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A THEORY OF MIYAWAKI LIFTINGS: THE HILBERT-SIEGEL CASE

HIRAKU ATOBE

ABSTRACT. The Miyawaki liftings are defined by the pullbacks of Ikeda liftings. Recently, ITkeda
and Yamana extended the theory of Ikeda liftings to Hilbert—Siegel modular forms. In this paper,
using their results, we establish a theory of Miyawaki liftings, both locally and globally. In the local
theory, we describe the Miyawaki liftings for almost tempered unitary representations explicitly. In
the global theory, we discuss the non-vanishing of the Miyawaki liftings using seesaw identities and
the global Gan-Gross—Prasad conjecture. As an application of local Miyawaki liftings, we prove a
new case of the local Gan—Gross—Prasad conjecture.
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In 1992, Miyawaki [39] predicted the existence of certain Siegel modular forms. Let Sk (Sp,,(Z))

be the space of Siegel cusp forms of degree n, weight k, and level one.

Conjecture 1.1 (Miyawaki [39]). For normalized Hecke eigenforms f € Sor_4(SLa(Z)) and g €
Sk(SLa(Z)), there should exist a Hecke eigenform Fy g, € Si(Sps(Z)) whose standard L-function is

given by
L(stf,g7St> = L(8797Ad)L(3 +k— 27f)L(5 +k— 37f>

In 2006, to approach Miyawaki’s conjecture, Tkeda [28] constructed certain liftings, which are
now called the Miyawaki liftings, as follows: For positive even k, a normalized Hecke eigenform
f € Sop—o(nir)(SLa(Z)) gives the Tkeda lift FCn+21) ¢ 1 (Spyy,yor(Z)) (defined up to a constant).
For the (classical) Ikeda lifting, see [27]. For a Hecke eigenform g € Si(Sp,(Z)), Ikeda [28] defined

the Miyawaki lift Mn+7) (g, F@n+21)) by the integral

M @ntr) (Q’F(2n+2r)> (Zonsr)
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where §), is the Siegel upper half space of genus r and we set ¢°(Z,) = ¢ (—Z) It is easy to see
that M2n+7) (9, Fn2) € S1.(Sponir(Z)). Tkeda proved the following:

Theorem 1.2 (Ikeda [28, Theorem 1.1]). If MZn+7) (g, F(2"+2’")) is not identically zero, then it is
a Hecke eigenform with standard L-function

L (s, M) (g, F(2”+2T)> ,st) = L(s,g,st) ﬁ L(s+k—r—i,f).
i=1

Therefore Miyawaki’s conjecture (Conjecture 1.1) was reduced to the non-vanishing of M®) (g, F (4)).

Ikeda gave a conjectural formula for the Petersson norm of M (27+7) (g, F (2’”2”), and proposed the
following conjecture.

Conjecture 1.3 (Ikeda [28, Conjecture 5.1]). (1) Whenn =0, the Miyawaki lift M) (g, F2")
is nonzero if and only if the central value of the tensor product L-function L(s,st(g) X f) is
nonzero.

(2) When n > 0, the Miyawaki lift M37+7) (g, F(2”+2T)) is always nonzero.

Ichino [25] and Xue [57] proved Conjecture 1.3 (1) for the case where r = 1 independently.
Garrett—Heim [17] established a Hecke duality of Tkeda liftings and gave a preliminary answer to
Conjecture 1.3 (1).

Nowadays Miyawaki’s conjecture (Conjecture 1.1) follows from Arthur’s multiplicity formula ([3,
Theorem 1.5.2]), which was established in 2013. However, this formula tells us only the existence
of modular forms (or automorphic representations). The non-vanishing of Miyawaki liftings (Con-
jecture 1.3) is still open and interesting. The integral representations of Miyawaki liftings would
imply several properties, which do not follow from Arthur’s multiplicity formula.

Recently, Tkeda—Yamana [29] extended the theory of Ikeda liftings to Hilbert—Siegel modular
forms using representation theory. The purpose of this paper is to establish a theory of Miyawaki
liftings using the extended Ikeda liftings. We will define the Miyawaki liftings more generally, and
give their several properties. Moreover, we will approach the non-vanishing problem of Miyawaki
liftings using the Gan—Gross—Prasad conjecture.

To describe our results, let ' be a totally real number field, and A be the ring of adeles of F.
The ring of finite adeles of F is denoted by Ag,. For a place v of F', we write v < oo (resp. v | 00) if
v is a finite place (resp. if v is an infinite place). Fix a non-trivial unitary character ¢ of A/F such
that for v | oo, the local component v, is of the form ,(z,) = exp(2ra,/—1x,) for z, € F, 2 R
with fixed a,, > 0. Let 7 = ®/ 7, be an irreducible cuspidal automorphic representation of PGLy(A)
satisfying the following conditions:

GLa(Fy)

P(l,l)(Fv
Borel subgroup of GLsy consisting of upper triangular matrices. (Note that s, x i, ! has the
trivial central character so that PGLa(F},) acts on it.)

(A2) For v | 0o, 7, is a discrete series representation with lowest weight +2k,, where k, > 0.

(A3) The root number £(1/2,7) is equal to 1.

Let Sp,, be the symplectic group of rank n. For each place v, we denote the metaplectic double
cover of Sp,,(Fy,) by Sp,,(Fy). Identify Sp,, (F,) = Sp,,(Fy) x {£1} as sets. Let P, be the Siegel

(A1) For v < oo, 7, is a principal series y, x ;' = Ind )(uv X 41, 1), where Py q) is the
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parabolic subgroup of Sp,,, and P,(F,) be the inverse image of P,(F) in é\f)n(Fv) When v < oo,
we set

n Spy (Fo n
107 (7) = d ) ()

to be a degenerate principal series. Here,

(4 ) (25 s

for A € GL,(F,) and ¢ € {£1}, where ay, (a) is the Weil constant (see §2.2). It is known that
Igz)(m) is irreducible ([35, 50]). Set k + (n/2) = (kv + (n/2))y € [l,j00 Z- Let Sp,(A) be the
metaplectic double cover of the adelic group Sp,,(A). We denote the set of holomorphic cusp
forms of weight k + (n/2) by Siy(n/2) (Spn(F)\é\f)n(A» For the definition, see §2.5. Ikeda—

Yamana [29] showed that the irreducible representation Iz(ﬁ") (T) = Qlyeool z(;z) (1,) of Sp,,(An) appears
in Si1(n/2)(Sp,(F)\Sp,,(A)) with multiplicity one. We denote the unique subrepresentation of

Skt(n/2) (Spn(F)\éT)n(AD which is isomorphic to Ié)n) (1) by kapn) (1), and call it the Ikeda lift of 7.

Now let n,r be non-negative integers. Then we have an embedding ¢: Sp,, X Sp,, — Sp,, ;. given
by

A, 0| B 0

L((Al Bl> <A2 B2>) 0 As| 0 By
C, D)’ \Cy Dy Ci 0|Dy 0

0 Cy| 0 Dy

For an admissible (not necessarily irreducible) representation 7 of %T (Agy,) occurring in the space

Skt (ntr) /2 (Spr(F)\é\f)r(A)), we define the (global) Miyawaki lift MSZ,)I_(TF) of 7 by the representa-

tion of Sp,,(Afn) generated by the integrals

M(n)((gna Cn)i oy F) = F(t(gns 9r)s CnCr)e(gr, Gr)dgr

/Spr(F )\Sp,.(A)

forpen, F e qu(pnﬂ) (1) and (gn, Cn) € éBn(A) This is a subrepresentation of Sy (4. /2 (Spn (F)\é\f)n(A»
We summarize several properties of Miyawaki liftings.

Theorem 1.4. Let 7 be an irreducible representation of §f)7, (Agin) occurring in Sy (nir)/2 (SpT(F)\gf)T(A)) ,
and Mgi(ﬂ) be its Miyawaki lift. Suppose that Mgi(ﬂ) #0 andn >r.

(1) If m has an A-parameter ¥, then Mf/}ng_(ﬂ') has an A-parameter

U TXK’}”)/Q] [n— 7],

where x_1 is the quadratic character of A*/F* corresponding to F(\/—1)/F. For the no-
tation of A-parameters, see §4.2, or Appendix B.4 for a more detailed explanation.

(2) Suppose that m has a tempered A-parameter. Then Mgpn)T(W) is irreducible, and Mgpn)T(ﬂ) =

®;,<OOM$Z)TU(7TU). Here, Mg:?ﬂ (my) is the local Miyawaki lift of m, described below.
(3) We have

rc M) (M(’“j) (n)) .

T
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If T has a tempered A-parameter and if r < n < r+1 orn > 2r, then the inclusion is in
fact an equality.

The statements in Theorem 1.4 are proven in Proposition 4.3, Proposition 4.4, and Theorem
4.5. Remark that Arthur’s multiplicity formula ([3, Theorem 1.5.2]) should imply the existence of
an irreducible subrepresentation of Sy (n4r)/2 (Sp,(F)\Sp,.(A)) satisfying Theorem 1.4 (1) at least
when n 4 r is even.

The definition of Miyawaki liftings is similar to the one of theta liftings. As Miyawaki liftings
are given by the pullbacks of Ikeda liftings, theta liftings are defined by the pullbacks of theta
functions. One of the most important properties of theta liftings is the seesaw identities, which have
several applications. For instance, by using seesaw identities, Ichino [25] computed the pullbacks
of Saito—Kurokawa liftings, which is regarded as a special case of Ikeda’s conjectural formula for
the Petersson norm of a certain Miyawaki lift. For another example, Xue [56] reduced the refined
version of the Gan—Gross—Prasad conjecture for the symplectic-metaplectic case to the one for the
special orthogonal case.

Miyawaki liftings also satisfy certain seesaw identities. To state these identities, we introduce the
Fourier—Jacobi periods. Fix a totally positive element & € F* and set 9¢(x) = ¥(&x) for z € A.
Let n’ = norn' =n—1 For p € § (Spn(F)\%n(A)), ¢ € Sy (Spn/(F)\é?)n,(A)), and
¢ € S(A™), we define the Fourier—Jacobi period Prn e (¢, ¢',¢) by the integral

/ 29,0900, (9. 0)do. itn' = n,
Sp,, (F)\Sp,, (A)

/ / P(0(0. 0) PG OOF, (v(g. Odgdv. i n’ =n—1.
Vi1 (F)\Vn—1(A) JSp,, 1 (F)\Sp,,_1(A)

Here, @i{ is the theta function associated to ¢ € S(A™), which is a genuine automorphic form on a
Jacobi group J,(A) = Sp,y(A) x V,y(A), where V,y = F27' @ F is a Heisenberg group. Let S (A™);

be the subspace of S(A™) consisting of lowest weight vectors of the Weil representation of .J,(A)
with respect to 1.

Proposition 1.5 (Seesaw identity (Proposition 4.7)). Let m and @ be irreducible representations of

S, (Ain) and b,y (Ain) occurring in S /2 (S0, (F)\SD, (A) ) and S n-14r)/2 (SPacs (F)\SD,1(4)),
respectively.

1) If there exist M (@, F1) € M (7) with pem, ¢ en', and ¢p1 € S(A"1)¢ such that
7 3
Pn,n—l,l/}g (M(n)(%}—l)aa, ¢1> 7& 07

then there exist M) (' Fb) € be)TX (') and ¢2 € S(A")¢ such that

Prre (%m ¢2> £0.

(2) Assume that n+r > 2. If there exist ¢ € w1, M) (o', Fb) € M)

brxe (7") with ¢’ € @', and
¢ € S(A")¢ such that

Prase (. MO, F), 6) £ 0,



A THEORY OF MIYAWAKI LIFTINGS: THE HILBERT-SIEGEL CASE 5
then there exist M™ (¢, Fi) € ME;Z_)I_(W) and ¢1 € S(A" V)¢ such that
Pan-tue (M0, F1), 7. 1) £0.
We shall write these properties as the following seesaw diagram:

Sp, (F) x Sp,(F) Spu(F)

e

Sp, (F) Sp_1(F) % Viio1 (F).

Remark that the proof of Proposition 1.5 uses the non-vanishing of Fourier—Jacobi coefficients of
Ikeda liftings (Proposition 2.7 (3)). In particular, the seesaw identities would not follow from
Arthur’s multiplicity formula.

Finally, following Ikeda’s conjecture (Conjecture 1.3), we formulate a conjecture on the non-
vanishing of Miyawaki liftings.

Conjecture 1.6 (Conjecture 5.1). Let 7 be an irreducible representation of Sp,(Aan) occurring in
Sttt in)/2 (S0 (F)\Sp, (4)).

(1) When n = r, the Miyawaki lift Mgl(ﬂ) is monzero if and only if the central value of the
Rankin-Selberg L-function L(s,m x X" ;) is nonzero.

(2) When n > r, the Miyawaki lift Mfﬁni(ﬂ) is always nonzero.
Using the seesaw identities (Proposition 1.5), one can prove the easiest case.

Proposition 1.7 (Corollary 5.6). Suppose that n =r = 1. Let w be an irreducible representation of
SLo(Afn) occurring in Sky1 (SLo(F)\SL2(A)). Then MS)T(W) # 0 if and only if L(1/2,m X Tx-1) #
0.

Outline of the proof. The Miyawaki lift Mq(;l(ﬂ') is nonzero if and only if there exists a vector in

Mf; )T(W) whose £-th Fourier coefficient is nonzero for some totally positive element £ € F*. This

)

’ (m) xm x S(A%)¢, where 7 is the nontrivial character

.. . 1
condition means that Py gy, is nonzero on Mz(p

of §f>0 (A) = {£1}. By the seesaw identity (Proposition 1.5), it is equivalent that Py 1 4, is nonzero

on m X MS}TX& (n) x S(Al)e. Note that MS}TX&

correspondence of 7x¢. By the global Gan-Gross-Prasad conjecture for SLy x SL, proven by Gan—
Gurevich [12], Qiu [44], and Xue [56], the non-vanishing of the Fourier—Jacobi period P11y, on

(n) is the Ikeda lift Il(pl)(Txg), i.e., the Shimura

T X Ig)(Txg) x S(A)¢ is equivalent to the non-vanishing of the central value of L(s,m x 7x_1). O

By a similar argument, we can relate Conjecture 1.6 to the Gan—Gross—Prasad conjecture (see
Conjecture 5.2 below). The following theorem summarizes Theorems 5.5 and 5.7.

Theorem 1.8. (1) Assume the Gan—Gross—Prasad conjecture (Congecture 5.2) and Hypothesis
5.8 (A) below. Then Conjecture 1.6 for n = r,r + 1 holds when 7 has a tempered A-
parameter.

(2) Assume Hypothesis 5.3 (B) or (C) below. Then Conjecture 1.6 for n > r is reduced to the
case where n —r = 1.
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Hypothesis 5.3 is an expectation of the existence of certain (tempered) automorphic represen-
tations. This was also considered in the theory of twisted automorphic descents introduced by
Jiang—Zhang [32, Conjecture 2.3]. For more comments, see Remark 5.4 below.

There is a local analogue of Miyawaki liftings. Now let F' be a non-archimedean local field
of characteristic zero, and ¥ be a non-trivial additive character of F. Let x_1 be the quadratic
character of F'* corresponding to F'(v/—1)/F. A local analogue of the Ikeda lifting is the degenerate
principal series I gﬂr )( ) = In dSp”+ E;))(M(’”H)), where 7 = pu x p~t
with p being a unitary character of F*. Recall that there is an embedding ¢: Sp,, x Sp, < Sp,, ;..

is a principal series of GLa(F)

For an irreducible representation 7 of §f)T(F), on which the kernel {£1} of the covering map
Sp,.(F) — Sp,.(F) acts by (£1)"*", the maximal 7-isotypic quotient of Il(/)nw) (1) is of the form
M 1(%) (m) R

for some smooth representation MSZQ(W) of Spn(F ), on which the kernel {£1} of the covering map

Sp,,(F) — Sp,(F) acts by (+1)"*". We call Mfz)nl (m) the local Miyawaki lift of 7. The following is
the main local theorem.

Theorem 1.9 (Theorem 3.1). Let pu be a unitary character of F*, and m be an irreducible repre-
sentation of Sp, (F) on which {+1} acts by (£1)"*". Suppose that n > r.

(1) The local Miyawaki lift MSZ,)I_(TF) is monzero and of finite length.
(2) If w is almost tempered (see §3.2 below) and unitary, then
o Mt(bn)( ) is irreducible;

o MU(m) = (1 o dety ) 30 o= Ind 2" (' o dety ) R ) with ' = ux 7
)

r(F)

° ./\/l n) () is isomorphic to the unique irreducible quotient of the induced representation
’ n—r—1 ’ n—r—3 / 1 3
T o x T X x T2 X if n+r = 0mod 2,
7| |n_;_1><7"\~|n_§_3><-~><7-’|-\1><,u’><|7r if n+r=1mod 2,
where 7' =T ® X[(nﬂ)/?} oot

For the notation of parabolic inductions, see §3.2 below.
(3) For any irreducible almost tempered unitary representations w1 and mwa, we have

M(n)( 1) = be_)r(ﬂ'z) = m = m.

(4) Assume one of the following:
e 7 is almost tempered and unitary, andr <n <r+1 orn > 2r;
e T is discrete series

so that Mgﬁ(w) is irreducible. Set
— a0 (n)
= My (er(ﬂ')> .

Then all irreducible subquotients of ' are isomorphic to w, and the mazximal semisimple

quotient of @' is irreducible.

[(n+7)/2] )(

(5) Suppose that p is unramified, and set o = (pux-, w), where w is a uniformizer of

F. If w is an irreducible unramified representation of Spr(F) with the Satake parameter
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{Bfﬁl, ..., B}, then ./\/lz(/)nl(ﬂ) has a unique irreducible unramified quotient. Its Satake pa-
rameter is equal to

+1 +1 41 n=r—1 41 n—r—3 41 —n=r=1
{ﬁl yrr o M }U{Oé q 2 yaq 2 yeees 4 2

as multisets, where q is the cardinality of the residue field of F.

There is also a local analogue of seesaw identities (Proposition 1.5). For £ € F*| we denote the
Weil representations of the Jacobi group J,—1(F) = Sp,,_1(F) X V,—1(F') and the metaplectic group

§f)T(F) with respect to ¢ by wg;_l) and wgg, respectively.

Proposition 1.10 (Seesaw identity (Proposition 3.10)). Let m and 7’ be irreducible representations
of Sp,.(F) and Sp,,_1(F), on which {£1} acts by (£1)"" and (£1)"T"~ 1, respectively. Then

(n)
o (ML)

As an application, the seesaw identity gives a quite new example of the local Gan—Gross—Prasad
conjecture in a non-generic case (Theorem C.5).

"D ~ _ ) (r)
Fua(r) " Wy ) = Homg, () (dex& (7) @ Wy v”)-

This paper is organized as follows. In §2, we recall the theory of Ikeda liftings extended by
Tkeda—Yamana [29]. The local and global theories of Miyawaki liftings are explained in §3 and
84, respectively. In §5, we discuss Conjecture 1.6 and its relation with the Gan—Gross—Prasad
conjecture. In Appendices A, B and C, we recall results on Jacquet modules of representations of
metaplectic groups, the local and global Langlands program, and the Gan—Gross—Prasad conjecture,
respectively.

Acknowledgments. The author is grateful to Shunsuke Yamana, Atsushi Ichino, and Tamotsu
Ikeda for their helpful comments. Thanks are also due to the referees for helpful comments. This
work was supported by the Foundation for Research Fellowships of Japan Society for the Promotion
of Science for Young Scientists (PD) Grant 29-193.

2. IKEDA LIFTINGS AND THEIR FOURIER—JACOBI COEFFICIENTS
In this section, we recall the theory of Tkeda liftings along with [29].

2.1. Metaplectic group and its representations. Let F' be a totally real number field. The
symplectic group Sp,, is an algebraic group defined over F' given by

L (0 -1, [0 -1,
9\1, o )97 \1, o )"

The set of symmetric matrices of size n with coefficients in F' is denoted by Sym,, (F'). For A €
GL,(F) and B € Sym,,(F), set

Sp, (F) = {g € GLon(F)

m(4) = <g‘ tf_l), n(B) = (10" ﬁ) € Sp,(F).

For each k =1,...,n, we define a standard maximal parabolic subgroup Py (F') of Sp,,(F') by

a * * *
0 A| = B A B
0 C| = D
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Let Py(F) = My(F)N(F) be the standard Levi decomposition, so that the Levi My (F') is isomor-
phic to GLi(F') X Sp,,_x(F). In particular, P,,(F) = M, (F)N,(F) is the Siegel parabolic subgroup
with M, (F) = {m(A) | A € GL,(F)} and N,(F) = {n(B) | B € Sym,(F)}. Let B, = N}_, P; be
a Borel subgroup of Sp,,. A parabolic subgroup P of Sp,, is called standard if P contains B,,.

For each place v of F', we denote by é;)n(Fv) the metaplectic group, i.e., the topological double
cover of the symplectic group Sp,,(F,). As sets, we identify Sp, (F,) with Sp, (F,) x {£1}. Then
the group law of éBn(Fv) is given by

(91,€1) (92, C2) = (9192, cu(91, 92)C1C2)

for g1, 92 € Sp,,(Fy) and (i1, (2 € {£1}, where ¢,(g1, g2) is Rao’s 2-cocycle of Sp,,(F,) with values in
{z£1}. The double cover Sp,,(Fy,) — Sp,,(Fy) splits over the subgroup N, (F;) by n(B) — (n(B),1).
If F, is a non-archimedean local field whose residue characteristic is not 2, there is a unique splitting

Spn(ov) — é\l-;n(Fv)’ g (975(9))'

Here, we denote by o, the ring of integers of F,,. We identify N, (F,) and Sp,,(0,) with the images

of these splittings. If H is a subgroup of Sp,,(F'), the inverse image of H in Sp,(F) is denoted by
H.

Next, we define the global metaplectic group. We denote the adele ring of F' by A. Let & be a
finite set of places of F', which contains all places above 2 and oco. Put

Spa(A)e = [ SpalFo) x [ ] Sp(ow).

veES V€S

Then the double cover é\f)n(A)g — Sp,(A)g is defined by the 2-cocycle [, cg co(91,0: 92,0). For
S C Gy, there exists an embedding Sp,,(A)s, — Sp,,(A)s, given by

((g0)vs €) = | (gv)w; € H su(gv)
v662\61
The global metaplectic group é\f)n(A) is defined by the inductive limit
S

where & runs over all finite sets of places of F' containing all places above 2 and oco. The covering
Sp,,(A) — Sp,,(A) splits over Sp,,(F') uniquely. We identify Sp,,(F') with the image of the splitting.

2.2. Weil representations of Jacobi groups. We recall the Weil representation on a Jacobi
group in the local setting. Let F' be a local field of characteristic zero. Fix a non-trivial unitary
character 1 of F'. For £ € F'*, we define a new non-trivial unitary character )¢ by

Ye(z) = p(Ex)

for z € F. Let (,) be the quadratic Hilbert symbol. For z,{ € F*, we set x¢(x) = (x,§). For each
Schwartz function f € S(F), the Fourier transform f (with respect to 1)¢) is defined by

fa) = /F £ () e () dy,



A THEORY OF MIYAWAKI LIFTINGS: THE HILBERT-SIEGEL CASE 9

where dy is the self-dual Haar measure on F' with respect to 1¢. For a € F'*, there exists an 8-th
root of unity ay, (a) such that
2

/F f(2)be(az®)dx = ay, (a))2a] 3 /F Flapbe(~ S )d

for any f € S(F). The constant ay, (a) is called the Weil constant. It satisfies that ), (ab?) =
ay, (a) and

Qlape (a)awg (b)
Qape (ang (ab)

2
(jﬁl;) S}
3

where x_1 = (-, —1) is the quadratic character associated to F'(/—1)/F.

= (a,b)

for a,b € F*. In particular,

Put
1 T z Y
0 1,1 °¢ 0
v(z,y,2) = 0 "0 L iy 0 € Sp,,(F),

0 0 —tiL' 1n—1
where z,yy € F™~! are row vectors and z € F. We set

V(F) =V 1 (F)=A{v(z,y,2) | x,y € Frl 2 e F},

X(F)=X,_1(F) = {v(,0,0) | z € F* '},
Y(F) =Y 1(F) ={v(0,y,0) | y € F""'},
Z(F)=Zp1(F)={v(0,0,2) | z € F}.

Note that V(F) is a Heisenberg group. We regard Sp,_;(F) as a subgroup of Sp,(F) by the

embedding
A B
(& 5)-9)-

By the Stone—von Neumann theorem, there is a unique irreducible admissible representation Wape of
V(F') on which the center Z(F) acts by tb¢. This representation wy, extends to the Weil represen-

tation of the group J,_1(F) = V(F) x Sp,,_1(F). We call J,_1(F) = V(F) x Sp,,_,(F) a Jacobi
group. The representation wy, is realized on the Schwartz space S(X (F')) explicitly as follows:

wye (V(2,y,2))0(t) = e(z + 2t - 'y + x - 'y)p(t + ),
vy (1) 1
wy (M(A), ()o(t) = Cm’ det A|2p(tA),
wy, (0(B), C)¢(t) = Ce(t - B-")o(t),

0 -1, . noi .
(s 757) ) o0 = conty e /X@)cb(u)wg(%-tu)du

n—1
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for ¢ € {£1}, v(z,y,2) € V(F), A € GL,_1(F), B € Sym,_;(F), and ¢ € S(X(F)). Here,
du = []; du; is the Haar measure on X (F') with du; being the self-dual Haar measure on F with
respect to 1¢. The Weil representation wy, is unitary with respect to the inner product

(¢1,¢2)=/X(F) ¢1(t)pa(t)dt

for ¢1, 09 € S(X(F)).

2.3. Non-archimedean case. In this subsection, we assume that F' is non-archimedean. For a
smooth representation II of J,,_1(F'), we put

FJye (1) = (L& W)y (r)-

Here, (-)y(r) means the maximal quotient on which V(F') acts trivially. We call FJy,(II) the

Fourier—Jacobi module of II with index 1¢. We regard FJ,, (1) as a representation of é?)nfl(F )
Since V(F) is unipotent, the correspondence II — FJy, (II) is an exact functor from the category of

smooth representations of J,_1(F) to the category of smooth representations of Sp,, ;(F).
Conversely, for a smooth representation 7 of Sp,,_;(F), one can consider the tensor product

7T®W1/,)5

which is a smooth representation of jn,l(F ). The correspondence 7 — m ® wy, is an exact functor

from the category of smooth representations of Sp,,_;(F') to the category of smooth representations
of Ju_1(F).

The following proposition seems to be well-known, but we give a proof for the convenience of the
readers. (For an archimedean analogue, see [49].)

Proposition 2.1. Suppose that F is non-archimedean. The map

7r»—>7r<§§>(,uw£

gives a 1-1 correspondence between irreducible smooth representations of é?)n_l(F) and irreducible

smooth representations of jn_l(F) on which Z(F) acts by 1¢. The inverse mapping is given by the
Fourier—Jacobi module 11 — FJy, (1I).

Proof. Since any smooth representation of V' (F') on which Z(F) acts by )¢ is a direct sum of copies
of the Weil representation wy,, for any (nonzero) smooth representation II of jn_l, we can write
II=V®S(X(F)) as a representation of V(F') for some (nonzero) vector space V on which V(F')
acts trivially. For g € é\f)n_l(F), the operator II(g) o (1y ® wy, (9)~!) commutes with the action of
V(F'). By Schur’s lemma, we have

I(g) o (1y ® wy (9)7") = 7(9) ® Ls(x(r))

for some 7(g) € Aut(V). Then 7 gives a group homomorphism 7 : é\f)n,l(F ) — Aut(V). It is smooth
since II and wy, are smooth. We conclude that II = m ® wy, as representations of jn,l(F ). Note
that FJy, (T @ wy, ) = 7 as representations of Sp,,_; (F). In particular, FJy, (II) # 0 for any nonzero
smooth representation of J,_1(F). Since — ® Wape and FJ¢§ are exact functors, we see that 7 is
irreducible as a representation of Sp,,_; (F") if and only if 7 ® wy, is irreducible as a representation
of Jn_l(F ) O
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For an irreducible smooth representation II of é\f)n(F ), we denote by 11y, the maximal quotient

of Il on which Z(F) acts by t¢. Then Ily, is a smooth representation of J,_1(F'). By a similar
argument to the proof of Proposition 2.1, we have

H¢§ = FJ#’{ (H‘jn—l(F)) @ Wy -

Let i be a unitary character of F*. For each integer n, we define a character (™) of M, (F) by

W (n().0) = ¢ (7 ) e

It is also regarded as a character of P,(F). If

- GL2(F —
T=px ot :IndP(lig(l)’)(M@“ 1)

is an irreducible parabolic induction of GL2(F'), where Py ;) is the Borel subgroup of GLz consisting
of upper triangular matrices, then the degenerate principal series

n n §in F n
157(7) = Iy (u™) = md 30 ()

is irreducible by [35, 50]. See also [29, Propositions 3.1, 5.1].
In general, the Fourier—Jacobi module FJy, (I1].J;,—1(F")) is rarely irreducible since the restriction

of II to J,_1(F) is often reducible. However, FJy, sends degenerate principal series of é\f)n(F) to
ones of §I/)n_1(F).
Proposition 2.2. For any £ € F*, we have an isomorphism
~ p(n—1
Fly (187 (r) 2 18D (rxe),
where Txe = T ® X¢. In particular, we have

(n) ~ (n—1)
(28 (T))%—Iw (7Xe) © wy

as Jn—1(F)-modules.
Proof. See [21, Theorem 3.1] and [55]. O

2.4. Archimedean case. In this subsection, we consider the case where F' = R. We assume that
the non-trivial unitary character ¢ of R is of the form

Y(x) = exp(2ray/—1z)
for € R with a > 0. Then the Weil constant o (t) is given by
exp(myv/—1/4) ift >0,
() = {exp(—wﬁ/zl) it < 0.
For € € R* with £ > 0, we define d>2 € S(X(R)) by
¢¢(x) = exp(—2ma(zf + - + 25 _1))
for v = (z1,...,2n-1) € X(R). Let

= {5 0)

a, B € Mat,(R), 'af = "Ba, ‘aa + 8B = ln}
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be the usual maximal compact subgroup of Sp,,(R). For u = (_O[ﬁ g) € K, we write det(a +
V—18) = eV=10 with —7 < 0 < 7, and we set
detl/Q(u7 () = CeﬁG/Q.

Then wy, (u,C)¢g = det'/?(u,¢) - qﬁg for any (u,() € Koo N Sp,_1(R). In particular, det'/? is a
genuine character of K. For an integer [, we set det’/?(u,¢) = (det'/?(u,¢))!. We denote the
irreducible lowest weight representation of Sp,,(R) with lowest K-type det'/? by Dl(72) :

Let
$, ={Z € Mat,,(C) | 'Z = Z, Im(Z) > 0}

be the Siegel upper half space of genus n. Here, for a symmetric matrix B, we write B > 0 if B is
positive definite. Then Sp,,(R) acts on $),, by

9(Z) = (AZ+ B)(CZ+ D)™, g= <é g) € Sp,(R).

Note that the stabilizer of i = /—1-1,, € 9, in Sp,(R) is equal to K. We set j(g,2) =
det(CZ + D). Then there exists a unique automorphy factor j((g,(¢),Z) of Sp,(R) such that

i((9,¢), Z)? = j(g,Z) for any (g,¢) € gf)n(R) and Z € 9,. The following lemma might be well-
known, but we give a proof for the convenience of the readers.

Lemma 2.3. For A € GL,(R) with det A > 0, B € Sym,,(R), and (u,¢) € Koo, we have
F((B)(m(A), 1)(w,0).1) = (det A)~2det/2(u, ).
Proof. Since j((g,¢), Z) is an automorphy factor of é\f)n(]R), for any (g,() € é\f)n(]R), the function
= C, Z = j((9,0), 2)

is holomorphic.

First, we claim that j(n(B), Z) = 1 for any B € Sym,,(R) and Z € $,,. Note that j(n(B), Z)? =
j(n(B),Z) = 1. Since $, is connected, j(n(B), Z) is independent of Z. In particular, B
j(n(B), Z) gives a group homomorphism Sym,,(R) — {#£1}. Since Sym,,(R) is divisible, it must be
the trivial character. Hence j(n(B), Z) = 1.

Next, we claim that j((m(A),1),Z) = (det A)~2/2 for A € GLy(R) with det A > 0 and Z € $,,.
Since $, is connected, the function $, 3 Z — (det A)Y/2j((m(A), 1), Z) € {£1} is a constant for any
A € GLy(R) with det A > 0. In particular, the map A — (det A)Y/2j((m(A),1),Z) € {£1} gives a
group homomorphism. Since (e1/2X)2 = X for X e g, (R), we have (det 4)'/2j((m(A),1),Z) =1
when A = X for some X € gl,(R). Since any A € GL,(R) with det A > 0 can be written as a
product A = eX1...eXk for some X1,..., X} € gl,(R), we have (det A)Y/2j((m(A),1),Z) = 1 for
any A € GLy(R) with det A > 0.

Similarly, j((12,—1),2) € {£1} is independent of Z € $,. Choose A € O(n) such that
A2 =1, and det A = —1. Then (m(A),1)? = (13,,—1) so that j((12n, —1),i) = j((m(A),1),i)2 =
j(m(A),i) = det(A)~! = —1. Hence j((12n,—1), Z) = —1 for any Z € §,,.

Finally, we see that detl/Q(u, ()}((u, (),i) € {£1} gives a group homomorphism Koo — {£1},
which factors through K. Since Ko is divisible, it must be the trivial character. Hence j((u, ¢), ) =
det_l/Q(u7 ¢). This completes the proof. O
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Let Sym;’ (R) = {B € Sym,,(R) | B > 0}. Fix an integer & > 0. For B € Sym,/ (R), we define a
function W% on Sp,,(R) by
WB(g) = (det B)*FT™/4y(Tr(Bg(i)))(g, 1)+
= 1(Tr(Bz)) det(B[A])#* /% exp(—2ma - Tr(B[A]))det" /) ()

for g = n(z)(m(A),u € é\f)n(]R) with z € Sym,, (R), A € GL,(R), det A > 0, and & € Ko. Here,
we put B[A] ='ABA.

Proposition 2.4 ([29, Lemma 7.6]). For £ € R* with £ >0 and B’ € Sym; | (R), we put

0
B = <g B,) € Sym (R).
Then we have

WE(v(2,0,0)9 )wy, (¢')dQ(x)dx = | det B> W (¢)
X(R)

for ¢’ € Sp,_(R).
The Lie algebras sp, (R) and € of Sp,,(R) and K, are given by

iv (0 =1, o (0 -1 o
) o)

A B
_{<C D) eMatgn(R)‘B_tB, C="'c, A_—tD},

A B
E:{(_B A> € Matg, (R) ‘ tA=—A, tB:B},

respectively. Note that € is the 1-eigenspace of the Cartan involution #X = —'X on sp,,(R). The
(—1)-eigenspace is given by

pz{(é _BA> GMatgn(R)'A:tA, B:tB}.

Hence sp,(R) = £ & p. The homeomorphism

sp, (R) = {X € Maton (R)

induces an isomorphism
dp: sp,,(R) /& = p = Ti$H, = Sym,,(C),
where T;$),, is the tangent space at i on $,,. This map is given by

A B
w((4 ) =2 vein
Then the complex structure (i.e., multiplication with v/—1) on Sym,,(C) gives a map
7. A B = B -A
PP B —4 —A4 -B)"

Let sp,,(C), £c, and pc be the complexifications of sp,, (R), ¢, and p, respectively. We denote the
(++/—1)-eigenspace of J on pc by p((i:. Then

p%z{(é _BA>®11<_AB g>®ﬁ’A,Besymn(R)}
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_ {(i\/ém iEA> € Matan (C) ‘ Ae Symn(Q}-

The elements of ]J(JCr and p correspond to the linear combinations of differential operators

d d
(st = =)
de j Cle j

respectively, where z; = x; + +/—1y; are coordinates on §), at the point i.
The element X € p acts on a smooth function W on Sp,,(R) by

X W(g)= 2

= 21 W)

t=0

for g € §1/)n(R) This action is extended to pc linearly. It is easy to check that ps acts on Wg by
(n)
k+(n/2)"
Similarly, ps N sp,_1(C) acts on qbg by zero. This fact can be proven by using the Fock model of
wdjg.

2.5. Global case. Now we let F' be a totally real number field, and ¢ be a non-trivial unitary
character of A/F. We assume that for each infinite place v of F, there exists a, € F, = R with
a, > 0 such that ¥ (z,) = exp(2ma,v/—1z,) for x, € F,. For a place v of I, we define a maximal
compact subgroup K, of Sp,,(F,) by

zero for any B € Sym;' (R) (cf. [4, Lemma 7]). Hence W§ is a lowest weight vector in D

Sp,,(04) if v is non-archimedean,
Kv = . .
K if v is real.

Here, we denote by o0, the ring of integers of F,, when v is non-archimedean. If v is archimedean,
we define (p,) C Lie(Sp,(F,)) ®r C as in the previous subsection.

Recall that a function ¢: Sp,,(F)\Sp,(A) — C is a cusp form if

 is smooth and of moderate growth;

@ is right .f(—ﬁnite, where K = IL, IN(U;

@ is 3-finite, where 3 is the center of the universal enveloping algebra of Lie(Sp,,(F®qR))®rC;

there exists 6 € {0,1} such that ¢((g,¢)) = ¢%¢((g,1)) for any g € Sp,,(A);
For any proper F-parabolic subgroup P of Sp,,, the constant term along P

[ i
N(F)\N(A)

is zero for any g € §f)n (A), where N is the unipotent radical of P.

We say that ¢ is genuine if 6 = 1. Let [ = (Iv)v € [], oo Z. We say that a cusp form ¢ is holomorphic
of weight /2 if

o X, ¢ =0forany X, € (po)c;

o plgii,) = det™/2(ii,)p(g) for g € Sp, (4) and 1, € K,
for any infinite place v. We denote the space of holomorphic cusp forms of weight /2 by

Siy2 (Spa(F)\Spa(8))

The group é\f)n(Aﬁn) acts on Sy/p (Spn(F)\gf)n(A)) by the right translation.

Let 7 = ®/ 7, be an irreducible unitary cuspidal automorphic representation of GLy(A). Assume
that
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(A1) for any finite place v, the local factor 7, is an irreducible principal representation g, x ;'

(A2) for any infinite place v, the local factor 7, is a discrete series representation with lowest
weight +2k, where k, > 0;

(A3) the root number

sy =¢ (370) = [Lm(-n- T[T

V<00 v‘oo
is equal to 1.

For v < 0o, we notice that |u,(wwy)|, = 1 by the Ramanujan conjecture proven in the case of Hilbert
modular forms by Blasius [8], where w, is a uniformizer of F,. For a more general result on the
Ramanujan conjecture, see [10]. We refer to £2k = (£2ky)y € [, Z as the weight of @) 70.

Put k + (n/2) = (kv +n/2)y € [[,5 Z for each integer n > 0. For v < oo, we let I&T)(Tv) =

Ind%p?g“)’)(ugn)) be the degenerate principal series defined in §2.3. Set Ié}n) (1) = @)ool 1(;:) (Tv),

which is an irreducible representation of §f)n (Agy). The following is a part of the main theorem in
[29].

Theorem 2.5 ([29, Theorems 1.1, 1.2]). Let 7 = ®) 7, be an irreducible unitary cuspidal automor-
phic representation of GLa(A) satisfying the conditions (A1), (A2) and (A83). Then the represen-
tation Il(pn) (7) occurs in Spy(n/2) (Spn(F)\é\f)n(A)) with multiplicity one.

We denote the unique subrepresentation of Sy (/2 (Spn(F )\é\f)n(A)> which is isomorphic to

157 (7) by Ik} (7), and call it the Tkeda lift of 7.
Let £ € F* be a totally positive element. For ¢ € S(X(A)), the theta function @is (vg') is defined
by
05 (v(w,y,2)g) = Y delz+2t-"y+a- "y (9)e(t + )
teX(F)

for v(z,y,2) € V(A) and ¢ € é\f)nfl(A). It is a genuine automorphic form on J,_1(A). One can
easily check that

00 (vg)O% (vg')dv = (¢1,62) = | d1(2)da(w)da

/Z(A)V(F)\V(A) X(4)

for ¢1,¢2 € S(X(A)) and g' € Sp,, 1 (A).
We denote by S(X(A))¢ the subspace of S(X(A)) spanned by ¢ = ®,¢, such that ¢, = gzbgv

for each infinite place v. For ¢ € &/ (Spn(F)\gf)n(A» and ¢ € S(X(A))¢, the Fourier—Jacobi
coefficient associated to (¢, ¢) is defined by

FJY (g¢) = /V

This is a cusp form on é\l/)nq(A) (See also [19, Lemma 2.3] and [18, Theorem 8].) Moreover, by
Proposition 2.4, we conclude that

FJZZ&(SD) € S-1)/2 (Spn—l(F>\§3n—1(A>>

for any ¢ € Sy/2 (Sp,(F)\Sp,(A) ) and ¢ € S(X(A))e.

p(vg)O7, (vg')dv.
(F)\V(4)
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Proposition 2.6. For F € k(" (r) and ¢ € S(X(A))e, we have FI_(F) € Tk (7xe).

Proof. We may assume that FJié (F) # 0. Let II be the representation of Sp,_,(A) generated by
FJfZ5 (F) for F € qu(pn)(r) and ¢ € S(X(A))¢. Since I is cuspidal, it is a direct sum of irreducible

representations. Choose an irreducible direct summand 7 of II and a projection II — 7. Then the
map
(n) lue
Ikw (T)@wy, —> M=

is a (nonzero) V(Agy)-invariant map so that it factors through FJy, (kaﬁn)(T)). Since FJy, (kabn) (1))
is nonzero, we have FJy, (kabn) (1)) = qu(pnfl)(Txg) by Proposition 2.2. Since it is irreducible, we
have 7 & kapnfl)(Txg). Hence II is isomorphic to a direct sum of some copies of Iki(pnfl)(Txg).
However the Ikeda lift appears in Sy (,—1/2 (Spn_l(F)\Spn_l(A)) with multiplicity one, we see
that II is irreducible and is equal to kabn_l)(Txf). O

For € &9 (Spn(F)\é\;;n(A)» we define the §-th Fourier—Jacobi coefficient ¢y, by

e (vg') = / (209 )0e (2)d=
Z(F)\Z(A)

for v € V(A) and ¢ € Sp,_;(A). If I be a subspace of Si/2 (Spn(F)\gf)n(A)), we put

ngz{cpwg | goEH}.
This is the maximal quotient of IT on which Z(Ag,) acts by .

Proposition 2.7. (1) For F € kapn)(T), there exist Fi,...,F, € kapnfl)(Txg) and ¢1,...,¢, €
S(X(A))¢ such that

Fye(vg') Z]—"’ @d” (vg')
forv e V(A) and g’ € Sp,,_1(A).
(2) Suppose that (Ikz(pn) (T))w is nonzero. Then for F' € kapn_l)(Txg) and ¢ € S(X(A))e, there
¢
exists F € Ikgbn) (1) such that
Fye(vg') = JT’(g’)@fZ5 (vg')
forve V(A) and g’ € Sp,_1(A).
(3) If n > 2, then (kapn) (T))w # 0 for any totally positive £ € F*.
¢

Proof. By [26, Proposition 1.3], for F € Ikgbn) (1), there exist ¢1,...,¢, € S(X(A))e with (¢4, ¢;) =
0; ; such that

Fye(vg') ZFJ @d)l( "

for v € V(A) and ¢ € é\f)n,l(A). Since FJfZ; (F)d) € Ikl(p - (Txe) by Proposition 2.6, we obtain
(1).
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Therefore, there is a jn_l(Aﬁn)—equivariant inclusion
(Ikg‘) (T)>¢ C IV (rxe) ® wy,.
¢

If (Iki)n) (T))w is nonzero, this inclusion must be equal since kaf_l)(Txg) ®wy, is irreducible. Hence
¢

we obtain (2).
Let Sym, (F) be the subset of Sym, (F) consisting of symmetric matrices whose images in
Sym,,(F,) are positive definite for each infinite place v. By [29, Lemmas 8.5, 5.4], there exists

Fe kaﬁn) (7) such that for B € Sym (F), the B-th Fourier coefficient

Wa(g) = F(n(X)g)y(Tr(BX))dX

/Symn(F )\Sym,, (4)
is not identically zero if and only if L(1/2,7 ® Xdet(py) # 0. When B = diag(¢,¢',1,...,1) with
& € F* totally positive, the B-th Fourier coefficient Wy is given by

Wa(g) = Fy (0(X)g) G(Te(BX))dX.

/Z (A)Sym,, (F)\Sym,, (A)

Hence the ¢-th Fourier—Jacobi coeflicient Fy, is not identically zero if Wp # 0. Since there exists
a totally positive element § € F* such that L(1/2,7 ® xe¢e) # 0 by [53, Théoreéme 4], we obtain
(3). O

3. LocAL MIYAWAKI LIFTINGS

In this section, we define the local Miyawaki lifting, and prove basic properties.

3.1. Definition. Let F' be a non-archimedean local field of characteristic zero, and ¢ be a non-
trivial additive character of F'. For two non-negative integers n and r, we define an embedding
L: Spn X Spr - Spn—H" by

A 0| B 0
A1 Bl A2 Bg o 0 AQ 0 B2
L<<01 D1>’<02 D2>>_ Ci 0|Di 0 |

0 Co| 0 Dy

and we identify Sp,, x Sp, with the image. For 7 = pu x p~!

F>* we consider the local Tkeda lift I (ntr) (1) = nd Pt ()
¥ Poir(F)

series of é?)n 4r(F). For an irreducible representation 7 of Sp,.(F), on which the kernel {£1} of the

with p being a unitary character of

(7)), which is a degenerate principal

covering map §f)T (F) — Sp,.(F) acts by (+1)"*", the maximal m-isotypic quotient of I l(an) (1) is of
the form

for some smooth representation be"l(w) of gﬁn(F ), on which the kernel {£1} of the covering map
SPu(F) = Sp,(F) acts by (£1)™". We call M () the local Miyawaki lift of .

T
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3.2. Preliminary. In this subsection, we recall some basic terminologies of representations of
Sp,.(F).
A parabolic induction

il [ xxon] [ xom = Indl ) (m] [ @ @) - [ @ o),

is standard if

e P = MN is a standard parabolic subgroup of Sp, with M = GLg, x --- X GLg, X Sp,;
e 7; (resp. mp) is an irreducible tempered representation of GLy, (F) (resp. Sp,, (F));
® si,...,s are real numbers such that s; > --- > s, > 0.

We understand that each irreducible tempered representation of Sp,.(F) is a standard module (the
case where [ = 0 and ro = r). The Langlands classification asserts that any irreducible smooth
representation 7 of Sp,.(F) is a unique irreducible quotient of a standard module 7| - [¥1 x -+ X
71| - |%t % mp, which is called the Langlands quotient and is denoted by J(mi]| - |*%,..., 7| - |*, ™).
For any irreducible representation m, the datum (P, {r;| - |*}, 7o) is determined uniquely up to an
isomorphism.

When 7 is a genuine irreducible representation of Sp,., one should replace the parabolic induction
with

Sp,.(F)
IndZ o (Tl [ ® - @ Tyl - [* @ mo),

where
ay(1)

oy (det a) mi(a)

Ti,w(aa C) = C

is a genuine irreducible representation of the double cover @kaZ(F) of GL, (F) (which is identified

with GLg, (F) x {£1} as sets), and 7 is a genuine irreducible representation of Sp,, (F'). For more
precision, see [15]. We identify 7, with 7 itself, and we use the same notation 7 |-[** X - - - x 7|+ | X

and J(7i|- %, ..., 7| - |*, 7o) as in the non-genuine case.

We say that an irreducible representation 7 of §I/)T(F ) is almost tempered if 7 = J (||, ..., 7]
|0, mo) with 0 < s; < -+ < s1 < 1/2. We understand that irreducible tempered representations are
almost tempered (the case where [ = 0). Then the standard module 7| - [** x --- x 7| - |t X 7 is

irreducible by Corollary B.3, so that 7 is equal to this standard module.

When we consider unramified representations, we always assume that the residue characteristic
of F' is greater than 2. Then the covering map Sp, (F') — Sp, (F) splits over the maximal compact
subgroup Sp,.(0), where o is the ring of integers of F'. Recall that an irreducible smooth represen-

tation 7 of Sp,(F') is unramified if 7 has a nonzero Sp,(0)-fixed vector. If 7 is unramified, then

there exist unramified characters x1,...,x, such that 7 is a unique unramified constituent of the
induced representation Indsépr(g)) (x1 ®---® xr). We call the multiset {Xl (@)L, .. xr (w)ﬂ:l} the

Satake parameter of 7, where w is a uniformizer of F. We write ¢ = || ™! for the cardinality of
the residue field of F. .

Recall that we can associate an irreducible representation 7 of Sp,(F') to an L-parameter ¢,
which is a self-dual representation of the Weil-Deligne group WD = Wg x SLo(C) of F. This is
symplectic (resp. orthogonal) if 7 is genuine (resp. not genuine). More precisely, see Appendix B.
We say that an L-parameter ¢ is of good parity if ¢ is a sum of irreducible self-dual representations
of the same type as ¢. The unique irreducible algebraic representation of SLy(C) of dimension d is
denoted by Sy.
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3.3. Main local theorem. Recall that 7 = o x ! with p being a unitary character of F*. Let

X—1 be the quadratic character associated to the extension F'(v/—1)/F. For a real number a, we
denote by [a] the maximal integer which is not greater than a. The determinant character of GL(F')
is denoted by det,.

The following is the local main theorem.

Theorem 3.1. Let y be a unitary character of F*, and 7 be an irreducible representation of §f),. (F)
on which {+1} acts by (£1)"*". Suppose that n > r.

(1) The local Miyawaki lift benz_(’ff) is nonzero and of finite length.

(2) If m is almost tempered and unitary, then
o Mfﬁ(ﬂ) is irreducible;
* Ml(l)rf‘)r(ﬂ) = (p' odety—p) X m with p' = ,UX[—(TH)/% ;

. Mfz)nl(ﬂ) is 1somorphic to the unique irreducible quotient of the induced representation

7| |n—;‘—l ><7'/\'|n_;_3 X-~'><T/|"% X T if n+r=0mod 2,
7'/"|n7;71 ><7"\-|n7573 x-oox 7| P xpu xm ifn4+r=1mod?2,
where 7' = T®X[_(?+T)/2} =pu x 7L

(3) For any irreducible almost tempered unitary representations m and wo, we have

Mf;f,)r(ﬂ'l) = MSZ) (71'2) — m = mo.

T

4) Suppose that 7 is almost tempered and unitary so that M(n) ) 18 irreducible by (2). Assume
P,
further that one of the following conditions holds:
a) The L-parameter ¢ does not contain pu*'Sy for any d > n —r with d = n — r mod 2;
(a) p y
(b) n=r orn=r+1.
Set

7= MJ) (M)

Then all irreducible subquotients of ' are isomorphic to w, and the mazimal semisimple
quotient of ©' is irreducible.

(5) Suppose that u is unramified, and set o = (MX!TH)/Q])(W). If 7 is an irreducible unramified

representation of SBT(F) with the Satake parameter {Bfl, ... ,ﬂ;ﬂ}, then ./\/lgpn)T(w) has a
unique irreducible unramified quotient. Its Satake parameter is equal to

+1 +1 +1 n=r=L 41 n-r=3 +1 —n=r=l
{ﬁl 7'--)51“ }U{O[ q 2 y & q 2 gy & q 2 }

as multisets.

As in Remark 3.9 (1) below, the condition (a) of Theorem 3.1 (4) holds when n > 2r or 7 is
discrete series.

The assertion (2) gives the Langlands data for Mfz)nl (m) explicitly. In particular, it deduces (3).
The proof of (5) for the non-genuine case (i.e., the case where n+ 1 is even) is [28, Proposition 3.1].
The genuine case is proven similarly.

We prove Theorem 3.1 (1), (2) and (4) in §3.5, §3.6 and §3.7, respectively.
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3.4. Miyawaki liftings and degenerate induced representations. In this subsection, we show
that Mq(;i (m) is of finite length, and that for almost tempered 7, there is a surjection

(1 odety_,) X m —» Mq(/)nz_(ﬂ)
We need the following lemma (see [36] and [16, Lemma 2.2]).

Lemma 3.2. Suppose thatn > r. Set y/ = ux[(n+r)/2]

series) II(/) JFT)( ) =1In dsiizg) (1)) has an Sp,,(F) x Sp, (F)-equivariant filtration

. The local Ikeda lift (the degenerate principal

0clhchc--clL=I"()

with successive quotients

— Sp, (F)xSp,(F) ! t / £
Re = It/It_l B IndPt+(n r)(F)XPt(F ((N ’dett+(nir)|2 X H ‘dett

) e (Spp)).

Here the induction is normalized, and Sprft(F) X é\lx)rft(F) acts on CX° (gf),_t(F)) by

- ~ , 1,_ 0
((31:0009)e) = (o - agea™) with o= (Y5t P ).

In particular,

Spn(F)XSp'r(F) / o0 Qe
Fo =Tn dPn +(F)xSp,(F) <,u o dety—r ® o (SpT(F))) ’

Using this lemma, we have the following.

Proposition 3.3. Let m and ©’ be smooth representations of SET(F) and é\ﬁn(F), respectively. Set

= ,uxg /2, Suppose that 7 is irreducible, almost tempered and that

it (1), 7' X 7r> # 0.

Homgy )85, () ( v

Then we have
Homgy (y (1 0 detn ) 3 m,7') # 0.

Moreover, if there is an Sp,,(F) x Sp,(F)-equivariant surjection

I&}n—w) (1) » ' X,

then there is an é\l/)n(F )-equivariant surjection

(1 odety, ) xm— 7.
Proof. By Lemma 3.2, for some 0 < ¢ < r, we must have Homg 5, (F)xSp,(F )(Rt,ﬂ'/ X 7w) # 0.
By Bernstein’s Frobenius reciprocity (see e.g., [9]), this Hom—space 1s isomorphic to the space of

(]\ZJr(n_T) (F) x ]\Z(F))—equivariant maps

(n=1) o (o
2 )®Cc (Spr_t(F)>—>Rm( ') & R (),

7) is the normalized Jacquet module of m with respect to (the double cover of)

i+
(H/|dett+(n—r)‘% X 44/ |dety|
where Rp 7y (F)(

the opposite parabolic subgroup P;(F') to P(F). First, we assume that ¢ > 0. By taking the
contragredient, we have

Homg; () (RPt(m(WV) Idety| ) # 0.
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Since 7V is almost tempered, we must have —t — (n — ) > —1. This contradicts n > r and ¢ > 0.
Hence we must have ¢t = 0, and

HomMn—r(F)Xé\IST(F) (;/ odety_, ® C° (Spr(F)) ’RiPn_r(F) (") X 7T) £ 0.

Taking care of the action of §I;T(F) X é\f)r(F) on C (gf)T(F)), we see that this Hom-space is

isomorphic to
Homﬁnir( P (u odetn_, @, Rp—y —F )(ﬂ’)> :

Using Bernstein’s Frobenius reciprocity, we obtain the first assertion.

Suppose that there is an §f)n(F) X %T(F)—equivariant surjection I, — ' X 7. Then the image
of Iy is of the form m, X 7 for some Sp,, (F)-subrepresentation 7y of 7, and it induces a surjection
I,/Iy — (n'/my) ® 7. The above argument implies (7//m;) = 0 so that the restriction gives an
é\f)n(F) X %T(F)—equivariant surjection Iy — 7’ X 7. This induces an §f)n (F)-equivariant surjection
(1 odety,—p) x 7 — 7. O

Let m and 7" be smooth representations of é\f)r(F ) and §f)n(F ), respectively. Suppose that 7 is
irreducible, and that there exists a surjection

qu)n—’_r) (1) » o' K.
Then Lemma 3.2 gives a filtration
ocm,cmyCc---Cm. =

More precisely, the restriction of the surjection to Iy C I fl}nw) (7) defines a subrepresentation 7, of
7’ so that the image of I; is m, ¥ 7. By a similar argument to Proposition 3.3, one can show that
the successive quotients /7, are of finite length. Therefore 7' must also be of finite length.

3.5. Non-vanishing of local Miyawaki liftings. Next, we show Theorem 3.1 (1). We have seen
that Mq(;i (m) is of finite length. We show that Ml(/}"l (m) # 0. In fact, we will prove that

Homg: o) 55 (r) (I&nJrr)(T), (1 odety_p) x )X 7r> #0

for any irreducible representation m of §f)r (F).
Using

A B A B
Sp2r(F) — Sanrr(F)a (C D) =

C

we regard Sps,.(F) as a subgroup of é?)nH(F). Then for ¢ € If;hw) (1), we have

Spo, (F niry
lg;, () € Ind pfz()) (ux_ |detar| 7" )

By the theory of the doubling method [38], [43], a doubling zeta integral gives a nonzero element

Zrr € Homgg p,(F)xSp,.(F) <Indsp22(};) (NX |det2r| 2 ) ® (m ) 7C> .
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Note that the embedding ¢: SpT(F) X Sp,.(F) = Sp,,(F) is not the usual one in this theory (see
[38]). For @ € IQ(JHT)( ), e (pwixt 1(n+r)/2} odety,_,) ¥ m, and v € 7, we consider the integral

Zrn(®, frv) = / Zr (((9,1),0)®lg; oy ® f(g,¢) ®v) dg.
o (F)\Sp, (F) ( Spar (1) )
Proposition 3.4. The integral Z,,,(®, f,v) is well-defined and gives a nonzero element in

Homg (1.8 () (Iq(;”rr) (1) ® (((,u L2 G Get, ) 1 m) B 77) ,(C) :

Proof. Since

* 127n

for u € N,_.(F) C Sp,(F) and h € %QT(F), we have ®(h - (t(ug,1),¢)) = ®(h - ((g,1),()).

Similarly, we have

a 0] 0 O a 0] 0 O
0 1,| 0 0 0 1,| 0 0
Plh-|. 0 0 t_l 0 971 7C ®f 0 0 t —1 0 7C
0 0| 0 1, 0 0| 0 1,
1

©(h- (u(g,1),¢)) ® f(g,¢)
for a € GL,,—,(F). Hence we have
Zrr ((p9: 1), O0lg;, (1) ® F(pg,C) 0 0)
=05, (1) Zer (9,1, Qg5 () ® F(5,Q) @ 0)
for p € P,_.(F) C Sp,(F), where dp, , is the modulus character of P,_,(F"). This shows that

Z, (P, f,v) is well-defined.
It is easy to see that

S B 50 (77010 (02 st w97 ).

Since
- Spa, (2371 n—r
1) = a0 <“X—12 [detr 2 ) P Pl
is surjective, we see that Z,,, # 0. O

Applying Proposition 3.4 for 7V, we conclude that

HomSp (F)xSp,.(F )(IL(ZJn+T) (1), (4 o detn—y) x m) Km) # 0

since ((p/ o dety,_,) x )" = (u‘lx[f (/2 6 detyy_y) x 7V,
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3.6. Irreducibility of degenerate induced representations. To show Theorem 3.1 (2), we need
to prove the irreducibility of the induced representation (u o det,,—,) x 7, where 7 is an irreducible

almost tempered unitary representation of é\f)r(F ), and p is a unitary character of F*. When 7 is
supercuspidal and 6 = 0, the irreducibility of (u o det,—,) x 7 was proven by Tadi¢ [52, Theorem
9.1], and its Langlands data was given by Jantzen [31]. We imitate their proofs.

We first show the irreducibility of other induced representations. Let m be an irreducible repre-
sentation of Sp,(F'). We set § = 1 if 7 is genuine, and § = 0 otherwise. For a smooth representation
IT of §13n(F), we write s.s.(II) for the semisimplification of II.

Proposition 3.5. Let p be a unitary character of F*, and w be an irreducible tempered representa-
tion of Sp,(F'). Suppose that the L-parameter ¢ for 7 is of good parity (see §3.2). Then forl > k—0
with | = k — 6 mod 2, the induced representation

~1 1A
o dety |2 3o
1s irreducible.
Proof. We prove the proposition by induction on k. When k£ = 1 and [ > 0, this is Corollary B.4.
When k =1 and [ = 0 so that § = 1, the irreducibility of =1 x 7 follows from Theorem B.1 (6).
Suppose that k£ > 1 and that u‘1|detk|% X 7 is reducible. Let o1, ..., 0+ be irreducible represen-
tations of Spy,.(F) such that s.s.(,u_l\detk]% XT)=01®- Doy, and that o1 is a submodule and

. . _ 2
o is a quotient of p~t|dety|2 x 7
!
o1 — ptdetg|2 1T — oy

Since the Langlands quotient appears in the standard module with multiplicity one as a subquo-
tients, we have o; % oy for i # t.
By Proposition A.4, we have

+Ek—-1

L - - =1
s.s.Rpl(F)(,u_1|detk\2 xm)=up|-|7 2z X (,u Ldety_1| 2 x 7r)

I—k+1

op - K </fl|detk,1\l+71 X 77)

@ s.s. (@XA| K (M_1|detk|% X WA)) :
X

where s.5.Rp, (p)(m) = @axa| - [** K7\ with x, unitary and a) € R. By the induction hypothesis,
1+1)/2

we see that p~!|dets_;| x 7 is irreducible. By Corollary B.5, we have 2a) € Z and 2a), =

| — kmod 2. In particular, the first two summands appear in s.s.Rp, () (,ufl\detk\é X ) with
multiplicity one.
l l
Since o1 < p~tdety|2 x 7 and oy < pldety| 2 x 7, we have

ss.Rpmy(0) D pt| |77 R (/fl\detk,l]l%l x ﬂ) = i=1,
l4k—1
s.8.Rpy(py(0i) Dpl- |72 )

X (,u_1|det/1€_1|l_71 XT) = i=t

On the other hand, by Proposition A.4, we have

s.s.Rpk(F)(u_lldetk]% X ) D 8.8 (,u,\detk,l]_HTl x b - ]HEH) X 7.

l—k+1

Note that u\detk_llf% = (u;—(1+k—=1)/2,...,(=l+k=3)/2) and p~|-| 2 = (u =Y (1-k+1)/2)
in the notation in Appendix A.1. Unless 6 = 1, I = k — 1 and p~' = p, the representation
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u|detk,1|7l+71 x p Y - \HEH is irreducible by Theorem A.2. When it is irreducible, there exists ¢
such that
4l g k4l
s.s.Rp, (r)(0i) D <u|detk_1| ToxpT e ) X 7.

Considering the Jacquet module with respect to P, N P;, we see that

l—k+1 I+k—

— _ I+1 _ 1 _ -1
s.s.Rp (r)(0i) D e &(,u dety_1| 2 xw)@u|-| 2 &(u Ydety,_q| 2 >47r).

This implies that ¢ = 1 and ¢ = t. We obtain a contradiction.
Similarly, when k > 3, we have

I—k+2

s.s.Rpk(F)(u_l\detk\% X T) D (u\detk,g\_l%z x 1t deto| 2 ) X 7.

The right hand side is irreducible by Theorem A.2 since M|detk,2\_l+72 = (u;—(l+k—=1)/2,...,(=1+
I—k+2

k—5)/2) and p~tdets| 2 = (u ' (I—k+1)/2,(I—k+3)/2). By the same argument, we obtain
a contradiction.

Therefore, the proposition is reduced to the case where 6 = 1, k =1+ 1=2and p~! = p. We
treat this case in the following lemma. O

Lemma 3.6. Let m be an irreducible genuine tempered representation of éBT(F) so that 6 = 1.
Suppose that u is a quadratic character, and that the L-parameter ¢ for m is of good parity. Then
the induced representation

p|det2|% X T

1s 1rreducible.

Proof. First, we show that (podets) x 7 is irreducible in this case. By Theorem A.2 and Corollary
B.4, we have
Tl xpxm=pl- [ xpl [ xpxm

= il | % pldets] 2 1w

= pldeto|2 x pf - | %

~ 1 -1

= pldeta|2 xpf - |7 3w

— (podets) x .
Since 7 is unitary, (podets) x 7 is semisimple. Therefore we deduce that (puodets)xm = J(7|-|, ux).

Now we start to prove the lemma. Suppose for the sake of contradiction that ,u\det2|% X T is
reducible. Take an irreducible submodule of o, and an irreducible quotient ¢’ of ,u|det2]% X T

o= ,u|detg]% Xm—»ao.

Then o # o’. Moreover, we have

pl - [P = pl - [V pldeta|Z 3w = pl [P o,

Since 7| - | x px = p| - |* x ,u|det2|% x m, we have p| - |' x ¢/ — (uodet3) x 7. Moreover, since
any standard module has its Langlands quotient with multiplicity one as a subquotient, we have

(podets) X ¢ s.s.(u| - |* x o).
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Using proposition A.4, we compute the Jacquet modules s.s.Rp, (p) (1] - |t x ,u|det2|% x ) and
s.8.Rp, (7 (1 0 det3) x ). Then the sums of all irreducible representations of the form |- |71 K%
’1

which appear in s.s.Rp, (p)(u] - |* X u|det2\% x ) and s.s.Rp, (g ((p4 0 detz) x 7) are isomorphic to

s.5. (uy 7R pldeto|? x w) ©ss. (p |7V R (u] - [ x ) % 7)
and
S.S. <u| TR ,u\detgl_% X 7r> @ s.s. <u| TR ,u\detglé X 7r> ,
respectively. Hence the difference is
ul 17 B 7St

where p ~\%St2 = (u;1,0) is a Steinberg representation. By Proposition B.2, we see that p| -‘%Stz X T
is irreducible. Since
s5.Rp,py(pl - |' @ 0) Dol | Ko,

we deduce that o = p| - ’%Stg x 7. However, we have
s.8.Rp,(r)(pl - |%St2 XT)Dpl-PRuxT g s.s.Rpl(F)(,u|det2|% X ).
Therefore, ul - |%St2 X g ,u|det2|% x 7, which is a contradiction. O
Now we show the following.

Theorem 3.7. Let w be an irreducible almost tempered representation of é\f)r(F), and p be a unitary

character of F*. Set 7 = pu x pu~t. Then there exists a surjection

7l x| TS e x 7] |2 = (o detoy) X T if § =0,
7|

-\k_l><T|-]k_2><~-><7'|-|1><,u>47r—»(,u,odet2k_1)>47r iféd=1.

In particular, if © is unitary, then (p o detog—s) X 7 is irreducible.

Proof. By Theorem B.1, we have
TET X+ X T X T,
where
o 7; = |- |¥7] with 7/ being an irreducible discrete series representation of GLy, (F);
©1/2>51>53>:--> 5 >0;
e when s; = 0, the irreducible representation ¢; of WD g corresponding to 7; is not orthogonal
if 6 = 0, and is not symplectic if § = 1;
e 7 is an irreducible representation of Sp, (F') whose L-parameter is of good parity.

The segments corresponding to u‘1|detk|k776 and ,u|detk\7kT§ are [(1 —9)/2,k — (1 + 6)/2] and
[—k+(149)/2,—(1—0)/2], respectively, which contain (1 —¢)/2 or —(1—3J)/2. Hence by Theorem
A.2, we see that
pldety] 2 X = x o pT |dety| 2
k=4 k—3§
pldety|” 2 x 1 =1 x pldety|” 2.

By Proposition 3.5, we have

1 k=45 ~ _ k=6
7’ ]detk| 2 X Ty :,u]detk] 2 X 7.
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Therefore,
) )
7 xor P 7] T x (o dets) X
k 1 k=6
— pfdety_s2 x p~|dety| Z X7
~ k 1 k=35
> pldetgp_g|2 X 7 X oo X x p”|detg] 2 X g
—5
o u|det;€_5|g X TL X -+ X 7] X u|det;€|_lCT X T
> pildety_s| x pldety| =2 x T
— (o detog_s) X 7.

If 7 is unitary, then (p o detog_s) ¥ 7 is semisimple. Therefore, by the uniqueness of the Langlands
quotient, we conclude that (u o detoy_s) X 7 is irreducible. O

This theorem together with Proposition 3.3 implies Theorem 3.1 (2).

3.7. Going down case. Finally, we show Theorem 3.1 (4).

Let 7 be an irreducible almost tempered unitary representation of é\f)r (F). Note that Mfﬁ (m)
is irreducible by Theorem 3.1 (2). Set

= M(T) (M&l(w))

Since there is a surjection @’ — 7, we have 7’ # 0. Moreover, by the definition and Theorem 3.1
(2), we obtain a surjection

I (1) — (1 o dety—y) x m) K’

By Lemma 3.2, there is 0 < ¢ <7 such that Homg, ) & (F)(Rt, (4 o dety—yr) >4~7r) X 7’) # 0.
By Bernstein’s Frobenius reciprocity, this Hom-space is isomorphic to the space of (M (,—p)(F) X
M, (F))-equivariant maps

t+(n—r) -~
(#1dety o |# B4 dety]| 5 ) @ C(Sp,,(F)
Rm((ulodetn_r,«) ) ‘XRP (F)( )

In particular, we have a nonzero (f}\iH(n,r)(F )-equivariant map

— — _t
RPH(",T)(F)((M, Yodety ) @) = 4 1\dett+(n_,,)] 2.

1—1

By Proposition A.4, S'S'RPH(TL?T)(F)((“ odet,_,) x 7") is the sum of

—1 n—r—b —1 _n—r—a—b
S.S. (,u |dety—r—q| ™ 3 x p o dety| T 2 X T)\) X (u |detq_p) 2 X 77,\),

where (a,b) runs over the pairs of integers such that 0 < b < a < n —r, and 7\, X 7y runs over all
irreducible subquotients of Rp, , () (7"). Hence we have

-1 n—r=b -1 -1
S.S. (,u |detp—r_a| "2 x g/~ dety| "2 ><7'>\> D p' T |detyy n—yy| 2

for some (a,b) and A. Note that the segments corresponding to z/|det,_,—q| "2, ’_1|detb|7nirib

and ¢~ ety -y | e [~(n =7 = 1)/2, (n =7 = 1)/2 =], [~(n—r—1)/2,~(n ~r =1)/2+ b= 1]
and [—(n —r —1)/2 —t,(n —r —1)/2], respectively. If ¢ > 1, then s.s.Rp, (r)(7") must contain a
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nonzero representation on which (/’;il(F) acts by p/~!| - |7(»=7=1/2=t This contradicts that 7 is
almost tempered, by Casselman’s criterion (see e.g., [34, Lemma 2.4]). Hence we must have ¢ = 0.
Therefore, we obtain a surjection

Sp, (F)xSp, (F) / 00 (Qp / /
In dPn (IS () ((u odety_,) ®@ C3 (SpT(F))> — (W odety—y) 3 m) K7,

Now Theorem 3.1 (4) follows from the following lemma.

Lemma 3.8. Let w be an irreducible almost tempered unitary representation of é\f)r(F) Then the
maximal ((i' o det,,—,) X 7)-isotypic quotient of

o, (F)xS0,(F) (1 (e
In dPn +(F)xSp,.(F) <(’u o detp—r) ® C¢ (SPT(F)>)

is isomorphic to ((u' o det,—,) x 7) R II, where II is determined so that the subrepresentation of
Rp, (/=1 o detp_y) x ) on which GLy_(F) acts by p/'~' o dety_, is isomorphic to (u/~! o
dety,_,) XII. Moreover, if ™ satisfies one of the conditions in Theorem 3.1 (4), then s.s.(II) = 7©

for some integer a > 1, and that

dim Homg- (F)( ,m) = 1.

Proof. The linear dual II* of II, which is not necessarily smooth, is given by

* U Sp n (F)xSp,.(F 00O
11" = Homgy (r) (I nd (T<)§x};p( u)w ((’“‘, o detn—r) ® Ce <SpT(F))> (o det—r) W) '

As representations of §f)n(F), we have

In dSpn(F)XSPr(F) "o detn_r ® o> §£) F o~ lndgf)n( ) ,
) 2 c T X

Pr—r(F)xSp,.(F By (F)
where
e P°_ (F)C P,_(F) is generated by GL,,_(F) and N,_,(F), so that P,,_,.(F)/PS_.(F) =
Sp, (F);
. indsﬁz"(lz;) is the (unnormalized) compact induction functor;

e the character x: P2_.(F) — C* is given by

a % * *

0 1, * 0 ot a¢(1) ntr ntrdl
X 0 0 ta/f]_ 0 7< - C (aw(deta) (deta)’deta\

0 O * 1,

Moreover, é{)r( F) acts on ind p"(l?;)( ) by

(gr - ©)(gn) = (97 ") gn)

Sp,,(F)

for g € Sp,(F), gn € Sp,(F) and ¢ € ind 2»")

)(X)- Here, we set

nr(

o 17‘ O 17" O -t
g’r - 0 _]—7‘ 9r 0 _17“ )
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and we identify é\f)r(F) with the image of the composition g\f)r(F) — My (F) — §f>n(F) By the
Frobenius reciprocity, we have

* AU — Sp,, _
IT" = Homégn(F) ((,u,’ Lo det,_,) x ﬂv’Indﬁz’f:(m;) (x 1(5pnr))

= Homjp, (F) <(,u’*1 odety,_) X Wv‘ﬁgir(F),X715Pn7T>

o~ Homéan_r(F) (anir(F) ((,u’_1 odety,_,) X 7TV) |@n_T(F)’“,_1 o detn,r) .

Moreover, §f>r(F ) acts on this Hom-space by
(g9 - @)(f) = @((g: )™ - f)

for ® in this Hom-space, and for f € Rp, () (/' odet,—,) x 7). Since the representation

lgr — mV(g%)] is isomorphic to 7, by the definition of the Jacquet module, we see that the action
— g% - f is isomorphic to Rp (g "=l odet,_,) x 7). Hence
T n—r(F) \LH

I = Hom&n#(F) <RPn_r(F) ((M/_l odety_,) X 7r) ]&nir(F)’ W lo detn—r> .

as representations of éY)T(F ). This means that II is determined so that the subrepresentation of
Rp, . (m (/=" o dety_) % m) on which GLy_,(F) acts by p/~! o det,_, is isomorphic to (/="' o
det,_) WII since Rp, () (1~ o dety—,) % 7) is admissible.

Note that s.8.Rp,  (p)((1/~! o det,—,) X 7) is the sum of

n—r—>b —a—b

Tiap),n = S.5. (,u’|detn,¢,a|_% x /" Ydety| T2 X 7‘,\) X (u’_1|deta_b|_n_rzi X 7r>\> ,

where (a,b) runs over the pairs of integers such that 0 < b < a < n —r, and 7\, X 7y runs over all
irreducible subquotients of Rp, ,r)(m). We claim that when 7 satisfies (a) or (b) in Theorem 3.1
(4), if

1 D ,u’fl o det,_,

(a,b)J’éVLn,T(F)
then I(, )\ = 1/~ " o dety_, K.

n—r—b

Note that the segments corresponding to 1/|detp—,—qo| "2, /" tdety| "2 and i/~ o det,,_, are
[—(n—r—1)/2,(n—r—1)/2—a], [-(n—r—1)/2, —(n—r—1)/24b—1] and [-(n—r—1)/2, (n—r—1) /2],
respectively. When the L-parameter ¢ does not contain p*'Sy for any d > n—r with d = n—r mod 2,
by computing the Jacquet module with respect to the Borel subgroup of GL,,_,(F), we see that if

n—r—b

S.S. (,u’|detn_r_a]*% X ,u’*1|detb|* 2 X 7’)\> > ' odety_y,
then (a,b) = (0,0) or (a,b) = (n —r,n —r). In these cases, we have () = /= o det,—, K7, as
desired.
When n = r, there is nothing to prove. Now we assume that n = r + 1. We take the maximal
integer a such that

~ /—1><.__><Iu/—1>47_‘_0

a—1
for some irreducible representation 7. Then by induction on a, one can show that the subrepre-

sentation of s.s.Rp, () (/= x 7) on which GL;(F) acts by p/*! is isomorphic to

(WmEme @ &m)™.

This proves the claim when n = r + 1.
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When 7 satisfies one of the conditions in Theorem 3.1 (4), by the claim, we see that s.s.(II) is of
the form 7%¢ for some integer o > 1. Moreover, we have

Homg . (II,7) = (II"* ® Tr)égr(F)

Sp,.(F)
_ _ Sp,.(F)
= HOmé‘Ln_r(F) (RPnfr(F) ((/J,/ 1 o detn_,.) X 7T) ‘é‘in_r(Fy (M/ 1 o detn—r) X 7T>

= Endgi)r(F)((;/*1 odety_,) X ),

which is one dimensional by Theorem 3.1 (2). O

Remark 3.9. (1) If the L-parameter ¢ contains one of uSq or p=*Sy for some d > n — r with
d=n—rmod?2, then ¢ D uSq® = 'Sy. By comparing the dimensions, we have
2r+1—-6>2d>2(n—r).
Hence we must have n < 2r. In other words, when n > 2r, the condition (a) in Theorem
3.1 (4) always holds.

(2) In general, I1 in Lemma 3.8 might have irreducible subquotients other than w. For ezample,
consider the case where r =2, n =4 and ™ = '~ 'Sty x 1sp,(r)- Then one can see that

s.5.(I1) D (/7! o deta) x Lsp () Z .

3.8. Seesaw identities. In the theory of theta liftings, seesaw identities are useful tools. The
following proposition is an analogy for Miyawaki liftings. Recall that J,_1(F) = Sp,,_1 (F)x V,—1(F)
is a Jacobi subgroup of Sp,, (F'). The center of the Heisenberg group V;,_1(F’) is denoted by Z,_1(F).
For ¢ € F*, we denote the Weil representations of J,,_1(F) and Sp,.(F) with respect to ¢¢ by wg;_l)
and w'"”, respectivel
d)é ) p y

Proposition 3.10 (Seesaw identity). Let m and 7’ be irreducible representations of Sp,(F) and
Sp,,_1(F), on which {£1} acts by (£1)"*" and (£1)""7L, respectively. Then

Hom +

(n)
Jn_1(F) (Mdm(”)

We shall write this property as the following seesaw diagram:

') o _ ) (r)
Faa(e) " ® Y ) = Homgy (p) (Mwﬁxg () @ wye ’W)'

Sp, (F) x Sp, (F) Sp, (F)

=

Sp, (F) SPy—1(F) X Va1 (F).

Proof. By proposition 2.2, there exists a jn+r_1(F )-surjection

Il(ﬂn+r) (7_) . L’(anrTil)(TXg) ® wz(pr;Jrrfl)

Note that as J,,_1(F) x Sp, (F)-modules, we have wz(/j;”_l) = wg;_l) E]wg;). Composing a surjective
§I;n—l(F) X é\f)r(F)_map
+r—1
g = M ),
we obtain a nonzero J,_1(F) X %T(F)—map

0« (7 el ”) 8 (M 0 9.
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If Homg, (M(r) (") ® W, 7T) 0, then we obtain a nonzero J,_1(F) x Sp, (F)-map

(F) ¥, TXe e

I&n—w) (1) = <7r’ ® wgé—l)) X .

By the definition of local Miyawaki liftings, it implies a nonzero jn,l(F)—map be;( ) > ®wfpn 2

so that

_ (n)
Homj  p) (Mw77(7r) Fo(F)’ TR w ) # 0.

Conversely, if Hom - \(F) <./\/lz(pl( )

For(F)’ , T ®w(n 1)> = 0, then we have a nonzero jn,l(F)x
n—1

%T(F)—map
I(nJrT)(T) — Mgg(w) Kr— (r® w(nfl)) X .

P Ye
(7).

which is the maximal quotient of I, (ntr) (1) on which Z,,_1(F) acts by ¢¢. By the proof of
Proposition 2.1 together with Proposmon 2.2, we see that

(n+r) ~ 7(n+r—1) (n+r-—1)
1 T =y TXe) @ w
(L0), =1 )

It factors through

(0 Ye
as Jn4r—1 (F)-modules. Hence we have a nonzero J,_1(F) x Sp,.(F)-map
Iq(p”Jrr_l)(TXg) ®w$+r b, (71" ®wgz_l)) X 7.
This implies that
Homg- (M(T) () @ w?) 77) #0
Sp,.(F) ¥,TXe Ve’ '

Hence we obtain two homomorphisms
(n)
Homy (wa( )| -

These are obtained by the following diagram of J,,_1(F) x é\f)r(F )-homomorphisms

/ (nfl) — . (’I”) / (T)
o ST D Wy, > = Homg, ) (waxg(ﬂ )® Wy, ,77) .

n—1

15" (r) M (m) R

p1®id

(71" ® wl(/}zfl)> X

id®p2

(n+r—1) (n+r—1) (n (r)
I, (Txe )®ww§ — <7r’®cuw§ ) (MwTXE( )®ww§>

(n) (n—1) (r) (r)
for p1 € Homjn_l(F) <M¢T( )| - Fo(F)’ ®w¢€ > and g € Homé;)r(F) (Mw,ﬂq(ﬂl) ®ww£ ,7r>.

Clearly, the two maps @1 — @2 and @2 — 1 are inverse to each other. g
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4. GLOBAL MIYAWAKI LIFTINGS

Now we let F' be a totally real number field, and 1 be a non-trivial unitary character of A/F.
We assume that for each infinite place v of F, there exists a, € F, = R with a, > 0 such that

P(xy) = exp(2ray,/—1w,) for x, € F,.

In this section, we define the global Miyawaki liftings as the pullbacks of Ikeda liftings, and
establish basic properties. One may regard the global Miyawaki liftings as an analogue of the global
theta liftings, which are defined by the pullbacks of theta functions.

4.1. Definition. Let 7 = ®/ 7, be an irreducible unitary cuspidal automorphic representation of
GL2(A) satisfying the conditions (A1), (A2) and (A3) in §2.5. We denote the weight of ®,Ty

by £2k = (£2k,), with k, > 0. Then we have the Ikeda lift Ik} (7), which is an irreducible
admissible representation of §f)n +r(Afn) occurring in the space Sy (nir)/2 (Spn o (F )\§f)n +T(A))
of holomorphic cusp forms on Sp, 1r(A) of weight k 4 (n 4+ 7)/2. For F € Ikg‘”) (1) and ¢ €

Skt (n+r)/2 (Spr(F)\SNpT(A)), consider the integral

M(n)((ngn)S(Pa]:) :/ }—(b(gnvgr>7CnCr)@(graCT)dgr
Sp,. (F)\Sp,.(A)

for (gn,Cn) € Sp,(A), where dg, is the Tamagawa measure on Sp,(F)\Sp,(A). Note that this
integral does not depend on the choice of ¢, € {£1}, and that M(")(ap, F) is genuine if and only if
n + r is odd.

Lemma 4.1. We have
MO, F) € Sty (S0a(F)\Spa(4))

Proof. The non-trivial part is the cuspidality. Note that M (™ (¢, F) has a Fourier expansion of the
form

M(n)((gnagn)ﬁpyf) = Z WB(Q’VMCTL)?

BeSym;! (F)

where

W (g, o) = / MO (@(X) (g, Co); 0, F)(TE(BX))dX.
Sym,, (F)\Sym,, (A)

0w (n(5 (3 1))

is a non-trivial character of Y/(A)Z(A) for any B € Sym,’ (F), we have

Since

/ M(n)(v(()?yaz)(gn7<n);(,0,f)dyd2 = 0.
Y(F)Z(F)\Y (A)Z(A)

Since Y Z is a normal subgroup of Ny, which is the unipotent radical of the standard maximal
parabolic subgroup Py, the constant term of M ™ (p, F) along P, must be zero. Hence M ™ (g, F)
is cuspidal. O
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Let m be an admissible (not necessarily irreducible) representation of /S\f)r(Aﬁn) occurring in

Skt (n+r)/2 (Spr(F )\é\f)r(A)> The (global) Miyawaki lift Mz(;l (m) of 7 is defined by the represen-
tation of /S\f)n(Aﬁn) generated by

{ M (0, F) € Sy nin)2(S0a(F)\SD(A) | F € (), p e}

4.2. A-parameters. Arthur’s multiplicity formula established by Arthur [3] and Gan-Ichino [14]
describes the discrete spectrum of automorphic forms on Sp,, (F )\é\f)n(A) in terms of global A-
parameters. In this subsection, we review Arthur’s multiplicity formula for holomorphic cusp forms.
For more precision, see also Appendix B.4.

A discrete global A-parameter for Sp,,(F) (resp. Sp,(F)) is a symbol

U = Tl[dl] H.-- EﬂTt[dt],

where 7; is an irreducible cuspidal unitary automorphic representation of GL,,,(A), and d; is a
positive integer satisfying several conditions, e.g., 25:1 m;d; is equal to 2n + 1 (resp. 2n). The
precise definition is given in Appendix B.4. Two A-parameters ¥ = B_, 7;[d;] and W' = BY_ 7/[d/]
are said to be equivalent if ¢t = ¢’ and there exists a permutation o € &; such that d; = dg(;y and
T = To(i) for each i. We denote the set of equivalence classes of discrete global A-parameters for
Sp,,(F) (resp. Sp,(F)) by ¥5(Sp,,(F)) (resp. Wa(Sp,,(F))). We call an A-parameter ¥ = B!_, 7;[d;]
tempered if d; = 1 for any 7. In this case, we write ¥ = H!_,7; for simplicity.

We state Arthur’s multiplicity formula ([3, Theorem 1.5.2] and [14, Theorems 1.1, 1.3]) for holo-
morphic cusp forms.

Theorem 4.2 (Arthur’s multiplicity formula). Let | = (Iy) € [[, o Z with l, > 0 and l, =,y mod 2
for any v,v'" | co.
(1) For U € Wo(Sp,(F)) if ly is even, and for ¥ € \IJQ(S\};”(F)) if 1y is odd, there exists an
D (Asn)-stable subspace Syyz.u of Sija (Sp,(F)\Sp,(A)) (possibly zero) such that

5l/2 (Spn(F)\éBn(A)> = @81/2,\117
v

where ¥ runs over Wa(Sp,,(F)) if L, is even, and over \Ifg(é\f)n(F)) if 1y is odd.

(2) Suppose that m = @),y is an irreducible subrepresentation of Sy ¢ with ¥ = B 7(di].
Then for almost all v < 0o, the local factors m, of m and 7, of 7; are unramified for any .
Moreover, if we denote the Satake parameter for T, by {Civ1,--.,Civm,}, then the Satake
parameter of w, is equal to

t m;
F d;—3 d;—1

_di—1 _4i=3 =1
UU{Ci,v,jq 2 5G4 %2 5. Cipgd 2 }

i=1j=1

as multisets.
(3) If U is a tempered A-parameter, then Sy is multiplicity-free as a representation of

If an admissible representation 7 of é\f)n(Aﬁn) is contained in &jjpy, we say that m has an A-
parameter ¥, and V¥ is the A-parameter for .



A THEORY OF MIYAWAKI LIFTINGS: THE HILBERT-SIEGEL CASE 33

4.3. Basic properties. We establish basic properties of Miyawaki liftings. Let m = ® m, be an

/

V<00

irreducible admissible representation of éET (Agin) occurring in Sy (n4r)/2 (Spr (F )\§f)r (A))
First we compute the A-parameter for Miyawaki liftings.

Proposition 4.3. Suppose that ./\/ll(/)nl(ﬂ) # 0 withn > r. If ™ has an A-parameter ¥, then /\/lgi(ﬂ)
has an A-parameter

U TXK’}”)/Q] [n—r].

Here, when n =r, we omit Txng)m [n— 7] so that Mgl(ﬂ) has the same A-parameter as .

Proof. This follows from the computation of Satake parameters for MS;?TU (7my) (Theorem 3.1 (5)).
O

Miyawaki liftings have the following duality property.

Proposition 4.4. Suppose that /\/ll(ﬁn)T(w) #0. Then

M) (M)

\T T

Proof. For ¢1,02 € Spq(ngr)/2 (Spr (F )\é?),(A)), we define the Petersson inner product by

(ore = | o1(9, O palg, O)dg.
Sp, (F)\Sp, (A)
If M) (p, F) # 0 for ¢ € m and F € Ik} " (7), then

<M<r> (Mm)(%;),f) ,¢>

:/ (/ f(a(gn,gr),CnCr)M(”)((gn,Cn)so,f)dgn> ©o(gr, ¢)dgr
Sp, (F)\Sp,(A) \ /Sp,,(F)\Sp, (A)

= (M (i, F), M (i, F)) #0.

Hence (,) is nonzero on MSZ)T <M$l(7r)) x m. This shows that m C Mf;)_r (MEZQ(W)) O

The local irreducibility (Theorem 3.1) implies the global irreducibility.

Theorem 4.5. Suppose that w© has a tempered A-parameter, and MSZL,)I_(TF) # 0 with n > r. Then:

(1) Mgi(ﬂ) is irreducible, and Mgi(w) = ®;<OOM1(/Z)% (7).

(2) Whenn <r+1 orn > 2r, we have
MG (M) = .

Proof. Since m has a tempered A-parameter, the local factor m, is almost tempered by Lemma

B.8. By Theorem 3.1 (2), the local Miyawaki lift /\/lgz) 1, (my) is irreducible. Hence the 7-isotypic
quotient of kafrr) (7) is of the form 7' X 7 for some irreducible representation 7’ of /S‘f)n(Aﬁn). The

§f)T (Agy)-invariant surjection

ki () @7 — MY (r), Fo = M™(p, F)
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(n)

factors through a surjective Sp, (Agy)-homomorphism 7/ — M v (m). Since 7' is irreducible, this
map must be injective if M,E/)n)T(ﬂ) # 0. Hence Mz(/}nz_(ﬂ') is irreducible. Moreover, the above
é\f)r(Aﬁn) invariant surjection implies that the local component at v < oo of Mq(j}nl(ﬁ) is isomor-
phic to M )T (7y). Hence we obtain (1).
By Prop051t10n 4.4, we know that
MG (ML) > .

By a similar argument to (1), when » <n <r+1 or n > 2r, Theorem 3.1 (4) implies that the left
hand side is irreducible. Hence the inclusion is an equality, and we obtain (2). 4

Corollary 4.6. Suppose that ™ has a tempered A-parameter V.
(1) Ifn=r and/\/l ( ) # 0, then ./\/l(r) " (7) =7 as a subrepresentation of g4y (Sp,.(F)\Sp,-(A)).
(2) Ifn=r+1 and Mgil (m) # 0, then Mfljl)(w) is a unique irreducible subrepresentation of
Sktr41/2 (Sprﬂ (F)\gf)r+1(A)> whose local component at v < oo is isomorphic to p, X m,
with pt, = X"y
Proof. By Theorem 3.1 (3), the local Miyawaki lift M(n) ., (M) is isomorphic to m, if n = r, and to
pl, Xy, if n =17+ 1. By Proposition 4.3, when n = r (resp. n = r + 1), we see that M;l( ) has
a tempered A-parameter U/ = W (resp. ¥/ = WH X" ). Since Sk+(n+r)/2,9 is multiplicity-free by
Theorem 4.2 (3), we have ./\/lg )T( ) =mifn =7, and M(T—H)(T{') satisfies the desired uniqueness
property if n =r 4 1. 0
Let n' =norn'=n—1. Fix [,lI' €[], Z such that I, = l,; # [} = [, mod 2 for any v, v’ | cc.
For ¢ € S/ (Spn(F)\gf)n(A)), ¢ € Sup (Spn/(F)\QEn,(A)>, and ¢ € S(Xw(A)), we define a
Fourier—Jacobi period Py, 4, (¢, ', ¢) by the integral

/ 09,0 9007, (9.0)dg. it n' = n,
Sp,, (F)\Sp,, (A4)

/ / o(0(9. )P (9.0, (09, O))dgdv, it =n— 1.
Ve 1 (F)\Vn—1(A) JSp,,_1 (F)\Sp,,_1(A)

Fix a totally positive element £ € F*. Recall that S(X(A))¢ is the subspace of S(X(A)) spanned
by ¢ = ®4¢, such that ¢, = ¢2v for each infinite place v. The local seesaw identity (Proposition
3.10) is a local analogue of the following result.

Proposition 4.7 (Seesaw identity). Let m and 7’ be irreducible representations of é\f)r(Aﬁn) and
Sp,,_1(Afn) occurring in Skt (n+r)/2 (SpT(F)\SpT(A)) and Sp4(n—14r)/2 (Spnfl(F)\Spnfl(A)), re-
spectively.

(1) If there exist M (p, Fy) € MQ(;?Z_(W) with p € w, ¢ € 7', and ¢ € S(Xpn—1(A))¢ such that

/Pn,nfl,wg (M(n)(gprl):a? (bl) 7é 07

then there exist M) (¢, Fb) € Mgp )‘ng

Prrape @W ¢2> # 0.

(') and ¢2 € S(X,(A))¢ such that
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(2) Assume that n+r > 2. If there exist ¢ € w1, M) (¢, Fb) € Mw e (") with ¢’ € @', and
¢2 € S(X;(A))e such that

Prrave (0 MO ), 62) #0,

then there exist M™ (¢, Fy) € Mgi(ﬂ) and ¢1 € S(Xn—1(A))¢ such that

Prn—1,p¢ (M(n)(SO,fl),a? ¢1) # 0.

Proof. Suppose that there exist M (p, F) € Mffl(ﬂ) with ¢ € m, ¢’ € 7/, and ¢ € S(X,,—1(A))e
such that

Prn-1ae (M, F). 7. 6) #0.

It is equal to

/an(F)\Vn1(A) /Spn1(F)\Spn1(A)

x (/ .F(L(’U, 1) ' L(gn—lagr)y CnCT)SO(grv Cn)dgr>
Sp-(F)\Sp,.(4)

X m@ﬁé (U(gn—la Cn))dgn—ldv-

First, if we compute the integral on Z,,_1(F)\Z,-1(A), then F;, appears. By Proposition 2.7, there
exist F7,..., . € k)T V(7 @ xe) and ¢1,..., ¢ € S(Xngr—1(A))¢ such that

Fl/)g(L(/U71) “U(Gn—1,9r), CnCr) = ZF L(gn—1,9r)s Cngr) ( (v,1) - t(gn—1,9r), Cnlr)-

Note that X, 1,—1(A) =2 X,—1(A) ® X, (A). We may assume that ¢; = qﬁgn*l) ® (;SZ(T) with d)z(»nfl) €
S(Xpn_1(A))e and ¢\ € S(X,(A))e. Then we have
¢(n 1) (r)

0% (10, 1) - t(gn-1.90): Culr) = (091,60, (91:6:):

Hence there exists ¢ such that

(r)
/ / }-z‘/(b(gn—lagr)a CnGr)o(grs Cr)@,(gn—hcn)@iz (9r,Cr)
Spn 1( )\Spn I(A) SpT(F)\SpT(A)

(7z—1)
X (/ @iz (U(gn—la Cn))@ig (U(gn—la Cn))dv> dgrdgn—1 # 0.
Zn I(A) n I(F)\Vn I(A)

The integral on Z,,—1(A)V,,—1(F)\V,—1(A) is equal to the inner product (qﬁ(n 2 , ), which does not
depend on (gn—1,Cn)- The other integral is equal to the complex conjugate of

Prorape ( , M) (' FL), ¢(T )

Hence we obtain (1).
Next suppose that there exist ¢ € 7, M) (', F') € Mw e (n') with ¢' € 7', and ¢9 € S(X,.(A))¢
such that
Prore (%M(’”)(W’,f’), ¢>) # 0.
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Choose a nonzero vector ¢’ € S(X,,—1(A))¢. Then by the same calculation above, we have

(&6 Prre (9. MO F), 0)

/ / ]:,(L(gnflagr)aCnCT)‘PI(gnflaCn)(p(gmgr)@ﬁ&(graCr)
Sp,(F)\Sp,.(A) /Sp,,_1 (F)\Sp,,_1(A)

x ( / @i;w(gn_l,cn>>@$;<v<gn_1,<n>>dv> dgn—1dg;
Zn-1(A) Vo1 (F)\Vn-1(A)

/an(A)an(F)\an(A) /Spn_1(F)\Spn_1(A)

X (/ 'F,(L(gnfla gr)> CnCr)Gi;(gd)(L(va 1) ' L(gnflygr)a CnCr)SO(gra Cr)dgr>
Sp,.(F)\Sp,.(4)

X @' (901 G) O, (v(gn-1, ) dgn—1dv.
If n+r > 2, then by Proposition 2.7 (2), (3), there exists F € kafrr) (1) such that

Fye(t(0,1) - Ugn—1,90): 6nGr) = F' (g1, 0r), 6uGr) 052 (10, 1) - (g1, 91), G-
Then

0% (0,8 ) Prpuse (0, MO, F1), 6) = Pry1,0e (MM (0, F), &', &),
Hence we obtain (2). O

As an application of this seesaw identity, we have a criterion for the non-vanishing of the Miyawaki
liftings for the equal rank case.

Proposition 4.8. Let 7 be an irreducible representation of Sp, (Agy) occurring in Sgir (Sp,.(F)\Sp,.(A))
with r > 1. Assume that © has a tempered A-parameter, and that the £-th Fourier—Jacobi module
FJy, (m) is nonzero. Then the following are equivalent:

(a) MEZ)T(W) is nonzero. N N
(b) For any irreducible representation 7' of Sp,_1(Agn) occurring in Sgir_1/2 (Sprfl (F)\Sp,_l(A)) ,
if Prr—1e s not identically zero on m X X S(Xr—1(A))e, then Prrpe 18 not identically
zero on m X MT(/:)TX5(7[J) X S(X(A))e.
(c) There exists an irreducible representation © of Sp,_1 (Agn) occurring in Syyr—1/ (Sp,,_l(F)\SpT_I(A)>

such that Py, is not identically zero on m x /\/lz(;d),ng (") x S(Xr(A))e.

Proof. First, we show that (a) implies (b). Suppose that MSZ)T () is nonzero. Since 7 has a

tempered A-parameter, by Corollary 4.6 (1), we have Mf[)T(ﬂ) = 7. Then by Proposition 4.7 (1),
we obtain the condition (b).
Next, we show that (b) implies (c). Since FJy, (7) # 0, the map

T Q Wy — Sk+7"—1/2(Spr—1(F)\§1;r—1(A))v

PR p(vg) - O] (vg')dv
Ve (F)\Vroa (4)
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is nonzero. If we take an irreducible subrepresentation 7’ in the image of this map, then Prr—1,1e
is not identically zero on 7™ x 7" x S(X,—1(A))¢. Applying (b) to 7', we see that 7’ satisfies the
condition of (c).

Finally, we show that (c) implies (a). If Py, is not identically zero on 7 x Mf; )TXE () x
S(X;(A))g, then Ppp—q 4, is not identically zero on Mg)T(W) x 7' x §(X,—1(A))¢ by Proposition 4.7
(2). In particular, Mg)T (m) # 0. This completes the proof. O

5. A RELATION BETWEEN MIYAWAKI LIFTINGS AND THE GAN—GROSS—PRASAD CONJECTURE

In this section, we formulate a conjecture on the non-vanishing of global Miyawaki liftings. In ad-
dition, we relate this conjecture to the Gan—Gross—Prasad conjecture for the symplectic-metaplectic
case.

5.1. Conjectures. Fix 7 and 1 as in the previous section, and a totally positive element £ €
F>*. We denote the weight of @7y by £2k = (£2ky), with k, > 0. Let m be an irreducible

representation of Sp, (Agy,) occurring in Skt-(n+r)/2 (SpT(F )\gf)T (A)), and Mgpnz_(ﬂ') be the Miyawaki
lift of 7. The Rankin-Selberg L-function attached to m x 7x"; is denoted by L(s,m x 7x" ;).

Conjecture 5.1 ((M), ). Suppose that n > r.
(1) When n =r, the Miyawaki lift Mg)T(ﬂ) is nonzero if and only if L(1/2,m x 7x" 1) # 0.
(2) When n > r, the Miyawaki lift Mgi(ﬂ) is always nonzero.

Note that when r = 0, Conjecture 5.1 is trivial since Ml(pnl (n™) = ka;) (1), where 7 is the unique

non-trivial character of Spy(Ag,) = Z/2Z. When n > r and n = r mod 2, it is an extension of a
part of Tkeda’s conjecture [28, Conjecture 5.1]. The simplest case of this conjecture (the case where
F=Q,n=r=1,and both 7x_; and 7 are unramified everywhere) was proven by Ichino [25] and
Xue [57] independently. When n > r and n #Z r mod 2, some examples were given by Hayashida
[22, Lemma 9.1].

In the rest of this section, we explain a relation between Conjecture 5.1 and the Gan—Gross—
Prasad conjecture.

5.2. Gan—Gross—Prasad conjectures. The Gan—-Gross—Prasad conjecture (the GGP conjecture)
[11, Conjecture 24.1] relates the non-vanishing of the Fourier—Jacobi periods to the non-vanishing
of the central values of the Rankin—Selberg L-functions. In this subsection, we review the GGP
conjecture for holomorphic cusp forms. For more details, we refer the readers to AppendiXN C.
Suppose that n’ = n or n’ = n — 1. Let m and ' be irreducible representations of Sp,,(Agy)
and Sp,,(Ag,) occurring in S/ (Spn(F)\Spn(A)) and S(_1/2 (Spn, (F)\Sp, (A)), respectively.

Assume that 7 and 7" have tempered A-parameters ¥ = H!_7; and ¥’ = 53?:17']’-, respectively. We

define the Rankin-Selberg L-function L(s,m x ©’ X x(_1y-1¢) by

t ot
L (S,TI‘ x 7’ x X(il)l—lg) = H H L (S,Ti X 7']/' X X(71)1—1§> .

i=1j=1

Note that 7/ is self-dual and unitary, so that 7'7’ = 7/ for any j.
Since we consider holomorphic cusp forms only, we state the GGP conjecture as the following
unusual way.
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' be as above.

Conjecture 5.2 (Gan-Gross—Prasad conjecture). Let 7 = Q) _ 7, and ' = &) _

(1) If the Fourier-Jacobi period Pp sy, is not identically zero on w x 7' x (X, (A))e, then the
central value L(1/2,7 X 7' X X(_1y-1¢) is nonzero and the local Hom-space

Homsy, , (1) (0 © 7, © Wy, C)
is nonzero for any v < 0.
(2) When n' =n, the converse of (1) holds.

For the usual statements and the relation with Conjecture 5.2, see Appendix C below. When
n’ = n, Conjecture 5.2 (1) was proven by Yamana [58].

5.3. Relation between Conjectures 5.1 and 5.2. In this subsection, we show Conjecture 5.1
using the GGP conjecture and the following hypothesis.

Hypothesis 5.3. Let w be an irreducible representation ofgf)T(Aﬁn) occurring in Sy /2(Sp, (F)\gf)r (A)).
(A) Suppose that ™ has a tempered A-parameter and that ¥Jy (m) # 0. Then there exists an

irreducible representation 7 of Sp,_ 1 (An) occurring in Sa-1)/2 (Spr_l(F)\éﬁT_l(A)) with
tempered A-parameter such that Pr,—1 .y, is not identically zero on T x X S(Xr—1(A))e.

(B) There exists an irreducible representation 7 of Sp, (Agn) occurring in S-1)/2 <SpT(F)\SBT (A))
such that Py, is not identically zero on m x 7 X S(Xr(A))e.

(C) There exists an irreducible representation @ of §5T+1(Aﬁn) occurring in S(i41)/2 (SpTH(F)\gf)TH(A))
such that Ppy1 .y, is not identically zero on 7' x T x S(X,(A))e.

Remark 5.4. (1) Hypothesis 5.3 (A) may be regarded as a global analogue of [7, Lemma C.6].
It is also assumed in the theory of twisted automorphic descents. See Jiang—Zhang [32,
Conjecture 2.3] and the remark after this conjecture for a nature of this expectation and
some example.

(2) The main difficulty of Hypothesis 5.3 (A) is the tempered-ness of w'. Since all representations
occurring in the space Si_1)/ (Spl(F)\g)l(A)) have tempered A-parameters by Example

B.9, Hypothesis 5.8 (A) is true when r < 2.
(3) Hypothesis 5.8 (B) means that the L?-orthogonal complement of

{¢-6¢ | ¢ € Sunyyo (Spr(FN\SD,(8)) , 6 € S(X,(A))e |

in Sy/o (Spr(F)\gf)r(A)> is equal to {0}. Theta liftings might have potential for Hypothesis
5.9 (B).
(4) In the classical setting, Hypothesis 5.3 (C) means the surjectivity of the §-th Fourier—Jacobi

expansion of Siegel modular forms of degree r + 1. For r =1, see Aoki [2] and Ibukiyama—
Poor—Yuen [24].

(5) In any case, Hypothesis 5.8 seems quite difficult. For the proof, it might be necessary to
consider averages of Fourier—Jacobi periods (cf. see a paper of Nelson—Venkatesh [42]).

Using the GGP conjecture (Conjecture 5.2) and Hypothesis 5.3, we will show Conjecture 5.1.
First, we consider the (almost) equal rank case, i.e., the case where n =r or n =r + 1.

Theorem 5.5. Assume the GGP conjecture (Conjecture 5.2) and Hypothesis 5.3 (A). Then for
irreducible representations with tempered A-parameters, we have

(M)T—LT = (M)r,r — (M)r,r—i-l-
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In particular, (M), and (M), 41 for irreducible representations with tempered A-parameters are
true for any r > 0.

Proof. First, we show (M),_1, = (M),,. Let m be an irreducible representation of %T(Aﬁn)
occurring in Sk, (Sp,.(F)\Sp,(A)) with tempered A-parameter W. We choose a totally positive
element § € F such that FJy, (m) # 0. By Hypothesis 5.3 (A), we can find an irreducible represen-

tation 7’ of §£)T_1(Aﬁn) occurring in Sp4,_1/2 (Spr_l(F)\gf)r_l(A)) with tempered A-parameter
U’ such that P,,_q 1/,& is not identically zero on m x 7/ x S(X,_1(A))e.
Suppose that Mfﬁ () # 0. Then by Proposition 4.8 (b), we see that Py, is not identically

Zero on T X Mf/} )Tx (m') x S(X;(A))¢. Since 7 has a tempered A-parameter ¥/, by Theorem 4.5 and
Proposition 4.3, the Miyawaki lifting /\/lw e () is irreducible and has a tempered A-parameter

W' B 7x(—1)-1¢- By the GGP conjecture (Conjecture 5.2 (1)), we conclude that

L(1/2,7T x ' x X,E)L(l/Q,’]T X (TX(_I)rflg) X ng) 7& 0,
so that L(1/2,7 x Tx (1)) # 0.

Conversely, suppose that L(1/2,m x 7x(_1)r) # 0. By (M),-1,, we have ME;’)TXE(W’) £ 0.
Hence by Theorem 4.5 and Proposition 4. 3 1t is irreducible and has a tempered A-parameter
U 8 7Xx(_1)r-1¢. By the GGP conjecture (Conjecture 5.2 (1), (2) and Theorem C.4), we see that

Py, 1s not identically zero on 7 x Mg )Tx (') x S(X;(A))e. Hence by Proposition 4.8, we conclude

that /\/l( "(m) # 0. This completes the proof of (M),_1, = (M)r,.
Next we show (M), = (M)rr+1. By Lemma B.10, there exists an irreducible rep-

resentation II = & II, of §E)T+I(Aﬁn) occurring in Sy ,41/2 (Sp,,H(F)\gI;rH(A)) such that

IL, = M(Hl)(m) for each v < oo, and the A-parameter for II is equal to ¥ X 7x" ;. We choose
a totally positive element § € F* such that FJy, (II) # 0. Using Hypothesis 5.3 (A), we take
an irreducible representation 7’ of Sp,(Ag,) occurring in Sk, (Spr(F )\%T(A)) with tempered
A-parameter ¥’ such that Pri1,ru is not identically zero on II x X S(X;(A))e. By the GGP
conjecture (Conjecture 5.2 (1)), we see that

L(1/2,11 x 7" x x¢) = L(1/2,7 x 7" X x¢)L(1/2, 7" X Tx(_1)r¢)

is nonzero. Since L(1/2,7" x TXx(_1yr¢) # 0, by (M), we see that MS[)TXE(TF/) is nonzero. By

Corollary 4.6 (1), it is equal to 7/ 1tself. Since L(1/2,m x 7’ x x¢) # 0, by the GGP conjecture
(Conjecture 5.2 (2) and Theorem C.4), we see that P;.,y, is not identically zero on

7 x T X S(Xp(A))e = 7 x MU (7) x S(X, (A))e.
Then by the seesaw identity (Proposition 4.7 (2)), we see that P11, 4, is not identically zero on

Mf;j__l)(w) x 7 x §(X;(A))e. In particular we have MSZ—:I)(W) # 0. This completes the proof of

(M)ry = (M)pr41. g
Corollary 5.6. The conjecture (M)11 is true.

Proof. Note that any irreducible representation occurring in Sk (Sp;(F)\Sp;(A)) has a tempered
A-parameter (Remark B.9). The conjecture (M) and Hypothesis 5.3 (A) for » = 1 are trivial.
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The GGP conjecture for n = n’ =1 is known (see e.g., [12, Proof of Theorem 7.1], [44, Proposition
4.1, Theorem 4.5] and [56]). Hence we have (M) 1. O

Next, we consider the going-up case, i.e., the case where n > r + 1.
Theorem 5.7. Suppose that n > r + 2.
(1) Assuming Hypothesis 5.3 (B), we have
(M)rpn—1 = (M)rp.
(2) Assuming Hypothesis 5.3 (C), we have
(M)TJrl,n = (M)mr
In particular, assuming one of Hypothesis 5.3 (B) or (C), the conjecture (M), for n > r+1 is
reduced to (M )y ,41 or (M)p—1p.
Proof. We prove only the first assertion. The proof of the second one is similar.
Let m be an irreducible representation of Sp,(Ag,) occurring in Spy(4r/2 <Spr(F )\Spr(A)>.

Using Hypothesis 5.3 (B), we choose an irreducible representation " of Sp, (Ag,) which appears
in Sk (ngr—1)/2 (Spr(F)\gf)r(A)> such that Py, is not identically zero on m x 7/ x S(X,(A))e.

Applying (M), ,—1 to 7'/, we have II' = ./\/lf;l;(lg

M'EZ:Z—)Q(H/)’ Hence Py, is not identically zero on m x Mg}TX& (Il") x S(Xr(A))e. ](3y the seesaw

identity (Proposition 4.7 (2)), we see that Py, ;14 is not identically zero on ./\/ld)z_(ﬂ') x I’ x
S(Xn—1(A))¢. In particular, we have /\/ll(;i(ﬂ) # 0. O

(') # 0. By Proposition 4.4, we have ' C

APPENDIX A. JACQUET MODULES OF REPRESENTATIONS OF METAPLECTIC GROUPS

Let F' be a non-archimedean local field of characteristic zero. In this appendix, we recall compu-
tations of Jacquet modules of induced representations of GLy(F') or Sp,,(F).

A.1. Induced representations of general linear groups. Let P(F) = M(F)N(F') be a para-
bolic subgroup of GLy(F') containing the Borel subgroup consisting of upper triangular matrices.
Then the Levi part M(F) is of the form GLy, (F) x --- x GLy,(F) with k1 + --- + k = k. For
representations 7i,...,7 of GLg, (F), ..., GLg, (F'), respectively, we denote the normalized induced
representation by

T X -+ X T = Indgbﬁf)(ﬁ SR ®Tl).

A segment is a symbol [z,y], where x,y € R with z —y € Z. We identify [z,y] as the set
{z,x—1,...,y}ifz > y,and {z,x+1,...,y} if z < y. Let p be an irreducible unitary supercuspidal
representation of GL4(F). Then the normalized induced representation

pl-I*
has a unique irreducible subrepresentation, which is denoted by
(p;,...,Y).
If x > y, this is called a Steinberg representation, which is an essentially discrete series representation
of GLg(jg—y+1)(F). If ¥ < gy, this is called a Speh representation. For example, if p = 1 be a

><---><p\~|y

unitary character (i.e., d = 1) and = < y, then (u;z,...,y) = p|dety_,41|@F¥)/2 is a character of
GLy—z+1(F), where we denote by dety, the determinant character of GLy(F).

Definition A.1. Let [x,y] and [2/,y] be two segments.
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(1) When (z—y)(x—1y') >0, we say that [x,y] and [2',y'] are linked if [x,y] ¢ [',y'], [2', V]
[z,y] as sets, and [z,y] U [z,y] is also a segment.

(2) When (z —y)(2' — ') < 0, we say that [x,y] and [2/,y'] are linked if [y, x] and [z, y] are
linked, and x,y & [2',y'] and 2',y & [x,y].

The linked-ness gives an irreducibility criterion for induced representations.

Theorem A.2 (Zelevinsky [59, Theorems 4.2, 9.7], Mceglin—-Waldspurger [41]). Let [x,y] and [2',y/]
be segments, and let p and p' be irreducible unitary supercuspidal representations of GLy4(F') and
GLg (F), respectively. Then the induced representation
(pr,....y) x (ps2',....y)
is irreducible unless [x,y] are [/, y'] are linked, and p = p'.
For a partition (k1,k2) of k, we denote by R(j, i,) the normalized Jacquet functor of represen-

tations of GLy(F') with respect to the standard maximal parabolic subgroup P(F') = M (F)N(F)
with M (F') = GLg, (F') X GLg, (F'). The Jacquet module of (p;z,...,y) is computed by Zelevinsky.

Proposition A.3 ([59, Propositions 3.4, 9.5]). Let p be an irreducible unitary supercuspidal repre-
sentation of GLy(F). Suppose that x # y and set k = d(|v —y|+1). Then R, i, ((p;2,...,y)) =0
unless k1 =0mod d. If ky = dm with 1 < m < |x — y|, we have

R(kl,k:g)(<p;m7"‘ 7y>) = <p,[lf, -y L — E(m - 1)> & <p7x —€em,... 7y>7
where € € {£1} is defined so that e(xz —y) > 0.

A.2. Representations of double covers of general linear groups. Recall that for a € F'*,
the Weil constant oy (a) is an eighth root of unity, and satisfies that
b
ay(a)ay(d) _ (a.b)
ay(1)ay(ab)
for a,b € F, where the right hand side is the Hilbert symbol. In particular,

() e

for a € F*, where x_; is the quadratic character associated to F'(v/—1)/F.
A double cover of GLk(F) is given by

GLA(F) = GLy(F) x {£1}
with group law
(91, €1) - (92, €2) = (9192, €1€2 - (det g1, det g2)).
Let Irr(GLg(F)) (resp. Irr(é\ik(F ))) be the set of equivalence classes of irreducible representations

of GLi(F) (resp. the set of equivalence classes of irreducible genuine representations of C/}\ik(F ).
For an irreducible representation 7 of GLk(F) and (g,€) € GLi(F), we set

ay (1) ().

Ty(9,€) = GWT

Then 7 is irreducible and genuine, and the map 7 — 7, gives a bijection Irr(GLy(F)) — Irr(C/}va (F)).
For a more precise representation theory for GLy(F), see [20, §4.1].



42 HIRAKU ATOBE

A.3. Induced representations of symplectic and metaplectic groups. We denote by Rp, r)

the normalized Jacquet functor of representations of SBT(F ) with respect to the maximal parabolic

subgroup P, (F"). For a smooth representation II of Sp,.(F'), we write s.s.(II) for the semisimplification
of IL.

Proposition A.4. Let 7 be a representation of gI)T(F), 1 be a unitary character of F*, and o € C.
Then s.8.Rp,(p)(p|dety|* x 7) is isomorphic to the direct sum of

S.s. <M_1|detk_a|_o‘_% X M|detb|°‘_% X 7’)\> X (,u]deta_b|o‘_k_;_b X 7T)\> ,

where (a,b) runs over the pairs of integers such that 0 <b<a <k anda—b>k —1t, and 7 X )
runs over all irreducible subquotients of Rp, , , () (7) (with multiplicity).

Proof. This follows from Tadi¢’s formula [51], [20, Proposition 4,5]. O

APPENDIX B. LoCcAL LANGLANDS CORRESPONDENCE AND ARTHUR’S MULTIPLICITY FORMULA

In this appendix, we summarize the local Langlands correspondence and Arthur’s multiplicity
formula.

B.1. Local Langlands correspondence. We recall the local Langlands correspondence (LLC)

for Sp,,(F) and Sp,(F). Let F be a local field of characteristic zero. Fix a non-trivial unitary
character ¥ of F'. We denote by Wr and WD g the Weil group and the Weil-Deligne group of F,
respectively, i.e.,

WD Wr x SLa(C) if I is non-archimedean,
F= {WF if F'is archimedean.
A representation of WD is a homomorphism ¢: WD — GLy(C) such that

e ¢(Frob) is semi-simple if F' is non-archimedean;
e ¢|Wr is smooth if F' is non-archimedean, and ¢ is continuous if F' is archimedean;
e ¢|SLy(C) is algebraic.

Here, Frob € Wp is a (geometric) Frobenius element if F' is non-archimedean. When F' is a non-
archimedean local field of residue characteristic p > 2, we call a representation ¢ of WD g unramified
if ¢ is trivial on Ir x SLo(C), where I is the inertia subgroup of Wg.

Set

®(Sp,,(F)) = {¢: WDp — SO2,41(C)}/ =,
O(Sp,(F)) = {¢: WDF — Sp,(C)}/ =.

For G,, = Sp,, or G,, = §f)m we call an element in ®(G,(F)) an L-parameter for G(F). When
Gr = Sp,, (resp. G,, = Sp,,), any ¢ € ®(G,(F)) can be decomposed into a direct sum

d=m1p1® - Bmud ¢ ®(¢)Y,

where ¢1,...,¢; are distinct irreducible orthogonal (resp. symplectic) representations of WD g, m;
is the multiplicity of ¢; in ¢, and ¢’ is a sum of irreducible representations of WD g which are not
orthogonal (resp. symplectic). We define the component group Ay of ¢ by
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Namely, Ay is a free Z/2Z-module of rank ¢, and {a1,...,a;} is a basis of Ay with a; associated to
¢;. Fora =a;, +---+a;, € Ay with 1 <4y <--- <1 <t, put

" = ¢i, © - D @iy
We call z4 = Zle m;a; € Ay the central element of A,. We denote the Pontryagin dual of Ay by
A¢ = {77: A¢, — {:I:l}}. -
For ¢ € ®(Sp,,(F)) (resp. ¢ € ®(Sp,,(F))), we say that:

e ¢ is of good parity if ¢ is a direct sum of irreducible orthogonal (resp. symplectic) represen-
tations;
e ¢ is tempered if ¢(Wr) is bounded;
e ¢ is almost tempered if each irreducible constituent ¢; of ¢ is of the form ¢; = ¢}| - |* such
that ¢/(Wp) is bounded and —1/2 < 's; < 1/2.
The set of equivalence classes of irreducible representations of Sp,,(F') which are genuine (resp. not
genuine) is denoted by Irr(Sp,, (F)) (resp. Irr(Sp,,(F))). The LLC classifies Irr(Gp (F)) by ®(Gn(F))

for G,, = Sp,, or G, = Sp,,.
Theorem B.1 (37, 1, 3, 15)). Let Gy, = Sp,, or G, = Sp,.

(1) There is a canonical surjective map
Irr(GR(F)) = ®(Gn(F)).

For ¢ € ®(G,(F)), we denote the inverse image of ¢ by Iy, and call it the L-packet of ¢.
(2) There exists an injective map

Hd) — ;1;
This is surjective if G, = é\f)n When G, = Sp,,, the image of this map s equal to
{77 S ’ n(zg) = 1}-

When m € 11y corresponds to n € ;1;, we call the pair (¢,n) the L-parameter for .

(3) When F is a non-archimedean local field of residue characteristic p > 2, an irreducible rep-
resentation m is unramified if and only if its L-parameter (¢,n) satisfies that ¢ is unramified
and n=1.

(4) m e 1l is (almost) tempered if and only if ¢ is (almost) tempered.

(5) If m € 11y is discrete series, then ¢ € ®(Gy(F)) is of good parity.

(6) If ¢ is tempered, then one can decompose

b= br oD B

where
o ¢g € O(Gy,(F)) is of good parity;
e ¢, is a sum of irreducible representations which are not orthogonal when G,, = Sp,,(F),
and are not symplectic when G, = é\f)n(F)
Let T be the irreducible (tempered) representation of GLi(F') corresponding to ¢. Then for
mo € Ilg,, the induced representation T X mg is irreducible, and the L-packet 11y is given by

H¢:{T>47T0 | 7T()EH¢O}.

If the L-parameter for my is (¢o,mo), then the one for T x my is (¢,n0), where we regard ng
as a character of Ay via the canonical identification Ay = Ag,.
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(7) If 7= J(m1| - |°Y, ..., 7| - |°*,m0), then the L-parameter (¢,n) for m is given by
o= ¢1|- ’51@...@¢t|.‘5t@Qso@(bm.‘*St@...@(z)\l/’.rsl
and n = ny, where (¢o,no) is the L-parameter for my, and ¢; is the (tempered) representation
of WDFE corresponding to 7; fori=1,...,t.

B.2. Irreducibility criterion for standard modules. In this subsection, we assume that F
is non-archimedean. For each representation ¢ of WDp, one can consider the L-function L(s, ¢)
attached to ¢. We recall a criterion for the irreducibility of standard modules in terms of analytic
properties of L-functions.

Proposition B.2. Let my (resp. 7;) be an irreducible tempered representation of §f)r0 (F) (resp. GLy, (F))
with the L-parameter (¢o,n0) (resp. with associated representation ¢; of WDF), and s1,...,s; be
real numbers such that s1 > --- > s; > 0. Assume the following:

o If my is not genuine, then

t
(H L(s —2s;, ), /\Q)L(S — 8, o ® 925;/))
=1

X H L(S—Si+5j,¢;/®¢j)l/(5_3i_Sj’gb;/@qs}/)

1<i<j<t

s reqular at s = 1.
o If mg is genuine, then

t
(H L(s — 284, ¢}, Sym?) L(s — s, o ® ¢iv)>

i=1
\ \Y% vV
x | I I(s—si+s5, 8] @ ¢))L(s — si — 55,6 ® )
1<i<j<t

is reqular at s = 1.

Then the standard module 11| - ¥ X « -+ X 7| - |¥* ¥ g is irreducible.

Proof. Note that our assumptions are equivalent that the adjoint L-function L(s, ¢, Ad) is regular at

s = 1, where (¢, n) is the L-parameter for J(r1|-|*,..., ||, m). The non-genuine case is a result
of Heiermann [23] together with a conjecture of Gross-Prasad-Rallis (proven in [13, Appendix B]).
The genuine case is [5, Theorem 3.13]. O

This proposition has several corollaries.

Corollary B.3. If w is irreducible and almost tempered, then w is isomorphic to an irreducible
standard module.

Proof. This immediately follows from Proposition B.2. O

Corollary B.4. Let p be a unitary character of F*. Set § = 0 if G, = Sp,(F), and § = 1 if
Gpn = Sp,(F). Suppose that ¢ € ®(G,(F)) is of good parity. Then for any © € Iy and for any
positive integer a with a Z d mod 2, the standard module

TRERTE:

1s 1rreducible.
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Proof. Since ¢ is of good parity and a # § mod 2, we see that L(s—a/2,¢®@pu ') is regular at s = 1.
If 6 = 0, then L(s—a, p~*, A?) = 1, which is entire. If § = 1, then L(s—a, u~!, Sym?) = L(s—a, u~2),
which is regular at s = 1 when a # 1. By Proposition B.2, we obtain the corollary. O

|* X 7w for some

Corollary B.5. Let 7 € Il with ¢ of good parity, If s.s.Rp, (ry(T) contains x| -
unitary character x and o € R, then 2a € Z and 2a = § mod 2.

Proof. First, we assume that 7 is discrete series. Replacing g if necessary, we may assume that
™ — X’ . ‘a X 70.

By Casselman’s criterion (see e.g., [34, Lemma 2.4]), we see that

o o> (;

e T is discrete series;

e the standard module x| - |* % 7 is reducible.
In particular, if my € Iy, then L(s — a,¢o ® x~') has a pole at s = 1, or L(s — 2a, x ™1, A?)
(resp. L(s — 2, x~*,Sym?)) has a pole at s = 1 when § = 0 (resp. § = 1). Since ¢ is of good
parity, this condition implies that 2« € Z and 2o = ¢ mod 2.

In general, if © € Il with ¢ of good parity, then
T—=>T] X - XTp X7,

where

e 7; is an irreducible discrete series representation of GLy, (F') to which the irreducible repre-
sentation ¢; of WDp corresponding is orthogonal if § = 0, and symplectic if 6 = 1;
e 7 is an irreducible discrete series representation of Sp,, (F).

Then the assertion follows from Tadié¢’s formula [51] [20, Proposition 4,5]. O

B.3. Lowest weight modules. In this subsection, we assume that ' = R and ¢(z) = exp(2may/—1x)
for some a > 0. Recall that we denote the irreducible lowest weight representation of Sp,,(R) with
lowest Ko-type det!/? by Dl%) We determine the L-parameters for Dl%) when it is discrete series,

which is equivalent that [ > 2n. Note that the infinitesimal character of Dl%) is equal to

[l I
1.2, -—n]).
<2 9T Ty ")

Recall that the Weil group Wg of R is of the form
Wr =C*UCYj
with the group low
=1 jzjT
for z € C*. Let sgn be the sign character of Wg defined by sgn(j) = —1 and sgn(z) = 1 for z € C*.
For each positive integer k, we define a 2-dimensional irreducible representation py: Wr — GL2(C)

by
. 0 (=1)k 1 ehv—10 0
pr(d) = (1 ( 0> > pr(reV™1%) = ( 0 e_kmo>

for r > 0 and 6 € R/277Z. Note that (a conjugate of) the image of py is contained in O(2,C) if k is
even, and in SLy(C) if £ is odd.

1_ >
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For an integer [ > 2n, we put
4™ = Pl2D P-4 D - Dp_2, ©sgn”  if [ =0mod 2,
L 2 ®pima @ @ proan if | = 1 mod 2.

Then d)ln) € ®(Sp,,(R)) if [ is even, and d)l(n) € @(gﬁn(R)) if [ is odd. When ¢ = qﬁl(n), the component
group Ay is given by

Ay = (@)2Z)er 2 ® (2)2L)er 1 © - & (Z/2T)er ) + (Z/22)z,
where e}, € Ay is the element associated to pp C ¢.
n)

Proposition B.6. Suppose that | > 2n. Then the L-parameter for Dl(/2

where nl(n) is determined by nl(n)(el,gi) = (=)t fori=1,...,n.

is equal to (cb,"),m(”)),

Proof. Set ¢ = qﬁln). Then the L-packet Il is the set of discrete series representations with infini-

tesimal character
l
Loy g L),
2 2 2

Hence Dl%) € II4. The description of nl(n) can be obtained by a similar way to [6, Appendix A] using

Schmid’s character identity ([46, (9.4) Theorem] and [47, Theorem (b)]). We omit the detail. [

B.4. Arthur’s multiplicity formula. In this subsection, we let F' be a totally real number field,
and 1 be a non-trivial unitary character of A/F. A discrete global A-parameter for Sp,,(F)
(resp. Sp,,(F)) is a symbol
U = Tl[dl] H..-H Tt[dt],
where
7; is an irreducible cuspidal unitary automorphic representation of GLyy,, (A);
d; is a positive integer such that 2521 m;d; is equal to 2n + 1 (resp. 2n);
if d; is odd (resp. even), then L(s,7;, Sym?) has a pole at s = 1;
if d; is even (resp. odd), then L(s, 7;, A%) has a pole at s = 1;

the central character w; of 7; satisfies that wfl . -wldl =1;

o if i # j and 7; = 7j, then d; # d;.
Two A-parameters ¥ = B_ 7;[d;] and ' = B_ 7/[d!] are said to be equivalent if t = ¢’ and there
exists a permutation o € &; such that d, = dg(;) and T & To(i) for each i. We denote the set
of equivalence classes of discrete global A-parameters for Sp, (F) (resp. §f)n(F )) by Wa(Sp,,(F))
(resp. U2(Sp,,(F))). We call an A-parameter ¥ = H!_, 7;[d;] tempered if d; = 1 for any i. In this
case, we write ¥ = H!_,7; for simplicity.

Let ¥ = H!_;7; be a tempered A-parameter for Sp,,(F) (resp. Sp,(F)). For each place v of F,
we denote the representation of WDp, corresponding to 7;, by ¢; ., and put ¥, = @5:1@',% By [3,
Theorem 1.4.2], we have ¥, € ®(Sp,,(F,)) (resp. ¥, € ®(Sp,,(F,))). We define a global A-packet
H\y by

Uy = {m = &7, | m € lly,, 7, is unramified for almost all v}.

For a tempered A-parameter ¥ = H!_,7;, the global component group Ay of ¥ is defined by

t

Ay = P(Z/22)0s.

i=1
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Namely, Ay is a free Z/2Z-module of rank ¢, and {a;,..., o} is a basis of Ay with «; associated
to 7;. There exists a localization map Ay 3 o — o, € Ay, so that we have a diagonal map

A: Ay — ] Aw,

Let .Ag(é?)n(A)) (resp. A2(Sp,,(A))) be the set of square-integrable automorphic forms on Sp,, (A)
which are genuine (resp. not genuine). This is an Sp, (Agin) X [ [, (89, (C), Koo)-module. Arthur’s

multiplicity formula classifies A3 (Sp,,(A)) (resp. A2(Sp,(A))) in terms of Wy (Sp,,(F)) (resp. Uo(Sp,, (F))).

Theorem B.7 (Arthur’s multiplicity formula ([3, Theorem 1.5.2], [14, Theorems 1.1, 1.3])). Let
G = Sp,, or G = Sp,,.
(1) For each U € Uy(G(F)), there exists an Sp,,(Agn) X Hv|oo(5pn((C),I?Oo)-submodule A w of
Ao(G(A)) such that
AGA)= P A
VW, (G(F))
(2) Suppose that m = Q| m, is an irreducible subrepresentation of Ag g with ¥ = B_,7;[d;].
Then for almost all v < 0o, the local factors m, of m and 7, of 7; are unramified for any .

Moreover, if we denote the Satake parameter for 7, by {Civ1,--.,Civm,}, then the Satake
parameter of w, is equal to

t .
o _di—1 _di=3 di—1
U U {Ci,v,jq 2 G, 4 2, 0 Cugq 2 }

i=1j=1
as multisets.
(3) When ¥ = H!_,7; is a tempered A-parameter, Asy is the multiplicity-free direct sum of
representations m = &, m, € Ily such that the character n, of Ay, associated to m, satisfies

the equation
1 if G = Sp,,
v A i) = -
L Joseo=10) yo=s,

Here, e(1;) = €(1/2,7,v¢) € {£1} is the global root number attached to the symplectic
representation T;.

If a representation m of §f)n(A) is contained in Ay v, we say that 7 has an A-parameter ¥, and
¥ is the A-parameter for w. We note that the following.

Lemma B.8. If ¥ is a tempered A-parameter, and m = Q! m, is an irreducible subrepresentation
of Az w, then the local factors m, are almost tempered and unitary for all v.

Proof. Since any representation 7 contained in Ay y is unitary, its local factors m, are unitary for
all v. By the toward Ramanujan conjecture (see [30, (2.5) Corollary] and [45, Appendix]), we see
that m, are almost tempered for all v. O

Let I = (lv)v € []y00 Z with I, > 0 and I, = I,y mod 2 for any v,v" | co. For ¥ € W5(Sp,(F)) if
all [, are even, and for ¥ € \Ilg(/SY)n(F)) if all {,, are odd, we set

Sijau = Ao, 181y (SPu(F)\Sp,(A)) -
Hence

S (Spa(FN\SPL(8)) = D Sy
Ve (G(F))
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By Proposition B.6, if ¥ is tempered and &5 ¢ is nonzero, then ¥, = <bl(zl) for each v | co. The
subspace &9y is often zero.

Example B.9. Suppose that n = 1. There is a unique non-tempered A-parameter 1[3] for Sp,(F),
where 1 is the trivial representation of GL1(A). The associated subspace Ay 13) is the space of con-
stant functions, i.e., Aj1[3) s the trivial Sp;(Agn) X [,jo0 (591(C), Kog)-module. On the other hand,

the non-tempered A-parameters for §f)1(F) are of the form x¢[2]. The associated space A2 xel2) @S

isomorphic to the even Weil representation w;/): as Sp; (Afn) X Hv‘m(spl((C),f(oo)—modules. There-

fore, for U = 1[3] or ¥ = x¢[2]|, we have S;jp 5 = 0 since the trivial representation and the even
Weil representations are not cuspidal. In other words, if n =1 and ;5w # 0, then W is tempered.

To show Theorem 5.5, we need the following lemma.

Lemma B.10. Let 7 = ®7, be an irreducible unitary cuspidal automorphic representation of
GL2(A) satisfying the conditions (A1), (A2) and (A3) in §2.5. We denote the weight of @y|oeTy

by £2k = (+2ky), with k, > 0. Let ¥ = H_,7; be a tempered A-parameter for SBT(F) Assume
that for each infinite place v | oo, the local factor W, is equal to qﬁl(:) with 1, = 2k, + 2r + 1.

Then V' = W H 7", is a tempered A-parameter for §E)T+1(F). Moreover, for any irreducible

subrepresentation m = ), Ty of S/, there exists an irreducible subrepresentation ' = @, o,

v<oo Mt

of Siya.90 such that for each finite place v < oo, the L-parameters (Uy,m) and (¥, nl) for = and
7!, respectively, are related by n), = n, under the canonical identification Ay = Ayg,.

Proof. For v | 0o, the local factor ¥, = gbl(:) does not contain py, —1, which is the local factor of Tx" ;
at v. Since the central character of Tx"; is trivial, the exterior square L-function L(s,7x" , A?)
has a pole at s = 1 by [33, Corollary 7.5]. Hence W' = WH 7x", is a tempered A-parameter for
Spr+1(F)'

Let m = ®},.o,Ty be an irreducible subrepresentation of S;/9 ¢, and define 7’ = ®/,_ m, so that
the L-parameter for 7, is equal to (¥}, n,) for each v < oo, where (¥,,n,) is the L-parameter for
m,. To show that 7’ is a subrepresentation of S /2,5, we use Arthur’s multiplicity formula (Theorem

B.7 (3)). Note that the L-parameters (gbl(:}z,mv) and (gbl(TH),nl’v) for D). and D"V are related

v/2 lv/2 lv/2
by n{v|A¢l<r)/2 =, and 7] (a,) = (—1)", where a, € A%(r;r;) is the element associated to pag,—1.

Hence for the element «; € Ay C Ay associated to 7;, we have

(H 772(0%,71)) [1 7, (io) | = (H m(az‘,v)> [ (@iv) | = (),

v<oo v|oo v<oo v]oo

and for the element a € Ay associated to 7x" ;, we have

(Hmﬁ(au)) e | = (T ) = (T

V<00 v|oo v|oo v|oo
= (H (,U’vxrl,v)(_l)> [TDM ) =Xty
v<oo v|oo

Here, we use the condition (A3) on 7. By Arthur’s multiplicity formula (Theorem B.7 (3)), we see
that 7" occurs in ;o ¢ O
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APPENDIX C. GAN-GROSS—PRASAD CONJECTURES

The Gan—Gross—Prasad conjecture (the GGP conjecture) predicts a relation between the non-
vanishing of the Fourier—Jacobi periods with the non-vanishing of the central values of the Rankin—
Selberg L-functions. In this appendix, we review the statements of the GGP conjecture, its refined
version and its local version. As an application of local Miyawaki liftings, we prove a new case of
the local GGP conjecture in §C.3.

C.1. Global GGP conjectures. Let I be a totally real number field, and ¢ be a non-trivial
unitary character of A/F. Recall that for £ € F', the Weil representation wy, of Jn(A) = Spn (A) x
Vi (A) is realized on S§(X,,(A)). For ¢ € S(X (A)) we define the theta function by

05 (vg) = D wy(vg)d(x)
x€Xn (F)
for v € V,,(A) and ¢’ € é\f)n(A) This is a genuine automorphic form on .J,, (A).

Suppose that n’ = n or n’ = n — 1. Let @ and ¢ be cusp forms on Sp,(A) and Sp,,(A),
respectively. Assume that exactly one of ¢ or ¢ is genuine. Then for ¢ € S(X,/(A)), we define the
Fourier—Jacobi period Pn,nﬂl/}g(% ¢, ¢) by

Panaseler'.6) = [ 29,06 (9.)07, (9, O)dy.
Sp,, (F)\Sp, (4)

Pan-ticlen'.6) = [ / o(0(9.)¢ (9,07, (v(g. ) dgdv.
Vn—1(F)\Va—-1(A) JSp,,_1(F)\Sp,,_1(A)

The GGP conjecture is stated as follows:

Conjecture C.1 (Gan-Gross—Prasad conjecture [11, Conjecture 24.1]). Suppose that n' = n or
n' =n—1. Let 7 = Qm, and 1" = Q! 7l be irreducible cuspidal automorphic representations of

é\f)n(A) and é\f)n/(A), respectively. Assume that exactly one of m or « is genuine, and that the
A-parameters for m and 7' are tempered. Then the following are equivalent:

(1) The Fourier-Jacobi period Pp, sy, is not identically zero on 7 x 7' x S(X,r (A)).
(2) The central value L(1/2,m x 7' x x¢) is nonzero and the local Hom-space
HomSpn/(Fv)(ﬂ'v &® ﬂ'; ) Wepe > C)
is nonzero for any place v of F.
For the case where n’ = n, Yamana [58, Theorem 1.1] proved that (1) implies (2). See also [58,
Remark 6.6]. Conjecture C.1 implies Conjecture 5.2 (1) since the A-parameter for 7/ is given by
U= Hﬂt-/_ T/< if 7 is not genuine,
UV ®@y_1= EE ( ® X-1) if 7’ is genuine,
where ¥/ = 53?:17']{ is the A-parameter for 7'
To obtain Conjecture 5.2 (2), we need a refined version of Conjecture C.1. To state this, we
define a local period integral. For each place v, we fix a Haar measure on Sp,,(F,) such that

vol(Sp,,(0y);dg,) = 1 for almost all v, and that dg’ = [], dgj, is the Tamagawa measure on Sp,,(A).
Fix an Sp,, (F,)-invariant inner product (, ), of m, x m, such that

v

/ e1(9)p2(9)dg = [ [(1.0: P2.0)m,
8P, (F)\Sp,,(4)

v
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for o1 = @u1,0, P2 = ®vs02 v € m. Similarly, fix an Sp,,, (F;)-invariant inner product (, )/ of mj, x .
Recall that wy, , has a . (Fy)-invariant pairing

(¢1,va ¢2,v)v = /X ) ¢1,v(xv)¢2,v <$v)dmva

which satisfies that (¢1,¢2) = [[, (010, P2.0)0 fOr o1 = Rud14, P2 = Qud2,y € S(X,v(A)). For
Yy € Ty, @), € 7l and ¢, € (X, (Fy)), we define a local period integral by

av(‘Pv,‘P;aQSv)
/ (10(@) 00 Do) (T ()0 1)t (e o (@) Bl if ' = n,
Sp, (Fy)

/ / (70 (49) P, Do) (T (9) P, 2t (e s (09) o Bo)uddgdu i 0 =1 — 1.
V- I(Fv Spn 1 Fv

This integral is absolutely convergent by [56, Proposition 2.2.1].
The refined version of the GGP conjecture is stated as follows:
Conjecture C.2 (Xue [56, Conjecture 2.3.1]). Let m = ®\m, and ' = @,m;, be irreducible cuspidal
automorphic representations of Spn(A) and Spn (A) with tempered A-parameters U and W', respec-
tively. Assume that exactly one of ™ or @' is genuine. Fiz a sufficiently large finite set S of places
of F containing all “bad” places.
(1) For each place v, the local Hom-space Homg,, ,(f,) (T ® T, @Wy, ., C) is nonzero if and only
if (o, Qpin ¢v) # 0 for some p, € my, (;Dfu € 7T1/] and ¢, € Wipe 4 -
(2) Let ¢ = @upy €7, ¢ = Qpyl, € 7', and ¢ = Ry, € S(X;(A)) be factorizable elements.
Then there exists a constant AS, which is an explicit product of partial zeta values, such
that

|Pn77’b’,¢5 (907 (;0/’ ¢)’2
_ 279 LS(s,m x 7' X X¢)
|Ag||[Aw| LS(s+ 5,7, Ad)LS(s + §,m,Ad) | |

X H av(@’ua 902;7 (bv)
veS
Here, L°(s,m x 7' x X¢) s the partial Rankin—Selberg L-function, and L%(s,m,Ad) and
Ls(s, 7', Ad) are the partial adjoint L-functions of m and 7', respectively.
Conjecture C.2 together with the following lemma implies Conjecture 5.2 (2).
Lemma C.3. Assume that n’ =n. Let v be a real place of F, and £ be a positive real number (in
F,). Then for nonzero lowest weight vectors /2 € Dl%), Yu-1)/2 € Dé?—)l)/w and qﬁg € wyy,, we
have o (172, P—1)/2: #¢) 7 0.
Proof. Set m, = D™ and 7/, = D(?—)l)/? Note that the subspace of Dgln—)l)/2®w¢'g on which K acts

/2 v (
by det!/? is one dimension, and is spanned by gp(l_l)/2®¢2. Since HomS (®) (Dl%)’ DEZ )1)/2®w¢£ L) #

0, we may regard ¢(_1)/2 @ gf)g as a lowest weight vector of Dl(;;) C DEZ—)l)/z ® wy, . Hence we can
regard
(T (9)0-1)/2: L—1) 207, (Wse., (9) B> BL)w

(n)
1/2

to det!/? K det/2. Since such a matrix coefficient is a scalar multiple of (m, (9)®1/2: ¢1/2)m,, We have
(12, Pa—1)/2: 82) # 0. O

as a (nonzero) matrix coefficient of D\ on which the left-right translation of Ko x Kao is equal
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C.2. Local GGP conjecture. In this subsection, we let F' be a non-archimedean local field of
characteristic zero. Fix a non-trivial additive character ¢) of F' and an element £ € F*. Let w1 and
75 be irreducible representations of Sp,.(F) and Sp,_; (F), respectively. Assume that exactly one of
them is genuine. We set

dr,,ﬂ_lyg(?ﬁ, m9) = dim HomJT_l(F) (M ® T ® wfp’%‘”}@)-

Similarly, let 7] and 7} be irreducible representations of San(F ). Assume that exactly one of them
is genuine. We set L
dp g (1, m5) = dim Homg, (g (77 @ 5 ® wg;) C).
The multiplicity one theorem proven by Sun [48] and Gan-Gross—Prasad [11, Corollary 16.2] asserts
that
dr,r—l,{ (7717 7T2) <1, dn,nf (71'/1, 7'['5) <1
for any 7y, mo, ), mh.

For a symplectic representation ¢ of WD, we denote the root number attached to ¢ by £(¢) =
£(1/2, ¢,1). This value does not depend on 1, and is in {+1}. The local GGP conjecture for the
symplectic-metaplectic case (proven by the author [5]) gives complete descriptions of d,.,_ ¢(71, m2)
and dp n¢(m], ) in terms of internal structures of L-packets when all 7,7, 7], ) are almost
tempered.

Theorem C.4 ([5, Theorem 1.3, Corollary 1.4], [11, Proposition 18.1]). Assume that all 71, wa, 7}, 74
are almost tempered. Let (p1,m1), (p2,m2), (#1,1)), (dh,nh) be the L-parameters for my,me, w7,
respectively. Then dy,_1¢(m1,m2) # 0 if and only if

{m(w = ($9 ® d2 @ xe)e(d1 @ B © xe) U det(¢4)((—1)7 Mm@,

L qim(?
m2(b) = £(¢1 ® ¢ @ xe)e(PB)xe(—1)2 Tm(?2)
for ac A‘bl and b € A¢27 and dn,n,&(ﬂ-iv 77&) 7’5 0 Zf and O’n,ly ’Lf

n(a) = (60 ® 6 ® Xe)e(0) ® B @ X)) det (/2 ((— 1)} Im(@h)g),

L Qim(¢’8
h(b) = (¢} ® ¢’ @ xe)e(d/)xe(—1)2 Tm(@'2)
fO’/“ ac A¢II and b € A¢/2

C.3. Application of local Miyawaki liftings. As in Proposition 3.10, local Miyawaki liftings
satisfy a seesaw identity. Using this, one can describe d,, , ¢(7], 75) for a new case. Recall that the
unique irreducible algebraic representation of SLa(C) of dimension d is denoted by Sy.

Theorem C.5. Let m; and my be irreducible almost tempered unitary representations of é\f)r(F) and
é\f)r_l(F), on which {£1} acts by (£1)"" and (£1)""~1, respectively. Fir a unitary character p
of F*.
(1) Assume one of the following conditions:
e The L-parameter ¢1 for m does not contain pu*'Sy for any d > n —r with d = n —
r mod 2;
en=rorn=r+1.
Then we have

e (X" 17 o dety—p) X 71, (xe 0 dety—pi1) X T2) = dp 1 ¢(m1, T2).

In particular, d,, ., =L odet,_,) X 71, (pxe odety_pi1) X o) can be described in terms
p n,E WX 1 wXxe +

of internal structures of the L-packets for w1 and ms.
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(2) Set p' = px>
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(rtr=1)/2 =

and 7' =y x p If an irreducible representation ) of Sp,,(F)

satisfies that dn’mg(ﬂ'i, (pxe o dety—pq1) X m2) # 0, then M) () #0.

\T

Proof. Note that pux" 1" = u'x[_(qw)m. By Theorem 3.1 (2), (4) and the seesaw identity (Propo-
sition 3.10), we have

dnyn,g((ux’f{r_l odety—r) X 71, (txe © detp_rq1) X m2) # 0

e (MU (m), M), (7)) #0

() A M
Homg- (F)(MW%( Ny @wl, M, (x ));Ao

Homj (./\/l¢ - (Mgﬁ,(m» ,7@/ ®wg§—1)> £0
Hmn£4(wbw2®wﬁ 1)#0
dyr—1,¢(m1,m2) # 0.

[

Hence we obtain (1).
When d,, , ¢ (7], (1x¢ © detp_r41) X m2) # 0, the seesaw identity implies that

Homjy - (M;)T,(W ), Ty ®w(r 1) ) £0.

In particular, Mg’),r,(ﬁll) # 0. Hence we have (2). O
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