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Chapter 1 

General Introduction: Directed Evolution in Phylogenetic Comparison 

 

Phylogenetic comparative methods (PCM) are statistical methods which analyze the 

evolution of traits in organisms and are applied mainly for two purposes (Losos 2011 

for review). One major application is to infer ancestral traits and their evolutionary 

patterns for species or taxa, given traits of extant organisms. To know the traits of 

ancestral species is generally difficult since we cannot observe past organisms directly. 

Trait information might be obtained via fossils records, but this is very limited. By 

phylogenetic comparative methods, it is possible to estimate a rate of evolutionary 

changes of traits and its value of ancestral species by using only phenotypic data of 

living organisms and their molecular phylogenetic trees. 

 

Another major application is to correct bias which is induced by non-independence of 

data when performing statistical analysis in inter-specific comparisons. Most of today’s 

statistical methods use the assumption that the data are samples from a (conditional) 

independent and identically distributed (i.i.d.) random variables. But, in inter-species 

comparative studies, trait value tends to be similar (correlated) among closely related 

species because of the shared evolutional history. Without considering the phylogenetic 

relationships, any statistical analysis biases the estimates and raises the error 

probability. PCM is a powerful tool that can examine the relationship between traits and 

ecological/environmental factors in consideration of phylogenetic correlations. 
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Since the mid-1980s, when the importance of the phylogenetic information was first 

pointed out by Felsenstein (1985), phylogenetic comparative methods became an 

indispensable method in ecology and evolutional biology. Some even argue that there is 

“nothing in biology makes sense except in the light of phylogeny” (Losos 2011; see 

also, MacLeod 2001). In recent years, the popularity of the meta-analysis, which 

integrate the results of primary research, have also boosted the importance of 

phylogenetic comparative methods, resulting in the number of publications which 

mention the term “phylogenetic comparative” is exploding (Cooper et al. 2016). 

 

Most of the phylogenetic comparative methods impose strong assumptions. The most 

fundamental assumption is how the traits evolve. In most cases, PCMs have assumed 

Brownian motion models and, in some cases, the Ornstein-Uhlenbeck model and the 

Early-Burst model. If these assumptions are not met, it causes a strong bias (Thomas et 

al. 2009, Losos 2011, Cooper et al. 2016). In real situation, trait change that does not 

conform to such a typical model often occurs. For example, one of the most common 

processes reported in the wild is a directional evolution, where a certain trait value 

increases (or decreases) with a constant trend. Some researchers have concerned that 

phylogenetic comparative methods have been used without the validity of these 

assumptions are not considered (for example, Losos 2011, Cooper et al. 2016). Oakley 

et. al. (2000), conducted an experiment with a colony of E. coli which we can directly 

observe the trajectory of evolution in the laboratory and found that phylogenetic 

comparative methods failed to reconstruct the trait of the ancestral colony when the 

colony experienced the directional evolution. 
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Surprisingly, despite the prevalence of directional selection in the wild, statistical 

methods for evaluating the directional evolution with phylogenetic comparative 

methods have not been fully developed. As notable exceptions, Pagel (1999) and Hunt 

(2006) propose a method that assumes all the species evolves in one direction with 

common speed. But it does not offer a way to evaluate biologically interesting cases of 

directional evolution; whether and how the strength of directional evolution differs 

among different clades or branches. 

 

The purpose of the current thesis is to clarify the problems on the analysis of directional 

evolution in the current phylogenetic comparative methods and to propose a new 

method. In this chapter, I examine three approaches that are used in the detection of 

directional evolution: the outlier detection approach, accelerated Brownian Motion 

model approach, and ABC-PCM. I point out there exists serious philosophical problems 

on the outlier approach and accelerated Brownian Motion approach. Next, I examine 

how the ABC-PCM avoids these problems and argue it as the best alternative to analyze 

directional evolution if some remaining issues are solved. Finally, I show the outline of 

the remaining chapters. 

 

・Brownian Motion and Stochastic Process 

In the first half of this chapter, I will examine two statistical methods, outlier detection 

approach and accelerated Brownian motion approach for the analysis of directional 

evolution. Here, the nature of the stochastic process called Brownian Motion (or Wiener 

process) plays an important role. So, before examining problems of the two methods, I 
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will introduce the basic concept of stochastic processes and Brownian motion (Ito 1953; 

In Japanese). 

 

Let T = [0, ∞) the continuous time. If the probability of an event at t ∈ T follows 

the random variable X(t), then {X(t), t ∈ T} is called a continuous-time stochastic 

process. Especially, the continuous-time stochastic process with the following 

properties is called Brownian Motion. 

 

1) X (0) = 0 

2) X (t) is an independent incremental process 

3) For any s, t ∈ T, the distribution of X (s + t) - X (s) is Normal (0, σ 2 t) 

 

Where Normal (x, y2) is a normal distribution with the mean x and variance y2. Now, σ2 

is a parameter called the diffusion coefficient. As σ2 becomes larger, the increment of 

dispersion after the unit time increases. In the context of biological evolution, σ2 is often 

referred to as the evolution rate. The property of particular importance in the current 

thesis is the third; in Brownian Motion, a) the variance of the normal distribution 

increases in proportion to time difference t and b) expected value of the normal 

distribution is zero for any t and σ2. Most of the phylogenetic comparative methods 

have so far assumed, "traits evolve in the manner of the Brownian motion model, a 

simple model of trait evolution where trait variance accrues as a linear function of 

time. Researchers have made statistical inferences about the evolution of traits under the 

assumption (cited from Cooper et al. 2016, emphasis added). 
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・Outlier Detection Approach 

Organ introduced the outlier testing approach of posterior predictive distribution by 

Bayesian statistics to analysis directional evolution (Organ et al. 2011). Suppose the 

normally distributed traits of n species y = (y1, y2 ... yn) and phylogenetic tree of these 

species are given. And suppose further that these traits have evolved in the Brownian 

Motion with common evolutional rate. Then, the evolution rate σ2 can be estimated by 

the following regression model. 

 

𝒚~𝑀𝑉𝑁(𝜇, Σ) − (1.1) 

 

Where MVN is an n-dimensional multivariate normal distribution, and its variance-

covariance matrix Σ is an n × n matrix whose i, j element is defined as follows. 

 

Σ(𝑖, 𝑗)＝ σ2 ∗ bl𝑖𝑗 − (1.2) 

 

Here, σ 2 is the evolution rate, which is common to all branches, bl is the branch length 

of the phylogenetic tree shared by species i and j. That is, equation (2) formulates the 

assumption that the magnitude of the correlation between species i and species j is 

proportional to the length of time the two species share in the history of evolution. 

After we have obtained posterior distribution, we can calculate the posterior predictive 

distribution 𝑝(𝒚C|𝒚) = ∫ 𝑝(𝑦H|𝜇, Σ) 𝑝(𝜇, Σ|𝒚)𝑑𝜇 𝑑Σ for any species i. Organ 's proposal 

was that if the i's actual trait yi can be said outlier of 𝑝(𝑦𝑖C|𝒚), then this is the evidence 

that directional evolution has occurred for the trait of species i. Organ applied this 

approach to data on the time length taken by the apes' species to consuming food in a 
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day and concludes that human food digestion has evolved after diverging from 

chimpanzees (Organ et al. 2011). 

 

・Accelerated Brownian Motion Model Approach 

Another approach is the accelerated Brownian Motion model approach (or variable rate 

Brownian motion model; Baker et al. 2016, see also Dunbar et al. 2018 but Baker & 

Venditti 2019). This approach also assumes that all branches on the phylogenetic tree 

have undergone Brownian Motion evolution as similar to outlier detection approach. 

But, unlike it, accelerated Brownian Motion assume that the evolution rate may be 

different for each branch in equation (1.2). Then, the evolution rate in each branch is 

estimated by a Bayesian manner, and if it is twice or more the size of the other branch, 

it is interpreted that directional evolution has occurred in that branch. 

 

・Problems of the Previous Methods  

Here in this section, however, I argue that the above two methods using the Brownian 

motion model suffer from serious problems to interpret that the directional evolution 

has occurred in the trait of interest. My points are 4-folded. 

 

The first problem is the setting of the threshold. As many researchers have discussed the 

role of a classical statistical testing and p-value (in ecology, Ohkubo & Aiba 2019; in 

Japanese), some statisticians and scientists argue that there is no objective basis for 

setting the threshold of significance level p = 0.05. Relatedly, some propose we should 

set a more severe significance level like p =0.005 to reduce false positives 
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(e.g. Benjamin et al. 2018). These arguments are mainly focused on frequentist 

statistics.  

 

However, the same argument also applies to the analysis of directional evolution 

by Bayesian phylogenetic comparative methods. In the outlier detection approach, the 

focal trait was considered as an outlier if the 95% confidence interval of the posterior 

prediction distribution does not cover the actual trait and take it as the evidence of 

directional evolution. But the choice of 95% is no less arbitrary than the p = 0.05. The 

accelerated Brownian model concludes that if the estimated evolution rate of a focal 

branch is more than twice of the other branches (baseline), then this branch has 

experienced directional evolution. Again, the decision depends on the choice of the 

threshold of the rate of evolution.  

  

The second problem is both methods rely on an invalid inference called 

probabilistic Modas Tollens when it reject Brownian Motion Model. Consider a usual 

consequent denial (Modas Tollens, or MT), one of the rules of deductive inference. 

 

If H is true, then O 

Not O 

Therefore, not H 

 

Under some axioms, the MT have proven to be valid. However, following 

probabilistic MT is NOT valid, yet seemingly similar. 
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If H is true, then the probability of being O is very high 

Not O 

Therefore, not H 

 

Sober, a defender of likelihood account criticized the significance testing because it is 

based on probabilistic MT (Sober 2008). Although both the outlier approach and the 

accelerated Brownian Motion approach are Bayesian methods, the same argument also 

holds since these methods infer the occurrence of a directional evolution when the 

Brownian Motion Model was rejected.1  

 

The third problem concerns the possibility of a quantitative assessment of the strength 

of directional evolution. As described above, both outlier detection approach and the 

acceleration Brownian Motion approach assume the Brownian Motion model for the 

evolution of focal traits without the parameter representing the strength of 

the directional evolution is incorporated into the model. It does not offer a way to 

evaluate the strength of directed evolution and its difference among branches in a 

quantitative way.  

 

Relatedly, the fourth problem is about the prediction. While an inference and a 

prediction are closely related task in statistics, an analysis of directional evolution via 

the previous Bayesian phylogenetic comparative methods lead to paradoxical 

 
1 It should be noted that the argument is on the form of inference, not the interpretation of the probability. It is not 

the problem of Frequentist vs Bayesian (and Likelihoodism), I argue. 
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predictions. Suppose that the average of a trait value has increased Δ for past t years, 

being undergone positive directional evolution and the outlier approach and/or 

accelerated Brownian Motion approach succeeded in the inference that directional 

evolution has occurred. Suppose further this is an idealized situation where the 

underlying mechanism and environmental factors which have driven this directional 

evolution past t years are identified and it is known that these factors will keep working 

for next t years. It is natural to predict that the change of average trait value for next t 

years will be Δ. 

 

However, both the outlier approach and the accelerated Brownian approach does not 

predict the trait change will be Δ, but predict exactly zero regardless of the strength of 

the directional evolution and the length of t. This is because both approaches assume the 

trait evolves as Brownian Motion, where the expected trait change is always zero as 

described the property (3) of Brownian Motion above. So even if we admitted the 

interpretation “the fact that the extant species is the outlier of the posterior predictive 

distribution is the evidence of the directional evolution” or “the fact that the posterior 

evolution rate of the focal species is larger than twice of other branches is the evidence 

of the directional evolution” is not problematic, it causes inconsistent prediction for 

future evolutions.  

 

In summing up this section, an analysis of directional evolution by the outlier detection 

approach and the accelerated Brownian motion approach have serious philosophical 

problems. The following section introduces ABC-PCM, a hopeful alternative to these 

methods and discuss how it avoids these problems. 
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Third approach: ABC-PCM 

Why so far, phylogenetic comparative analyses of directional evolution have used 

Brownian Motion model? The major reasons are the ease of mathematical analysis. In 

the case of Brownian Motion, the likelihood can be easily calculated using the 

knowledge of stochastic process. However, with respect to directional evolution, it has 

been considered that it is not possible to write likelihood functions directly. 

 

Kutsukake & Innan (2013, 2014) solved this problem by a novel method to analyze 

directional evolution based on approximate Bayesian computation (ABC), the widely 

used methods in population genetics (Tavaré et al. 1997, Beaumont et al. 2002) and 

acceptance-rejection sampler (AR). Here in this section, I describe an outline of their 

method with their application. 

 

The basic idea of ABC is quite simple and intuitive. Let 𝜋(𝜃) be a prior distribution of 

a parameter of interest 𝜃 ∈ Θ and 𝑦 ∈ 𝑌 is a collected data. Usual Bayesian statistics 

require a closed form of likelihood function 𝐿(𝜃; 𝑦) to obtain the posterior distribution 

𝜋(𝜃|𝑦) but for a complex model or a computationally expensive model, it is not 

feasible. Then, an approximate inference is possible via an approximated likelihood 

procedure below. 

 

1. Draw a random sample 𝜃′~ 𝜋(𝜃) 

2. Simulate the data generating process and obtain 𝑦𝑠𝑖𝑚~𝑓(𝜃′) 

3. Calculate the discrepancy between the simulated data and the actual data 𝑑(𝑦𝑠𝑖𝑚, 𝑦) 
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3.1 If d(𝑦𝑠𝑖𝑚, 𝑦) < 𝜀, then accept the 𝜃′ 

3.2 Otherwise reject 𝜃′ 

4. Repeat 1-3 until the accepted 𝜃′ is accumulated for the desired size 

 

Where 𝜀 is a predetermined tolerance and 𝑑() is a measure of similarity between the 

simulated data and the actual data. Note that, 𝑑(𝑦𝑠𝑖𝑚, 𝑦) works as an approximation of 

negative likelihood. The most popular choice of a discrepancy measure is a summary 

statistic (e.g. mean, variance). 

 

Even when the distribution of the data generating process cannot be exactly defined, the 

approximate likelihood can be obtained if the evolutionary process can be simulated. 

They applied ABC to the phylogenetic comparative method and named it “approximate 

Bayesian computation phylogenetic comparison method (ABC-PCM)”. Here, I 

introduce a seminal example of its application to empirical study. 

 

The evolution of the brain size in humans (Homo sapience) is likely to have undergone 

directed evolution in the past because its distribution deviates from other apes (see 

Fig.1, cited from Kutsukake and Innan 2013). For example, the summary statistic of the 

brain volume of human and 3 other ape is as follows; human (Homo sapience); mean = 

1321, sd = 123, chimpanzee (Pan troglodytes); mean = 348, sd = 46, gorilla (Gorilla 

gorilla); mean = 467, sd = 46, and orangutans (Pongo pygmaeus) ; mean = 334, sd = 52. 

They assumed that the brain size of the ape was experienced directional evolution only 

on human and just after human branched with the chimpanzee. 
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First, the topology and branch length of the phylogenetic trees were obtained in advance 

by molecular data. Next, based on this tree, the evolution from the common ancestors of 

4 species to extant species is simulated. 

 

Let i the ancestral species and j the descendent species. Then, the evolution from i to j is 

simulated by the following procedure. 

 

A-1: Directional Evolution Algorithm of species 𝑖 → 𝑗 

1. Determine the number of mutations by random sample from Poisson 

distribution. 

1.a the number of the positive direction mutations is 

𝜇𝑖→𝑗
+ ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘)- (1.3) 

1.b the number of the negative direction mutations is 

𝜇𝑖→𝑗
− ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑏𝑙 ∗ 𝑒𝑣/𝑘)-(1.4) 

 

Here, bl is the branch length, ev is the evolution rate, and k is the strength of 

directional evolution. Notice that it becomes a Brownian Motion model when k = 1. 

 

2. For each of the positive and  negative mutations , determine the amount of 

phenotype change Δ from the independent exponential distribution exp (θ). 

  

∆𝑚+~exp (θ)  (𝑚 = 1,2, … 𝜇𝑖→𝑗
+ ) −  (1.5) 

∆𝑛−~ expfθg f𝑛 = 1,2, … 𝜇𝑖→𝑗
− g − (1.6) 
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Where 𝜃 is the hyper parameter which controls the trait change per mutation. 

 

3. Add each trait change one-by-one. 

𝑋𝑖→𝑗 = j ∆𝑚+

𝜇𝑖→𝑗
+

𝑖=1
 − (1.7) 

 𝑌𝑖→𝑗 = j ∆𝑛−

𝜇𝑖→𝑗
−

𝑗=1
− (1.8) 

 

4. Define the final trait change by 𝑋𝑖→𝑗 − 𝑌𝑖→𝑗 – (1.9) 

5. Add the ancestral trait 𝑦𝑠𝑖𝑚 𝑗 = 𝑦𝑠𝑖𝑚 𝑖 + (𝑋𝑖→𝑗 − 𝑌𝑖→𝑗) – (1.10) 

 

Finally, the discrepancy is calculated to evaluate how the simulated trait is close to the 

actual trait. Letting the simulated trait of net species j is 𝑦𝑠𝑖𝑚 𝑗, and the actual trait 𝑦 𝑗 =

𝑁𝑜𝑟𝑚𝑎𝑙(mean𝑗, 𝜎𝑗2), the discrepancy for the species j is defined as follows. 

 

d(𝑦𝑠𝑖𝑚, 𝑦) = 𝑁𝑜𝑟𝑚𝑎𝑙f𝑦𝑠𝑖𝑚 𝑗r mean𝑗, 𝜎𝑗2) -(1.11) 

 

Where Normal (x | mu, sd2) is the probability density of normal distribution with mean 

mu and variance sd2. 

 

Kutsukake and Innasn (2013) defined the log likelihood of the model as the product of 

the discrepancy for all extant species. 
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𝑙𝑜𝑔 𝐿(𝜃) = j 𝑁𝑜𝑟𝑚𝑎𝑙f𝑦𝑠𝑖𝑚 𝑗r mean𝑗, 𝜎𝑗2)
𝑗 ∈ 𝑒𝑥𝑡𝑎𝑛𝑡 𝑠𝑝.

− (1.12) 

 

Kutsukake & Innan (2013, 2014) adopted the Acceptance-Rejection (AR) sampler to 

obtain samples from the posterior distribution (Tavaré et al. 1997). 

 

Notice that the method of Kutsukake & Innan (2013, 2014) does not simulate the 

population of evolved species but simulate the random value from the population. 

Therefore, the likelihood of the species i is the point density at the simulated trait. The 

validity of this simulation will be discussed later (Chapter 3 and Chapter 4). 

 

One of the major advantages of ABC-PCM is that it does not suffer from the serious 

philosophical problems mentioned in the previous section. Unlike the outlier detection 

approach and accelerated Brownian Motion approach, ABC-PCM avoids the arbitrary 

of threshold choice, the inferential fallacy of probabilistic MT, and it is possible to 

evaluate the strength of evolution quantitatively since ABC-PCM is not restricted to the 

Brownian Motion model and offers a direct way to quantitative evaluation parameters. 

Also, there is no conflict between the posterior distribution and the prediction because, 

again, simulatable evolution is not restricted to the Brownian Motion model.  

 

Another major advantage of ABC-PCM is its flexibility because various evolutionary 

models can be incorporated into ABC-PCM as long as its process can be simulated. 

Garamszegi (2014) reviewed the existing phylogenetic comparative methods and 

introduced ABC-PCM as a highly flexible approach. 
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However, despite these philosophical superiorities, ABC-PCM is hardly applied into 

empirical biology studies. At present (June 2019), six years passed since ABC-PCM 

was first proposed in Kustukake & Innan (2013), the paper has been cited 24 times. But, 

of these, the applications to the empirical study are only two: Imai, Ohkubo, et al. 

(2016) and Harano & Kutsukake (2018) (Google Scholar, May 3, 2019) 

 

・Conclusion and the Direction of this Thesis  

In this chapter, I have reconsidered methods to analyze directional evolution by 

phylogenetic comparative methods, with some philosophical arguments. I conclude that 

the outlier detection approach and the accelerated Brownian motion approach has 

serious problems in statistical inferences. While simulation-based ABC-PCM avoid 

them and is a potential alternative, current ABC-PCM is not widely applied to empirical 

study for both pragmatic and theoretical reasons. 

 

The following chapters are organized as follows. In Chapter 2, I discussed the huge 

computational cost of ABC-PCM, especially of the simulation of evolution and why it 

matters in both practical and theoretical reason. I also analyzed the previous procedure 

of simulation and developed a 1,000-times faster but asymptotically equivalent 

procedure. In Chapter 3, I conducted simulation experiments to investigate the 

properties of parameter estimation and hypothesis testing in the existing ABC-PCM. I 

found that the parameter estimation by ABC-PCM results in an overestimation of the 

strength of directional evolution, and that the existing hypothesis testing has a low 

power. In chapter 4, I propose a new simulation method of evolution and define new 
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likelihood for ABC-PCM to correct the bias and improve the power. I also conducted 

data analysis and simulation experiment to show its superiority to the previous method. 

In Chapter 5, I applied the proposed method to meta-analysis of temporal discounting 

behavior of ape species. Finally, in Chapter 6, I discussed the challenges of ABC-PCM 

and the possibility of further refinement. 

 

・Notes on Methodologies 

Before the end of this chapter, I will briefly clarify my philosophical position in this 

study. In the history of statistics and its philosophy, there have been much of 

controversies between frequentists, likelihoodists, and Bayesians. From frequentists and 

likelihoodists, Bayesian statistics have long been criticized on its subjective choice of 

the prior distribution and the interpretation of results (Mayo 1996, Royall 1997, Sober 

2008, etc.). 

 

However, in recent years, attempts to justify Bayesian methodologies from a 

frequentists point of view have attracted attention. For example, Horseshoe prior 

distribution (Carvalho et al. 2010) was first proposed in the context of sparse statistics. 

But later, it was turned out that it also has excellent properties in frequentist sense 

(Castillo et al. 2015) and applied to ecology (Morii, Ohkubo, Watanabe 2018). Gelman 

et al. (2015) discussed the use of Bayesian statistics while pointing out that modern 

Bayesian statistics cannot be understood as “the rule of the degree of belief and its 

update” such as existing philosophers of science have discussed. In the philosophy of 

statistics, D. Mayo had been the most influential critic of Bayesian statistics but have 

recently deployed novel arguments to justify the Bayesian statistics from her severe 
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testing perspective (Mayo 2018). Ohkubo (2019) pointed out the similarity of the 

structure of argument between “stopping rule problem” developed in the context of 

criticism against frequentist and the “catchall hypothesis problem” developed in the 

context of criticism of Bayesian. These trends might indicate it is not always 

appropriate to dichotomize statistical theory only based on the differences in probability 

interpretation. 

 

As the name of “approximate Bayesian computation” suggests, the ABC-PCM is 

mainly founded on the Bayesian framework. However, in this thesis, based on recent 

trends, I evaluate statistical properties of ABC-PCM from the view of frequency. That 

is, “when we repeatedly apply a certain statistical method (i.e. parameter estimation or 

hypothesis testing) of ABC-PCM to a sample obtained from a true distribution, then 

what kind of phenomenon (distribution of estimator, biased/unbiased, error frequency, 

etc.) occurs”? 

 

Of course, there might be a case where novel problems arise by “mixing” different 

statistical schools (Ohkubo & Aiba 2019; In Japanese) but these arguments beyond the 

scope of the current thesis, i.e. to analyze and develop methods of directional evolution 

in phylogenetic comparative methods.  
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・Figures. 

 

Fig. 1. The phylogenetic tree and the brain volume size of ape species. The left side of 

the figure shows the phylogenetic tree of 4 ape species where the number embedded in 

the tree represents the branch number and MRCA indicates the position of the most 

common recent ancestor. Histograms of the right side show the brain sizes of the 

corresponding species where the bold line represents estimated trait distribution.   

(cited from Kutsukake and Innan 2013). 
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Chapter 2 

Simulation Algorithm of Directional Evolution 

 

In Chapter 1, I argued the existing approach for evaluating directional evolution suffers 

from methodological and interpretational problems of but the simulation likelihood-

based method (ABC-PCM), proposed by Kutsukake & Innan (2013), can overcome 

such problems. However, as mentioned above, ABC-PCM is hardly applied in actual 

biological studies. One major obstacle is the enormous computational cost that ABC-

PCM requires for evolutionary simulation. In this chapter, I first discuss two problems 

caused by high computational cost and then propose a new algorithm to simulate 

directional evolution. Finally, applying this algorithm to primate brain size evolution 

analysis, I confirm the new simulation algorithm achieved 1,000 times faster 

computation while retaining the accuracy of the posterior distribution. 

 

・The Difficulty of Computation Cost 

In this section, I point out the barriers that high computational costs bring to the 

application of new statistical methods and discuss the significance of computational cost 

reduction. Note that the calculation cost in this section mainly refers to the time required 

for simulation procedure and does not consider the time required to learn a new method 

or coding skills required for implementation. The lack of packaged software that can be 

easily applied to actual data would be a possible barrier for the application of ABC-

PCM into the empirical study. But it will not be discussed in this chapter. 
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There are two major reasons why the computational cost of ABC-PCM matters. First, it 

brings a practical burden on the research schedule. When ABC-PCM was first proposed 

in Kutsukake and Innan (2013), it took approximately one month to get 100,000 

posterior samples to analyze brain size data of 4 primates species by 5 workstation PCs 

with 8 CPU cores (MacPro, OS 10.6.7, 2 × 2.93 GHz Quad-Core Intel Xeon; Kutsukake 

personal communication). Without such a high-performance PC, as is the case for most 

empirical researchers, it takes longer time. Further, in recent practices of statistical 

analysis, it has become common to compare results with multiple statistical models and 

to expand the structure of the model by doing trial and error (for example, Gelman & 

Shalizi 2015). It also contributes to bring a novel scientific hypothesis. For ABC-PCM, 

which can analyze complex evolutional process as long as simulations are possible, the 

possibility of model expansion is a major advantage over the outlier detection approach 

and the accelerated Brownian motion approach. However, since it takes one month to 

obtain reliable results of just one model, it is difficult to evaluate multiple models 

within a practical research schedule. 

 

Second, more seriously, theoretical problems of the statistical inference arise. When, in 

statistics, a new method is proposed, it is necessary to show its reliability. In the ideal 

case, it can be done by mathematical analysis. But, when it is difficult to handle 

analytically, like ABC-PCM, numerical experiments are often conducted. There, several 

thousands of artificial data are generated, and the new method is applied to them. But in 

the case of ABC-PCM, which takes one month to obtain 100,000 samples for a small 

data set described above, to conduct numerical experiments under different condition is 

not straightforward. Kutsukake & Innan (2013) conducted simulation experiments on a 
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power of hypothesis testing of k, the strength of directional evolution, but in limited 

cases. Also, the properties of parameter estimation (e.g. unbiasedness) is not known. No 

matter how philosophically sounding, applying non-reliable methods to empirical study 

is a big risk. 

 

Recently, Harano & Kutsukake (2018) and Ohkubo et al. (unpublished) introduced 

MCMC algorithm for ABC-PCM (Casella et al. 1992, Marjoram et al. 2003), resulting 

in a certain reduction in computational cost (up to 1,000 times). However, although 

MCMC reduces the cost of sampling from the posterior distribution, it does not 

contribute to those of simulation and likelihood calculation. In ABC-PCM, a 

considerable part of the computation time is spent in the process of simulating the 

evolution of traits and computation of the likelihood. The relative burden of a 

simulation grows further when ABC-PCM is applied to hundreds of species or more, as 

usual inter-species comparison studies do.  

 

In the following section, I focus on simulations of directional evolution in ABC-PCM 

and devise new algorithms to reduce computational costs. I derived an asymptotic 

probability distribution which trait that undergoes directional evolution follows, using 

the elementary law of random variables and the central limit theorem. 

 

・Methods and Algorithms 

First, I reiterate the simulation algorithm of a directional evolution in the previous 

ABC-PCM. 
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A-1: Directional Evolution Algorithm of species 𝑖 → 𝑗 

1. Determine the number of mutations by random sample from a Poisson 

distribution. 

1.a the number of the positive direction mutations is 

𝜇𝑖→𝑗
+  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘)- (2.1) 

1.b the number of the negative direction mutations is 

𝜇𝑖→𝑗
−  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑏𝑙 ∗ 𝑒𝑣 / 𝑘) -(2.2) 

 

Here, bl is the branch length, ev is the evolution rate, and k is the strength of 

directional evolution. Notice that it becomes a Brownian Motion model when k = 1. 

 

2. For each of the positive and  negative mutations, determine the amount of 

phenotype change Δ from the independent exponential distribution exp (θ). 

  

∆𝑚+~exp (θ)  (𝑚 = 1,2, … 𝜇𝑖→𝑗
+ ) −  (2.3) 

∆𝑛−~exp (θ) (𝑛 = 1,2, … 𝜇𝑖→𝑗
− ) − (2.4) 

Where 𝜃 is the hyper parameter which controls the trait change per mutation. 

 

3. Add each trait change one-by-one. 

𝑋𝑖→𝑗 = j ∆𝑚+

𝜇𝑖→𝑗
+

𝑚=1
 − (2.5) 

 𝑌𝑖→𝑗 = j ∆𝑛−

𝜇𝑖→𝑗
−

𝑛=1
− (2.6) 
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4. Define the final trait change by 𝑋𝑖→𝑗 − 𝑌𝑖→𝑗  − (2.7)  

5. Add the ancestral trait 𝑦𝑠𝑖𝑚 𝑗 = 𝑦𝑠𝑖𝑚 𝑖 + (𝑋𝑖→𝑗 − 𝑌𝑖→𝑗)  − (2.8) 

 

The simulation algorithm above is configured to reproduce the processes of population 

genetics step by step (Kutsukake; personal communication). For example, in step 1, the 

expected value of the number of mutations established in the population is controlled by 

the parameter k, not the mutations that occurred at the gene level. Also, in usual 

organisms, most mutations cause only a slight change in a trait, but, in rare cases, can 

cause a large change in a trait (Orr 2005). Such a situation is represented by the 

exponential distribution in step 2. But, in practices, it is not always necessary to obey 

the above steps as par. A similar evolution can be simulated with high speed if some 

mathematical analysis and an appropriate approximation is applied. 

 

First, Poisson distribution with mean λ can be approximated by normal distribution if λ 

is sufficiently large. In general, random samples from a normal distribution are obtained 

at high speed by the transformation of the uniform distribution by the Box-Muller. But 

those of Poisson involves condition judgment and repeating processing where the speed 

is slow (Devroye 1986). 

 

Next, in Step 2.-4, when there are n independent random variables X1, X2 ... Xn , all of 

which is  exponential distribution exp (θ), the distribution of the sum (X1 , + X2+ ... 

+ Xn) is Gamma (n,θ) where 

𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) =
1

𝛤(𝛼)𝛽𝛼 𝑥𝛼−1𝑒−𝑥
𝛽𝑥
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𝔼[𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)] = 𝛼/𝛽 

𝑉𝑎𝑟[𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)] = 𝛼/𝛽2 

 

Therefore, the distribution of X, the sum of 𝜇+ positive mutations and  the |Y|, the 

absolute of the sum of 𝜇− negative mutations is distributed as; 

 

X ~ Gamma (𝜇+, θ) -(2.9) 

Y ~ Gamma (𝜇−, θ) -(2.10) 

 

Here, 

𝔼[X] = 𝔼 �
𝑘𝜇+

𝜃 � =
𝑘 ∗ 𝑏𝑙 ∗ 𝑒𝑣

𝜃 − (2.11) 

𝑉𝑎𝑟[X] = 𝔼 �
𝑘𝜇+

θ
2 � =

𝑘 ∗ 𝑏𝑙 ∗ 𝑒𝑣

θ
2 − (2.12) 

𝔼[Y] = 𝔼 �
𝜇+

𝑘𝜃� =
𝑏𝑙 ∗ 𝑒𝑣

𝑘𝜃 − (2.13) 

𝑉𝑎𝑟[Y] = 𝔼 �
𝑘𝜇+

𝑘θ
2� =

𝑏𝑙 ∗ 𝑒𝑣

𝑘θ
2 − (2.14) 

 

Finally, the trait change by evolution is X-Y. 

Here, for random variables X and Y, 

 

𝔼[𝑋 − 𝑌] = 𝔼[𝑋] − 𝔼[𝑌] 

𝑉𝑎𝑟[𝑋 − 𝑌] = 𝑉𝑎𝑟[𝑋] + 𝑉𝑎𝑟[𝑌] − 2𝐶𝑜𝑣[𝑋, 𝑌] 
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Kutsukake & Innan (2013) assumed independent exponential distribution in step 2, so 

 𝐶𝑜𝑣[𝑋, 𝑌] = 0 by definition. Finally, according to the central limit theorem, for n 

independent Gamma random variables X1, X2, ... Xn,    

lim
𝛼→∞

[𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)] = 𝑁𝑜𝑟𝑚𝑎𝑙(
𝛼
𝛽 ,

𝛼
𝛽2) 

 

Summarizing the above analysis, an efficient algorithm is obtained below. 

 

A-2: Algorithm of asymptotic directional evolution of species 𝑖 → 𝑗 

1. Determine the number of mutations by random numbers from the Normal 

distribution 

1.a the number of the positive direction mutations is 

𝜇𝑖→𝑗
+ ~Normal(bl ∗ ev ∗ k, bl ∗ ev ∗ k) − (2.15) 

1.b the number of the negative direction mutations is 

𝜇𝑖→𝑗
− ~Normal(bl ∗ ev/k,   bl ∗ ev/k) − (2.16) 

Where bl is the branch length and ev is the evolution rate, k is the strength of the 

directional evolution. 

2.  Determine the change of trait by random numbers  

(𝑋𝑖→𝑗 − 𝑌𝑖→𝑗) ~ Normal(
𝜇𝑖→𝑗

+ − 𝜇𝑖→𝑗
−

𝜃 ,
𝜇𝑖→𝑗

+ + 𝜇𝑖→𝑗
−

𝜃2 ) − (2.17) 

3. Add the ancestral trait 𝑦𝑠𝑖𝑚 𝑗 = 𝑦𝑠𝑖𝑚 𝑖 + (𝑋𝑖→𝑗 − 𝑌𝑖→𝑗) 

 

Where 𝜃 is the hyper parameter which controls the trait change per mutation. 
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It should be noted that ABC-PCM does not necessarily follow the above 

formulation. For example, if it is unsound to assume that the strength of evolution 

controls the number of mutations, it is possible to formulate k as it controls expected 

change of trait value in (2.3) and (2.4). It derives following simulation. 

𝜇𝑖→𝑗
+ ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑏𝑙 ∗ 𝑒𝑣) 

𝜇𝑖→𝑗
− ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑏𝑙 ∗ 𝑒𝑣) 

 

∆𝑚+~exp (𝜃/𝑘)(𝑚 = 1,2, … 𝜇𝑖→𝑗
+ ) − (2.18) 

∆𝑛−~ exp(𝜃 ∗ 𝑘) (𝑛 = 1,2, … 𝜇𝑖→𝑗
− ) − (2.19) 

Here, 

𝔼�expfθg� = 1/θ 

𝑉𝑎𝑟�expfθg� = 1/θ
2
 

thus 

𝔼[X] = 𝔼 �
𝑘𝜇𝑖→𝑗

+

𝜃 � =
𝑘 ∗ 𝑏𝑙 ∗ 𝑒𝑣

𝜃 − (2.20) 

𝑉𝑎𝑟[X] = 𝔼 �
𝑘2𝜇𝑖→𝑗

+

θ
2 � =

𝑘2 ∗ 𝑏𝑙 ∗ 𝑒𝑣

θ
2 − (2.21) 

Therefore, comparing equation (2.11) -(2.12) and the equation (2.20) -(2.21), it can be 

seen that the evolution is simulated by the almost same algorithm as that of A-2, 

except that the Var[X − 𝑌] is substituted. 

 

Also, when the assumption of independence in the equations (2.9) and (2.10) is 

unnatural in an actual biological context, X and Y could be replaced by a two-

dimensional multivariate random variable. Also, in this case, the simulation can be 
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performed by the same method except that the variance term of (2.11) decreases as the 

covariance of X and Y increases. One of the major advantages of ABC-PCM is that it is 

possible to flexibly incorporate different simulation algorithms into data analysis. 

 

・Simulation Experiments 

So far, how to simulate a directional evolution in ABC-PCM with low computational 

cost have been analyzed using the elementary law of probability and the central limit 

theorem. The proposed method approximates Poisson distribution and Gamma 

distribution by Normal distribution, where the accuracy depends on bl, the branch 

length on the phylogenetic tree, ev, the evolution rate, and k, the strength of the 

directional evolution (as bl * ev * k decreased, it worsen). It is necessary to evaluate 

whether the proposed method is accurate. Thus, the difference between the random 

numbers generated by the two algorithms was examined by simulation experiments. 

Here, by fixing the length of the branches at 1, I generated 100,000 random samples in 

various ev and k and obtained empirical cumulative density. The difference between 

cumulative density is tested by the method of Kolmogorov=Smirnov (Smirnorv 1939). 

 

Figure 2.1 a-b, shows the empirical cumulative density under different ev and k. It can 

be seen that the two lines match well under the tested condition. When ev was small and 

k was large, the p-value was small suggesting there exist little differences in the two 

distributions. But as ev goes larger, two distribution converged. It is assumed that 

sufficient approximation has been obtained for the purpose of this chapter. In the next 

section, I apply the proposed algorithm to the actual data. 
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・Data Analysis 

I applied the new simulation algorithm into the brain size data of the apes, mentioned in 

the previous chapter, and compared the results. The brain size of the most recent 

common ancestor (MRCA), the evolution rate (ev), and the strength of directional 

evolution (k) were estimated assuming the brain size of Homo sapience experienced a 

directional evolution after the. speciation of Homo sapience and Pan troglodytes. 

 

According to Kutsukake & Innan (2013), I set prior distribution of three parameters as 

follows; 

 

MRCA ~ Uniform (330, 1300) 

ev ~ Uniform (1, 10000) 

k ~ Uniform (0, 30) 

 

In the above model, I generated 101,000 samples from the posterior distribution by 

Gibbs sampler and the first 10,000 samples were discarded as a warm-up. The above 

process is performed by both A-1 and A-2 algorithm, and the posterior distributions of 

the two are compared. 

 

·Results 

Posterior distribution 

First, trace plots of each parameter were shown to confirm that each chain converged 

(Fig 2.2). Generally, in the situation where the chain has not converged, the sample 

values rise and fall like a random walk, but this has not been observed in this result. The 
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average log likelihoods in both models were in good agreement at -22.57 and -22.55 

respectively. 

 

The summary statistics of the posterior distribution (Table 2.1) and the histogram of the 

sample (Fig. 2.3) are then compared with the two algorithms. 

 

A-1: MRCA [ 333.13 - 444.88], ev [28.75 - 4800.56], k [1.08 - 26.61] 

A-2: MRCA [ 333.14 - 461.15], ev [28.59 - 5856.46], k [1.07 - 26.01] 

 

Calculation time 

The algorithm proposed in this chapter completed the above process in 9.04 seconds, 

while the calculation by the A-1 algorithm took 164 minutes. 

 

・Discussion 

In this chapter, I proposed a new algorithm to simulates a directional evolution and it 

achieved 1,000 times faster computation than the existing one. Also, it was confirmed 

that the new algorithm can obtain sufficiently a similar posterior distribution. 

 

There are two approximations used in this algorithm; a normal approximation of 

Poisson distribution to determine the number of mutations, and of the Gamma 

distribution to determine the sum of trait changes. Approximation accuracy depends on 

the product of branch length, evolution rate, and the strength of directional evolution. 

Therefore, if the product is not large enough, it is expected that the approximation 

deteriorates, and the likelihood value is not accurate. However, in simulation 
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experiments, it was found that a relatively good approximation was obtained even when 

the product of branch length and evolution rate was about 10 or so. 

 

The analysis of ape brain size data showed a slight difference in the posterior summary 

statistics between the two algorithms. However, it is difficult to think that the difference 

is due to the accuracy of approximation because the estimated evolution rate is above 

one thousand. Rather, it is supposed to be the stochastic noise of the tail area of the 

distribution since posterior summary statistics are sensitive to outlier if the distribution 

is asymmetric. 

 

The algorithm obtained in this chapter is important not only because of the practical 

convenience but also because large-scale simulation experiments have become possible. 

In Chapter 3, I generate artificial data under various parameter settings and evaluates 

the performance of ABC-PCM using this algorithm. At this time, it is important to set 

true value ranges widely so as not to the accuracy of normal approximation of Poisson 

and Gamma distribution affects experimental results. The results in this chapter suggest 

that even if the branch length is 1, the effect of approximation can be almost ignored if 

the evolution rate is 1000. 

 

Also, in the process of deriving the algorithm, I obtained an approximate distribution of 

traits changes under the directional evolution. I use this result again in Chapter 4, where 

further improvement of evolution simulation is introduced. 

 

 



 38 

・References 

Casella, G., & George, EI (1992). Explaining the Gibbs sampler. The American 

Statistician, 46 (3), 167-174. 

 

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New 

York. 

 

Gelman , A., & Shalizi , CR (2015). Philosophy and the practice of Bayesian statistics 

Andrew. British Journal of Mathematical and Statistical Psychology, 66 (1), 8–

38. https://doi.org/10.1111/j .2044-8317.2011.02037 

 

Kutsukake, N., & Innan, H. (2013). Simulation-based likelihood approach for 

evolutionary models of phenotypic traits on phylogenetics. Evolution, 67 (2), 355-

367. https://doi.org/10.1111/j .1558-5646.2012.0177.x 

 

Harano , T., & Kutsukake , N. (2018). Directional selection in the evolution of 

elongated upper canines in clouded leopards and sabre-toothed cats. Journal of 

Evolutionary Biology, 1–16. https://doi.org/10.111 /jeb.13309 

 

Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. (2003). Markov chain Monte Carlo 

without likelihoods. Proceedings of the National Academy of Sciences, 100 (26), 15324-

15328. 



 39 

 

Orr, HA 2005. The genetic theory of adaptation: a brief history. Nature Reviews 

Genetics. 6: 119. 

 

Smirnov, NV (1939). On the estimation of the discrimination between empirical curves 

for distribution for two independent samples. Moscow University Mathematics Bulletin, 

2 (2), 3-14. 

  



 40 

・Tables. 

Table 2.1a：The comparison of the posterior mean between the old and the new 

algorithm of the directional evolution. 

 MRCA ev k 

A-1 380.2 740.42 6.83 

A-2 379.1 698.34 7.18 

 

Table 2.1b：The comparison of the posterior median between the old and the new 

algorithm of the directional evolution. 

 MRCA ev k 

A-1 374.93 221.1 3.71 

A-2 373.97 208.67 3.9 

Table 2.1c：The comparison of the MAP between the old and the new algorithm of the 

directional evolution. 

 MRCA ev k 

A-1 392.55 1606.29 1.24 

A-2 334.37 1114.98 1.38 
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・Figures. 

 

Fig. 2.1a.  An empirical distribution of a simulated trait change by the two algorithms 

(ev = 10, 20). Red line corresponds to the A-1 algorithm and the black one to A-2. The 

x-axis indicates the trait change and y-axis indicates the cumulative density of the 

random variable.  
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Fig. 2.1b.  An empirical distribution of a simulated trait change by the two algorithms 

(ev = 100, 1000). Red line corresponds to the A-1 algorithm and the black one to A-2. 

The x-axis indicates the trait change and y-axis indicates the cumulative density of the 

random variable. 
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Fig 2.2: Traceplot of the posterior distributions of MRCA, evolution rate and k. Left-

side of the figures show the traceplots of A-1 algorithm and right-side of A-2. 
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Fig. 2.3: The posterior histogram of MRCA, evolution rate and k. Left-side of the 

figures show the traceplots of A-1 algorithm and right-side of A-2..  
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Fig. 2.4: The comparison of the posterior distribution between A-1 and A-2 algorithm. 
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Chapter 3 

Statistical Properties of ABC-PCM 

 

As discussed in Chapter 1, ABC-PCM enjoys excellent flexibility and avoids problems 

of outlier detection approach and accelerated Brownian models approach in an analysis 

of directional evolution. However, it has, so far, been hardly known about properties of 

parameter estimation and hypothesis testing by ABC-PCM. In this chapter, based on the 

results of Chapter 2, I conducted a simulation experiment, where artificial data were 

generated under several parameter settings and ABC-PCM was applied to them. I 

found, a) the strength of directional evolution is overestimated and b) the test for null 

hypothesis k = 1 has low power. 

 

· The Importance of Parameter Estimation by ABC-PCM 

Yet parameter estimation is generally the most fundamental problem in any statistical 

inference, ABC-PCM has more special significance in estimating the strength of 

directional evolution. So far the two methods, the outlier detection approach and 

accelerated Brownian motion approach, have been applied to detect the directional 

evolution in phylogenetic comparative studies. But, as discussed in Chapter 1, these 

methods suffer from serious philosophical problems since they cannot evaluate the 

strength of directional evolution quantitatively. One of the major advantages of ABC-

PCM is that it offers the direct way to evaluate any parameter in any evolutional model 

as long as the simulation is possible, avoiding the problems. The possibility of 

parameter estimation for the strength of the directional evolution is an important 

advantage of ABC-PCM. However, the possibility of the quantitative evaluation does 
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not necessarily mean that the quantitative evaluation is reliable since no study has 

examined the properties of parameter estimation by ABC-PCM. For ABC-PCM to be 

widely applied to empirical studies, it is extremely important to confirm whether the 

quantitative evaluation of the strength estimation of directional evolution is reliable. 

 

・Relationship between parameter estimation and test in ABC-PCM 

Another reason to investigate the properties of parameter estimation in the directional 

evolution model of ABC-PCM is the preparation for the examination of the hypothesis 

testing. So far, it has been considered that the decision based on whether 95% 

confidence interval overlaps the null hypothesis could work as a hypothesis testing with 

5% significance level (Kutsukake & Innan 20113, Harano & Kutsukake 2018). 

 

Its interpretation assumes that the alpha% significance testing, the 100-arlpha% credible 

interval, and the Bayesian 100-alpha% confidence interval is mutually exchangeable. In 

the linear regression model (LM) or the generalized linear regression model (GLM), the 

above exchangeability holds for a regression coefficient when the sample size is 

sufficiently large. It is justified on the nature of the maximum likelihood estimator 

in LM and GLM (Gelman et al. 2004, Watanabe 2018, etc.), but non-trivial for the 

estimator of the strength of directional evolution obtained by ABC-PCM. 

 

According to the frequentist statistics, an α% significance level testing of a parameter 

and the 100 - α % credible interval of this parameter is exchangeable as long as the 

following properties hold; the distribution of maximum likelihood estimators follows 

the multivariate normal distribution with its mean vector is the true value. That is, when 
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the process of "obtaining n finite samples from the same probability model, and 

calculating the maximum likelihood estimate using this n samples" is repeated 

infinitely, then the estimator holds 1) normality; the distribution of the estimator is the 

multivariate normal distribution of d dimensions and 2) unbiasedness; the mean vector 

of the distribution converges to the true value, where, d is the dimension of the 

parameter vector. In LM and GLM, the regularity of a Fisher Information Matrix 

guarantees these properties. Also, according to Bayesian statistics, if a posterior 

distribution is a normal distribution, then 95% credible interval is a good approximation 

of the 95% confidence interval as long as the maximum likelihood estimator is 

unbiased. 

 

In order for the 95% confidence interval to be used as an alternative to hypothesis 

testing in frequentist sense, the unbiasedness of the parameter estimation by ABC-PCM 

is a necessary condition. But the properties of the parameter estimation have not been 

investigated. Based on the two backgrounds, this chapter first examines the statistical 

properties of the parameter estimation of k, the strength of the directional evolution. 

 

In general, there are two major approaches to evaluate a statistical property of a 

statistical method. One is a mathematical analysis but difficult for ABC-PCM. So, I 

adopt the numerical approach since a new simulation algorithm, obtained in Chapter 2, 

brought fast and efficient way to conduct experiments in a broad range of parameter 

setting. Since there are some differences from the original method when the branch 

length and evolution rate on the phylogenetic tree is not very large, I set wide range of 
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true evolution rate to generate artificial data in order to cover areas with different 

approximation accuracy. 

 

・Simulation Experiment 3.1 

I conducted simulation experiments to investigate the properties of parameter estimation 

of ABC-PCM when applied to directional evolution models. I used a phylogenetic tree 

of 4 ape spices described earlier and set 6 different ev (5, 10, 50, 100, 500, 1000) and 6 

different k (1, 1.05, 1.1, 1,2, 2.0, 3.0) as true parameter. The trait of a common ancestor 

(MRCA) is fixed at 100. I repeated the following process.  

 

1.    Under the true value (MRCA, common ancestor traits, ev, evolution rate, k, the 

strength directed evolution), artificial data was generated by the simulated evolution of 

a trait. Here, only Homo sapience experiences the directional evolution. 

2.    Set the prior distribution MRCA ~ (0, 1000), ev ~ Uniform (1, 10000), k ~ 

Uniform (0, 30). 

3.    1,010,000 MCMC samples from the posterior distribution are obtained and 

discard first 10,000 as a warm-up. 

4.    Get 3 kinds of estimators; posterior mean, posterior median, maximum a 

posteriori probability value (MAP). 

 

The above process repeated 10,000 times, for each 6 * 6 = 36 settings of the true value. 

 

In order for the samples obtained by the MCMC method to be a good approximation of 

the posterior distribution, it is necessary to confirm whether the Markov chain has 
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converged. In the usual practice of Bayesian statistics, visual judgment plays an 

important role in confirming the convergence but checking 36 sets * 1 million times of 

Markov chain by trace plot is practically difficult. In the subsequent simulation 

experiments, the following rule was adopted to ensure the convergence. 

 

1) Make 4 independent Markov chains in each trial and calculate Gelman's Rhat index. 

2) If Rhat is above 1.01, discards all samples of the posterior distribution. 

3) If the case, regenerate an initial value with random numbers from the prior 

distribution, and resampling is done. 

4) 1) -3) are repeated as long as Rhat is above 1.01. 

 

Note that Rhat indicates "acceptable convergence" if the Rhat is below 1.1 (Gelman et 

al. 2004). I set a bit more conservative rule than usual practice. Also, note that I did not 

regenerate artificial data when Rhat is above 1.01. 

 

・Result 3.1 

Table 3.1 a-c shows the results of Experiment 3.1 for each true value. It can be seen 

that k is overestimated regardless of the true value. For example, looking at the posterior 

mean, it is estimated to be about 4.1 to 4.4 even when the true k is 1.0 (Brownian 

Motion). Overestimation also occurs at the posterior median and the posterior 

probability maximum estimator (MAP). It is considered that the estimation of k 

by ABC-PCM has no unbiasedness. 
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・Hypothesis Testing of Strength of Directional Evolution by ABC-PCM 

In simulation experiment 2.1, it was revealed that k is overestimated in ABC-PCM and 

that it has no unbiasedness. Thus, any properties based on the multivariate normality of 

the maximum likelihood estimator would not be validated, including the 

exchangeability alpha% level hypothesis testing, 100-alpha% credible interval, and 100-

alpha% confidence interval. In the second half of this chapter, I will examine the error 

probability of hypothesis testing for the null hypothesis k=1 (Brownian Motion). 

 

・Simulation Experiment 3.2 

I conducted simulation experiments to investigate the properties hypothesis testing of k 

by a 95% credible interval. As Experiment 2.1, I set 6 different ev (5, 10, 50, 100, 500, 

1000) and 6 different k (1, 1.05, 1.1, 1.2, 2.0, 3.0) with fixed MRCA =100. Posterior 

samples are obtained and calculate whether the 95% confidence interval overlaps the 

null hypothesis, k=1. I repeated the process 10,000 times for each set of true parameters. 

The setting of prior and convergence checking rule was the same as Experiment 2.1. 

 

・Result 3.2 

Table 3.4 shows the frequency of confidence interval which contains the true value. In 

all situations tested, the frequency is above 95%. In most setting, there was no interval 

which is outside the true value, where the 95% confidence interval of the true coverage 

probability is [0.9996-1.0] (n = 10000). 

 

However, as Table 3.5 shows, the power of detecting k>1 is low. The detection 

frequency of k  > 1 increases as the evolution rate increases, but in the region where 
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the evolution rate is about 10 to 50, it can hardly be detected even if the true k exceeds 

2. Note that since k represents positive mutation occurs k times and negative direction 

1/k times. 

 

・Discussion 

In this chapter, I conducted two simulation experiments showing that the 

estimation of k, the strength of directional evolution is very strongly overestimated, 

while the hypothesis testing by 95% confidence intervals is overly conservative and 

power is very weak. 

 

In simulation experiment 2.1 in which the properties of the parameter estimation of 

ABC-PCM was examined, overestimation occurred in all the conditions tested. While 

the true value of the evolution rate used in the experiment covered 5 to 1000, 

overestimation occurred regardless of ev and k. Therefore, we should conclude that 

overestimation here is not the by-product of the approximation accuracy of the 

algorithm proposed in Chapter 2. 

 

Experiment 3.2 which evaluated the performance of hypothesis testing by the 95% 

confidence interval showed the power is low and overly conservative to detect k > 1, yet 

the frequency of the detection becomes larger as the evolution rate increases. The fact 

that the power depends on the ev is explained as follows; as the true evolution rate 

increases, the size of the expected mutation increases even when the same branch length 

and the same strength of directional evolution, making it easier to find the deviation. 
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Why the overestimation and low detection power coexist? In the following, I discuss 

this problem. First, I focus on the overestimation of the posterior mean and posterior 

median. In general, the mean value is not robust estimator being easily influenced when 

extreme values exist in the data or the true distribution is skewed. As seen in the 

analysis of the ape brain size data in Chapter 2, the posterior distribution of k has a 

heavy right tail, so it is natural that the posterior average value is overestimated due to 

the asymmetry of the posterior distribution. So, it is unsuitable for posterior summary 

statistics or point estimation. In fact, the posterior mean showed the worst performance 

among other posterior summary statistics. Since the mean value is sensitive to the 

extreme value at the tail of the distribution, the posterior average is overestimated 

almost every time. Yet modest than mean, the median estimator is also dragged to an 

extreme value or a skewed distribution. 

 

Unlike the mean and the median, MAP estimators are robust against asymmetry of 

distribution so the above explanation cannot apply.  

 

When ev is large, the expected value of the simulated trait does not change but the 

variance becomes large from the definition of Brownian motion. So random values from 

the normal distribution will be highly stochastic for one step of the simulation. Even if 

the directional evolution is weak, a large trait change may occur and obtain large 

likelihood with low probability. Conversely, when ev is small, a large likelihood may 

occur by strengthening the directional evolution. Although the expected likelihood over 

repeated simulations would change, the maximum likelihood does not change on the 

curve where the product of ev and k is constant. That is, identifiability is not ensured 
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between the two parameters. And the likelihood is too high where the average 

likelihood is low, but the variance of likelihood is large. 

 

For simplicity, suppose that the maximum posterior density on the curve where the two 

products are constant is completely equal (that is, the MAP estimates on this two-

dimensional parameter space are uniformly distributed on this curve). On this curve, 

when ev is large, the corresponding change of k will not be large. But, when ev is small, 

k changes drastically. Marginalizing ev, the expected value of k will be sensitive to 

larger value since the mean value depends on the behavior of the tail area. This is the 

reason to bias MAP of the strength of the directional evolution by ABC-PCM. 

 

The low power of the hypothesis test by the confidence interval can also be explained 

from the same viewpoint. Since the likelihood is too high where high evolution rate or 

strong directional evolution, it is thought that the tail of the posterior distribution 

becomes wider with its confidence interval. 

 

The numerical experiments in this chapter were carried out based on the A- 2 algorithm 

of Chapter 2, which adopt some approximation and assumptions. However, the same 

phenomenon is supposed to occur in a different evolutionary scenario is assumed to the 

simulation. For example, a model that uses equation (2.18) and equation (2.19) in which 

the parameter k controls the amount of trait change per mutation, not the number of 

mutations can be applied to the simulation of the evolution. Also, a model with 

covariances between X, the sum of the trait changes for positive direction and Y, the 

sum of the trait changes for the negative direction is possible. The only difference from 
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the adopted simulation is the variance term of normal distribution in step 2 of A-2, the 

change of the trait variance by the simulation. It does not solve the overestimation of the 

strength of the directional evolution as long as there is no distinguishability. 

 

One way to solve the problems is to repeat the simulation many times under the same 

parameter and obtain the average likelihood (Harano, personal communication). Using 

repeated simulation, MAP is less likely to be sensitive to the stochasticity of likelihood 

canceling the large likelihood which appears only with low probability (in the case of 

the current discussion, when the ev is large). But this solution comes with a trade-off 

between the accuracy of likelihood and computational cost. Haruno (personal 

communication) suggested that 100,000 repeats to obtain an accurate likelihood for a 

certain set of parameters but it means that the computational cost increases 100,000 

times. The reduction of the computational cost achieved in Chapter 2 will be almost 

offset. 

 

In conclusion, it can be said that the posterior mean, posterior median, and MAP values 

are all biased estimators in a quantitative assessment of the strength of directional 

evolution, although the reasons for bias are different for each estimator. The method of 

hypothesis testing to evaluate the presence of directional evolution based on whether the 

posterior confident interval crosses the null hypothesis has low type-1 error but has 

extremely low power. It indicates that ABC-PCM is not reliable for both purposes. 

 

In order to solve the problems identified so far, in the next chapter, I construct a new 

way of evolution simulations and define new likelihoods for ABC-PCM based on the 
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results of Chapter 2. There, I show the new method significantly reduces the bias by 

conducting simulation experiments as in this chapter. 
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・Tables. 

Table3.1-a: The true value and the average of the posterior mean by 10,000 simulation. 

ev/k 1.0 1.05 1.1 1.2 2.0 3.0 

5 4.43 4.47 4.44 4.48 4.56 4.64 

10 4.43 4.44 4.46 4.49 4.69 4.88 

50 4.42 4.51 4.60 4.71 6.89 6.18 

100 4.41 4.57 4.74 6.41 6.32 7.02 

500 4.32 5.05 5.63 6.41 7.79 8.38 

1000 4.16 5.52 6.27 6.92 8.22 8.91 

 

ev/k 1.0 1.05 1.1 1.2 2.0 3.0 

5 4.20 4.09 4.21 4.19 4.31 4.15 

10 4.24 4.19 4.31 4.33 4.23 4.29 

50 4.30 4.24 4.23 4.24 4.85 4.58 

100 4.21 4.24 4.30 4.76 4.63 4.98 

500 4.18 4.38 4.47 4.76 4.70 6.99 

1000 4.12 4.59 4.73 5.25 7.15 7.83 

 

Table3.1-c: The true value and the average of MAP by 10,000 simulation. 
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ev/k 1.0 1.05 1.1 1.2 2.0 3.0 

5 3.95 3.81 3.88 3.88 4.06 4.04 

10 3.90 3.89 4.08 4.05 3.93 4.01 

50 3.88 3.93 3.97 3.96 4.64 4.32 

100 3.91 4.00 4.02 4.44 4.34 4.68 

500 3.90 4.16 4.14 4.47 5.05 6.75 

1000 3.92 4.33 4.45 5.01 6.84 7.60 

 

Table3.2-a: The frequency of the confidence interval which contains true k by 10,000 

simulation. 

ev/k 1.0 1.05 1.1 1.2 2.0 3.0 

5 10000 10000 9999 10000 10000 10000 

10 10000 10000 10000 10000 10000 10000 

50 10000 10000 10000 10000 10000 10000 

100 10000 10000 10000 10000 10000 10000 

500 10000 10000 10000 10000 9999 9998 

1000 10000 9997 9997 9990 9990 9984 
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Table3.2-b: The frequency of the detection of k >1 by the 95% confidence interval. 

ev/k 1.05 1.1 1.2 2.0 3.0 

5 0 0 0 0 0 

10 0 0 0 0 18 

50 0 0 0 0 18 

100 0 0 0 620 9969 

500 0 3 6322 10000 10000 

1000 85 6592 9991 10000 10000 
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Chapter 4 

A New Framework of ABC-PCM  

 

In Chapter 3, simulation experiments were conducted based on the new computational 

algorithm introduced in Chapter 2. It was shown that the parameter estimation of the 

strength of directional evolution does not have unbiasedness (over-estimated) and the 

hypothesis testing by confidence intervals does not have enough power. In order to 

solve these problems, this chapter proposes a new simulation algorithm of evolution and 

defines a new likelihood for ABC-PCM. 

 

・Distribution of a Trait 

Before resolving the bias of ABC-PCM, which was clarified in Chapter 3, I show how a 

predicted trait distribution differs between the accelerated Brownian Motion model and 

the directional evolution model. It shows the importance of trait variance in 

phylogenetic comparative methods.  

 

In the accelerated Brownian motion model mentioned in Chapter 1, instead of directly 

modeling the directional evolution, it was modeled as Brownian Motion with different 

evolution rates, where the expectation of the change of average trait is always zero. In 

ABC-PCM, the Brownian Model evolution with acceleration can be represented by the 

following simulation. 
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A-3: Asymptotic algorithm for the Accelerated Brownian Motion evolution of species 

𝑖 → 𝑗 

1. Determine the number of mutation by random numbers from the Normal 

distribution 

1.a the number of the positive direction mutations is  

𝜇𝑖→𝑗
+  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘𝑎𝑐𝑐, 𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘𝑎𝑐𝑐) 

1.b the number of the negative direction mutations is 

𝜇𝑖→𝑗
−  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘𝑎𝑐𝑐,   𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘𝑎𝑐𝑐) 

Where bl is the branch length, ev is the evolution rate, and 𝑘𝑎𝑐𝑐 is the 

acceleration of baseline evolution rate. 

2. Determine the change of trait by random numbers from  

(𝑋𝑖→𝑗 − 𝑌𝑖→𝑗) ~ 𝑁𝑜𝑟𝑚𝑎𝑙 �
𝜇𝑖→𝑗

+ − 𝜇𝑖→𝑗
−

𝜃 ,
𝜇𝑖→𝑗

+ + 𝜇𝑖→𝑗
−

𝜃2 � 

Where 𝜃 is the hyper parameter which controls the trait change per mutation. 

3. Add the ancestral trait 𝑦𝑠𝑖𝑚 𝑗 = 𝑦𝑠𝑖𝑚 𝑖 + (𝑋𝑖→𝑗 − 𝑌𝑖→𝑗) 

 

Here, the expected change of mean trait is always zero since 𝔼�𝜇𝑖→𝑗
+ − 𝜇𝑖→𝑗

− � = 0. But 

noting that Step 1, the variance of the trait change in step 2 is proportional to 𝜇𝑖→𝑗
+ +

𝜇𝑖→𝑗
−  when bl and ev are given. Since 𝔼�𝜇𝑖→𝑗

+ + 𝜇𝑖→𝑗
− � = 2 ∗ 𝑒𝑣 ∗ 𝑏𝑙 ∗ 𝑘𝑎𝑐𝑐, it is assumed 

that species with accelerated evolution rate have greater trait variance. Of course, this 

assumption is not necessarily valid in real biological evolution. There is a case that the 

mean of traits changes drastically but the variance does not. 

 

On the other hand, directional evolution in ABC-PCM can be modeled in which the trait 

variance does not change drastically. 
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A-2: Algorithm of asymptotic directional evolution of species 𝑖 → 𝑗 

1. Determine the number of mutations by random numbers from the Normal 

distribution 

1.a the number of the positive direction mutations is  

𝜇𝑖→𝑗
+  ~ Normal(bl ∗ ev ∗ k, bl ∗ ev ∗ k) − (2.13) 

1.b the number of the negative direction mutations is  

𝜇𝑖→𝑗
−  ~ Normal(bl ∗ ev/k,   bl ∗ ev/k) − (2.14) 

Where bl is the branch length and ev is the evolution rate, k is the strength of the 

directional evolution. 

2.  Determine the change of trait by random numbers  

(𝑋𝑖→𝑗 − 𝑌𝑖→𝑗) ~ Normal(
𝜇𝑖→𝑗

+ − 𝜇𝑖→𝑗
−

𝜃 ,
𝜇𝑖→𝑗

+ + 𝜇𝑖→𝑗
−

𝜃2 ) − (2.15) 

3. Add the ancestral trait 𝑦𝑠𝑖𝑚 𝑗 = 𝑦𝑠𝑖𝑚 𝑖 + (𝑋𝑖→𝑗 − 𝑌𝑖→𝑗) 

 

Where 𝜃 is the hyper parameter which controls the trait change per mutation. 

 

Here, 𝔼�𝜇𝑖→𝑗
+ − 𝜇𝑖→𝑗

− � = 0 holds if and only if k=1. Therefore, Brownian Motion can be 

represented as a special case. Similar to accelerated Brownian Motion, the variance of 

the trait change is proportional to 𝜇+ + 𝜇−when bl and ev are given. But, unlike the 

accelerated Brownian Motion,  𝔼�𝜇𝑖→𝑗
+ + 𝜇𝑖→𝑗

− � = 𝑒𝑣 ∗ 𝑏𝑙(𝑘𝑑𝑖𝑟 + 1
𝑘𝑑𝑖𝑟

). Letting (𝑘𝑑𝑖𝑟) =

𝑘𝑑𝑖𝑟 + 1
𝑘𝑑𝑖𝑟

, 𝑓(𝑘𝑑𝑖𝑟) takes its minimum when 𝑘𝑑𝑖𝑟=1 and 1/𝑘𝑑𝑖𝑟 goes to 0 as 𝑘𝑑𝑖𝑟 →

∞. So, no matter how large 𝑘𝑑𝑖𝑟, the strength of directional evolution, becomes 

large, the variance of the trait distribution after directional evolution is at most half of 

accelerated Brownian Motion. It shows the difference of an evolutionary process is 
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reflected in the prediction of the trait variance implying the data of trait variance 

contains quite important information about past evolution. 

 

However, the previous ABC-PCM cannot reflect the information of the trait variance 

into the likelihood because the simulation of an evolution process is carried out by the 

random sampling from the trait distribution in step 2 of A-2. 

  

The biases of ABC-PCM revealed in Chapter 3, can be explained by the lack of the trait 

variance information. For example, when the evolution rate is high, the variance of 

simulated traits is supposed to be large. Even when 𝑘𝑑𝑖𝑟, the strength of the directional 

evolution, is almost 1 (Brownian Motion), the simulated trait change would be large. As 

a result, the maximum likelihood of the strength of the directional evolution does not 

lower even when the variance of the simulated trait is drastically different from those of 

actual trait. Incorporating the information of traits variance is a promising way to obtain 

an accurate evaluation of models and/or parameters. 

 

I introduce a new simulation algorithm of evolution which involve the information of 

the trait variance. Also, in order to evaluate the similarity of the simulated distribution 

and the actual traits, I use a measure called Kullback-Leibler Divergence (KLD) to 

define a new likelihood. 

 

When there are now two probability distributions, say 𝑝(𝑥) and 𝑞(𝑥), Kullback-Leibler 

Divergence (KLD) between the two distributions is defined as follows (Kullback & 

Leibler 1951). 
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𝐾𝐿𝐷(𝑝(𝑥)||𝑞(𝑥)) ≝ � 𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 

 

Here, KLD ≧ 0, and equality holds if and only if 𝑝(𝑥) = 𝑞(𝑥). When the actual 

traits   𝑝(𝑥) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇2, 𝜎2) and simulated trait 𝑞(𝑥) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1, 𝜎1) are both 

normal distribution, then 

 

𝐾𝐿𝐷(𝑝||𝑞) =
𝜎2
𝜎1

+
𝜎12 + (𝜇1 − 𝜇2)2

2𝜎2
2 + (constant) 

 

As is clear from this equation, KLD will be larger if the two distributions have the same 

mean but the different variances. It is considered that the “similarity” between the 

distribution of the simulated trait and the distribution of the actual trait can be 

represented accurately when ev or k is large. Using KLD, I propose a new trait evolution 

simulation and definition of the likelihood for analyzing directional evolution 

with ABC-PCM below. 

 

・Methods 

First, I formulate a modified algorithm of the simulation of evolution. 

 

A- 4: Algorithm of directional evolution with trait variance of species 𝑖 → 𝑗. 

1. Determine the number of mutations by random numbers from the Normal 

distribution 

1.a the number of the positive direction mutations is  

𝜇𝑖→𝑗
+  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘𝑑𝑖𝑟, 𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘𝑑𝑖𝑟) 
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1.b the number of the negative direction mutations is 

𝜇𝑖→𝑗
−  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑏𝑙 ∗ 𝑒𝑣/𝑘𝑑𝑖𝑟,   𝑏𝑙 ∗ 𝑒𝑣/𝑘𝑑𝑖𝑟) 

Where bl is the branch length and ev is the evolution rate, 𝑘𝑑𝑖𝑟 is the strength of the 

directional evolution. 

2. If the trait of ancestral species 𝑖 is 𝑦𝑠𝑖𝑚 𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑛𝑙(𝜉, 𝜎2), the 

evolved trait 𝑦𝑠𝑖𝑚 𝑗 is simulated as the following rule: 

 

 𝑦𝑠𝑖𝑚 𝑗 = 𝑁𝑜𝑟𝑚𝑎𝑛𝑙(𝜉 + 𝜇𝑖→𝑗
+ −𝜇𝑖→𝑗

−

𝜃 , 𝜎2 +  𝜇𝑖→𝑗
+ +𝜇𝑖→𝑗

−

𝜃2 )– (3.1) 

 

Again, Brownian Motion can be represented as a special case since 𝔼�𝜇𝑖→𝑗
+ − 𝜇𝑖→𝑗

− � = 0 

holds if and only if k=1. Note that, in step 2, instead of simulating evolution with 

random numbers from a normal distribution, the new algorithm simulates the evolution 

of the distribution of traits by deterministic way conditional on 𝜇𝑖→𝑗
+  and 𝜇𝑖→𝑗

− . 

 

Assuming that the distribution of the trait of the simulated species j is𝑞𝑗(𝑥) and the 

actual trait 𝑝𝑗(𝑥), the log likelihood of the parameter θ is defined as follows. 

 

𝑙𝑜𝑔 𝐿(𝜃) = j 𝐾𝐿𝐷(𝑝𝑗(𝑥)|r𝑞𝑗(𝑥)g
𝑗∈𝑒𝑥𝑡𝑎𝑛𝑡 𝑠𝑝.

 

 

That is, for all the extant species i, the log likelihood is the sum of the KLD between the 

trait distribution of the simulated species i and the trait distribution of the actual 

species i. 
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・Data Analysis 

I reanalyzed the ape brain size data based on the new likelihood. The model is the same 

as in Chapter 2. Using the same prior distribution as in Chapter 2, the new likelihood 

reduced the posterior variance of k while of the ev increased. It turned out that difficult 

to capture the overall shape of the posterior distribution, so the prior distribution was 

changed as follows. 

ev ~ Uniform (0, 100000) 

 

The MAP of each parameter and the 95% confidence interval are as follows. MRCA: 

397.9 [335.3-679.0], k: 1.084 [1.005-1.115], ev: 5330 [3497-42699]. It can be seen that 

the width of the interval is significantly reduced compared to Chapter 2. 

 

Fig.4.1 shows the 2-dimensional posterior distribution of ev and k. First, it can be seen 

that the upper bound of the posterior density is obtained very smoothly with less noise 

compared to the previous method. Next, the upper limit of the posterior density is 

significantly reduced in the large ev region and the large k region, which is in good 

agreement with previous predictions. That is when ev is too large but k is too small, the 

variance of the trait evolved in the simulation is greatly different from the variance of 

the actual trait resulting in larger KLD (the smaller likelihood). 

 

Another advantage of this new method is computational cost. While it took 8.62 

seconds to obtain ten thousand samples by in Chapter 2, the method proposed in this 

chapter took 1.6 seconds, approximately 5 times faster. It is because the new method 

requires fewer steps for generating a random number. 
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The application to actual data revealed new likelihood works well. In the following, I 

conducted simulation experiments to investigate the properties of parameter estimation, 

as in Chapter 3. 

 

・Simulation Experiment 4.1 

Again, I used the phylogenetic tree of 4 ape species and generated artificial trait data. 

The model and the set of true value is the same to Chapter 3; 6 different ev (5, 10, 50, 

100, 500, 1000) and 6 different k (1, 1.05, 1.1, 1.2, 2.0, 3.0). The trait of the common 

ancestor is fixed at 100. I repeated generation of artificial data and sampling from the 

posterior distribution 10,000 times for each pair of the true parameter, where the 

posterior mean, posterior median, and posterior probability maximum value were 

recorded for each data. The convergence criterion is also the same as Chapter 3. 

 

・Result 4.1 

Table 4.1 a-c shows the results of Experiment 3.1 for each true value. It can be seen that 

any estimator has significantly reduced bias. Although the posterior mean and the 

posterior median underestimate the true k, MAP estimated was very close to the true 

value under any condition examined. 

 

・Simulation experiment 4.2 

As I did in Experiment 3.2 of Chapter 3, I conducted simulation experiments to 

investigate the error probability of hypothesis testing by a confidence interval. The 

outline of the experiment is the same as before. 
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・Result 4.2 

Table 4.2 a-b shows the frequency of confidence interval containing the true value. In 

almost all situations, while the error probability is within 95%, the frequency of 

detecting k> 1 when the true k is greater than 1 is drastically improved compared to the 

method of Chapter 3. 

 

・Discussion 

In this chapter, I proposed a new method to simulate evolution with the variance 

information of traits retained. And I defined the new likelihood based on KLD to 

evaluate the similarity between simulated traits and the actual traits of organisms. While 

the previous ABC-PCM simulated evolution with the realization of random numbers 

and calculated the likelihood by a point of trait distribution, the method proposed in this 

chapter offers a more direct way to evaluate the given parameter. 

 

Incorporating variance information of traits into the simulation, the pair of parameters, 

ev, and k, which maximize the likelihood can be determined and indistinguishability 

was eliminated. Numerical simulation suggested that the almost unbiased estimator can 

be obtained by MAP. 

 

Harano et al. (2018) used a repeated simulation without trait variance directly 

incorporated and obtained averaged likelihood in ABC-PCM. His motivation was to 

solve the stacking of MCMC (Harano; personal communication); because the likelihood 

of ABC-PCM is stochastic and its variance goes large when the evolution rate is high, a 

posterior sample from high ev region generate large likelihood yet with low probability. 
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But, once the posterior sample from high ev region is obtained at iteration t, the 

proposed value for iteration t+1, which is near the value at t, will be rejected with high 

probability and the Markov Chain stay there for a long time. It deteriorates the accuracy 

and efficiency of the sampling. This problem also due to the lack of variance 

information of traits in the existing ABC-PCM. 

 

To repeat the simulation by random sampling under the same parameters can be seen as 

an approximate of the method proposed in this chapter, where the integral of KLD is 

replaced with the finite-sum. However, if there are more branches on the phylogenetic 

tree, the number of repeating needed for good approximation will be increased, and the 

computation will be inefficient. Since the proposed method formulates the distribution 

of traits change, it is possible to simulate the trait variance information with a modest 

computational cost. 

 

The method of this chapter might be extended further. For a Poisson regression with the 

conditional mean 𝜆|𝑥, it is often assumed 𝑙𝑜𝑔(𝜆|𝑥) is normally distributed. The same 

technique might be also applied to the simulation of ABC-PCM for discrete but 

countable traits. However, there are more complex cases in biology. The distribution of 

traits might not follow the normal distribution or evolutionary simulation might be a 

process other than considered here. If the distribution of the simulated traits is not 

known, the method of the repeated simulation might be the best alternative. I discuss a 

broader extension of this study in Chapter 6. 
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・Tables. 

 

Table4.1-a: The true value and the average of the posterior mean by 10,000 simulation. 

ev/k 1.0 1.05 1.1 1.2 2.0 3.0 

5 1.06 1.08 1.10 1.15 1.53 4.64 

10 1.02 1.05 1.07 1.12 1.51 2.00 

50 1.01 1.02 1.05 1.09 1.49 2.00 

100 1.00 1.02 1.04 1.09 1.50 2.28 

500 1.00 1.02 1.05 1.10 1.56 2.15 

1000 1.00 1.02 1.05 1.11 1.63 2.27 
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Table4.1-b: The true value and the average of the posterior median by 10,000 

simulation. 

ev/k 1.0 1.05 1.1 1.2 2.0 3.0 

5 1.02 1.03 1.04 1.07 1.31 1.61 

10 1.01 1.02 1.03 1.06 1.30 1.60 

50 1.00 1.01 1.03 1.05 1.30 1.62 

100 1.00 1.01 1.02 1.06 1.31 1.91 

500 1.00 1.01 1.03 1.07 1.38 1.77 

1000 0.99 1.02 1.04 1.08 1.45 1.91 

 

Tabl4.1-c: The true value and the average of MAP by 10,000 simulation. 

ev/k 1.0 1.05 1.1 1.2 2.0 3.0 

5 1.04 1.09 1.14 1.23 1.98 2.89 

10 1.02 1.06 1.11 1.21 1.96 2.90 

50 1.00 1.05 1.10 1.19 1.95 2.91 

100 1.00 1.05 1.09 1.19 1.96 2.94 

500 1.00 1.04 1.09 1.19 1.96 2.94 

1000 1.00 1.04 1.09 1.19 1.96 2.93 
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Table4.2-a: The frequency of the confidence interval which contains true k by 10,000 

ev/k 1.0 1.05 1.1 1.2 2.0 3.0 

5 10000 10000 10000 9993 9856 9802 

10 9999 9998 9996 9976 9877 9841 

50 9999 9995 9941 9827 9885 9855 

100 10000 9973 9852 9793 9869 9859 

500 10000 9779 9632 9632 9778 9747 

1000 10000 9586 9430 9469 9639 9551 

 

Table4.2-b: The frequency of the detection of k >1 by the 95% confidence interval. 

ev/k 1.05 1.1 1.2 2.0 3.0 

5 0 0 2 12 2299 

10 2 3 5 406 6616 

50 0 1 1 8833 9909 

100 0 0 149 9913 9991 

500 22 2435 9748 9998 10000 

1000 961 9238 9983 10000 10000 
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Figures. 

 

Fig 4.1 The 3-D plot of the posterior distribution, where x-axis is the k, y-axis is the ev, 

and the z-axis is the posterior density. 
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Chapter 5 

Application: Meta-analysis of Temporal Discounting of Ape Species 

 

Many animals, including humans, prefer a small immediate benefit than a large but 

temporally delayed benefit (Ainslie 1974). This seemingly irrational behavior is called 

as “temporal discounting” and has long been studied in various areas including 

economics (Frederick et al. 2002), psychology (Rambaud 2004), and biology (Reynolds 

2002). However, why temporal discounting has evolved is not clarified yet. Although 

some theoretical studies have examined under what conditions temporal discounting 

will be adaptive (i.e. Sozou 1998, Fawcett et al. 2012), they have not empirically been 

confirmed yet. 

 

Stevens (2014) conducted a meta-analysis using primate data to compare maximum 

waiting time to a fixed amount of reward and compared three plausible hypotheses why 

temporal discounting has evolved. One evolutional explanation is the metabolic rate 

hypothesis. Small animals tend to have high metabolic rates, so the ability of energy 

storage is limited. It might be adaptive to choose immediate but small reward not to run 

out of energy. This explanation predicts that the maximum waiting time to rewards is 

correlated to the allometric body size. Second is the cognitive ability hypothesis. The 

preference for a small immediate reward might be induced by just the lack of cognitive 

ability which enables subjects to predict a larger reward of the future or to compare the 

number of rewards on a long-term perspective. Since a cognitive ability is hard to 

quantify, Stevens (2014) assumed that the relative brain size is a good proxy of the 

cognitive ability, predicting that the waiting time negatively correlated with the relative 
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brain size. The third is the social complexity hypothesis. Previous studies have 

suggested that the complexity of social structure is one of the key selection pressures on 

decision making. For example, Amici et al. (2008) argued that inhibiting impulsive 

responses is adaptive to subjects when there are higher ranked members. The 

measurement of social complexity is also hard to quantify, so Stevens assumed that the 

average number of group size is a proxy, predicting that waiting time positively 

correlate with the group size. Stevens (2014) collected 13 ape spices data and employed 

a phylogenetic comparative method assuming Brownian Motion evolution. 

 

・Methods 

I re-analyzed this dataset by the original ABC-PCM (Kutsukake and Innan 2013) and 

the proposed method (Capter 4). Because the sample sizes of Eulemur macaco and 

Varecia rubra were small, the trait variances were not obtained. Therefore, I substituted 

them by random samples from a common gamma distribution where the parameter was 

estimated by other species. I assumed a directional evolution model of maximum 

waiting time, where 𝑘𝑑𝑖𝑟, the strength of the directional evolution is proportional to an 

explanatory variable of interest (e.g. body size and group size). That is; 

 

the number of positive direction mutations is  

𝜇𝑖→𝑗
+  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘𝑑𝑖𝑟, 𝑏𝑙 ∗ 𝑒𝑣 ∗ 𝑘𝑑𝑖𝑟) 

the number of negative direction mutations is 

𝜇𝑖→𝑗
−  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑏𝑙 ∗ 𝑒𝑣/𝑘𝑑𝑖𝑟,   𝑏𝑙 ∗ 𝑒𝑣/𝑘𝑑𝑖𝑟) 

 

Where 
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𝑘𝑑𝑖𝑟 = 1 + 𝛽𝑥𝑗 

 

Here, 𝑥𝑗 is the explanatory variable of spices 𝑗 and 𝛽 is the coefficient parameter. 

Note that I assumed that maximum waiting time evolved following Brownian Motion 

model for all the extinct species. The number of MCMC iteration was 5,000,000 where 

the first 500,000 samples were discarded as a warm-up. 

 

・Results 

Table 4.3 shows the posterior model probability and the log marginal likelihood of each 

model. Note that the comparison of marginal likelihood is meaningless for inter 

different method since the definition of likelihood is different. While the posterior 

probability of the original ABC-PCM indicates body size model being the best model, 

which corresponds to Stevens (2014), the proposed method indicates that the group size 

model is the best explanatory variable. For the group size model, Fig. 5.1 shows the 

posterior histogram of 𝛽. The 95% confidential interval of 𝛽 was [0.0005 - 0.02].  

 

・Discussion 

The reason for the different results could be explained by the inter-species difference of 

the trait variance. For example, while the trait means of Varecia variegate (17.9 sec), 

Callithrix jacchus (14.4 sec) and Macaca mulatta (19.3 sec) were similar, the standard 

deviations were drastically different (7.87, 3.41 and 20.9 respectively). This important 

information cannot be modeled in the original ABC-PCM while the proposed method 

offers a formal way to capture the difference of trait variance via KLD. 
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Tables. 

 

Table 5.1. the posterior model probability (the log marginal likelihood) of each model. 

 Original ABC-PCM Proposed Method 

Null Model 4.3% (-67.12) 9.4% (-17.95) 

Body Size Model 90.5% (-64.09) 14.5% (-17.52) 

Relative Brain Size Model 1.6% (-68.06) 28.9% (-16.835) 

Group Size Model 3.8% (-67.23) 46.9% (-16.35) 
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Figures. 

 

Fig. 5.1 The posterior histogram of 𝛽, the coefficient parameter for the strength of 

directional selection for the group size model. 
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Chapter 6 

General Discussion: Limitations and Extensions 

 

In this thesis, the effectiveness of ABC-PCM to the analyses of directional evolution in 

phylogenetic comparison has been examined and contributed to the following three 

points. 

 

1. The calculation speed was improved by mathematical analysis 

2. Parameter estimation by the traditional ABC-PCM had a bias there and hypothesis 

testing had low detection power. 

3. Proposed a new likelihood using KLD and greatly reduced the estimation bias 

 

In the final chapter, I discuss the further extensibility of the method proposed in this 

thesis as well as its limitations. 

 

・Interpretation of Results (1: from a PCM perspectives) 

Not only in PCM but also a scientific model in general, how to interpret the structure of 

the model is a big problem (Weisberg 2012, Evans et al. 2013). For example, when 

ABC-PCM supported for a directional evolution model compared to Brownian motion 

model and/or an accelerated Brownian motion, is it evidence that there was a process 

equivalent to directional "selection" in the real biological system? 

 

Unfortunately, it might not be the case. Suppose the following scenario; in the ancestral 

population, the tail of the trait distribution does not obtain high fitness, but the optimum 
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trait value in the fitness landscape changed in a certain direction. Then the mean of the 

trait distribution changed in this way. Even though the unbiasedness the problem of how 

to interpret the estimated value still remains. 

 

It is not only ABC-PCM that the correspondence problems occur. In the existing PCM, 

similar arguments have been provoked to the interpretation of Brownian Motion model 

and the Ornstein-Uhlenbeck model (Hansen et al. 1996, O'Meara et al. 2006, Uyeda et 

al. 2014). The random variable of the Brownian Motion in a positive direction as well 

as in a negative direction without constant regularity (“drunken walk”). Even though the 

trait evolution of an organism fits the Brownian Motion well, it is not possible to 

distinguish whether the trait experienced a neutral evolution or a stabilization selection 

where the optimal value of the trait itself was changing. 

Also, some might argue that the introduced idealization in the proposed method is too 

restrictive and not realistic. For example, the proposed method assumes that the expected 

trait change of directional evolution is a linear function of time but the brain volume 

size of Homo sapience might have experienced nonlinear and burst-like evolution. 

 

In general, a mathematical and statistical model is not aimed to capture all the features 

of our complex world and intended idealizations (distortion of realities) are introduced 

as have been pointed out by philosophers for decades (Giere 1988; 2004, Knuuttila 

2011, Weisberg 2012). Here, scientists need to decide which aspects in the world to be 

modeled with high fidelity and which aspects to be distorted or discarded. 
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Here, one important perspective on a decision is the focus of the study (Weisberg 2012). 

For this study, the focus has been to detect and quantify the strength of directional 

evolution. If one would be interested in linear vs burst-like evolution, other models 

would be needed introducing another idealization. 

 

At least, the proposed method achieved an unbiased estimation of the strength of 

directional evolution if the supposed model is true, whereas previous ABC-PCM is 

proven to produce biased estimation even when the supposed directional evolution 

model is known to be true. 

 

PCM is a challenging attempt to infer the evolutional trait changes that have occurred in 

the past only from the limited information, i.e. the traits of the extant species and the 

phylogenetic tree. It should be noted that the characteristic of PCM is that it enables us 

to analyze the past evolution without knowing why or under what mechanisms the trait 

has changed. In that sense, PCM analysis might be an exploratory practice that proposes 

further research topics, and it is necessary to search for the actual evolutionary 

mechanism (Losos 2011). A similar argument could be made about the directional 

evolution of ABC-PCM. 

 

・Interpretation of Results (2: from a statistics viewpoint) 

In Bayesian statistics, a posterior distribution and the posterior model probability have 

been described as expressing "the probability that a certain hypothesis (or model) is 

true" or "the degree to which a (rational agent) should believe a certain hypothesis is 

true". However, such explanations often assume that true values (or models) exist in 
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parameter space and model space, with probability 1 (certainly). If not the case, another 

interpretation is needed (for example, Bissiri et al. 2016). Here in this section, I discuss 

the meaning of the results of data analysis based on ABC-PCM. 

 

The likelihood of ABC-PCM, introduced in Chapter 4, is based on KLD. According to 

its definition, it is understood that the MAP estimate of ABC-PCM is "the parameter 

that minimizes the difference between the distribution of simulated traits and the 

distribution of actual traits within the space of the given model and the 

hyperparameters". Note that, here, the design of a prior distribution is also included in 

the model structure. Even if the model structure or the hyperparameter is inappropriate, 

it is possible to obtain the parameter that minimizes KLD under the given conditions. 

But if the model or the hyperparameter changes, the result will also change. For 

example, if we put a larger value on the hyperparameter, which controls trait change per 

mutation, the same likelihood can be obtained with a small number of mutations. The 

selection of hyperparameters greatly affect the results. It is risky to interpret the 

posterior estimates and the confidence intervals literally as "probabilities of truth". 

Therefore, a method for evaluating the validity of the model structure and 

hyperparameters is needed. 

 

One possible method to the evaluation is the marginal likelihood, which is widely used 

in Bayesian statistics and is defined as follows. 

� 𝐿(θ) 𝑝(θ)𝑑θ 

Here, 𝐿(θ) is the likelihood of the parameter θ and 𝑝(θ) is its prior distribution. That 

is, the marginal likelihood is the average of the likelihood, weighted by the prior 
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distribution. By using this, it is possible to evaluate models and hyperparameters within 

a set of candidates. 

 

However, this approach alone might be insufficient to evaluate the model. The 

numerical experiments in this thesis dealt with phylogenetic trees with just four extant 

species, but other PCMs have already been conducted on a larger scale (i.e. hundreds to 

thousands of species; Venditti et al. 2011). ABC-PCM may also be applied to such a 

larger-scale problem as high-speed computation have been achieved. Here, for example, 

suppose that most species (let p < N) out of all N species are well fitted to the model, 

but a small number of N-p species deviate from the model. Since the likelihood of 

Chapter 4 is defined as the sum of KLD for all the extant species, the average likelihood 

of the model may not decrease so much even when N-p species does not fit the model 

well. In the field of machine learning, a similar phenomenon is called as the “class 

imbalance problem”, which plagues many researchers (Buda et al. 2018). Although it is 

possible to compare multiple models by marginal likelihood, it is unsuitable when all 

the prepared models are inappropriate or when the actual trait does not fit well, and the 

model needs improvement. 

 

My proposal in such a case is the outlier detection approach, which I criticized in 

Chapter 1. The outlier detection approach generates a posterior prediction distribution 

for each extant species and interpreting that the actual character is an outlier in the 

posterior prediction distribution as if directional evolution occurred in that species. 

Major criticisms in Chapter 1 were 4 folded; 1) the inference depends on an arbitrarily 

chosen threshold to decide the estimated trait value is outlier or not, 2) probabilistic MT 
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is not a valid inference, 3) outlier detection approach does not offer a quantitative 

evaluation of the strength and of directional evolution and its difference between 

branches, and 4) there is incoherence between the inference and the prediction. None of 

these issues is problematic if the goal is not to inference but only to assess the validity 

of the current model structure and hyperparameters. 

 

First, regarding 1) and 2), the detection of outliers is not for the final decision but just 

for the examination if the current model is wrong. Since my proposal here is to search 

for outliers using a posterior prediction distribution in order to examine improvement 

points of the model, it is not necessary to make a binary judgment whether it is an 

outlier or not. In addition, whether the amendment of the model based on the outliers is 

effective or not can be compared and evaluated, again, by the marginal likelihood. 

Regarding 3), this problem does not occur in the ABC-PCM because the model is not 

restricted to the Brownian motion model. Finally, regarding 4), the model evaluation by 

outlier detection is one of the processes to find out misspecification and to improve the 

model. It is not a problem that the outlier detection method cannot be used for a 

prediction. 

 

・Importance of Trait variance 

Historically, inter-spices study and meta-analysis have mostly focused on the mean 

values of traits but, in recent years, the significance of variance of traits has been 

actively discussed (e.g. Nakagawa et al. 2015, 2017). The bias of ABC-PCM clarified 

in Chapter 3 and the usefulness of the new likelihood for ABC-PCM proposed in 

Chapter 4 might serve a novel viewpoint for the importance of the trait variance. 



 87 

In the short term, to collect reliable trait variance might be difficult work. In ecology, there have 

been commonly used libraries for average trait value. It enables practitioners to conduct inter-

species meta-analysis without intensive observations in the field. However, there exist 

comparatively fewer libraries for variance value and it requires a larger amount of samples to 

obtain a reliable estimation of the variance than average. It could cause troubles for practitioners 

to apply the proposed method.  

  

One immediate solution is to examine the sensitivity of posterior distribution by the usage of 

unreliable variance data and/or to examine the required sample size to obtain reliable variance 

data. Another solution is an extension of the proposed approach to incorporate trait variance 

uncertainty. I will discuss this point in a later section with other types of data uncertainty. I hope 

the proposed method would stimulate further discussion about the role of trait variance both 

between methodologists and practitioners. 

 

Another problem is the trait variance of ancestral species. In previous ABC-PCM, the 

mean trait of the most recent common ancestor traits can be estimated. But the handling 

of the variance is not trivial. If the estimation of the variance of the most recent 

common ancestor traits is not distinguishable, it might be necessary to give as a 

hyperparameter and could be optimized by marginal likelihood. In the existing 

phylogenetic comparative methods with Brownian Motion, it is known that fossil 

information improves the accuracy of the parameter estimation (Slater et al. 2012). It 

would be also useful for ABC-PCM. Further examination is needed for the properties of 

the trait variance of ancestral traits. 

 



 88 

・Extension of This Research 

In this research, I have considered a limited case where the evolution is caused by 

Brownian Motion or directional evolution. But the proposed method can be applied to 

various evolution models including the Ornstein-Uhlenbeck model and the Early Burst 

model, as long as the evolution can be simulated with trait variance. However, in the 

simulation experiments conducted in Chapter 4, it is not clear in what evolutionary 

model the parameter estimation satisfies the unbiasedness and the distinguishability. It 

is necessary to accumulate further knowledge about ABC-PCM by simulation 

experiments under various conditions and also mathematical analysis. 

 

In Chapter 4, we have assumed the ideal situation where the trait distribution of an 

organism follows an exact normal distribution and that there is no uncertainty in its 

estimation. Of course, such a situation does not necessarily reflect the actual inter-

species comparative study. If it is known that the trait follows a distribution other than 

the normal distribution, and the KLD of that distribution can be calculated, the 

likelihood of the simulated trait can be calculated in the same manner as in Chapter 

4. On the other hand, it is an important task to consider what kind of behavior the 

estimation and test by ABC-PCM will behave when uncertainty is involved in the trait 

distribution of the actual organism or an incorrect distribution is assumed to the trait 

distribution.  

 

There are two possible approaches to deal with uncertainty in the distribution of traits. 

One is to obtain the posterior estimates of the focal traits by a finite sample from the 

populations in advance. When we evaluate the KLD between the simulated trait 
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distribution and the actual trait distribution, it is possible to fluctuate the actual trait 

according to the uncertainty of the pre-estimated distribution. This method has the 

advantage that the uncertainty can be considered without increasing the computational 

cost much. However, if an incorrect assumption is made on the shape of the distribution 

at the stage of estimating the true trait distribution, it may lead to bias or large variance 

of the estimator. Using a measure other than KLD might be a promising approach. 

Recently, Fujisawa and Eguchi (2008) proposed Gamma Divergence and Kanamori and 

Fujisawa (2014) introduced Holder divergence both of them are more robust than KLD. 

Wasserstein distance is also known to be useful to evaluate the similarity of the two 

distribution (Panaretos et al. 2018). 

 

Another method is the finite-sum approximation of the integral part of KLD assuming 

the finite observation of the trait is the random sample from the true trait distribution. 

The same idea applied to derive the Akaike Information Criterion (Akaike 1998, 

Konishi & Kitagawa 2008). In this case, there is no need to explicitly describe the 

probability distribution of trait since it can be approximated by the empirical 

distribution. It is thought that the above bias caused by assuming an incorrect 

distribution for the trait distribution can be avoided. However, since it is necessary to 

calculate the finite sum approximation each time the likelihood is calculated, it is 

considered that the computation cost increases when the sample size is large. 

 

Uncertainty of a phylogenetic tree is a concern as is the cases of other phylogenetic 

comparative methods (Cooper et al. 2016). Uncertainty of blench lengths would be 

incorporated into analysis by random sampling from the posterior length distribution. 
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Properties of the parameter estimation and hypothesis testing found in Chapter 4 might 

hold as long as the posterior length distribution is unimodal, yet the posterior variance 

of the evolution rate and the strength of the directional evolution would be larger. But, if 

topology changes, a posterior distribution of evolution rate and directional evolutionary 

strength may change drastically. Of course, it is possible to sample a posterior 

distribution conditional a phylogenetic topology and to obtain an averaged posterior 

distribution weighted by the posterior probability of the topology. However, the 

resulting posterior distribution would be a mixed distribution with a complex shape. It 

might spoil the unbiasedness. It is necessary to further consideration on a phylogenetic 

uncertainty inside and outside ABC-PCM. I hope this study will help further 

development of phylogenetic comparative methods and its application into practices of 

biology. 
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