
𝑻 . 

Many possible PDFs can be constructed by sweeping a set of parameters 𝜽 within a 

realistic range. Given a sampling data, we may search an optimal parameter set 𝜽 to 

estimate the PDF to be fit to the data. The distribution of particle number concentration 

rate within diameter-velocity quarter plane, 𝑁vd (m-3 s m-1 mm-1), more suitable unit for 

the traditional definition in meteorology, was easily obtained by multiplying the number 

concentration of total precipitation particles 𝑁tot (m-3): 

 𝑁vd(𝑉, 𝐷) = 𝑁totP(𝑉, 𝐷|𝜽). (4.7) 

It should be noted that the PDF [Eq. (4.6)] and the number concentration rate [Eq. (4.7)] 

explained diameter-velocity data by a disdrometer directly observing particle number 

concentration (e.g. Muramoto and Shiina 1989). 

The joint PDF following diameter-velocity data by disdrometers observing 

precipitation particles passing a finite area such as 2DVD, PARSIVEL, and LPM is 

described as  

 PS(𝑉, 𝐷|𝑎v, 𝑏v, 𝜎
2, 𝜇, 𝜆)

=
𝜆𝜇+𝑏v+1𝑉𝐷𝜇

𝑎v√2𝜋𝜎2Γ(𝜇 + 𝑏v + 1)
exp [−

(𝑉 − 𝑎v𝐷
𝑏v)2

2𝜎2
− 𝜆𝐷] . 

(4.8) 

Integrating Eq. (4.8) over 𝑉, the Gamma distribution [Eq. (4.3)] can be retrieved as  

 
PS(𝐷|𝑎v, 𝑏v, 𝜎

2, 𝜇, 𝜆) = ∫ PS(𝑉, 𝐷|𝑎v, 𝑏v, 𝜎
2, 𝜇, 𝜆)

∞

−∞

𝑑𝑉

= P(𝐷|𝜇 + 𝑏v, 𝜆) 

(4.9) 

as in Adirosi et al. (2016), who showed the shape parameter 𝜇 was biased with particles’ 

terminal fall-velocity. Similarly, the mean fall velocity for the joint PDF of Eq. (4.8), 𝑉S, 

is also biased from Eq. (4.2): 

 

𝑉S(𝐷) =
∫ 𝑉PS(𝑉, 𝐷|𝑎v, 𝑏v, 𝜎

2, 𝜇, 𝜆)
∞

−∞
𝑑𝑉

∫ PS(𝑉, 𝐷|𝑎v, 𝑏v, 𝜎2, 𝜇, 𝜆)
∞

−∞
𝑑𝑉

=
𝜎2

𝑎v𝐷𝑏v
+ 𝑎v𝐷

𝑏v. (4.10) 

The mixed joint PDF based on Eq. (4.8) is  

 

PS(𝑉, 𝐷|𝜽) = ∑𝜔𝑘PS(𝑉, 𝐷|𝑎v𝑘, 𝑏v𝑘, 𝜎𝑘
2, 𝜇𝑘, 𝜆𝑘)

𝐾

𝑘=1

. (4.11) 

The distribution of particle number concentration 𝑁s,vd(𝑉, 𝐷) = 𝑁s,totP(𝑉, 𝐷|𝜽), and 
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𝑁S,tot =

𝐿𝜆𝑏vΓ(𝜇 + 1)

𝐴Δ𝑡𝑎vΓ(𝜇 + 𝑏v + 1)
, (4.12) 

where 𝐴, Δ𝑡, and 𝐿 are respectively an observing area (m2), the sampling time (s), and 

the number of total particles observed by a disdrometer. See 0 for derivations of Eqs. (4.8) 

and (4.12). 

The comparison between Eqs. (4.5) and (4.8) clarifies that the disdrometers of 

2DVD, PARSIVEL, and LPM bias the PDF toward large diameter (Adirosi et al. 2016) 

and higher fall-velocity. Because we could not formulate the EM algorithm with this 

biased form, however, the PDF form of Eq. (4.5) was applied to the observed sampling 

data by 2DVD. 

4.3.2. EM Algorithm 

The EM algorithm (Dempster et al. 1977) was used to search an optimal 

parameter set of Eq. (4.6). First, we posed a kernel PDF from the 𝑙-th particle for the 𝑘-

th PDF element as P(𝑉𝑙, 𝐷𝑙|𝑎v𝑘, 𝑏v𝑘, 𝜎𝑘
2, 𝜇𝑘, 𝜆𝑘). The log-likelihood was then constructed 

by summing the logarithm of this kernel PDFs for all of 𝐿 particles in the sample: 

 

lnΦ(𝑽,𝑫|𝜽) =∑ln [∑𝜔𝑘P(𝑉𝑙, 𝐷𝑙|𝑎v𝑘, 𝑏v𝑘, 𝜎𝑘
2, 𝜇𝑘, 𝜆𝑘)

𝐾

𝑘=1

]

𝐿

𝑙=1

. (4.13) 

The EM algorithm finds a parameter set of 𝜽 that satisfies 

 ∂

𝜕𝜽
lnΦ(𝑽,𝑫|𝜽) = 0 (4.14) 

to maximize the log-likelihood [Eq. (4.13)] under the constraint of  

∑ 𝜔𝑘
𝐾
𝑘=1 = 1. 

Equation (4.13) was reduced to the iteration relations below: 

 

𝑎v𝑘 =
∑ 𝛾𝑙𝑘𝑉𝑙𝐷𝑙

𝑏v𝑘𝐿
𝑙=1

∑ 𝛾𝑙𝑘𝐷𝑙
2𝑏v𝑘𝐿

𝑙=1

, (4.15) 

 
𝜕

𝜕𝑏v𝑘
lnΦ(𝑽,𝑫|𝜽) =

𝑎v𝑘

𝜎𝑘
2 ∑𝛾𝑙𝑘

𝐿

𝑙=1

ln(𝐷𝑙)(𝑉𝑙 − 𝑎v𝑘𝐷𝑙
𝑏v𝑘)𝐷𝑙

𝑏v𝑘 = 0, (4.16) 

 

𝜎𝑘
2 =

∑ 𝛾𝑙𝑘(𝑉𝑙 − 𝑎v𝑘𝐷𝑙
𝑏v𝑘)

2
𝐿
𝑙=1

∑ 𝛾𝑙𝑘
𝐿
𝑙=1

, (4.17) 
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 ln(𝜇𝑘 + 1) −Ψ(𝜇𝑘 + 1) = ln(�̅�𝑘) − ln(𝐷)̅̅ ̅̅ ̅̅ ̅
𝑘  , (4.18) 

 
𝜆𝑘 =

𝜇𝑘 + 1

�̅�𝑘
,  (4.19) 

and 

 
𝜔𝑘 =

∑ 𝛾𝑙𝑘
𝐿
𝑙=1

𝐿
, (4.20) 

where Ψ(𝑥) =
𝑑

𝑑𝑥
ln(Γ(𝑥)) is the Digamma function, the responsibility fraction 𝛾𝑙𝑘 

ranging 0–1 as 

 
𝛾𝑙𝑘 =

𝜔𝑘P(𝑉𝑙, 𝐷𝑙|𝑎v𝑘, 𝑏v𝑘, 𝜎𝑘
2, 𝜇𝑘, 𝜆𝑘)

∑ 𝜔𝑗P(𝑉𝑙, 𝐷𝑙|𝑎v𝑗 , 𝑏v𝑗, 𝜎𝑗
2, 𝜇𝑗, 𝜆𝑗)

𝐾
𝑗=1

 (4.21) 

represents how much the 𝑙 -th particle explains the 𝑘-th PDF element, and �̅�𝑘  and 

ln(𝐷)̅̅ ̅̅ ̅̅ ̅
𝑘 respectively represent the mean diameter [= (∑ 𝛾𝑙𝑘𝐷𝑙

𝐿
𝑙=1 ) (∑ 𝛾𝑙𝑘

𝐿
𝑙=1 )⁄ ] and the 

mean log-diameter [= (∑ 𝛾𝑙𝑘 ln(𝐷𝑙)
𝐿
𝑙=1 ) (∑ 𝛾𝑙𝑘

𝐿
𝑙=1 )⁄ ] corresponding to the 𝑘 -th PDF 

element. We numerically solved Eq. (4.16) by the secant method (Householder 1970) and 

solved Eq. (4.18) by iteration (Kliche et al. 2008): 

 
𝜇𝑘 + 1:= (𝜇𝑘 + 1)

ln(𝜇𝑘 + 1) − Ψ(𝜇𝑘 + 1)

ln(�̅�𝑘) − ln(𝐷)̅̅ ̅̅ ̅̅ ̅
𝑘

. (4.22) 

It should be noted that Eqs. (4.18) and (4.19) with 𝐾 = 1 are completely same form as 

the equations of the conventional maximum-likelihood method in estimating particle size 

distribution (Kliche et al. 2008), so that the EM algorithm with 𝐾 = 1 estimates 𝜇 and 

𝜆 as comparably as the maximum-likelihood method. 

Next, the EM algorithm estimates an optimal parameter set including 

responsibility fraction [Eq. (4.21)] in the iteration procedure. Initially, we give the number 

of PDF elements 𝐾 and parameters for the 𝑘-th PDF element as 

 (ln 𝑎v𝑘 , 𝑏v𝑘, 𝜎𝑘
2, 𝜇𝑘, 𝜆𝑘, 𝜔𝑘)

=

{
 
 

 
 (ln(�̌�v) + ln (

�̂�v
�̌�v
)
𝑘 − 1

𝐾 − 1
,
(𝑘 − 1)

𝐾 − 1
, 𝑉′,

�̅�2

𝐷′
,
�̅�

𝐷′
,
1

𝐾
)          (𝐾 > 1)

(
ln(�̂�v�̌�v)

2
, 0.5, 𝑉′,

�̅�2

𝐷′
,
�̅�

𝐷′
, 1)                                               (𝐾 = 1)

, 
(4.23) 

where �̂�v = max
1≤𝑙≤𝐿

𝑉𝑙 �̅�⁄  and �̌�v = �̅� 4⁄  with overbar and prime denoting the average 

and the variance for all the particles. See Appendix C for details of this initial parameters 

determination. We call E-step for providing the responsibility fraction for the parameter 
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set with Eq. (4.21) and M-step for updating the parameter set with a sequential calculation 

order of 𝑏v with Eq. (4.16) substituting Eq. (4.15) for 𝑎v, 𝑎v with Eq. (4.15), 𝜎2 with 

Eq. (4.17), 𝜇 with Eq. (4.18), 𝜆 with Eq. (4.19), and 𝜔 with Eq. (4.20). The E-step 

and M-step are iterated if the log-likelihood increases by more than 10−2 relative to the 

value before the steps. Otherwise the iteration stops. No more iterations than 5 000 avoids 

computation for divergent cases. It is noted that a convergence solution by this iteration 

procedure is solely a locally most-likelihood nearest from the initial and is not always the 

most-likelihood globally, so that the EM algorithm is not referred as the maximum-

likelihood method. 

4.3.3. Estimation of the Number of PDF Elements 

A remaining parameter that should be estimated is the number of PDF elements, 

𝐾 , even though the EM algorithm itself can be performed with given 𝐾 . We now 

introduce Akaike Information Criterion (AIC; Akaike 1974) 

 AIC = lnΦ(𝑽,𝑫|𝜽) − 6𝐾 (4.24) 

and Bayesian Information Criterion (BIC; Schwarz 1978) 

 BIC = lnΦ(𝑽,𝑫|𝜽) − 3𝐾 ln 𝐿 . (4.25) 

An appropriate number of PDF elements can be searched by maximizing AIC or BIC by 

sweeping 𝐾  from 1 to 4. We also applied minority rejection method to find the 

appropriate number of elements by an adjustment such that the smallest mixing fraction 

(SMF) in the elements is larger than a threshold following 0.1𝐾. See Appendix D for 

rationality of this choice). 

4.3.4. Performance Test 

Performance of the proposed method is examined in light of (ⅰ) computational 

stability of the EM algorithm, (ⅱ) the accuracy on the parameter forming the PDF 

elements, (ⅲ) the accuracy on the estimate of the optimal PDF-element number, and (ⅳ) 

comparison with the least-square method conventionally used. All points can be checked 

by experiments, similarly designed, to estimate a given PDF from random sampling data 

from the PDF, just like a Monte Carlo simulation (Smith and Kliche 2005; Kliche et al. 

2008; Cao and Zhang 2009; Smith et al. 2009; Handwerker and Straub 2011). 

For the (ⅰ)–(ⅲ), we prepared 9 population distributions containing PDF 
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elements including (L) liquid precipitation particle with (𝑎v𝐿 , 𝑏v𝐿) = (3.78,0.67) (Atlas 

et al. 1973), (G) lump graupel with (𝑎v𝐺 , 𝑏v𝐺) = (1.3,0.66) in Eq. (4.2) (Locatelli and 

Hobbs 1974), (R) densely rimed aggregates with (𝑎v𝑅, 𝑏v𝑅) = (1.1,0.15)  (Ishizaka 

1995), or (U) side-plane unrimed aggregates (𝑎v𝑈, 𝑏v𝑈) = (0.82,0.12) (Locatelli and 

Hobbs 1974). The mixed joint PDFs prepared here are (LGR) mixture of liquid particle, 

graupel, and rimed aggregates, (GR) mixture of graupel and rimed aggregates, and (RU) 

mixture of rimed and unrimed aggregates, with the same mixing fraction for all elements 

(i.e. 𝜔 = 1 3⁄  for LGR and 𝜔 = 1 2⁄  for GR and RU). It should be noted that these 

combinations of particle types was subjectively chosen to represent some of possible 

observed examples. For the (ⅳ), three kinds of a single PDF element with (L) liquids, (G) 

graupels, (R) rimed aggregates, or (U) unrimed aggregates were prepared. We set the 

shape parameter as 𝜇 = 1.5  for all the populations. Rather than the parameters 

(𝑎v, 𝑏v, 𝜔, 𝜇), the PDF elements depend on data variance 𝜎2 and slope 𝜆. We set three 

different combinations of these two parameters as Table 4.1. Three kinds of PDF element 

combined with three parameter sets of 𝜎2 and 𝜆 made 9 mixed joint PDFs (Fig. 4.1), 

and each experiment is nominated as the prefix of (LGR), (GR), or (RU) combined with 

the suffix of (0), (s), or (v). For example, the experiment LGRv means a given PDF 

elements (LGR) with a parameter set of (v). Next, we randomly sampled PSVD data from 

the population distribution by the von Neumann’s method within ranges of 0 ≤ 𝐷 ≤ 30 

mm and 0 ≤ 𝑉 ≤ 10 m s -1. The sensitivity to the sample size was checked by taking 

Table 4.1. Parameters of the variance (𝜎2) and the slope (𝜆) for populations with (0) small 

variance and small slope, (s) small variance and large slope, and (v) large variance and small 

slope for the probability density function elements of (L) liquids, (G) graupel, (R) rimed 

aggregates, and (U) unrimed aggregates. 

Population type  0  s  v 

  𝜎2 𝜆  𝜎2 𝜆  𝜎2 𝜆 

L  0.16 4  0.16 6.5  0.64 4 

G  0.04 1.5  0.04 2.5  0.16 1.5 

R  0.04 0.4  0.04 0.8  0.16 0.4 

U  0.04 0.4  0.04 0.8  0.16 0.4 
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100, 1000, 2000, 3000, 6000, and 10000 particles. Finally, the EM algorithm was applied 

to the sampled data and the obtained PDF was compared with the original. Each 

estimation was repeated 1 000 times with different sampling data. To keep the same 

element order between estimate and population, the estimated elements are matched to 

the elements in the population by selecting the combination of (𝑗, 𝑘) with the nearest 

neighbor measured by normalized Euclidian-distance of 

 
‖(
(𝑎v𝑗 − 𝑎v𝑘) 𝑎v𝑘⁄

(𝑏v𝑗 − 𝑏v𝑘) 𝑏v𝑘⁄
)‖ . (4.26) 

Here 𝑗 represents 𝑗-th PDF elements in the estimation (𝑗 = 1,2,3 in LGR and 𝑗 = 1,2 

in GR and RU), and 𝑘 represents PDF element L, G, R, or U. 

Fig. 4.1. Population distribution given in the performance tests of (a) LGR0, (b) GR0, (c) RU0, 

(d) LGRs, (e) GRs, (f) RUs, (g) LGRv, (h) GRv, and (i) RUv. Parameters of each probability 

density function (PDF) element is indicated by text inset; diameter-velocity curves are drawn by 

dashed lines for (red) liquids, (green) graupel, (blue) rimed aggregates, and (purple) unrimed 

aggregates. Contours indicates probability of 0.1, 0.01, and 0.001. See text for the details of 

population PDFs given. 
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The (ⅰ) is to check computational stability measured by the convergence rate of 

EM algorithm, in which we counted how many trials were numerically converged in 1000 

trials with a different sample dataset. This check should be required because the EM 

algorithm, searching a local optimal solution nearest from an initial value, not a global 

optimal solution, is not always converged. We regarded that the trial was successful when 

the computation was converged for every number of PDF elements given from 1 to 4. 

The (ⅱ) was to check the accuracy of the parameters forming the PDF elements. This was 

evaluated as the root-mean-square error (RMSE) of parameters, 𝑎v, 𝑏v, 𝜎2, 𝜇, 𝜆, and 

𝜔 from the population PDF given (Fig. 4.1). The relative error of log-likelihood was also 

used as the measure. The (ⅲ) was to check the accuracy of the estimate of the number of 

PDF elements 𝐾 from 1 to 4. When the number of PDF elements in the estimation was 

matched with the given number, i.e., three for case (LGR) and two for cases (GR) and 

(RU), the estimation for element number was regarded as hit. The hitting rate is defined 

as the hit number divided by the total trials that are converged. The (ⅳ) was to compare 

the proposed method that could generally estimate a mixed joint PDF with the 

conventional method that estimated only a single velocity-diameter relationship. We then 

used the single-element PDF as the population with three different combination patterns 

of variance and slope parameters. 

4.4. Results 

4.4.1. Performance Test 

The computational stability was first checked by the convergence rate of 

estimation. Whatever we gave the PDF element number, the EM algorithm was converged 

Fig. 4.2. (a) The convergence 

rate as a function of sample 

size 𝐿 for every number of PDF 

elements 𝐾 from 1 to 4 and (b) 

the convergence rate as a 

function of 𝐾  in experiments 

with 𝐿 = 100 . The line color 

and type are as per the legend 

inside of panel (a) 
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by mostly 100% of 1000 trials if the sample size was greater than 1000 (Fig. 4.2a). In a 

small sample size of 100, the EM algorithm sometimes failed to find a convergence 

solution with greater PDF elements given (Fig. 4.2b). Therefore, it is not recommended 

to give the number of PDF elements greater than 2 when the sample size is less than 100. 

Hereafter the results with the sample data size at 2000 are shown.  

Second, the accuracy of the estimation of PDF elements comparing with the 

given population was checked by RMSE of each parameter (Fig. 4.3), in the estimation 

with the truth number of PDF elements 𝐾 given. Greater the sample size was, more 

accurate the estimate was in most cases; the RMSE of any parameters plummeted with 𝐿 

exceeding 2000 (not shown). Parameters 𝑎v and 𝑏v, directly determined a diameter-

velocity relationship, were successfully estimated, especially in the retrieval of graupel 

and rimed aggregates with small variance (GR0 and GRs; Figs. 4.3a,b). The population 

Fig. 4.3. Root-mean-square error 

(RMSE) of parameters (a) 𝑎v , 

(b) 𝑏v, (c) 𝜎2, (d) 𝜇, (e) 𝜆, and 

(f) 𝜔  in the estimate of nine 

populations for PDF elements of 

(L) liquids, (G) graupel, (R) 

rimed aggregates, and (U) 

unrimed aggregates, with the 

sampling size at 2000. 
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containing rimed and unrimed aggregates with larger variance (RUv) was estimated with 

relatively larger RMSE. The variance parameter, 𝜎2, of PDF elements was also well 

retrieved with its RMSE almost less than a quarter of variance parameter in the PDF 

elements in the given population except for LGRv (Fig. 4.3c). The shape parameter 𝜇 

was estimated with its RMSE mostly less than 0.5 (Fig. 4.3d). The slope parameter 𝜆 

was well retrieved in all the cases with its RMSE less than 10% of the slope parameter in 

the PDF elements in the given population (Fig. 4.3e). This estimate from smaller sample 

size than 2000 was much worse in RU0, RUs, and RUv (not shown). The RMSE of 

mixing fraction ω ranged 0.01–0.05 except for the estimation for RUv population (Fig. 

4.3f). 

Figure 4.4 shows the PDF of the relative error of log-likelihood based on 1 000 

Fig. 4.4. The PDF of relative error of log-likelihood for nine populations. Positive values mean 

overfitting, whereas negative values mean mismatching. Total probability integrated down from 

−0.2% is indicated in text inset. 
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trials, in which positive and negative values mean over-fitting and mismatching, 

respectively. None of trials fell into a wrong optimum except for RU0 and RUs. In the 

cases of RU0 and RUs, the distribution of relative error shows bimodality separated at 

zero (Figs. 4.4c, f). If the relative error of log-likelihood below −0.2% was regarded as a 

wrong optimum, about 10% of the trials failed to estimate the true PDF. Because the error 

majority ranged from 0% to 0.5%, the PDF estimate was slightly biased to the overfitting 

side. It is worthwhile noting that this width of range was probably attributed to the 

uncertainty due to a sampling randomness indwelling in the sampled data, which was 

enough small here (Fig. 4.4). Therefore, the over-fitting was the primary cause for the 

RMSE in estimated parameters (Fig. 4.3), but the mismatching was the secondary cause 

only in the cases of RU0 and RUs. 

Third, we evaluate the accuracy of the estimate of the number of PDF element 

by the hitting rate (Fig. 4.5). The result showed that the minority rejection method based 

on smallest mixing fraction provided the best performance in all the population patterns 

given (Fig. 4.5c). The hitting rate was asymptotic to 100% for greater sample size. The 

sample size of 1000 or more made the hitting rate of 100% for the populations of LGR0, 

LGRs, LGRv, GR0, GRs, and GRv based on the method maximizing BIC (Fig. 4.5b). 

The method maximizing AIC provided the worst estimates (Fig. 4.5a), quite sensitive to 

the sample size; the hitting rate is too low for the population with the large variance 

parameter even if the sample size is large.  

Finally, the proposed method for the estimate from the population containing 

the single PDF element was compared with the conventional method to find an optimal 

Fig. 4.5. Hitting rate of 𝐾 estimated (a) by maximizing Akaike Information Criterion (AIC), (b) 

by maximizing Bayesian Information Criterion (BIC), and (c) by minority rejection method. 
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velocity-diameter relationship by the least square method: the comparison was done for 

two parameters 𝑎v and 𝑏v related to the curve (Fig. 4.6). The populations regardless of 

parameters 𝜎2 and 𝜆 were retrieved with the comparable RMSE between the methods. 

The difference between methods was insensitive to the sample size (not shown). Hence, 

the proposed method can be also applicable to a single-element population in addition to 

a multiple-elements population. Comparing between the result of single PDF case (Fig. 

4.6) and multiple PDF elements case (Fig. 4.3), the estimations for the joint PDF 

population of GR0 and GRs had as a good performance as two individual estimations for 

the single PDF population G0 or R0 (Figs. 4.3, 4.6). In contrast, the estimation for the 

RUs and RUv populations had a worse performance than two estimations for Rs, Rv or 

Us population. 

4.4.2. Application to Observed Data 

In addition to the performance test above, we here demonstrated how the 

proposed method fit to diameter-velocity data observed by the 2DVD at Sapporo (Section 

4.2), with two cases not to be considered in the performance test. The first case included 

erroneous and normal data during 14:00–14:30, Japan Standard Time (JST), on 22 Jan 

2017, when the JMA reported the snow particles fell in the air temperature of −4.9 °C 

(JMA 2019b). The second case included liquid and wet snow particles during 1:00–1:30 

JST on 6 Dec 2016, when the JMA reported that the rain turned to sleet and the air 

temperature changed from 3°C to 2.2°C (JMA 2019a). 

The observed data by the 2DVD in 14:00–14:30 JST on 22 Jan 2017, included 

erroneous data with unrealistically large velocity probably due to the matching problem 

Fig. 4.6. RMSE of parameters (a) 𝑎v and (b) 𝑏v 

in the estimate of populations L0 through Uv by 

(open bars) our method and (closed bars) the least 

square method. 
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(Fig. 4.7a). With two PDF elements given, our method estimated one element (red in Fig. 

4.7a) with its center at 𝑉 = 2.61𝐷0.54 and the variance of 6.43 m2 s-2, which was so 

unrealistic. Moreover, this erroneous PDF element underestimated probability around 1.5 

m s-1 (red in Fig. 4.7c) due to the assumption that the velocity followed the normal 

distribution in this study. In contrast, the erroneous PDF well represented diameter 

distribution (red in Fig. 4.7b), because the matching error affected the velocity only. The 

estimation of the other PDF element (blue in Fig. 4.7a) was successfully fit to 𝑉 =

0.83𝐷0.21 , near to the optimal curve for graupel-like snow of hexagonal type, 𝑉 =

0.86𝐷0.25 , or aggregates of densely rimed radiating assemblages of dendrites, 𝑉 =

0.79𝐷0.27, in Locatelli and Hobbs (1974) (Fig. 4.7a). This PDF element well represented 

the observed distributions of both the diameter and velocity (blue in Figs. 4.7b,c). 

However, because the estimated velocity-diameter relationship roughly diagnosed the 

characteristics of precipitation particles (Bernauer et al. 2016), the estimated velocity-

diameter relationship 𝑉 = 0.83𝐷0.21 did not always guarantee the precipitation particles 

containing graupel-like snow and aggregates of densely rimed radiating assemblages.  

Interesting is a different case for mixing rain droplets and wet snow particles 

observed with the 2DVD sensor at Sapporo in 1:00–1:30 JST on 6 Dec 2016 (Fig. 4.8). 

Here the minority rejection method estimated two PDF elements. If we fixed the number 

Fig. 4.7. (a) Scatter plot of diameter and 

velocity for precipitation particles observed 

by a two-dimensional video disdrometer 

(2DVD) installed at Hokkaido University, 

Japan, in 14:00–14:30 Japan Standard Time 

(JST) on 22 Jan 2017. Colors in dots show the 

responsibility fractions, 𝛾𝑙𝑘 , for the two 

elements with blue and red and their mixture: 

(𝛾𝑙1, 𝛾𝑙2) = (1,0)  with blue, (𝛾𝑙1, 𝛾𝑙2) =
(0,1)  with red, and (𝛾𝑙1, 𝛾𝑙2) = (0.5,0.5) 

with magenta. The text inset indicates the 

parameters for PDF estimate with the number 

of PDF elements given at 2 . The colored 

dotted lines are diameter-velocity curves 

estimated by our method. (b,c) The (lines) 

estimated and (bars) observed PDFs for (b) 

diameter and (c) fall-velocity. 
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of elements at 3, we estimated the first element with its center at 𝑉 = 2.33𝐷0.03 and the 

variance of 𝜎2 = 0.13 (green in Fig. 4.8), the second element with its center at 𝑉 =

2.9𝐷0.53 and the variance of 𝜎2 = 0.12 (blue in Fig. 4.8), and the third element with its 

center at 𝑉 = 2.86𝐷0.62  and the variance of 𝜎2 = 3.46 (red in Fig. 4.8). The first 

element resembles a distribution by wet snow particles reported by Yuter et al. (2006), 

and the second element was similar to a diameter-velocity curve of rain droplets [𝑉 =

3.78𝐷0.67  in Atlas et al. (1973)] with small variance and good fitness of velocity 

distribution (blue in Fig. 4.8c). The third element probably contained erroneous data 

because of its large variance and inappropriate fitting to velocity distribution (red in Fig. 

4.8c), however. 

4.5. Discussion 

The proposed method successfully reproduced the original PDF from the 

sampling data of its size larger than 2000 under a limitation of possible PDF element 

number considered (Fig. 4.3). However, as in the application to observation data including 

error (Section 4.2), we must take a treatment for erroneous data as the preprocessing 

because an arithmetic underflow often occurred in representing their probability. For 

example, the probability of particles at (𝐷, 𝑉) = (2, 15)  under a condition of 

(𝑎𝑣, 𝑏𝑣, 𝜎
2, 𝜇, 𝜆) = (0.82, 0.12, 0.09,1.5,0.3)  in Eq. (4.5) approximates 10−481  that 

Fig. 4.8. (a) Scatter plot of diameter and 

velocity for precipitation particles observed 

by 2DVD for 1:00–1:30 JST on 6 Dec 2016. 

Colors in dots show the responsibility 

fractions, 𝛾𝑙𝑘 , for the three elements with 

green, blue, and red and their mixture: 

(𝛾𝑙1, 𝛾𝑙2, 𝛾𝑙3) = (1,0,0)  with green, 

(𝛾𝑙1, 𝛾𝑙2, 𝛾𝑙3) = (0,1,0)  with blue, 

(𝛾𝑙1, 𝛾𝑙2, 𝛾𝑙3) = (0,0,1)  with red, and 

(𝛾𝑙1, 𝛾𝑙2, 𝛾𝑙3) = (1 3⁄ , 1 3⁄ , 1 3⁄ ) with gray. 

The text inset indicates the parameters for 

PDF estimate with the number of PDF 

elements given at 3. The estimated diameter-

velocity curves and estimated and observed 

PDFs for diameter and fall-velocity are 

shown as well as Fig. 4.7. 
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causes a double-precision underflow. This might cause the zero division error in the 

calculation of the responsibility fraction [Eq. (4.21)] with uniform mixing fractions 

among the PDF elements. This underflow problem can be relieved by setting the initial 

variance parameter larger than σ2 = 0.16 and by discarding particles with their velocity 

faster than 15 m s-1. If one successfully avoided this problem by the preprocessing like 

above, the EM algorithm would make light of erroneous extreme data and search an 

optimal set of PDF elements that follow data majority. Moreover, we still suffer from the 

truncation effect (Section 4.1) attributed to not only the small size particles but also slow 

velocity ones. In this study, the result of fitting algorithm to 2DVD observation seemed 

not to be affected by the truncation effect fortunately, because the estimated PDF well 

represented both the diameter and velocity distributions without the elements 

corresponding to the erroneous data (Figs. 4.7b, c, 4.8b, c). 

However the truncation problem was not basically resolved in this study. To 

relieve the problem, we now consider the truncated version of mixed joint PDF. The 

truncated version of particle size distribution is 

 
PT(𝐷|𝜇, 𝜆) =

P(𝐷|𝜇, 𝜆)Π(𝐷, 𝐷min, 𝐷max)

Q(𝐷max|𝜇, 𝜆) − Q(𝐷min|𝜇, 𝜆)
, (4.27) 

where 𝐷min  and 𝐷max  is respectively the minimum and maximum diameters that a 

disdrometer is capable to measure, Π is the rectangle function, 1 between 𝐷min and 

𝐷max and 0 elsewhere, and Q is the cumulative density function (CDF) (Mallet and 

Barthes 2009; Johnson et al. 2014). Similar to Eq. (4.27), the truncated version of terminal 

velocity distribution is 

 
PT(𝑉|𝐷, 𝑎v, 𝑏v, 𝜎

2) =
P(𝑉|𝐷, 𝑎v, 𝑏v, 𝜎

2)Π(𝑉, 𝑉min, 𝑉max)

Q(𝑉max|𝐷, 𝑎v, 𝑏v, 𝜎
2) − Q(𝑉min|𝐷, 𝑎v, 𝑏v, 𝜎

2)
, (4.28) 

where 𝑉min  and 𝑉max  is respectively the minimum and maximum velocity that a 

disdrometer is capable to measure. Therefore, the truncated version of mixed joint PDF 

is derived by linearly combing the joint PDF of PT(𝑉|𝐷, 𝑎v, 𝑏v, 𝜎
2) × PT(𝐷|𝜇, 𝜆) . 

Modifying the EM algorithm using this truncated version of mixed joint PDF, the 

proposed method might relive the truncation problem, but this is beyond the scope of this 

paper. 

Next, the time interval for data sampling in the observation is discussed. The 

time-interval that the total number of precipitation particles passing through an area of 𝐴 
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(m2) reaches 𝐿 is computed in Appendix E as 

 

Δ𝑡 =
𝐿

𝐴𝑅
(∑

𝜔𝑘𝜆
𝑏m𝑘Γ(𝜇𝑘 + 𝑏v𝑘 + 1)

𝑎m𝑘Γ(𝜇𝑘 + 𝑏v𝑘 + 𝑏m𝑘 + 1)

𝐾

𝑘=1

)

−1

, (4.29) 

where 𝑅 (mg m-2 s-1) is precipitation intensity, 𝑎m and 𝑏m are parameters of mass-

diameter relationship, 𝑀 = 𝑎m𝐷
𝑏m (mg). Note that (𝑎m, 𝑏m) for liquids, graupels and 

densely rimed and unrimed aggregates are (0.52, 3), (0.078, 2.8), (0.094, 1.9), and 

(0.04, 1.4), respectively (Atlas et al. 1973; Locatelli and Hobbs 1974; Ishizaka 1995). 

Figure 4.9 shows the time-interval to obtain 2000 particles per a unit area of ~0.01 m2 

composed by the typical 2DVD (Kruger and Krajewski 2002). Since the sample size 

should be greater than 2000 for computational stability of the algorithm (Fig. 4.2) and for 

accuracy of the parameter estimation (Figs. 4.3, 4.5), in 1 mm hour-1 precipitation 

intensity, the time interval is roughly 2 minutes for LGRs, GRs, and RUs populations, 30 

minutes for LGR0, LGRv, GR0, GRv, RU0, and RUv. Moreover, with an intake of 

PARSIVEL and LPM of almost half of 2DVD, the time interval is double (Angulo-

Martínez et al. 2018). 

We similarly compared our method with the conventional maximum-likelihood 

method by Kliche et al. (2008) in light of the shape 𝜇 and slope 𝜆 parameters from the 

single population of liquid precipitation particles following the Gamma distribution. They 

reported that the RMSE of shape parameter was 0.13 with respect to the population of 

𝜇 = 2 for the sample size of 1 000. This result was consistent with our result of the 

estimated PDF element corresponding to the liquid particles for the LGR0, LGRs, and 

Fig. 4.9. Time-interval (hour) to obtain particles 

number of 2000 per a unit area (0.01 m2) as a 

function of precipitation intensity (mm hour-1). 
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LGRv populations (Fig. 4.3d). As for the slope parameter, Kliche et al. (2008) computed 

a median value of estimated 𝜆 normalized with its population being ~1.0 with a sample 

size of 1000. In this study, the normalized 𝜆 of the estimated PDF element corresponding 

to the liquid particles was ~1.02 for LGR0, ~1.03 for LGRs, and ~1.05 for LGRv (not 

shown). Hence, the performance of our proposed method with 𝐾 = 3 was slightly worse 

than the maximum-likelihood method, completely same as the proposed method with 

𝐾 = 1 (Subsection 4.3.2). Moreover, Kliche et al. (2008) computed a median value of 

normalized 𝜆 estimated with the moment method being ~1.05 with a sample size of 1000, 

which is mostly the same performance as that of the proposed method with 𝐾 = 3. 

Therefore, the proposed method can estimate the particle size distribution discriminating 

PDF elements as accurately as the moment method with a single PDF. 

Finally, we discuss the problem that the diameter-velocity data by disdrometers 

such as 2DVD, PARSIVEL, and LPM follows the biased PDF [Eq. (4.11)] with an offset 

of 𝑏v in the shape parameter of size distribution [Eq. (4.9)] and an offset of 𝜎2 (𝑎v𝐷
𝑏v)⁄  

in the terminal velocity [Eq. (4.10)]. The bias in terminal velocity is larger for the smaller 

particle diameter (Fig. 4.10), so that parameter 𝑎v and 𝑏v should be positively biased 

and negatively biased, respectively. However, the bias is mostly less than 0.1 m s-1 with 

a larger diameter than 1 mm in the parameter range used in this study (Fig. 4.10). 

Therefore, the estimation of 𝑎v and 𝑏v might not be largely affected regardless of the 

joint PDF forms expressed with Eqs. (4.5) and (4.8) if the sampling data consists of large 

particles. If so, the bias in the shape parameter estimated with the proposed method can 

Fig. 4.10. The difference of mean terminal 

velocity between the unbiased and biased PDFs 

for parameter sets shown by the legend. 
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be simply corrected by an offset of 𝑏v. 

4.6. Conclusion 

A new method with the EM algorithm was developed to estimate an optimal 

mixed joint PDF from PSVD data. The method was verified by the test to retrieve the 

given PDF from a randomly sampling data based on a population that contains some of 

PDF elements: liquid particles, graupels, densely rimed aggregates, and unrimed 

aggregates (Fig. 4.1). The performance test suggested that the sample size should exceed 

2000 for the computational stability (Fig. 4.2) and for accuracy of parameter estimation 

(Fig. 4.3). In the estimate of the number of PDF elements, minority rejection method 

made a better performance than maximizing AIC or BIC (Fig. 4.5). Our estimated made 

a comparable performance to the conventional least-square method (Fig. 4.6) and the 

maximum-likelihood method (Subsection 4.3.2). Applying this method to the observation 

data with 2DVD, the method was able to detect erroneous data (Fig. 4.7) and to 

distinguish liquid-phase from solid-phase precipitation particles (Fig. 4.8).  
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Chapter 5. General Summary 

In the former part of the thesis, the snowpack response to the +2°C global 

warming climate was estimated with a physical-based multi-layered snowpack model 

forced with dynamically downscaled data. The result showed that snow covered days 

would robustly decrease by about a month over Hokkaido. Additionally, the results 

suggest that the seasonal-maximum height of snow-cover (HS) and snow water 

equivalent (SWE) would also decrease by 30–40% in the southwestern and eastern 

Hokkaido, mainly due to a decrease in the precipitation amount integrated in the 

shortening snow accumulation period. This decrease in snow amount would be larger in 

the beginning of ablation period, corresponding to a timing of wetting snowpack from 

bottom to top, and so the peak of snowpack amount would be shifted earlier and the 

thickness ratio of melt forms would increase as a result. The thickness ratio of hoar 

category would decrease except at high altitude region due to a sufficiently low 

temperature environment. The uncertainty of snowpack response due to uncertainty in the 

response of synoptic-scale phenomena was also evaluated by comparing the results based 

on different boundaries of general circulation model (GCM). Then, the changes in 

seasonal-maximum HS and SWE was uncertain in the northern and eastern Hokkaido 

mainly due to uncertain decrease in the precipitation amount. This uncertainty in the 

precipitation change was introduced by the uncertain changes in storm tracks, wintertime 

monsoon, and topological precipitation, projected by GCMs. The changes in monthly HS 

during the ablation period was uncertain more than the seasonal-maximum HS. 

In the latter part of the thesis, a new method with the expectation-maximization 

algorithm was developed to estimate an optimal mixed joint probability density function 

(PDF) from precipitation particle size and velocity distribution (PSVD) data. The method 

was verified to obtain an optimal mixed PDF even if the PSVD data contained multiple 

elements such as graupel and rimed aggregates. The new method is comparable to 

previous methods in the estimate of the precipitation type from a sampled PSVD dataset 

with a single type. This indicates that the previous method would be potentially replaced 

with the new method.  

The new method to estimate an optimal PDF may be a key technique for the 

physical snowpack model to be able to treat various type and density of precipitation 
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particles in future. The present snowpack model determines an initial density of snowpack 

layer based on statistical relation between atmospheric variables such as air temperature, 

wind speed, and precipitation intensity or simply given as a constant value (Lehning et al. 

2002a). This lack of treatment for the initial density can be an important modeling 

problem of snowpack processes on deformation, heat conductivity, and metamorphosis, 

all of which depend on the density (Bartelt and Lehning 2002; Lehning et al. 2002b). 

Furthermore, mechanical instability of snowpack, an important index to diagnose 

avalanche occurrence (Schweizer et al. 2006; Hirashima et al. 2008), also requires 

accurate snow density. Recently, it has reported that variation of solid precipitation 

particle type and degree of riming also affects mechanical instability of snowpack 

(Nakamura 2019). The new method can continuously diagnose precipitation particle 

density (Ishizaka et al. 2016) and type (Ishizaka et al. 2013) and its degree of riming 

(Bernauer et al. 2016) based on PSVD data observed by disdrometer, an unique way with 

direct and continuous observation. I expect that these advanced information of 

precipitation particles will be used as an input of snowpack model in future. 

However, some studies are still lacking in order to use the information of 

precipitation as input of snowpack model: how the precipitation particle type and degree 

of riming affect on physical snowpack properties and how such effect is implemented in 

the snowpack model. Recently, Yamaguchi et al. (2019) proposed that a specific surface 

area (SSA) of snow, defined as particles’ total surface area per unit mass or volume, well 

represented the precipitation particle type and degree of riming while the relation between 

SSA and PSVD are still unknown. Since a time evolution of SSA has been already 

described as empirical equation in previous studies (Taillandier et al. 2007), the SSA may 

be a key parameter in order to make snowpack models advanced (cf. Yamaguchi et al. 

2019).  

Considering a realization of advanced snow disaster forecasting and climate 

impact estimation on snowpack and its related earth systems as introduced in Chapter 1, 

an atmospheric model is necessary to provide the precipitation particle information to 

snowpack model. In this viewpoint, an advanced numerical modeling of microphysics 

and precipitation processes may be a key technology even though an evaluation of the 

model still remains unresolved partially due to lack of PSVD observation. For example, 
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an explicit prediction of riming (Morrison and Milbrandt 2015) and size distribution 

(Suzuki et al. 2010) are recently proposed, which can provide the precipitation particle 

information as well as PSVD observation. These technologies may also reduce the 

uncertainty of future snowpack estimation, which was large in northern Hokkaido due to 

uncertain change in the precipitation amount predicted by an atmospheric model (Chapter 

3), since the microphysics is one of the largest uncertainty in the climate modeling (Satoh 

et al. 2018). Hence, the model evaluation using PSVD observation is also one of problems 

left for the future.   
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Appendix A. Quality control for forcing of observation-forced simulation 

The forcing data for the observation-forced simulation were prepared after a 

quality control of the AMeDAS data and a complementation of the lacking or missing 

RADAR-AMeDAS precipitation data, or errors in this data, or the mesoscale analysis. 

First, the precipitation data were checked, even though the JMA had already performed a 

quality control on the data since a rain gauge failed to catch all precipitation particles due 

to strong wind (Goodison et al. 1998). In this study, the precipitation data were regarded 

as unexpected if they corresponded to a snowfall density less than 10 kg m−3, which is 

less than the minimum density observed directly (Ishizaka et al. 2016). Note that this 

quality control could not be performed for some AMeDAS stations with no HS 

observations (Table A1).  

The unexpected and missing precipitation data were complemented with the 

nearest grid point value of the RADAR-AMeDAS data by combine a weather radar 

network consisting of 20 C-band radars over Japan with AMeDAS precipitation data 

(JMA 2013). Missing and lacking values of atmospheric variables except for precipitation 

were replaced with the nearest grid point value of the mesoscale analysis, assimilated 

with upper-air soundings and RADAR-AMeDAS observations (JMA 2013). It should be 

noted that the mesoscale analysis had a different surface air temperature from that of the 

site observations due to the different surface height; the temperature was therefore offset 

every winter by a difference between the average temperature of the AMeDAS 

observation and that of the nearest grid point. The downward shortwave and longwave 

radiation were statistically estimated from the sunshine duration, air temperature, and 

relative humidity (Kondo et al. 1991; Hirashima et al. 2008). 
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Table. A1. Positions of snow-pit observations and their nearest Automated Meteorological Data 

Acquisition System (AMeDAS) station. Symbols in the rightmost column indicate the 

AMeDAS observation variables: an asterisk (star marks in Fig. 3.1c) denotes the full set of 

variables to run the SNOWPACK model except for downward longwave radiation; “h” 

(hexagons in Fig. 3.1c) denotes the additional lack of shortwave radiation; “s” (squares in Fig. 

3.1c) denotes the additional lack of relative humidity; and hat (“^”) (triangles in Fig. 3.1c) 

denotes the additional lack of height of snow cover. 

No. 
Snow-pit site  Nearest AMeDAS station 

Lon. 
(deg.) 

Lat. 
(deg.) 

Alt. 
(m) 

 
Lon. 

(deg.) 
Lat. 

(deg.) 
Alt 
(m) 

Station 
type 

1 141.536 43.069 20  141.601 43.110 8 ^ 

2 141.635 43.925 35  141.631 43.945 24 h 

3 141.756 43.217 16  141.785 43.211 42 h 

4 141.897 43.422 33  141.826 43.363 16 s 

5 141.898 43.574 43  141.938 43.570 50 s 

6 141.964 43.764 43  141.926 43.815 63 ^ 

7 142.348 43.807 155  142.371 43.756 120 * 

8 142.379 43.340 168  142.400 43.333 174 s 

9 142.398 42.978 332  142.395 42.978 332 s 

10 142.756 43.847 327  142.753 43.846 324 s 

11 143.125 42.701 186  143.195 42.651 185 ^ 

12 143.144 42.893 82  143.211 42.921 38 * 

13 143.174 43.874 388  143.153 43.865 475 s 

14 143.278 43.236 274  143.303 43.235 295 s 

15 143.445 42.924 12  143.458 42.920 42 ^ 

16 143.537 44.060 72  143.540 44.053 80 s 

17 143.542 43.240 116  143.553 43.243 90 ^ 

18 143.565 43.665 237  143.643 43.706 184 ^ 

19 143.624 44.222 3  143.618 44.213 5 ^ 

20 143.736 43.470 206  143.738 43.468 207 s 

21 143.902 43.825 86  143.875 43.810 114 s 

22 144.036 43.698 95  144.033 43.701 100 s 

23 144.059 44.120 5  144.036 44.115 3 ^ 

24 144.144 43.145 45  144.141 43.198 80 s 

25 144.423 43.026 3  144.376 42.985 5 h 

26 144.675 43.463 150  144.746 43.520 181 ^ 

27 144.690 43.893 7  144.700 43.885 15 s 

28 144.959 43.567 64  144.978 43.543 50 s 
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Appendix B. Derivation of Eqs. (4.8) and (4.12) 

Since the disdrometers such as 2DVD, PARSIVEL, and LPM observes precipitation 

particles passing a finite area, the observed diameter-velocity data should follow the joint 

PDF as 

 
PS(𝑉, 𝐷) =

𝐴Δ𝑡𝑉

𝐿
𝑁P(𝑉, 𝐷), (B1) 

where 𝑁 and 𝐿 are respectively the number concentration rate of precipitation particles 

and number of precipitation particles observed by a disdrometer (Ignaccolo and De 

Michele 2014). P(𝑉, 𝐷) is the joint PDF expressed with Eq. (4.5). Here, the total number 

of precipitation particles is represented as  

 
𝐿 = 𝐴Δ𝑡𝑁∫ {∫ 𝑉P(𝑉, 𝐷)

∞

−∞

𝑑𝑉}𝑑𝐷
∞

0

= 𝐴Δ𝑡𝑁𝑎v𝜆
−𝑏v

Γ(𝜇 + 𝑏v + 1)

Γ(𝜇 + 1)
. 

(B2) 

Substituting Eq. (B2) into Eq. (B1), Eq. (4.8) is derived. Equation (4.12) is simply 

derived by arranging Eq. (B2).  
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Appendix C. Initial parameters for the EM algorithm 

The initial parameters for the EM algorithm should be reasonably determined for an 

accurate parameter estimation. First, we determine two velocity-diameter curves 

approximately passing maximum and minimum bounds of velocity on the diameter-

velocity quarter plane: one is passing a point of (�̅�, max
1≤𝑙≤𝐿

𝑉𝑙) on the diameter-velocity 

quarter plane with 𝑏v = 1 and another is constant at 𝑉 = �̅� 4⁄ . These conditions are 

satisfied with two parameters sets of (𝑎v, 𝑏v) = (�̂�v, 1) and (𝑎v, 𝑏v) = (�̌�v, 0), where 

�̂�v and �̌�v is max
1≤𝑙≤𝐿

𝑉𝑙 �̅�⁄  and �̅� 4⁄ , respectively. Then, 𝐾 sets of (𝑎v, 𝑏v) are equally 

spaced out between �̂�v and �̌�v and between 1 and 0 as Eq. (4.23). Parameters 𝜎2, 𝜇, 

and 𝜆 are simply determined by the mean and variance of diameter-velocity data and are 

uniformly given to all the PDF elements. The mixing fraction 𝜔 is also uniformly given.  
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Appendix D. Threshold for the Minority Rejection Method 

The threshold value for minority rejection method is given by 𝑐𝐾, where 𝑐 is 

an arbitrary positive constant and 𝐾 is the number of PDF elements. The threshold value 

by this formulation effectively reduces a possible range of 𝐾 because the 𝐾 estimation 

with the minority rejection method never exceeds an expectation value: 𝑐𝐾 ≤ 1 𝐾⁄ . 

Hence  

 1 ≤ 𝐾 ≤ 1 √𝑐⁄ . (D1) 

This limitation is probably helpful to avoid an overfitting problem. 

Figure D1 shows a hitting rate of the number of PDF elements averaging all 

cases of sample size ( 𝐿 = 100, 1000, 2000, 3000, 6000, 10000 ) with the minority 

rejection method as a function of 𝑐. The estimation were achieved by mostly 100% for 

GR0, GRs, and GRv populations within 𝑐 ranging 0.1–0.2. The number of PDF elements 

in RU0, RUs, and RUv populations were also successfully estimated with a relatively 

narrower range of 𝑐. On the other hand, for LGR0, LGRs, and LGRv populations, the 

PDF element number were estimated only within a narrow range of 𝑐 around 0.05. The 

results suggested that the hitting rate becomes more sensitive to 𝑐 in a case for estimating 

a population constructed from more number of PDF elements. Eventually, an averaged 

hitting rate over all population tests was approximately 90% at 𝑐 = 0.1 (gray thick line 

in Fig. D1), which limits a range of 𝐾 to 1–3 [Eq. (D1)]. Hence, 𝑐 = 0.1 was used for 

the minority rejection method in Chapter 4.   

Fig. D1. Hitting rate of 𝐾  by the 

minority rejection method with a 

threshold value computed by 𝑐𝐾 

versus 𝑐. The hitting rate is mean of all 

pattern of sampling data length; 100, 

1000, 2000, 3000, 6000, and 10000. 

Line color and style is as per the legend 

in the right. Gray thick solid line shows 

a mean hitting rate for all population 

pattern. A maximum mean hitting rate 

is indicated by gray vertical solid line 

and 𝑐  giving its hitting is drawn by 

gray characters. 
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Appendix E. Derivation of Eq. (4.29) 

A relationship between mass and diameter of precipitation particles is 

empirically described by the power law as 

 𝑀 = 𝑎m𝐷
𝑏m, (E1) 

where 𝑀  (mg) is a mass of particle and 𝑎m  and 𝑏m  are empirical coefficients 

(Locatelli and Hobbs 1974). Multiplying 𝑀 [Eq. (E1)] and 𝑉 [Eq. (4.2)], a mass flux 

𝐹 (mg m s-1) is obtained: 

 𝐹 = 𝑎v𝑎m𝐷
𝑏v+𝑏m. (E2) 

Assuming that a PSD follows the Gamma form represented by Eq. (4.1), a precipitation 

intensity 𝑅 (mg m-2 s-1) is obtained by integrating 𝑁𝐹 over 𝐷: 

 
𝑅 = 𝑁0𝑎v𝑎m∫ 𝐷𝜇+𝑏v+𝑏m exp(−𝜆𝐷)  𝑑𝐷

∞

0

= 𝑁0𝑎v𝑎m
Γ(𝜇 + 𝑏v + 𝑏m + 1)

𝜆𝜇+𝑏v+𝑏m+1
. 

(E3) 

Similarly, particle number flux �̃� (m-2 s-1) is obtained by integrating 𝑁𝑉 over 𝐷: 

 
�̃� = 𝑁0𝑎v∫ 𝐷𝑏v exp(−𝜆𝐷)𝑑𝐷 = 𝑁0𝑎v

Γ(𝜇 + 𝑏v + 1)

𝜆𝜇+𝑏v+1

∞

0

. (E4) 

Dividing Eq. (E4) by Eq. (E3), 

 
�̃� =

𝜆𝑏mΓ(𝜇 + 𝑏v + 1)

𝑎vΓ(𝜇 + 𝑏v + 𝑏m + 1)
𝑅. (E5) 

For 𝐾 elements, a linear combination of independently estimated particle number flux 

�̃�𝑘 following Eq. (E5) brings 

 

�̃� = ∑
𝜔𝑘𝜆

𝑏m𝑘Γ(𝜇𝑘 + 𝑏v𝑘 + 1)

𝑎m𝑘Γ(𝜇𝑘 + 𝑏v𝑘 + 𝑏m𝑘 + 1)
𝑅

𝐾

𝑘=1

. (E6) 

The total particle number passing through an area 𝐴 (m2) within a time-interval Δ𝑡, 𝐿 =

𝐴∫ �̃�
Δ𝑡

0
𝑑𝜏, provides Eq. (4.29) 


