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Chapter 1

Introduction

1.1 Background
Machine learning is the study for automatically extracting rules from data and using such
rules to predict future data or decision making and machine learning methods have been
used in many real-world applications, for example, image classification, text classification,
recommender systems, image generation, visual-question answering, video games, self-
driving, and so on [45, 6, 26]. Mathematically, data is typically represented as a set of
vectors called feature vectors or a set of tuples of a feature vector and a scalar, and the
extraction of (learning) a rule is formulated as a function approximation problem, i.e., a
numerical optimization problem. Recently, it is required for machine learning methods not
only to perform accurately but also to be interpretable (explainable) [1]. Unfortunately, it
is difficult to learn both an interpretable and accurate model: accurate models are often
complicated.

There are many machine learning predictive models: linear models, linear basis function
basis models, the kernel regression model, trees and tree-based ensemble models, neural
networks, and so on [6, 45, 26]. Among them, models based on feature interactions
(combinations) (e.g., xixj, where x is a vector that contains some information on an
input instance wished to predict), e.g, polynomial regression models, kernel regression
models, and factorization machines (FMs) [60, 61], have been used in many real-world
applications and recently have attracted attention because of their high interpretability
and performance. For example, consider an academic paper classification problem. This
problem is just a text classification problem and hence a basic vector representation of data
is bag-of-words: xi ∈ N is an occurrence of a word in the title. Feature interactions are
easy to interpret: in this case, xixj > 0 implies both i-th word and j-th word are included
in the title of the paper. Feature interactions can be useful for accurate prediction, for
example, a paper including both “kernel” and “learning” in its title is surely a machine
learning paper although a Linux kernel research paper can include “kernel” in its title and
an educational research paper can include “learning” in its title.

However, there are some issues in methods based on feature interactions:

1. Scalability. From the point of view of computational costs, it is difficult to use the
existing methods based on feature interactions when both the number of observed
(training) instances and the number of features are large. For example, a second-order
polynomial regression model requires O(d2) time for evaluation and O(Nd4 + d6)
time for learning, where N is the number of observed instances and d is the number
of features. A kernel regression model (with polynomial kernels) requires O(Nd)
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time for evaluation and O(N2d + N3) time for learning. FMs require O(dk) time
for evaluation, where k ∈ N>0, k � d is a hyperparameter, so they can be used
for both N and d are large. However, their optimization problem is a non-convex
optimization problem, so a global optimum is not obtained in general.

2. Interpretability and accuracy in high-dimensional applications. In the
existing methods, the number of feature interactions grows in a polynomial or
exponential order w.r.t the number of features d. Fortunately, in many models
based on feature interactions, the importance of each feature interaction can be
computed efficiently. However, it is difficult to obtain higher-level knowledge when
d is large. For example, in order to find important feature interactions such that
a machine learning user does not regard them as important but a learned model
does, it is basically required to enumerate all the used feature interactions. In the
existing methods, the enumeration of all the used feature interactions might be
prohibitive from the point of view of the computational cost. Moreover, even if the
enumeration can be done, it might be impossible to find unexpectedly important
feature interactions for a machine learning user (e.g., when d = 100, 000, even the
number of second-order feature interactions is 4, 999, 950, 000). Furthermore, the
existing methods typically use all feature interactions or all specific-order feature
interactions. Such interactions can include some (or many) irrelevant interactions
for prediction and the use of such interactions makes the performance of a learned
model poor.

1.2 Contributions and Organization
The goal of this paper is to develop more efficient, accurate, and interpretable machine
learning algorithms (models and learning algorithms) using feature interactions than the
existing algorithms. The contributions of this paper are as follows.

• We propose accurate models for feature-based link prediction (Chapter 3). Feature-
based link prediction is the computational problem of determining whether two given
objects are linked or not from feature vectors of two objects, and it includes many
real-world applications: recommender systems, face verification, protein-protein
interaction prediction, author name disambiguation, and so on. In some applications
(e.g, protein-protein interaction prediction and author name disambiguation), feature
interactions from the same object are irrelevant. The proposed methods use higher-
order feature interactions only across two objects and therefore can be more accurate
than the existing methods using only second-order feature interactions across two
objects or using feature interactions not only across objects but also from the same
objects. We also extend the proposed methods to deep-neural-network-based methods
for more accurate prediction.

• We propose a method to learn machine learning predictive models based on feature
interactions efficiently (Chapter 4). The proposed method is a random feature
map for the itemset kernel, which is a generalization of some kernels using feature
interactions. We also provide some theoretical analyses on the proposed method.
Furthermore, we propose some faster and more memory efficient methods. The
proposed methods enable to learn models using feature interactions more efficiently
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when both the number of observed (training) instances and the number of features
are large.

Organization. This dissertation is organized as follows. Chapter 2 introduces some
basic notations/definitions and presents some basic existing methods. Chapter 3 presents
models based on higher-order feature interactions across objects for feature-based link
prediction. We propose random feature maps for kernel functions using feature interactions
in Chapter 4, which enable us to learn predictive models based on feature interactions
efficiently. We conclude our dissertation in Chapter 5.
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Chapter 2

Preliminaries

2.1 Notation
We use [M : N ] to denote the set {M,M + 1, . . . , N − 1, N} and use [N ] when M = 1.
We use ◦ for the element-wise product (a.k.a Hadamard product) of vectors, matrices, and
tensors. We denote the `p norm for a vector and matrix as ‖·‖p. Given a matrix X, we use
xi for the i-th row vector and x:,i for the i-th column vector. Given a matrix X ∈ Rn×m,

we denote the `q norm of the vector (‖x1‖p , . . . , ‖xn‖p)> by ‖X‖p,q :=
(∑n

i=1 ‖xi‖
q
p

)1/q

and call it `p,q norm. We use the terms ˜̀
p,q norm for `p,q norm for the transpose matrix, i.e.,∥∥P>∥∥

p,q
, respectively. For the number of non-zero elements in a vector and matrix, we use

nnz (·). We define supp(x) as the indices of non-zero elements in x ∈ Rd: {i ∈ [d] : xi 6= 0}.
We use Id for the (d, d) identity matrix. We define abs(x) : x ∈ Rn 7→ (|x1| , . . . , |xn|)>.
Given x ∈ Rd, we use x¬j to denote the d− 1 dimensional vector with xj removed. We use
xi:j to denote the subvector of x that consists from the xi to xj : xi:j = (xi, xi+1, . . . , xj)

>.
We use 〈·, ·〉 to denote the standard inner (dot) product for the vectors, matrices, and
tensors. Given a ∈ Rd1 and b ∈ Rd2 , we use a ⊗ b ∈ Rd1×d2 , where (a ⊗ b)i,j = aibj, to
denote the tensor (outer) product of a and b. We use (a; b) to denote the concatenation
of a and b: (a; b) = (a1, . . . , ad1 , b1, . . . , bd2)

> ∈ Rd1+d2 . We use edj ∈ {0, 1}d for the
d-dimensional standard basis vector whose j-th element is one and the others are zero.
If a function f parameterized by Θ, we denote it as f(·; Θ). However, for simplicity, we
sometimes denote it as f(·).

2.2 Problem Setting
In this doctoral thesis, we mainly consider machine learning models and algorithms for a
supervised learning problem. Given an input domain X and output domain Y , our goal is
to obtain an accurate function f ∗ : X → Y minimizing the (expected or true) risk

R(f) = EP [`∗(f(x), y)], (2.1)

where P is a joint probability distribution over X × Y that generates input-output pairs
and `∗ : Y × Y → R≥0 is a loss function that measures how wrong two arguments are,
i.e., `∗(f(x), y) measures the wrongness of the prediction f(x) w.r.t the true output y.
For example, `∗(y1, y2) = 1

2
(y1 − y2)2 is called squared loss (typically Y = R), `∗(y1, y2) =

|y1 − y2| is called absolute loss (typically Y = R), and `∗(y1, y2) = 0 if y1 = y2 otherwise

4



1 is called 0-1 loss (Y = {0, 1} or {−1, 1}). We call a function f : X → Y a predictive
model. Unfortunately, we do not know the true distribution P in general and thus it is
impossible to learn the optimal predictive model f ∗. In supervised learning, we assume
that there is a training dataset D = {(xn, yn) : xn ∈ X , yn ∈ Y , n ∈ [N ]} ∈ (X × Y)N ,
where training instances are independently and identically distributed to the P . Then, we
obtain an accurate function f̂ : X → R on P by

f̂ = arg min
f∈F

1

N

N∑
n=1

`(f(xn), yn) + Ω(f), (2.2)

where F is a subset of all functions from X to R, ` : R × Y → R≥0 is a surrogate
loss function, and Ω : F → R≥0. F is a subset of all predictive models and represents
our (machine learning users’) assumption or bias to predictive models. Ω measures how
complex a predictive model is. We call F and Ω hypothesis sets and regularization term
(or regularizer), respectively. The first reason why F and Ω are introduced is to avoid
overfitting. Overfitting is a phenomenon such that a learned predictive model fits the
training datasets D well but its performance on (unknown) P is poor. Our true goal is
just to learn a predictive function that minimizes (2.1), not to learn one that fits only the
training dataset. The second one is to make the optimization problem easily solvable. ` is
introduced to make the optimization problem easily solvable too.

Hereinafter, we assume that X = Rd, Y = R or {0, 1} (or {1,−1}), and ` is convex
and µ-smooth. The followings are examples of such loss functions.

• Squared loss: `(y′, y) = 1
2
(y′ − y)2.

• Logistic loss: `(y′, y) = log(1 + exp(−y′y)).

• Squared hinge loss: `(y′, y) = max(0, 1− y′y)2.

We call x ∈ X a feature vector and each element a feature.

2.3 Linear Model
Linear models are one of the simplest and most classical predictive models used in statistics
and machine learning. Linear models predict the output of x as

fLM(x;w, b) := 〈x,w〉+ b, (2.3)

where w ∈ Rd and b ∈ R are learnable parameters, i.e., F = {f(·) = 〈·,w〉 + b : w ∈
Rd, w ∈ R}. For simplicity, we omit the intercept b thereafter. The optimization problem
of linear models is

min
w∈Rd

1

N

N∑
n=1

`(fLM(xn;w), yn) + Ω(w). (2.4)

The advantages of the linear model are as follows.

1. Fast to evaluate and train. Linear models can be evaluated in O(nnz (x)) time.
Moreover, when `(·, ·) is convex w.r.t first argument and Ω is convex, (2.4) is convex
optimization problem and can be solved efficiently by using a gradient descent (GD),
coordinate descent (CD), or stochastic gradient descent (SGD) method. In addition,
when ` is the squared loss and Ω is `2

2 norm, then the optimal solution to (2.4) can
be computed analytically.
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2. Easy to interpret. The magnitude of j-th element in w, |wj|, can be interpreted
as importance of j-th feature.

A popular example of Ω is `2
2 norm Ω(w) = λ ‖w‖2

2, where λ > 0 is a regularization-
strength hyperparameter. It is convex and differentiable, and makes the optimization
problem λ-strongly convex. Another popular example is `1 norm Ω(w) = λ ‖w‖1. It
induces sparsity on w: the optimal solution w∗ tends to have elements of zero. w∗j = 0
implies j-th feature is not used in the linear model fLM(·,w∗), and therefore it is used for
feature selection.

Unfortunately, the relationship between features and outputs are not necessarily linear
in real-world problems. In real-world applications, non-linear models often perform better
than linear models.

2.4 Polynomial Regression and Linear Basis Function
Models

The Polynomial regression model (PR) is an extension of linear models. The output of
the M -order PR is defined as

fMPR(x;w,W (2), . . . ,W (M)) := 〈w,x〉+
M∑
m=2

∑
j1<···<jm

w
(m)
j1,...,jm

xj1 · · ·xjm , (2.5)

where w ∈ Rd and W (m) ∈ R

m︷ ︸︸ ︷
d× · · · × d for all m ∈ [2,M ] are learnable parameters. We

especially call the 2-order PR the quadratic regression (QR) and denote it as fQR:

fQR(x;w,W ) := 〈w,x〉+
∑
j2>j1

xj1xj2wj1,j2 . (2.6)

In addition, we call W feature interaction matrix.
The PR is essentially a linear model. Let φmpoly : Rd → R( dm) be

φmpoly(x) := (x1x2 · · ·xm−1xm, x1x2 · · ·xm−1xm+1, . . . , xd+1−mxd+2−m · · · xd)>. (2.7)

Then, the M -order PR is equivalent to the linear model with (x;φ2
poly(x); · · · ;φMpoly(x))>

as a feature vector. Therefore, the PR is optimized in the same way as linear models.
Generally, we call a map φ : X → RD a basis function (or feature map) and linear models
with a basis function, fLM(φ(·)), linear basis function models. Because the PR is essentially
equivalent to the linear model with (2.7), its objective function is

min
w∈Rd

1

N

N∑
n=1

`(fMPR(xn), yn) + Ω(w,W (2), . . . ,W (M)), (2.8)

and that of the linear basis function model with φ : X → RD is obviously

min
w∈RD

1

N

N∑
n=1

`(fLM(φ(xn)), yn) + Ω(w), (2.9)
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Clearly, the PR uses feature interactions (and of course the QR). The PR is easy to
interpret and it can capture a non-linear relationship between inputs and outputs due to
feature interactions. However, it requires O

(
nnz (x)M

)
computational cost for evaluation.

Moreover, weights for unobserved interactions from the training dataset are learned as 0.
Therefore, the PR can be used only when a dataset is sparse from the point of view of
computational cost but it cannot estimate parameters well when a dataset is sparse.

2.5 Kernel Methods
The kernel regression model (KR) is defined by

fK(x;α, {xn}) :=
N∑
n=1

αnK(x,xn), (2.10)

where K : X × X → R is a symmetric function called kernel function and α ∈ RN is a
learnable parameter. The objective function of the KR is

1

N

N∑
n=1

`(fK(x;α, {xm}), yn) + ΩK(α; {xm}). (2.11)

The KR with positive (semi) definite kernels (defined in bellow) can be regarded as
a dual of linear basis function models. Let φ : X → RD and K(x,y) := 〈φ(x), φ(y)〉.
Then, (2.10) can be written as

fK(x;α, {xn}) =

〈
N∑
n=1

αnφ(xn), φ(x)

〉
. (2.12)

Namely, the KR with K(x,y) = 〈φ(x), φ(y)〉 is equivalent to linear basis function models
with w ∈ span{φ(xn) : n ∈ [N ]}. Here, we consider the orthonormal decomposition of
RD: for all w∗ ∈ RD, there exists w ∈ span{φ(xn) : n ∈ [N ]} and w ∈ RD such that
〈w,w′〉 = 0 and w∗ = w +w′. By construction, 〈w∗, φ(xn)〉 = 〈w, φ(xn)〉. Therefore,
the optimal solution (2.9) can be written as (2.12) if Ω(w + w′) ≥ Ω(w) for all w ∈
span{φ(xn) : n ∈ [N ]} and w′ ∈ RD such that 〈w,w′〉 = 0. Note that `2

2 satisfies the
condition Ω(w +w′) ≥ Ω(w) for all w ∈ span{φ(xn) : n ∈ [N ]} and w′ ∈ RD such that
〈w,w′〉 = 0.

For more precise discussion, we present some technical terms and some well-known
important results [17].

Definition 2.1 (Reproducing kernel Hilbert space). A Hilbert space (complete inner
product space) H of functions f : X → R is called reproducing kernel Hilbert space
(RKHS) if δx : H → R, δx(f) = f(x) is continuous for all x ∈ X .

Definition 2.2 (Positive definite functions). A symmetric function K : X × X → R is
positive (semi) definite if for all

N∑
n1=1

N∑
n2=1

αn1αn2K(xn1 ,xn2) (2.13)

for all αn ∈ R, xn ∈ X , n ∈ [N ], N ≥ 1.
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Definition 2.3 (Reproducing kernel). Let H be a Hilbert space of functions f : X → R
and 〈·, ·〉H : H × H → R is its inner product. A function K : X × X → R is called a
reproducing kernel of H if

K(·,x) ∈ H ∀x ∈ X , (2.14)
〈f,K(·,x)〉 = f(x) ∀x ∈ X , ∀f ∈ H. (2.15)

Lemma 2.1. Let H be any Hilbert space and φ : X → H. Then, H(·, ·) : X × X 7→
〈φ(·), φ(·)〉H is positive (semi) definite.

Theorem 2.2. For a Hilbert space of functions f : X → R, H, if the reproducing kernel
exists, then it is unique. Moreover, if H is an RKHS if and only if it has a reproducing
kernel.

Theorem 2.3 (Moore-Aronszajn). Let K : X × X → R be a positive (semi) definite
function. Then, there exists a unique RKHS H with reproducing kernel K.

Thus, for a given basis function φ, there exists an RKHS H with reproducing kernel
〈φ(·), φ(·)〉H. Moreover, for a positive (semi) definite kernel K, there exists an RKHS with
reproducing kernel K and K(x, ·) can be regarded as a feature map of x. Hence, designing
a feature map φ is equivalent to designing a positive (semi) definite function K. In the
next subsection, we introduce some kernel function based on feature interactions.

The optimization problem of the KR corresponding to (2.9) with Ω(·) = λ ‖·‖2
2 is

min
αRN

1

N

N∑
n=1

`(fK(x;α, {xm}), yn) + λ
N∑

n1=1

N∑
n2=1

αn1αn2K(xn1 ,xn2), (2.16)

and it is convex optimization problem. Therefore, the KR requires O(N2T ) and O(NT )
time complexity for train and evaluation, respectively, where T is the computational cost
for evaluating a kernel function. Even if D is too large, a kernel function can be evaluated
efficiently (e.g., O(d)). Therefore, the advantage of the KR is what its computational cost
is independent of D and its disadvantage is scalability w.r.t N .

2.5.1 Kernels Using Feature Interactions

The polynomial kernel is one of the most well-known kernel function. The m-order
polynomial kernel is defined by

Km
poly(x,y; c) := (〈x,y〉+ c)m, (2.17)

where c > 0 is a hyperparameter. The m-order polynomial kernel (we assume c = 0 for
simplicity) can be written as the inner product of two vectors with the following feature
map:

φ : Rd 7→
(
xm1 ,
√
mxm−1

1 x2, . . . ,
√
m(m− 1)xm−2

1 x2x3, . . . , x
m
d

)>
∈ R(d+m−1)!/((d−1)!m!),

(2.18)

so polynomial kernels use feature interactions.
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The ANOVA kernel [9, 64, 10] is similar to the polynomial kernel. The definition of an
m-order ANOVA kernel between x,y ∈ Rd is

Km
A (x,y) :=

d∑
j1<···<jm

xj1 · · ·xjmyj1 · · · yjm , (2.19)

where 2 ≤ m ≤ d ∈ N is the order of the ANOVA kernel. For convenience, 0/1-order
ANOVA kernels are often defined as K0

A(x,y) = 1 and K1
A(x,y) = 〈x,y〉. The difference

between the ANOVA kernel and the polynomial kernel is that the ANOVA kernel does
not use feature interactions that include the same feature (e.g., x1x1, x

2
2x3) while the

polynomial kernel does. Although the evaluation of the m-order ANOVA kernel involves
O(dm) terms, it can be computed in O(dm) time using dynamic programming [9, 64].
Precisely, from the following well-known recursion of the ANOVA kernel [64, 9, 10],
Kt

A(p,x) and the FM and HOFM are clearly multi-linear w.r.t p1, . . . , pd, x1, . . . , xd:

Km
A (p,x) = Km

A (p¬j,x¬j) + pjxjK
m−1
A (p¬j,x¬j). (2.20)

In some applications, ANOVA-kernel-based models have achieved better performance than
polynomial-kernel-based models [9, 10]. We discuss these models later in this section.

While the ANOVA kernel uses onlym-order different feature interactions, the all-subsets
kernel [9] Kall uses all different feature interactions and is defined as

Kall(x,y) :=
d∏
j=1

(1 + xjyj). (2.21)

Clearly, evaluation of the all-subsets kernel takes only O(d) time.
For a given family of itemsets S ⊆ 2[d], the itemset kernel [29] on S is defined as

KS(x,y) :=
∑
V ∈S

∏
j∈V

xjyj = 〈φS(x), φS(y)〉 . (2.22)

The itemset kernel clearly uses feature interactions in the family of itemsets S and can
be regarded as an extension of the ANOVA kernel, all-subsets kernel, and standard dot
product. For example, when S = 2[d], K2[d] clearly uses all feature interactions and hence is
equivalent to the all-subsets kernel Kall in (2.21). When S =

(
[d]
m

)
:= {V ⊆ [d] | |S| = m},

the itemset kernel KS is equivalent to m-order ANOVA kernel Km
A . Furthermore, when

S = {{1}, . . . , {d}}, the itemset kernel KS clearly represents the standard dot product.

2.6 Factorization Machines and Polynomial Networks
In this section, we introduce factorization machines (FMs) and related models.

2.6.1 Factorization Machines

FMs [60, 61] are models based on second-order feature interactions. FMs predict the target
of x as

fFM(x;w,P ) := 〈w,x〉+
∑
j2>j1

〈pj1 ,pj2〉xj1xj2

= 〈w,x〉+
1

2

d∑
j1=1

∑
j2∈[d]\{j1}

〈pj1 ,pj2〉xj1xj2 , (2.23)

9



where w ∈ Rd and P ∈ Rd×k are learnable parameters, and k ∈ N>0 is the rank
hyperparameter. The first term in (2.23) represents the linear relationship, and the second
term represents the second-order polynomial relationship between the input and target.
For a given training dataset D = {(xn, yn)}Nn=1, the objective function of the FM is

LFM(w,P ;λw, λp) :=
1

N

N∑
n=1

`(fFM(xn), yn) + λw ‖w‖2
2 + λp ‖P ‖2

2 , (2.24)

where λw, λp ≥ 0 are the regularization-strength hyperparameters.
The inner product of the j1-th and j2-th row vectors in P , 〈pj1 ,pj2〉, corresponds to

the weight for the interaction between the j1-th and j2-th features in the FM. Thus, FMs
are equivalent to the QR with factorization of the feature interaction matrix W = PP>:

fQR(x;w,PP>) = fFM(x;w,P ). (2.25)

The computational cost for evaluating FMs is O(nnz (x) k), i.e., it is linear w.r.t the
dimension of feature vector d, because the second term in (2.23) can be rewritten as

∑
j2>j1

〈pj1 ,pj2〉xj1xj2 =
k∑
s=1

(〈p:,s,x〉2 − 〈p:,s ◦ p:,s,x ◦ x〉)/2. (2.26)

On the other hand, the QR clearly requires O
(
nnz (x)2) time and O (d2) space for

storing W , which is prohibitive for a high-dimensional case. Moreover, this factorized
representation enables FMs to learn the weights for unobserved feature interactions but
the QR (PR) does not learn such weights [60].

The objective function in (2.24) is differentiable, so Rendle [60] developed the SGD
algorithm for minimizing (2.24). Although the objective function is non-convex w.r.t P ,
it is multi-convex w.r.t pj for all j ∈ [d]. It can thus be efficiently minimized by using the
CD algorithm [62, 10]. Both the SGD and CD algorithms require O(nnz (X) k) time per
epoch (using all instances at one time in the SGD algorithm and updating all parameters
at one time in the CD algorithm), where X ∈ RN×d is the design matrix. It is linear w.r.t
both the number of training examples N and the dimension of feature vector d.

2.6.2 Polynomial Networks and Convex Factorization Machines

Livni et al. [41] proposed polynomial networks (PNs), which are depth-2 neural networks
with a polynomial as the activation function:

f 2
PN(x;w,P ,α) = 〈w,x〉+

k∑
s=1

αs 〈p:,s,x〉2 = 〈w,x〉+
k∑
s=1

αsK
2
poly(x,p:,s; 0), (2.27)

where w ∈ Rd, P ∈ Rd×k, and α ∈ Rk are the learnable parameters, and k ∈ N>0 is the
number of hidden units (hyperparameter). P is the weight matrix between the input
and hidden layers, and λ is the weight vector between the hidden layer and the output
layer. They showed that PNs can approximate neural networks with a sigmoidal activation
function.

In addition, they also provided an efficient convergence-guaranteed greedy learning
algorithm based on solving an eigenvalue problem. At each iteration, their algorithm adds
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a new hidden unit and learns only its weight vector. Mathematically, at t-th iteration,
their algorithm finds p:,t that minimizes the following first order approximation:

1

N

N∑
n=1

`
(
f 2

PN

(
xn;w, (P (t),pt), (α

(t), αt)
)
, yn
)

=
1

N

N∑
n=1

`(f (t)(xn) + αt 〈xn,p:,t〉2 , yn)

' 1

N

N∑
n=1

[
`
(
f (t)(xn), yn

)
+ α 〈xn,p:,t〉2 `′

(
f (t)(xn), yn

)]
, (2.28)

where f (t)(xn) = f 2
PN(x;w,P = (p:,1, . . . ,p:,t−1),α = (α1, . . . , αt−1)

>). The first term
in (2.28) is independent of p:,s and we can assume that ‖p:,t‖2 = 1 with out loss of generality
since αt 〈x,p:,t〉2 = αt ‖p:,t‖2

2

〈
x,p:,t/ ‖p:,t‖2

〉2. Therefore the optimization problem w.r.t
p:,t can be written as

max
p:,s∈Rd,‖p:,s‖2=1

∣∣∣∣∣p>:,t
[

N∑
n=1

`′
(
f (t)(xn), yn

)
xnx

>
n

]
p:,t

∣∣∣∣∣ , (2.29)

so the solution to (2.29) is the dominating eigenvector of
∑N

n=1 `
′ (f (t)(xn), yn

)
xnxn, and

it can be computed efficiently, e.g., by using the power method. When p:,1, . . . ,p:,t are
fixed, the optimization problem of α (and w) is equivalent to that of linear models. They
also extended second-order PNs to third-order ones, which comprise a subset of depth-3
PNs. Blondel et al. [8], Yamada et al. [74] proposed convex factorization machines, it is
almost the same as PNs.

Moreover, Blondel et al. [10] proposed a lifted formulation of PNs:

f 2
PN′(x;w ∈ Rd,U ,V ∈ Rd×k,α ∈ Rk) = 〈w,x〉

k∑
s=1

αs 〈u:,s,x〉 〈v:,s,x〉 . (2.30)

Lifted PNs are multi-linear w.r.t their parameters whereas original PNs (2.27) are not.
Thus, lifted PNs can be optimized efficiently by using the CD algorithm.

2.6.3 Higher-order FMs and All-subsets Model

Blondel et al. [9] proposed higher-order FMs (HOFMs), which use not only second-order
feature interactions but also higher-order feature interactions. M -order HOFMs predict
the target of x as

fMHOFM(x;w,P (2), . . . ,P (M)) := 〈x,w〉+
M∑
m=2

k∑
s=1

Km
A

(
x,p(m)

:,s

)
, (2.31)

where P (2), . . . ,P (M) ∈ Rd×k are learnable parameters for 2, . . . ,M -order feature in-
teractions, respectively. M -order HOFMs clearly use from second to M -order feature
interactions. Although the evaluation of HOFMs (2.31) seems to take O (dmk) time at
first glance, it can be completed in O (dkM2) time since m-order ANOVA kernels can be
evaluated in O(dm) time by using dynamic programming [9, 64]. Blondel et al. [9] also
proposed efficient CD and SGD-based algorithms.
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Blondel et al. [9] also proposed the all-subsets model, which uses all feature interactions.
The output of the all-subsets model is defined by

fall(x;P ) :=
k∑
s=1

Kall(x,p:,s) =
d∑

m=0

k∑
s=1

Km
A (p:,s,x), (2.32)

where P ∈ Rd×k is the learnable parameter. The all-subsets model uses all 2d feature
interactions. The all-subsets model is also multi-linear w.r.t its parameter, and therefore
it is optimized by the CD algorithm efficiently. Practically, the all-subsets model tends to
have lower performance than HOFMs [9].

2.6.4 Deep-Neural-Networks-based FMs

In the last decade, deep neural networks (DNNs) have achieved state-of-the-art per-
formances in many tasks [22]. With these success, several researches have proposed
DNN-based FMs [27, 58, 77, 24, 38, 70, 65, 14]. These researches introduced new layers
that use feature interactions like FMs and proposed DNN-based models using them. He
and Chua [27] proposed neural factorization machines (NFMs) that use second-order
feature interactions in the bi-interaction layer, which is a hidden layer using second-order
feature interactions. Each unit in the bi-interaction layer is a second-order ANOVA kernel
and NFMs are DNNs using the bi-interaction layer as the first hidden layer. The main
idea of other researches [58, 77, 24] are almost the same as that of He and Chua [27] and
these DNN-based FMs achieved better performance than that of the original FMs.
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Chapter 3

Algorithms for Feature-based Link
Prediction Using Higher-order Feature
Interactions across Objects

3.1 Introduction
Link prediction is the computational problem of determining whether two given objects
are linked. In a common setting, an adjacency matrix with missing values for an objective
network is given, and the task is predicting the missing values. In this chapter, we consider
a feature-based link prediction problem in which the feature vectors of two objects are
given. Feature-based link prediction is used in a more general setting because feature-based
link prediction can be applied not only to the common adjacency-matrix-based (in other
words, index-based) link prediction problem by regarding the indices of objects as features
but also to many other identification-related problems: face verification by using two facial
images, disambiguation of two author names in two different papers by using words in titles
and names of co-authors, link prediction for a social network by using member features,
and so on. While index-based link prediction methods cannot predict links between an
unknown (completely new) object and unknown or known objects, feature-based link
prediction methods can do it as long as the feature vectors are given.

Models using second-order feature interactions are effective for feature-based link
prediction [51, 5, 72, 60, 43, 46, 61]. The higher-order factorization machine (HOFM) [9],
which is an extension of the factorization machine (FM) [60, 61] that enables higher-order
feature interactions, outperforms models using second-order feature interactions. It has
thus been attracting the attention of many machine learning researchers. However, in
feature-based link prediction, the HOFM uses higher-order feature interactions not only
across the two objects but also from the same object. Feature interactions from the
same object are irrelevant to major link prediction problems such as predicting identity
(face verification, author name disambiguation, and so on) because it is not reasonable
to determine whether two objects are the same from the features of only one object.

This chapter is based on [4], by the same authors, which appeared in IEICE Transactions on Information
and Systems, Copyright(c) 2020 IEICE. The material in this paper was presented in part at the IEICE
Transactions on Information and Systems [4], and all the figures of this chapter are reused from [4] under
the permission of the IEICE.
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As an efficient method for computing feature interactions only across two objects is not
available, a model is needed that uses feature interactions only across two objects. We
have developed models that use higher-order feature interactions only across two objects.

The contributions of this chapter are as follows:

• We derive an algorithm for efficiently computing the sum of higher-order feature
interactions only across two objects.

• We present a model that uses feature interactions only across two objects and can
be efficiently evaluated using the proposed algorithm.

• We present an efficient CD algorithm. Keys of our algorithm’s efficiency make the CD
algorithm for the HOFM faster than the original CD algorithm proposed by Blondel
et al. [9].

• We also propose deep-neural-network-extensions of our proposed models.

• We describe and discuss the relationships among proposed models and existing
models on the basis of representabilities of these models.

In Section 3.2, we explain existing methods [51, 5, 72, 43, 46, 60, 61, 9, 27, 58, 77, 24, 38, 41].
We present our contributions described above in Section 3.3. Experimental results are
shown in Section 3.4 and finally we conclude in Section 3.5.

3.1.1 Problem Formulation and Notation

Feature-based link prediction is the computational problem of determining whether two
objects, a ∈ Rd1 and b ∈ Rd2 , are linked or not. Therefore, our goal is to obtain a classifier
f : Rd1×Rd2 → R such that f(a, b) ≥ 0 if two objects are linked and f(a, b) < 0 otherwise.
Supervised learning approaches have been used to obtain accurate classifier f . With these
approaches, the user first collects a training set, i.e., a set of labeled pairs of objects
D = {(a1, b1, t1), . . . , (aN , bN , tN)}, where ti ∈ {−1, 1} is the label of the i-th pair of
objects, ti = 1 means the two objects are linked, and ti = −1 means they are not linked.
The machine learning user next inputs D into the supervised learning algorithm to obtain
classifier f .

3.2 Existing Methods Using Feature Interactions Across
Objects

3.2.1 Feature Interactions Across Objects

As described above, classifier f is obtained by using a supervised learning algorithm
after collecting a training set. However, the feature vectors of pairs are needed in order
to use conventional supervised learning algorithms and models. Because only feature
vectors for each object are given in our feature-based link prediction setting, design feature
vectors of the pairs are required for common algorithms and models. However, designing
appropriate feature vectors is a difficult problem in general. Fortunately, second-order
feature interactions across objects work effectively [51, 5, 72, 43, 46].
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The vector representing feature interactions across a and b can be written as the tensor
product of a and b:

vec(b⊗ a) = (a1b1, . . . , a1bd2 , . . . , ad1bd2)
>. (3.1)

It is possible to obtain f enabling second-order feature interactions across object by using
this feature vector as the feature vector of a pair, but the computational cost of computing
this vector is O(d1d2), which is too high.

3.2.2 Kernel Method

Oyama and Manning [51] and Ben-Hur and Noble [5] proposed the following kernel function
for second-order feature interactions across objects:

P2((a, b), (a′, b′)) :=
∑
i,j

aia
′
ibjb

′
j. (3.2)

We call this kernel a pairwise kernel. Clearly it enables second-order feature interactions
across objects and can be computed in O(d) time by 〈a,a′〉·〈b, b′〉. Hence, when the number
of training data N is not so large, using a model (e.g., support vector machines (SVMs))
along with the pairwise kernel P2 enables the use of second-order feature interactions
across objects without computing the feature vector of (3.1) efficiently.

Although using a second-order polynomial kernel for concatenating the feature vectors
of two objects 〈(a; b), (a′; b′)〉2 enables the use of second-order feature interactions, then
interactions from the same object, e.g., a1a2a

′
1a
′
2, are also included. They are irrelevant for

such applications as predicting identity because it is not reasonable to determine whether
two objects are the same from the features of only one object. Indeed, SVMs with a pairwise
kernel outperformed ones with polynomial kernels in author name disambiguation [51].

3.2.3 Matrix Factorization Method

The linear regression model with vec(a⊗ b) can be written in matrix form:

fBM(a, b;W ) := a>Wb =

d1∑
i=1

d2∑
j=1

wi,jaibj, (3.3)

where W ∈ Rd1×d2 is the learnable parameter. We call this a bilinear model (BM). The
size of the BM and the computational cost of evaluating the BM are O(d1d2), and these
may be prohibitive. One proposed solution is factorization of W [72, 43, 46]:

fFBM(a, b;U ,V ) := a>UV >b = fBM(a, b;UV >), (3.4)

where U ∈ Rd1×k and V ∈ Rd2×k are the learnable parameters and k ∈ N is the rank
hyper-parameter. We call this the factorized bilinear model (FBM). The size of the FBM
and the computational cost of evaluating the FBM are O(k(d1 +d2)), which are acceptable.

3.2.4 FMs and HOFMs for Link Prediction

HOFMs and FMs have been used in recommender systems in which the feature vectors
of each user and item are given [60, 10] and in feature-based link prediction [9] by using
(a; b) as x. In this case, the FM not only uses feature interactions across objects but also
uses different-feature interactions from the same object: {aiaj | i 6= j} ∪ {bibj | i 6= j}, so
they are irrelevant to some problems like predicting identity.
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Figure 3.1: Relationships among proposed methods (HOPairNet, PairNet, HOPairDNN)
and some existing methods.

3.3 Higher-Order Feature Interactions Across Two Ob-
jects

3.3.1 Basic Idea of Our Research

As mentioned above, the use of second-order feature interactions across objects is an
effective approach in feature-based link prediction [51, 5, 72, 43, 46]. Although the
HOFM [9] using higher-order feature interactions achieved better performance than the
second-order FM [60, 61], the HOFM and FM use feature interactions from the same
object, and these interactions are irrelevant to such problems as predicting identity.
Therefore, models using higher-order feature interactions only across the two objects
should outperform these models described above. Fig. 3.1 summarizes relationships among
the proposed methods: pairwise networks (PairNets), higher-order pairwise networks
(HOPairNets), and higher-order pairwise deep neural networks (HOPairDNNs) that will
be presented later and some existing methods.

3.3.2 Higher-Order Pairwise Kernel

We define the higher-order feature interactions across a ∈ Rd1 and b ∈ Rd2 as

m−1⋃
t=1

{ai1 · · · aitbj1 · · · bjm−t | it1 < it2 , jt1 < jt2 ∀t1 < t2},

that is, m-order feature interactions including at least one feature of both objects, and
not including feature interactions from the same object. We also define a kernel using
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Algorithm 1 DP algorithm for evaluating Km
A (p,x) in O(md) time and O(m) memory

Input: p,x ∈ Rd

a0 ← 1, at ← 0∀t ∈ [m];
for j ← 1, . . . , d do

for t← m, . . . , 1 do
at ← at + pjxjat−1;

end for
end for

Output: Km
A (p,x) = am

higher-order feature interactions across objects:

Pm((u,v), (a, b))

=
m−1∑
t=1

∑
i1<···<it

∑
j1<···<jm−t

(
t∏

t′=1

uit′ait′

)(
m−t∏
t′=1

bjt′vjt′

)
, (3.5)

where u ∈ Rd1 and v ∈ Rd2 . When m = 2, this equation is equivalent to the pairwise
kernel in (3.2), so we call this kernel an m-order pairwise kernel.

Naïve computation of an m-order pairwise kernel takes O
(∑m−1

t=1 dt1d
m−t
2

)
time, which

may be prohibitive. However, a clue to efficiently computing a higher-order pairwise kernel
can be obtained from the following transformation:

Pm((u,v), (a, b)) =
m−1∑
t=1

Kt
A(u,a)Km−t

A (v, b). (3.6)

This equation shows that an m-order pairwise kernel can be computed in O(m) time when
the series of the ANOVA kernels, Kt

A(u,a) and Kt
A(v, b) for t ∈ [m− 1], are given. The

ANOVA kernels Kt
A(u,a) and Kt

A(v, b) for t ∈ [m − 1] are computed in O(md1) and
O(md2) time and memory by previous algorithm [9]. Therefore, an m-order pairwise kernel
can be computed in O(m(d1 + d2)) time and memory. Fortunately, the DP algorithm for
evaluating the ANOVA kernel based on recursion (2.20) can actually be run in only O(m)
memory, and an m-order pairwise kernel can be computed in O(m(d1 +d2)) time and O(m)
memory. We show the procedure of this efficient algorithm for computing ANOVA kernels
in Algorithm 1. The final value of at in Algorithm 1 is Kt

A(p,x) for t ∈ [m]. Therefore,
not only Km

A (p,x) but also Kt
A(p,x) for t ∈ [m− 1] is obtained in O(md) time and O(m)

memory. This insight for the memory efficiency of recursion (2.20) can be useful for the
optimization and it will be described in Section 3.3.4.

There are two important properties of the higher-order pairwise kernel. The first one
is multi-linearity. It is derived from the multi-linearity of the ANOVA kernels and (3.6).
The second one is homogeneity. Let λ ∈ R and m ∈ N≥2. Then,

λmPm((u,v), (a, b)) = Pm((λu, λv), (a, b)). (3.7)

When m = 2, the following equation is also satisfied:

λP2((u,v), (a, b)) = P2((λu,v), (a, b)). (3.8)
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It is derived from the homogeneousity of the ANOVA kernel [10]: λmKm
A (p,x) =

Km
A (λp,x). From (3.6) and homogeneousity of the ANOVA kernel, (3.7) is obtained:

λmPm((u,v), (a, b)) =
m−1∑
t=1

λtKt
A(u,a)λm−tKm−t

A (v, b)

=
m−1∑
t=1

Kt
A(λu,a)Km−t

A (λv, b) = Pm((λu, λv), (a, b)). (3.9)

(3.8) is obtained in similar way: λP2((u,v), (a, b)) = λK1
A(u,a)K1

A(v, b) = K1
A(λu,a)K1

A(v, b) =
P2((λu,v), (a, b)). It is used to discuss the representability of our proposed models.

3.3.3 Higher-Order Pairwise Network and Pairwise Network

We first propose a higher-order pairwise network (HOPairNet) that uses higher-order
feature interactions only across the two objects. It is based on the definition of the HOFM
and PN [41, 10]. The model formula for this model is given by

fmHOPairNet(a, b;U (m),V(m),Λ(m))

:=
m∑
t=2

k∑
s=1

λ(t)
s P t

((
u(t)

:,s ,v
(t)
:,s

)
, (a, b)

)
, (3.10)

where U (2), . . . ,U (m) ∈ Rd1×k, V (2), . . . ,V (m),λ(2) ∈ Rd2×k, and λ(2), . . . ,λ(m) ∈ Rk

are the learnable parameters, and U (m),V(m), and Λ(m) are sets of them. An m-order
HOPairNet clearly enables the use of from second to m-order feature interactions only
across the two objects. We call a second-order HOPairNet a PairNet :

fPair(a, b;λ,U ,V ) :=
k∑
s=1

λsP2 ((u:,s,v:,s), (a, b)) . (3.11)

The most important property of the HOPairNet and PairNet is multi-linearity w.r.t
λ

(t)
s , u(t)

j1,s
, and v(t)

j2,s
. It is easily derived from the multi-linearity of the higher-order pairwise

kernel. It makes the objective function of the HOPairNet model multi-convex, enabling it
to be efficiently optimized by using the CD algorithm, as with the HOFM.

With regards to the representability of the PairNet, [10] showed that when m is odd,
λ = 1 can be fixed without loss of generality in the FM and PN. Similar results are
obtained with a model using a higher-order pairwise kernel.

Lemma 3.1. Let fPm(a, b;λ,U ,V ) :=
∑k

s=1 λsPm((u:,s,v:,s), (a, b)), l : R × R → R≥0

be a convex loss function, and LPm(D,λ,U ,V ) := 1
N

∑N
i=1 `(fPm(ai, bi), ti). Then, if m

is even that is greater than 2,

min
λ,U ,V

LPm(λ,U ,V ) ≤ min
U ,V

LPm(1,U ,V ), (3.12)

and otherwise (that is, if m is odd or 2)

min
λ,U ,V

LPm(λ,U ,V ) = min
U ,V

LPm(1,U ,V ). (3.13)
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Proof. With the use the homogeneity of the higher-order pairwise kernel, Lemma 3.1 is
derived in the same way as the result for the PN and FM ([10], Lemma 4).

Because fP2 is equivalent to the PairNet, λ = 1 can be fixed without loss of generality
in the PairNet. Lemma 3.1 says that introducing λ(t) for even t ≥ 4 improves the
representability of the HOPairNet.

We next show that the PairNet is equivalent to the FBM from Lemma 3.1 and from
the result of transformation to the matrix form of (3.11).

Lemma 3.2. Equivalence of the PariNet and the FBM.
For every PairNet fPair, there exist an FBM fFBM such that fPair(a, b) = fFBM(a, b)

for all a ∈ Rd1 , b ∈ Rd2.

Proof. We first show the matrix form of the model equation of the PairNet, which is given
by

fPair(a, b;λ,U ,V ) = a>Udiag(λ)V >b. (3.14)

From Lemma 3.1, λ = 1 can be fixed in the PairNet without loss of generality. When λ = 1,
the PairNet is equivalent to the FBM: fPair(a, b; 1,U ,V ) = a>UV >b = fFBM (a, b;U ,V ).

Therefore, the HOPairNet can be also regarded as an higher-order generalization of
the FBM. Furthermore, the following result for regularization in the BM, the PairNet, and
the FBM is derived from Lemma 3.2, (3.4), and previous results of regularization in the
PN and FM ([10], Theorem 2).

Theorem 3.3. Equivalence of regularized problems. Let ‖·‖∗ be the nuclear norm. Then,

min
W

1

N

N∑
i=1

` (ti, fBM) + β ‖W ‖∗ (3.15)

= min
λ,U ,V

1

N

N∑
i=1

`(fPair, ti) +
β

2

k∑
s=1

|λs|Ω(u:,s,v:,s), (3.16)

= min
U ,V

1

N

N∑
i=1

`(fFBM, ti) +
β

2

(
‖U‖2

2 + ‖V ‖2
2

)
, (3.17)

where W ∈ Rd1×d2 , U ∈ Rd1×k,V ∈ Rd2×k, λ ∈ Rk, rank(W ∗) ≤ k, Ω(u,v) := ‖u‖2
2 +

‖v‖2
2, and W

∗ = arg minW
1
N

∑N
i=1 `(fBM(ai, bi;W ), ti) +β ‖W ‖∗ (and we omit the input

vectors for each model).

Proof. These results can be obtained in the same way as in ([10], Theorem 2). Eval-
uation First, the value of loss term in (3.15) is equal to that in (3.17) when W =
UV >. Then, (3.15)=(3.17) is derived from the relationship between the nuclear norm
and the Frobenius norm of the factorized matrix ‖W ‖∗ = minU ,V s.t.W=UV >(‖U‖2

2 +

‖V ‖2
2)/2. (3.17)=(3.16) is derived from the following transformation of (3.14). Let

λ̃ =
(√
|λ0|, . . . ,

√
|λk|
)>

and λsign = (sign(λ1), . . . , sign(λs))
>. Then,

fPair(a, b;λ,U ,V ) = a>Udiag(λ)V >b

= a>Udiag
(
λ̃
)

diag (λsign) diag
(
λ̃
)
V >b. (3.18)
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Let Ũ = Udiag
(
λ̃
)

diag (λsign) and Ṽ = diag
(
λ̃
)
V . Then, substituting Ũ and Ṽ as U

and V in (3.17) results (3.16).

Nuclear norm regularization has been used for obtaining low-rank solutions [19, 30], so
a low-rank solution is expected for problem (3.16) for the PairNet. Although we cannot
derive a theoretical result for the HOPairNet (i.e., the higher-order case), we can use the
straightforward extension of (3.16) as the objective function,

1

N

N∑
i=1

`(yi, ti) +
β

2

m∑
t=2

k∑
s=1

∣∣λ(t)
s

∣∣Ω(u(t)
:,s ,v

(t)
:,s ), (3.19)

where yi = fmHOPair(ai, bi), because problem (3.19) can be regarded as the least absolute
shrinkage and selection operator (LASSO) [66] for λ(t) for t ∈ [2 : m] whenU (t) and V (t) are
fixed. Therefore, sparse solutions for λ(t) can be expected, and obtaining sparse solutions
can be regarded as the selection of bases; that is, a low-rank solution can be expected. To
be more precise, because λ(t) = 1 can be fixed when t is odd or 2 from Lemma 3.1, we
only fit λ(t), which has even t greater than 2. We use the CD algorithm with proximal
operation [53] for optimizing such λ(t). It is easily done by caching Ω

(
u

(t)
:,s ,v

(t)
:,s

)
and

P(t)
((
u

(t)
:,s ,v

(t)
:,s

)
, (ai, bi)

)
for all s ∈ [k] and i ∈ [n].

3.3.4 CD Algorithm for HOPairNets

As described above, optimization problems (3.16) and (3.19) are multi-convex optimization
problems. Hence, the two models proposed above can be efficiently optimized by using the
CD algorithm. Here we describe its use for the HOPairNet that includes the PairNet (when
m = 2). We assume that loss function l is convex and µ-smooth function. Similar to the
CD algorithm for the HOFM [9], the update rule for u(m)

j,s is u
(m)
j,s ← u

(m)
j,s − η−1

j,s ∂L/∂u
(m)
j,s ,

where L is the objective function in (3.19) and ηj,s = µ
∑N

i=1

(
∂yi/∂u

(m)
j,s

)2

/N + β|λ(t)
s |.

The update rule for v(t)
j,s is easily derived in a similar manner. For updating, one obviously

must compute the partial gradient

∂yi

∂u
(m)
j,s

= λ(m)
s

m−1∑
t=1

∂Kt
A

(
u

(m)
:,s ,ai

)
∂u

(m)
j,s

Km−t
A

(
v(m)

:,s , bi
)
,

and it requires ∂Kt
A

(
u

(m)
:,s ,ai

)
/∂u

(m)
j,s for t ∈ [m − 1]. One can compute it by existing

algorithm proposed by Blondel et al. [9]. Then, the computational cost for updating all
coordinates of U (m) and V (m) once is O (m2k(nz(A) + nz(B))) time and O(Nm) memory,
where A and B are matrices in which the i-th row vector is ai and bi, respectively.

Here, we present a more efficient CD algorithm for the HOPairNet that takes only
O(mk(nz(A) + nz(B))) time for updating all the coordinates of U (m) and V (m) once. It
is based on the insight for the memory efficiency of recursion (2.20) (i.e., Algorithm 1) and
the following new recursion for calculating the partial gradient of the ANOVA kernel:

∂Km
A (p,x)

∂pj
= xjK

m−1
A (p¬j,x¬j)

= xj

(
Km−1

A (p,x)− pj
∂Km−1

A (p,x)

∂pj

)
. (3.20)
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Algorithm 2 Algorithm for computing ∂Km
A (p,x)/∂pj in O(m) time and memory

Input: pj, xj, Kt
A(p,x)∀t ∈ [m− 1]

p̃1 ← xj;
for t← 2, . . . ,m do

p̃t ← xj
(
Kt−1

A (p,x)− pj p̃t−1

)
;

end for
Output: ∂Km

A (p,x)

∂pj
= p̃m

The advantage of recursion (3.20) is its reduced time complexity. WhenKt
A(p,x) for t ∈ [m]

are given, ∂Kt
A(p,x)/∂pj for t ∈ [m] can be computed in O(m) time. The algorithm used

for computing them using recursion (3.20) is shown in Algorithm 2. Kt
A(p,x) for t ∈ [m]

can be computed in O(md) time and O(m) memory with Algorithm 1. With Algorithm 1
and Algorithm 2, Kt

A(p,x) and ∂Kt
A(p,x)/∂pj for t ∈ [m] can be computed in O(md) time

and O(m) memory while an algorithm proposed by Blondel et al. [9] takes O (md+m2)
time.

For an efficient implementation of the CD algorithm, we need a method for efficiently
synchronizing prediction. Fortunately, the prediction is also synchronized in O(m) time.
Let pnew

j = pj−∆ be the value after updating and pnew = (p1, . . . , pj−1, p
new
j , pj+1, . . . , pd)

>.
Then,

Km
A (pnew,x) = Km

A (p,x)−∆
∂Km−1

A (p,x)

∂pj
. (3.21)

From these results about the complexities of the computing partial gradient and synchro-
nizing ANOVA kernels and predictions, using proposed algorithms can reduce the compu-
tational cost of the CD algorithm for the HOPairNet from O (m2k (nz ((A) + nz (B))) to
O (mk (nz (A) + nz (B))) time. This improvement is easily applied to the CD algorithm
for the HOFM.

3.3.5 Symmetrization

For some applications such as predicting identity, symmetry must be ensured; that is,
f(a, b) = f(b,a) must be satisfied. In such applications, the domains of a and b are the
same, so d1 = d2 = d. We discuss here the method for ensuring symmetry in our proposed
models. We first consider the symmetry of the PairNet. The most straightforward way of
ensuring symmetry is parameter sharing: U = V = P . However, this parameter sharing
does not preserve the multi-linearity of proposed models and thus we cannot optimize
them efficiently.

Here, we use the relationship between the PairNet and the BM (Lemma 3.2 and (3.4)).
The fBM(a, b;W ) clearly satisfies the symmetry requirement when W is a symmetric
matrix. Because the PairNet can be regarded as a BM withW = Udiag(λ)V >, the model
fBM(a, b; (Udiag(λ)V > + V diag(λ)U>)/2) can be regarded as the symmetric PairNet.
This technique is called the symmetrization trick [10] and preserves the multi-linearity of
the model. A method for ensuring HOPairNet symmetry can be easily derived from the
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following transformation for the symmetric PairNet:

a>
1

2

(
Udiag(λ)V > + V diag(λ)U>

)
b

=
1

2
(fPair(a, b;λ,U ,V ) + fPair(b,a;λ,U ,V )) . (3.22)

From this, a symmetrization method for the HOPairNet is derived: 1
2
(fmHOPair(a, b) +

fmHOPair(b,a)).

3.3.6 Problem of DNNs in Symmetric Link Prediction

As described Chapter 2, DNNs are attracting attention in the field of machine learning.
Since DNNs can automatically obtain feature representations, one might consider that
DNNs with the concatenated vector (a; b) should be able to outperform existing methods
even in link prediction. However, concatenated vectors do not satisfy symmetry ((a; b) 6=
(b;a)). Therefore, for symmetric link prediction, a DNN with symmetry fDNN((a; b)) =
fDNN((b;a)) should be used. Bishop [7] classified the approaches to making a NN invariant
into four approaches

1. The training set is augmented using replicas of the training patterns, transformed in
accordance with the desired invariance.

2. A regularization term is added to the error function that penalizes changes in the
model output when the input is transformed.

3. Invariance is built into the pre-processing by extracting features that are invariant
under the required transformations.

4. Invariance is built into the structure of the NN.

In symmetric link prediction, the NN should be invariant with respect to the order of the
data values in a pair; i.e., it should have symmetry. Approach 1, called data augmentation,
incurs extra computational costs. Approach 2 cannot be used in pairwise classification
because transformation that changes the data order is not continuous. Approach 3 is
problematic because designing suitable features is difficult. Therefore, we took Approach
4. If the values of the hidden layer connected with the input layer satisfy symmetry, the
NN output satisfies symmetry. Namely, let W be the weight matrix between the input
and the hidden layer. The NN output satisfies symmetry if the following equation holds:

W

(
a
b

)
= W

(
b
a

)
. (3.23)

Let W1 be the weight matrix between the partial input layer for the first object and
the entire hidden layer, W2 be the weight matrix between remaining input layer for the
second object and the entire hidden layer. Since W = (W1,W2), (3.23) can be rewritten
as W1(a − b) = W2(a − b) . For arbitrary a and b, this equation holds if W1 = W2.
However, there is actually a problem here. If this equation holds, the following equation
holds.

W (a; b) = Ŵ (a+ b), (3.24)
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where Ŵ is equal to W1 and W2. From (3.24), it follows that the addition of feature
vectors of two objects is input to the DNN. However, the addition of feature vectors of
two objects is not suitable for pairwise classification because the information about the
features of each object is lost. For example, in the author matching problem, it cannot be
determined which words appear in which papers.

3.3.7 Higher-Order Pairwise Deep Neural Networks

Finally, we present DNN-based models that enable higher-order feature conjunctions across
objects. The proposed models use higher-order feature conjunction across objects explicitly.
Moreover, the proposed models with symmetry do not lost the information about the
features of each object.

We first give the interpretation of the PairNet as a neural network (NN). (3.11) can be
rewritten:

fPair(a, b;λ,U ,V ) =
k∑
s=1

λs 〈vec(b⊗ a), vec(v:,s ⊗ u:,s)〉 . (3.25)

Therefore, the PairNet can be regarded as a depth-2 NN with vec(b ⊗ a) as input, an
identity function as the activation function, vec(v:,s ⊗ u:,s) as the weight between the
input and s-th units in the hidden layer, λ as the weight between the hidden layer and
the output unit, and k is the number of hidden units. We propose a pairwise deep neural
network (PairDNN):

fPairDNN(a, b;U ,V ,Θ) := fDNN(σ(z); Θ), (3.26)

where σ(z) = (σ(z1), . . . , σ(zk)), zs = P2 ((u:,s,v:,s), (a, b)) for s ∈ [k], is the input of
fDNN(·), σ : R→ R is an element-wise activation function, fDNN : Rk → R is a DNN, and
Θ is the set of parameters for the DNN (we do not specify the architecture (form) of fDNN).
This modeling is an analogy of some existing DNN-extensions of FMs [27, 58, 77, 24, 38].
A PairDNN can be regarded as a DNN with vec(b ⊗ a) as the input and σ(·) as the
activation function in the first hidden layer. The reason we introduce σ(·) is that the
activation function in DNNs is a commonly used non-linear function. If σ(·) is an identity
function and U = V , the PairDNN is equivalent to the Pairwise DNN [2]. The PairNet,
PairDNN, and Pairwise DNN enable the use of second-order feature interactions across
objects without computing it directly and the same technique recently proposed by other
researchers [37, 50]. While the DNN can extract useful feature representation, introducing
the layer using feature interactions explicitly improves the performance of the DNN. Indeed,
the DNN-based models using feature interactions outperformed simple DNNs in some
applications [28, 39, 37].

We also propose a higher-order pairwise deep neural network (HOPairDNN) by defining
z

(m)
s =

∑m
t=2P t

((
u

(t)
:,s ,v

(t)
:,s

)
, (a, b)

)
for s ∈ [k] in (3.26). The HOPairDNN can be

regarded as a DNN with from 2 to m-order feature interactions across objects as input.
We call the layer that computes z(m) higher-order pairwise interaction layer.

3.3.8 Relationship between Proposed Methods and Existing Meth-
ods for Index-based Link Prediction

As described in Section 3.1, while index-based link prediction methods cannot predict links
between an unknown object and unknown or known objects, feature-based link prediction
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methods can do it as long as the feature vectors are given. Moreover, methods for feature-
based link prediction can be applied to index-based link prediction by regarding the indices
of objects as features; given indices of nodes aind and bind, one-hot encoding vectors of indices
can be used as feature vectors of nodes. Then, d1 and d2 correspond to the number of nodes.
The model equation of the latent factor (feature) model [35] 1, which is a well-known method
for index-based link prediction, flatent(aind, bind) : [d1]× [d2] 7→ 〈uaind ,vbind〉+ w

(a)
aind + w

(b)
bind
,

where ui ∈ Rk (i ∈ [d1]), vj ∈ Rk (j ∈ [d2]), w(a) ∈ Rd1 and w(b) ∈ Rd2 are learnable
parameters. Parameters ui and vj are called latent factors, and w(a) and w(b) are
called biases. It is known that the FM for index-based link prediction (i.e., using one-
hot encoding vectors) is equivalent to this latent factor model and the FM using both
indices and additional features of objects outperformed the latent factor model in the
recommendation task [60]. The PairNet for index-based link prediction is equivalent to the
latent factor model without biases: fPair(a, b; 1,U ,V ) = 〈uaind ,vbind〉 . Furthermore, from
this result, it is clear that the second-order pairwise network layer for one-hot encoding
vectors is equivalent to the generalized matrix factorization layer, which is used in the
neural collaborate filtering [28] that is a DNN-extension of the latent factor model.

In index-based link prediction setting, one can obtain some feature representations
by some graph embedding methods [23]. Several researches showed that using both
indices and features of objects could improve the performances [60, 43, 78]. Moreover,
some researches showed the effectiveness of the bilinear pooling, which uses second-order
feature interactions between extracted (embedded) feature vectors [39, 37]. Thus, it seems
promising to use feature-based link prediction methods that use feature interactions (e.g.,
proposed methods) with both indices and embedded features of objects in index-based
link prediction. We leave the investigation of it for future work.

There have been many other index-based link prediction methods and recently the
method using graph NN [73] has been proposed [76]. Since this is also a method for
index-based link prediction, this method cannot predict links for unknown nodes although
they can leverage additional features of nodes. On the other hand, our methods (and other
methods for feature-based link prediction) can learn models without indices of objects and
predict links for unknown objects.

3.4 Experiments
We evaluated the performance of our proposed models using three feature-based link
prediction tasks: author disambiguation, co-author link prediction and recommendation.

3.4.1 Datasets

• DBLP. For the author disambiguation task, we extracted 3,384 papers in which
there were 729 unique author names from the DBLP dataset. Each paper was
considered an object. If two papers had an author in common, we gave that pair of
papers a positive label. We used all the words in the titles, the coauthor names, and
the publication venues for creating bag-of-words feature vectors.

• NIPS. For the co-author link prediction task, we obtained a dataset of co-author
graphs from the first 12 editions of the Neural Information Processing Systems

1This method is also called matrix factorization in the context of the index-based link prediction.
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Table 3.1: Datasets for evaluation.

Dataset d1 d2 Ntrain Nvalid Ntest

DBLP 9,264 22,416 1,000 21,264
NIPS 13,649 3,134 134 3,000

ML100K 49 29 21,200 1,000 20,200

Conference [63]. There were 2,037 authors in this dataset. If two authors had
collaborated, we gave that pair of authors a positive label. Each object (author) was
represented by a bag-of-words feature vector, which used words in their publications.

• ML100K. For the recommendation task, we obtained a dataset from the MovieLens
100K (ML100K) dataset [25] that contained data for 943 users and 1682 movies (a
represented a user, and b represented a movie). For features and labels, we generally
followed the practice of Novikov et al. [49] but we did not use user and movie indices.

The number of positive and negative pairs in all datasets were equalized by under-
sampling the negative pairs similarly in [51]. For all datasets, we created a validation set
by randomly sampling the test set after creating the training and test sets. The details
for the three datasets are summarized in Table 3.1. Intuitively, proposed methods seem
suitable for the DBLP and NIPS dataset. On the other hand, proposed methods do not
seem suitable for the ML100K dataset since feature interactions from the same object can
be effective (e.g., there may be movies that tend to receive high ratings).

3.4.2 Comparison with HOPairNets and Existing Models

We first compared our proposed HOPairNet with these existing models:

• HOPairNet. Our proposed HOPairNet defined in (3.10). We minimized the
objective function (3.19) by using the CD algorithm. We introduced λ when
m ≥ 4 because of the Lemma 3.1. For the DBLP and NIPS datasets, we used the
symmetrization method described in Section 3.3.5.

• HOFM. The higher-order factorization machine [60, 9] defined in (2.31). It was
optimized by using the CD algorithm.

• PairSVM. We used the SVM with a second-order pairwise kernel proposed by Oyama
and Manning [51], Ben-Hur and Noble [5]:
y =

∑N
i=1 αiP2((ai, bi), (a, b)).

For the DBLP and NIPS datasets, we set k = 30 for the HOPairNet and HOFM follow-
ing [10]. For the ML100K dataset, we set k = 10 for the HOPairNet and HOFM. For
the HOPairNet and HOFM we set β (a regularization hyper-parameter) to 10−7, 10−6,
or 10−5 on the basis of the accuracy for the validation set. We set the regularization hyper-
parameter in the objective function of the PairSVM to 10−7, 10−6, . . . , 107. We set `(·, ·) as
the logistic loss for theHOPairNet, HOFM. We compared the accuracies of these models
for the three test sets. Note that this is an experiment of feature-based link prediction task
and hence we did not use indices of objects (namely, the adjacency-matrix/graph). Hence,
we cannot compare these methods and other methods for index-based link prediction
that require indices of objects, e.g., latent factor models [35] and the neural collaborate
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Table 3.2: Comparison of accuracies of PairNets with those of existing models.

Model DBLP NIPS ML100K
FBM (m = 2) 0.7639 0.8567 0.5951

HOPairNet (m = 3) 0.7827 0.8570 0.6239
HOPairNet (m = 4) 0.7761 0.8443 0.607
HOFM (m = 2) 0.7037 0.7840 0.6318
HOFM (m = 3) 0.7470 0.7858 0.6362
HOFM (m = 4) 0.7412 0.7840 0.6225

PairSVM 0.7290 0.9171 0.5972

filtering [28], the graph neural networks [76]. Results are shown in Table 3.2. For the
DBLP dataset, the third-order HOPairNet achieved the best accuracy. The accuracy of
the HOPairNet was more robust than that of the HOFM with respect to the order of
feature interactions. Higher-order feature interactions across objects can be effective as
shown by the better performance of the third- and fourth-order HOPairNet compared to
the second-order HOPairNet (which is a PairNet equivalent to the FBM) for all datasets.
The better performance of the HOPairNet compared to the HOFM for the DBLP and
NIPS datasets shows that using feature interactions only across objects is important for
such problems as predicting identity.

While the PairSVM achieved the best performance for the NIPS dataset, its perfor-
mance for the DBLP dataset was not good. The proportion of non-zero values in the
DBLP and NIPS datasets was 0.1% and 7.5%. Hence, if the data are not very sparse and
the number of training instances is not so large, the PairSVM is a good choice.

For the ML100K dataset, the HOFM outperformed the HOPairNet and PairSVM
because the HOFM use feature interactions from the same object and the ML100K
dataset is designed for recommender systems as described above. Because the ML100K
dataset is designed for recommender systems, use of feature interactions from the same
object can be effective (e.g., there may be movies that tend to receive high ratings).

3.4.3 Comparison with HOPairDNN and Existing DNN-based
Models

Next we compared our proposed HOPairDNN with a DNN-based FM/HOFM for the
DBLP dataset.

• HOPairDNN. Our proposed HOPairDNN is described in Section 3.3.7. We mini-
mized the logistic loss without regularization terms by using the Adam stochastic
optimization method [33]. We set the learning rate for Θ to the default value (0.001),
and for U (t),V (t), t ∈ [2 : m] to 0.001, 0.002, . . ., or 0.009. We used the identity
function as an activation function in the higher-order pairwise interaction layer σ(·).
We used the relu function as an activation function in fDNN.

• HONFM. The HONFM is the higher-order extension of the NFM [27]. We also
tuned the HONFM as for the HOPairDNN.

• Concat. A DNN with (a; b) as input. We used Adam with the learning rate
0.001, 0.002, . . . , or 0.009. We used relu activation function in all hidden layers.
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Table 3.3: Comparison of accuracies of DNN-based models for DBLP dataset with those
of existing models. For comparison, some results from Table 3.2 are shown.

Model Accuracy Model Accuracy
HOPairDNN (m = 2) 0.8527 FBM (m = 2) 0.7639
HOPairDNN (m = 3) 0.8547 HOPairNet (m = 3) 0.7827
HOPairDNN (m = 4) 0.8483 HOPairNet (m = 4) 0.7761
HONFM (m = 2) 0.8144 HOFM (m = 2) 0.7037
HONFM (m = 3) 0.8142 HOFM (m = 3) 0.7470
HONFM (m = 4) 0.8124 HOFM (m = 4) 0.7412

Concat 0.7600 PairSVM 0.7290

Table 3.4: Comparison of ROC-AUCs, precisions, and recalls for imbalanced DBLP dataset.

Model ROC-AUC Precision Recall
HOPairDNN (m = 2) 0.9064 0.0822 0.7629
HOPairDNN (m = 3) 0.9057 0.1392 0.7154
HOPairDNN (m = 4) 0.9124 0.1873 0.6993
HOPairNet (m = 2) 0.8350 0.0800 0.5659
HOPairNet (m = 3) 0.8393 0.0822 0.5925
HOPairNet (m = 4) 0.8384 0.0792 0.6075
HONFM (m = 2) 0.8700 0.0297 0.7841
HONFM (m = 3) 0.8676 0.0359 0.7487
HONFM (m = 4) 0.8670 0.0364 0.7456
HOFM (m = 2) 0.7892 0.0097 0.3708
HOFM (m = 3) 0.8144 0.0417 0.6221
HOFM (m = 4) 0.8128 0.0425 0.6158

Concat 0.8331 0.0923 0.5379
PairSVM 0.8811 0.2047 0.5223

The number of hidden layers was four in all models. We used the Dropout [68] for
regularization in all models. We adjusted the number of hidden units to make the number
of parameters almost the same as that for the simple DNN that has four hidden layers
with 1,000 units and whose input vectors are the addition of a and b: a+ b. We ran the
experiment five times using different initial values and compared the average values.

As shown in Table 3.3, the HOPairDNN, especially the third-order one, achieved the
best performance. Note that the differences in performance between the second-, third-,
and fourth-order HOPairDNN were smaller than those for the HOPairNet. Since
DNN-based models are strongly non-linear, the effect of higher-order feature interactions
may be smaller. Although the results of the HONFM, which are the DNN-extension of
the HOFM, were better than those of HOFM and PairNets, they were inferior to those
of HOPairDNN. Both HONFM and HOPairNet outperformed the Concat and thus
explicitly using feature interactions are effective.

3.4.4 Comparison on Imbalanced Setting

Next, we compared our proposed methods and existing methods on the imbalanced DBLP
dataset. Although we undersampled the negative pairs for training, validation, and test
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data in Section 3.4.2 and Section 3.4.3, we undersampled the negative pairs for only
training data in this experiment. The number of pairs in validation and test data were
284, 099 and 1, 136, 398, respectively. We used the same training data as in Section 3.4.2
and Section 3.4.3. We used the area under the receiver operating characteristic curve
(ROC-AUC), precision, and recall as the evaluation metrics since the number of negative
pairs was one hundred times more than that of positive pairs in imbalanced DBLP dataset.
We tuned the hyper-parameters of the proposed and existing methods as in Section 3.4.2
and Section 3.4.3 with ROC-AUC as the evaluation metric.

As shown in Table 3.4, the HOPairDNN, especially fourth-order one, achieved
the best ROC-AUC, and our proposed HOPairDNN outperformed HOFM. Although
the precisions of all models were low, that of the PairSVM was higher than those of
other models and thus the ROC-AUC of the PairSVM was higher than those of the
HOPairDNN, HOFM, and HONFM. In our hyper-parameter tuning scenario, the
highest recall of the PairSVM was 0.5247, it was lower than those of proposed models
in Table 3.4. We note that the HOPairDNN achieved the best precision and F-measure
when we tuned the hyper-parameters of all models on the basis of the F-measure for the
validation set; the highest F-measure and precision were 0.4024 and 0.9077, respectively.
Therefore, our experimental results suggested that a machine learning user should use the
HOPairDNN or PairSVM if the precision is more important, otherwise, normally use
the HOPairDNN.

3.5 Conclusion
We have presented models using higher-order feature interactions only across the two
objects being compared in Chapter 3. Our proposed model, HOPairNet, can be regarded
as a higher-order generalization of the factorized bilinear model or pairwise extension of
the higher-order factorization machine. We have also presented an algorithm for efficiently
computing higher-order feature interactions only across two objects. Moreover, we have
proposed an efficient CD algorithm for proposed models. Furthermore, we have proposed
the HOPairDNN, which is a DNN-extension of the HOPairNet. In addition, we have
presented the relationships among proposed methods, existing methods for feature-based
link prediction and for index-based link prediction. Experimental results demonstrated
the effectiveness of our proposed models.
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Chapter 4

Random Feature Maps for Efficiently
Using Feature Interactions

4.1 Introduction
Kernel methods enable learning in high, possibly infinite-dimensional feature spaces without
explicitly expressing them. In particular, kernels that model feature combinations such
as polynomial kernels, the ANOVA kernel, and the all-subsets kernel [9, 64] have been
shown to be effective for a number of tasks in computer vision and natural language
understanding [39, 21]. However their scalability remains a challenge; support vector
machines (SVMs) with non-linear kernels require O(N2) time and O(N2) memory for
training and O(N) time and memory for evaluation, where N is the number of training
instances [12].

To address this issue several researchers have proposed random feature maps Z : Rd →
RD for kernels K(·, ·) : Rd × Rd → R that satisfy

E[〈Z(x), Z(y)〉] = K(x,y). (4.1)

The idea is to perform classification, regression, or clustering on a corresponding high-
dimensional feature space approximately but efficiently using linear models in a low-
dimensional space by mapping the data points using Z(·). Examples include random
Fourier feature maps that approximate shift-invariant kernels: K(x,y) = k(x− y) [59];
random Maclaurin feature maps that approximate dot product kernels [32]: K(x,y) =
k(〈x,y〉); tensor sketching for polynomial kernels: Km

poly(x,y; c) := (〈x,y〉+ c)m [56], and
so on [40, 55, 42, 67, 40].

FMs [60, 61] and variants [9, 10, 49] also model feature combinations without explicitly
computing them, similar to kernel methods, but have better scalability during evaluation.
These methods can be thought of as a two-layer neural network with polynomial activations
with a fixed number of learnable parameters (see (2.23)). However, unlike kernel methods,
their optimization problem is generally non-convex and difficult to solve. But due to their
efficiency during evaluation FMs are attractive for large-scale problems and have been
successfully applied to applications such as link prediction and recommender systems.
This work analyzes the relationship between polynomial kernel models and factorization
machines in more detail.

In this chapter, we present a random feature map for the itemset kernel that takes
into account all feature combinations within a family of itemsets S ⊆ 2[d]. To the best
of our knowledge, the random feature map for the itemset kernel is novel. The itemset
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kernel includes the ANOVA kernel, all-subsets kernel, and standard dot product, so linear
models using this map are an alternative to the ANOVA or all-subsets kernel SVMs, FMs,
and all-subsets model. They scale well with the size of the training dataset, unlike kernel
methods, and their optimization problem is convex and easy to solve, unlike that of FMs.
We also present theoretical analyses of the proposed random feature map and discuss the
relationship between linear models trained on these features and factorization machines.
Furthermore, we present a faster and more memory-efficient random feature map for the
ANOVA kernel based on the signed circulant matrix technique [20]. Finally, we evaluate
the effectiveness of the feature maps on several datasets.

This chapter is organized as follows. In Section 4.2, we describe random feature
maps methodology and some existing methods. We present our basic algorithm and
some theoretical guarantees in Section 4.3. We introduce some extensions of the itemset
kernel and how to modify our algorithm for such extension in Section 4.4. Section 4.5
and Section 4.6 present faster and more memory-efficient algorithms than our basic
algorithm described in Section 4.2. We demonstrate the proposed methods on synthetic
and real-world datasets in Section 4.7 and Section 4.8. Most of the proofs are presented
in Section 4.10.

4.2 Random Feature Maps and Related Work
Rahimi and Recht [59] proposed the random Fourier feature map ZRF : Rd → RD for
shift-invariant kernels K(x,y) = k(x− y). Their method is based on Bochner’s theorem.

Theorem 4.1 (Bochner [59]). A continuous kernel K(x,y) = k(x− y) on Rd is positive
(semi) definite if and only if k is the Fourier transform of a non-negative measure.

From this theorem, for a shift-invariant kernel k, we have

k(x− y) =
1

Z

∫
p(ω) exp(i 〈ω,x− y〉)dω (4.2)

=
1

Z
Eω∼p[〈(cos(〈ω,x〉), sin(〈ω,x〉)), (cos(〈ω,y〉), sin(〈ω,y〉))〉] (4.3)

=
1

Z
Eω∼p,b∼U(0,2π)[

√
2 cos(〈ω,x〉+ b)

√
2 cos(〈ω,y) + b〉], ∃Z > 0, (4.4)

where Z > 0 and p is the scaled Fourier transform of k such that
∫
p(ω)dω = 1 and U is

a uniform distribution. Therefore, the map ZRF : Rd → RD

ZRF(x) :=

√
2

ZD
cos(Ωx+ b), (4.5)

where Ω ∈ RD×d and b ∈ [0, 2π]D such that ωj ∼ p and bj ∼ U(0, 2π), and cos is
element-wise, approximates the feature space induced by k in the sense of the dot product:

Eω∼p,b∼U(0,2π) [〈ZRF(x), ZRF(y)〉] = k(x− y) = K(x,y). (4.6)

The dot product of two random Fourier feature maps 〈ZRF(x), ZRF(y)〉 can be interpreted
as a Monte Carlo approximation of K(x,y) = k(x − y). Linear models with ZRF

approximates the KR model with K and scale well w.r.t N .
Based on their idea, many random feature maps for various kernel functions have been

proposed [32, 56, 40, 55, 42, 67, 40]. In this section, we introduce the existing random
feature maps for dot product kernels and polynomial kernels [32, 56].
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Algorithm 3 Random Maclaurin Map

Input: x ∈ Rd, p > 0, an = k(n)(0)/n! for all n ∈ N≥0

1: for s← 1, . . . , D do
2: Generate non-negative integer n with distribution p(n) ∝ 1/(pn+1);
3: Generate n Rademacher vectors ωs,1, . . . ,ωs,n ∈ {−1,+1}d;
4: Compute Zs =

√
anpn+1

∏n
j=1 〈ωs,j,x〉;

5: end for
Output: ZRM(x) = (Z1, . . . , ZD)>/

√
D

Algorithm 4 Tensor Sketching for m-order Polynomial Kernel

Input: x ∈ Rd

1: Compute m different count sketches of x: c(1), . . . , c(m) ∈ RD;
2: Compute FFT of each count sketch: c(1), . . . , c(m) ← FFT(c(1)), . . . ,FFT(c(m));
3: Compute element-wise product: z ← c(1) ◦ · · · ◦ c(m);
Output: ZTS(x) = FFT−1(z)

4.2.1 Random Feature Maps for Polynomial Kernels

The random Maclaurin (RM) feature map [32] is for dot product kernels: K(x,y) =
k(〈x,y〉). It uses the Maclaurin expansion of k(·): k(x) =

∑∞
n=0 anx

n, where an =
k(n)(0)/n! is the n-th coefficient of the Maclaurin series. It uses two distributions:
porder(N = n) ∝ 1/pn+1, where p > 1, and the Rademacher distribution (a fair coin
distribution). The RM map procedure is shown in Algorithm 3. Its computational cost is
O
(∑D

s=1Nsd
)
time and memory, where Ns (s ∈ [D]) is the order of the s-th randomized

feature, especially O(Ddm) time and memory when the objective kernel is the homogeneous
polynomial kernel: Km

HP(x,y) = 〈x,y〉m.1
The tensor sketching (TS) [56] is a random feature map for the homogeneous polynomial

kernel Km
poly(x,y; 0). Because polynomial kernels Km

poly(x,y; c) = (c + 〈x,y〉)m can be
written as Km

HP by concatenating
√
c to each vector, a TS can approximate Km

poly. Although
an RM feature map can also approximate polynomial kernels, the TS can approximate
them more efficiently. The TS is based on a fast algorithm to compute a count sketch [13]
of an outer product of two vectors [52]. The count sketch is a method to estimate the
frequency of all items in a stream [13], and the machine learning community uses it as
a dimensionality reduction method [71] since it preserves the standard dot products in
the sense of expectation. Although the count sketch of an outer product of two vectors
approximates polynomial kernels, it is prohibitive to compute an outer product of two
vectors naïvely from the point of view of computational cost. Therefore, Pham and Pagh
[56] showed that for two vectors the convolution of two count sketches is a count sketch of
an outer product of two vectors, and the former can be computed efficiently. This idea is
originally proposed to approximate the matrix multiplications of two matrices [52] and
based on an efficient algorithm for the convolution of polynomials using a fast Fourier
transform (FFT) and an inverse FFT (IFFT). Algorithm 4 shows the procedure of the TS
for the m-order polynomial kernel. Their tensor sketch algorithm takes O(m(d+D logD))
time and O(md logD) memory and is thus more efficient than the random Maclaurin

1When the objective kernel is a homogeneous polynomial kernel, one can fix n = m and porder(N =
m) = 1 otherwise 0; that is, do not sample n.
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Algorithm 5 Random Kernel Feature Map

Input: x ∈ Rd, S ⊆ 2[d]

1: Generate D Rademacher vectors ω1, . . . ,ωD ∈ {−1,+1}d;
2: Compute D itemset kernels KS(x,ωs) for all s ∈ [D];
Output: Z(x) = 1√

D
(KS(x,ω1), . . . , KS(x,ωD))>;

algorithm.
Linear models using the TS or RM feature map are a good alternative to polynomial

kernel SVMs and PNs [32, 56]. Similarity, although linear models using a random feature
map that approximates the itemset kernel would be a good alternative for the ANOVA
or all-subsets kernel SVMs, FMs, and all-subsets models, such a map has not yet been
reported.

4.3 Random Feature Map for Itemset Kernel
In this section, we propose a random feature map for the itemset kernel, showed some
theoretical analyses, and presented a faster and more memory-efficient algorithm especially
for the ANOVA kernel. We recall that the itemset kernel for a given family of itemsets
S ⊆ 2[d] is defined as

KS(x,y) :=
∑
V ∈S

∏
j∈V

xjyj = 〈φS(x), φS(y)〉 . (2.22)

As shown in Algorithm 5, the proposed random kernel (RK) map is simple: (1) generate D
Rademacher vectors from a Rademacher distribution and (2) compute D itemset kernels
between the original feature vector and each Rademacher vector. Mathematically, the RK
feature map ZRK : Rd → RD for the itemset kernel KS (2.22) is defined as

ZRK(x;S,ω1, . . . ,ωD) :=
1√
D

(KS(x,ω1), . . . , KS(x,ωD))>, (4.7)

where ωs ∈ {−1, 1}d is the vector sampled from the Rademacher distribution. The RK
map algorithm is shown in Algorithm 5. The following proposition states that the RK
feature map approximates the itemset kernel.

Proposition 4.2. Let ZRK : Rd → RD be the random kernel (RK) feature map in Algo-
rithm 5. Then, for all x,y ∈ Rd and S ⊆ 2[d],

Eω1,...,ωD [〈ZRK(x;S,ω1, . . . ,ωD), ZRK(y;S,ω1, . . . ,ωD)〉] = KS(x,y). (4.8)

Hence, linear models using the proposed RK feature map can use feature combinations
efficiently and are a good alternative to FMs and all-subsets models.

4.3.1 Analyses

We next present some theoretical results for the RK feature map. We first analyze the
precision of the RK feature map. Let E(x,y) be the approximation error: E(x,y) :=
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〈ZRK(x), ZRK(y)〉−KS(x,y). We assume that the `1 norm of the feature vector is bounded:
‖x‖1 ≤ R, where R ∈ R>0. This assumption is the same as the one used in previous
research [32, 56, 59]. For convenience, we use the same notation as Kar and Karnick [32]:
Bp(0, R) = {x | ‖x‖p ≤ R}. With this notation, the assumption above is written as
x ∈ B1(0, R). Then, we have the following useful absolute error bound.

Lemma 4.3. For all x,y ∈ B1(0, R) ⊆ Rd, and S ⊆ 2[d],

p(|E(x,y)| ≥ ε) ≤ 2 exp

(
−Dε2

2e4R

)
. (4.9)

This upper bound does not depend on the family of itemsets S or on the dimension of
the original feature vectors d. This result comes from the assumption that data points are
restricted in B1(0, R).

Next, we consider the uniform bound on the absolute error of the RK feature map.
Kar and Karnick [32] derived the uniform bound on the absolute error of the RM feature
map and we follow their approach. Let the domain of feature vectors B ⊆ B1(0, R) be the
compact subset of Rd. Then, B can be covered by a finite number of balls [15], and one
can obtain the following uniform bound.

Lemma 4.4. Let B ⊆ B1(0, R) be a compact subset of Rd. Then, for all S ⊆ 2[d],

p

(
sup
x,y∈B

|E(x,y)| ≥ ε

)
≤ 2

(
32R
√
de2R

ε

)2d

exp

(
−Dε

2

8e4R

)
. (4.10)

This uniform bound says that, by taking D = Ω
(
de4R

ε2
log
(
R
√
de2R

εδ

))
, the absolute

error is uniformly lower than ε with a probability of at least 1− δ. This uniform bound
also does not depend on the family of itemsets S; it depends only on ε, the dimension
of random feature map D, the dimension of the original feature vectors d, and the upper
bound on the `1 norm of the original feature vectors R. The behavior of this uniform
bound w.r.t d, ε, and δ is expressed in the form of D = Ω

(
d
ε2

log
(√

d
εδ

))
. This is the same

as for the RM feature map [32].
We have discussed the upper bounds of the RK feature map for the itemset kernel.

Next, we consider the absolute error bound for KS = Km
A (that is, S =

(
[d]
m

)
). Here, we

also assume that x ∈ B1(0, R).

Lemma 4.5. Let S =
(

[d]
m

)
. Then, for all x,y ∈ B1(0, R) ⊆ Rd,

p(|E(x,y)| ≥ ε) ≤ 2 exp

(
− Dε2

2R4m

)
. (4.11)

The absolute error bound of Lemma 4.5 is the same as the absolute error bound of the
Tensor Sketching [56].

As described above, the algorithm of the proposed RK feature map uses the Rademacher
distribution for random vectors. Here, we discuss the generalized RK feature map, which
allows the use of other distributions.
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Proposition 4.6. If the distribution of ωs for all s ∈ [D] in Algorithm 1 has (i) a mean
of 0 and (ii) a variance of 1, the RK feature map approximates the itemset kernel.

There are many distributions with a mean of 0 and a variance of 1: the standard Gaus-
sian distribution N (0, 1), the uniform distribution U(−

√
3,
√

3), the Laplace distribution
Laplace

(
0, 1/
√

2
)

= 1√
2

exp
(
−
√

2|ω|
)
, and so on. Which distribution should be used?

The next lemma says that the Rademacher distribution should be used.

Lemma 4.7. Let P0,1 be the set of all distributions with a mean of 0 and a variance of 1,
and let p∗ ∈ P0,1 be the Rademacher distribution. Then, for all p ∈ P0,1 and S ⊆ 2[d],

sup
x,y∈B∞(0,R)

Vω1,...,ωD∼p∗ [〈ZRK(x), ZRK(y)〉]

≤ sup
x,y∈B∞(0,R)

Vω1,...,ωD∼p[〈ZRK(x), ZRK(y)〉]. (4.12)

That is, a Rademacher distribution achieves the minimax optimal variance for the RK
feature map among the valid distributions.

Finally, we discuss the computational complexity of the RK feature map in two special
cases. When KS(·, ·) = Km

A (·, ·), a D-dimensional RK feature map takes O(Ddm) time
and O(Dd) memory because an m-order ANOVA kernel can be computed in O(dm)
time and O(m) memory by using dynamic programming [9, 64]. This is the same as
the computational cost for an RM feature map for an m-order polynomial kernel. For
KS(·, ·) = Kall(·, ·), a D-dimensional RK feature map can be computed in O(Dd) time
and O(Dd) memory.

4.3.2 Loglinear Time RK Feature Map for ANOVA Kernel

As described above, the computational cost of the proposed RK feature map in Algorithm 5
clearly depends on the computational cost of the itemset kernel KS . This is a drawback
of the RK feature map. The computational cost of the RK feature map for an m-order
ANOVA kernel is O(Ddm) time. This cost is the same as that of the RM feature map for
an m-order polynomial kernel and larger than that for the TS (O(m(d+D logD))). The
number of parameters for the proposed method for an m-order ANOVA kernel is O(Dd),
which is also larger than that of the TS (O(md logD)) because m� d < D in most cases.

While the random Fourier (RF) feature map, which does not have the order parameter
m (ZRF(x) =

√
2/D cos(Πx+ b), where Π ∈ RD×d, b ∈ Rd), also takes O(Dd) time and

O(Dd) memory, methods have recently been proposed that take O(D log d) time and O(D)
memory [20, 36]. In this section, we present a faster and more memory efficient RK feature
map for the ANOVA kernel based on these recently proposed methods, especially that of
Feng et al., which takes O(mD log d) time and O(D) memory.

First we explain signed circulant random feature (SCRF) [20]. The O(Dd) time
complexity of the RF feature map is caused by the computation of Πx. The SCRF
reduced it to O(D log d) time without loss of the key property of the RF feature map;
approximating the shift-invariant kernel. In the SCRF, without loss of generality, it is
assumed that D is divisible by d (D/d := T ) and that Π is replaced by the concatenation of
T projection matrices: Π̃ = (P (1);P (2); · · · ;P (T )). P (t) ∈ Rd×d, t ∈ [T ], is called a signed
circulant random matrix, which is a variant of the circulant matrix: P (t) = diag(σt)circ(ωt),
where σt ∈ {−1,+1}d is a Rademacher vector, ωt ∈ Rd is a random vector generated from
an appropriate distribution (e.g., the Gaussian distribution for the radial basis function
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kernel), and circ(ωt) ∈ Rd×d is a circulant matrix in which the first column is ωt. This
formulation clearly reduces the memory required for the RF feature map from O(Dd) to
O(2Td) = O(2D). Moreover, the product of Π̃ and x surprisingly can be converted into
FFT, IFFT, and the element-wise product of vectors which means that time complexity
can be reduced from O(Dd) to O(D log d).

Unfortunately, it is difficult to apply the SCRF technique to the RK feature map
because the computation of the itemset kernel does not require the product of a random
projection matrix and a feature vector in general. Fortunately, the ANOVA kernel, which
is a special case of the itemset kernel, can be computed efficiently [10] by using recursion:

Km
A (ω,x) =

1

m

m∑
t=1

(−1)t+1Km−t
A (ω,x)

〈
ω◦t,x◦t

〉
, (4.13)

where x◦p represents the p-times element-wise product of x. Hence, the RK feature map
for the ANOVA kernel can be written in matrix form:

ZRK(x) =
1

m
√
D

m∑
t=1

(−1)t+1am−t ◦ (Ω◦tx◦t), (4.14)

where Ω := (ω>1 ; · · · ;ω>D) ∈ RD×d is the matrix in which each row is the random vector
of the RK map, and at := (Kt

A(ω1,x), . . . , Kt
A(ωD,x))> ∈ RD is the vector of the t-order

ANOVA kernels (clearly, at can be regarded as an RK feature of the t-order ANOVA
kernel). Although computing Ω◦t in (4.14) seems costly, it is actually trivial when each
random vector ωs for all s ∈ [D] is generated from a Rademacher distribution. In this
case, Ω◦t = Ω if t is odd; otherwise, it is an all-ones matrix. Therefore, the SCRF
technique can be applied to the RK feature map for the ANOVA kernel. Doing this
reduces the computational cost of Ω◦tx◦t from O(Dd) to O(D log d) and thus that of the
RK feature map for the m-order ANOVA kernel from O(mDd) time and O(Dd) memory
to O(mD log d) time and O(D) memory. We call a random kernel feature map with the
signed circulant random feature a signed circulant random kernel (SCRK) feature map.

Although the original SCRF for the RF feature map introduces σ, resulting in a low
variance estimator for the shift-invariant kernel, when order m is even, σ is unfortunately
meaningless in the proposed RK feature map for the m-order ANOVA kernel case because
Km

A (−ω,x) = Km
A (ω,x). Therefore, the SCRK feature map for an even-order ANOVA

kernel may not be effective.

4.3.3 Relationship between FMs and RK Map for ANOVA Ker-
nel

The equation for linear models using the RK feature map for the second-order ANOVA
kernel ZRK(x) is:

fLM(ZRK(x);w) =
1√
D

D∑
s=1

wsK
2
A(ωs,x), (4.15)

where w ∈ RD is the weight vector for the RK feature map ZRK(x). Hence, linear models
using the RK feature map can be regarded as FMs with λ = w/

√
D and only one learnable

parameter λ and without the linear term. Therefore, theoretical results that guarantee the
generalization error of linear models using the RK map can be applied to the theoretical
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Algorithm 6 Random Kernel Map for the Weighted Itemset Kernel

Input: x ∈ Rd, S ⊆ 2[d], {wV }V ∈S
1: for s← 1, . . . , D do
2: Generate Rademacher vector ωs ∈ {−1,+1}d;
3: Compute Zs = KS(x,ωs; {

√
wV }V ∈S);

4: end for
Output: ZRK(x;S, {wV }V ∈S) = (Z1, . . . , ZD)>/

√
D

analysis of that of FMs. We leave this to future work. The same relationship holds between
linear models using the RK feature map for the all-subsets kernel and the all-subsets
model. Interestingly, it also holds between linear models using the RM feature map for the
polynomial kernel and lifted PNs, which are multi-convex formulation models of PNs [10].

4.4 Extensions of Itemset Kernel
In this section, we extend the itemset kernel (2.22) to the weighted itemset kernel and
item-multiset kernel, and then fix Algorithm 5 for these extensions.

4.4.1 Weighted Itemset Kernel

We first extend the itemset kernel (2.22) to weighted itemset kernel as

KS(x,y; {wV }V ∈S) :=
∑
V ∈S

wV
∏
j∈V

xjyj, (4.16)

where wV ∈ R≥0 for all V ∈ S is the weight for itemset V . Clearly, (4.16) is equivalent
to (2.22) when wV = 1 for all V ∈ S. Hereinafter, we refer the weighted itemset kernel as
the itemset kernel.

Fortunately, Algorithm 5 can be applied to the weighted itemset kernel with a simple
modification. Algorithm 6 shows the procedure of the RK map for the weighted itemset
kernel.

Proposition 4.8. Let ZRK : Rd → RD be the RK feature map in Algorithm 6. Then, for
all x,y ∈ Rd, S ⊆ 2[d], and {wV ∈ R≥0}V ∈S

Eω1,...,ωD [〈ZRK(x), ZRK(y)〉] = KS(x,y; {wV }V ∈S). (4.17)

4.4.2 Item-multiset Kernel and Redundant Feature Augmenta-
tion

In this section, we first introduce the item-multiset kernel, which is a generalization of
the (weighted) itemset kernel. The item-multiset kernel includes not only the itemset
kernel but also dot product kernels, so a linear model using a random feature map for the
item-multiset kernel can approximate many kernel machines and other related models like
FMs. We then introduce redundant feature augmentation (RFA), which enables random
feature maps to be constructed for the item-multiset kernel.
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Algorithm 7 Redundant Feature Augmentation

Input: x ∈ Rd,M⊆ Nd, {wm}m∈M, wm ∈ R≥0;
1: S̃ ← {};
2: dj ← maxm∈Mmj for all j ∈ [d], d̃←

∑d
j=1 dj;

3: Jj ← {1 +
∑j−1

i=1 di, . . . , dj +
∑j−1

i=1 di} for all j ∈ [d];
4: x̃← (x1, . . . , x1︸ ︷︷ ︸

d1

, x2, . . . , x2︸ ︷︷ ︸
d2

, x3, . . . , xd, . . . , xd︸ ︷︷ ︸
dd

) ∈ Rd̃; . x̃k = xj ∀k ∈ Jj

5: for each m ∈M do . Converts item-multiset to itemset
6: V ← {};
7: for j ← 1, . . . , d do
8: Pick k1, . . . , kmj ∈ Jj and append them to V : V ← V ∪ {k1, . . . , kmj};
9: end for
10: S̃ ← S̃ ∪ {V }, wV ← wm;
11: end for
Output: x̃, S̃, {wV }V ∈S̃

Item-multiset Kernel

For givenM⊆ Nd
≥0 and {wm ∈ R≥0}m∈M, we define (weighted) item-multiset kernel as

Kmulti
M (x,y; {wm}m∈M) :=

∑
m∈M

wm

d∏
j=1

x
mj
j y

mj
j . (4.18)

We call a non-negative integer vector m ∈M an item-multiset because it corresponds to
the multiset of items (mj corresponds to the multiplicity of j), and this is the reason we
call Kmulti

M the item-multiset kernel. The item-multiset kernel is clearly a generalization
of the itemset kernel (2.22): the item-multiset kernel is equivalent to the itemset kernel
when each m is a binary vector. The item-multiset kernel uses feature combinations
that include combinations of the same features, e.g., x2

1, that are not used in the itemset
kernel. The item-multiset kernel thus includes polynomial kernels. Moreover, it includes
the dot product kernels: given a dot product kernel Kdot(·, ·; {an}∞n=0), we can represent
it as the item-multiset kernel Kmulti

M (·, ·; {wm}m∈M) by taking M = Nd
≥0 and wm =

an · |m|!/(m1! · · ·md!).
Because the item-multiset kernel includes the itemset kernel and dot product kernels,

many kernel machines and related models can be approximated by using a random feature
map for the item-multiset kernel if there is one. At a glance, the item-multiset kernel
can be approximated by the RK map in Algorithm 5 since the item-multiset kernel is
closely similar to the itemset kernel. Unfortunately, the RK map cannot approximate
the item-multiset kernel. A simple counterexample is a polynomial kernel 〈·, ·〉m with
m > 1. We show the proof of this in the Appendix although it requires only elementary
calculation.

4.4.3 Redundant Feature Augmentation

Our basic idea for constructing random feature maps for an item-multiset kernel is (1)
converting an item-multiset kernel to an equivalent itemset kernel and then (2) using
the RK map for such converted itemset kernel. We here propose a method converting
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an item-multiset kernel to an itemset kernel and call it redundant feature augmentation
(RFA). The RFA procedure is shown in Algorithm 7. The following proposition states that
RFA can convert an item-multiset kernel Kmulti

M (·, ·; {wm}m∈M) on Rd to an equivalent
itemset kernel KS̃(·, ·; {wV }V ∈S̃) on Rd̃.

Proposition 4.9. Given an item-multiset kernel Kmulti
M (·, ·; {wm}) (i.e., a family of item-

multisetM and weights {wm}) and feature vectors x,y ∈ Rd, RFA outputs a family of
itemsets S̃ and x̃, ỹ ∈ Rd̃ such that

KS̃(x̃, ỹ; {wV }) = Kmulti
M (x,y; {wm}). (4.19)

Proof. In lines 2-4 (Algorithm 7), RFA converts the input feature vector x ∈ Rd to the
augmented feature vector x̃ ∈ Rd̃:

x̃ = (x1, . . . , x1︸ ︷︷ ︸
d1

, x2, . . . , x2︸ ︷︷ ︸
d2

, . . . , xd, . . . , xd︸ ︷︷ ︸
dd

), (4.20)

where dj = maxm∈Mmj is the maximum multiplicity of j-th feature in M (obviously,∑d
j=1 dj = d̃). Jj = {1 +

∑j−1
i=1 di, . . . , dj +

∑j−1
i=1 di} ⊂ [d̃] in line 3 is the set of indices

such that x̃k = xj, ∀k ∈ Jj. Then, in lines 5-11, RFA converts each item-multiset m in
M to the itemset V such that

∏
j∈V

x̃j ỹj =
d∏
j=1

(xjyj)
mj (4.21)

for all x,y ∈ Rd. In line 8, mj indices {k1, k2, . . . , kmj} are chosen from Jj. Because Jj is
the set of indices such that x̃k = xj, ∀k ∈ Jj ,

∏mj
i=1 x̃ki ỹki = (xjyj)

mj holds. Therefore, for
the outputs of RFA, Equation (4.19) holds, i.e., RFA converts an item-multiset kernel to
an equivalent itemset kernel.

An example result is shown below.

Example 4.1. Let x = (x1, x2, x3)> ∈ R3,M = {(1, 3, 0), (2, 2, 1), (0, 0, 4)}, and wm = 1
for all m ∈M. Then, since the maximum multiplicity of each feature (i.e., maxm∈Mmj)
is 2, 3, and 4, RFA outputs

x̃ = (x1, x1, x2, x2, x2, x3, x3, x3, x3)> ∈ R9, (4.22)

S̃ = {{1, 3, 4, 5}, {1, 2, 3, 4, 6}, {6, 7, 8, 9}}, (4.23)
{wV }V ∈S̃ = {1, 1, 1} (4.24)

with J1 = {1, 2}, J2 = {3, 4, 5}, and J = {6, 7, 8, 9}. Clearly, for redundant augmented
feature vectors x̃ and ỹ and converted family of itemsets S̃, Kmulti

M (x,y) = KS̃(x̃, ỹ) holds.

Since the item-multiset kernel Kmulti
M (·, ·; {wm}m∈M) on Rd can be converted to an

equivalent itemset kernel KS̃(·, ·; {wV }V ∈S̃) on Rd̃ by using RFA, the RK map with RFA,

ZRK(x;M, {wm}m∈M) = ZRK(x̃; S̃, {wV }V ∈S), (4.25)

where x̃, S̃, and {wV }V ∈S are the outputs of RFA for x,M, and {wm}m∈M, can approxi-
mate the item-multiset kernel Kmulti

M (·, ·; {wm}m∈M). The RK map with RFA procedure
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Algorithm 8 Random Kernel Map with Redundant Feature Augmentation

Input: x ∈ Rd,M⊆ Nd, {wm} ∈ RM≥0

1: Compute x̃, S̃, and {wV }V ∈S̃ by using RFA in Algorithm 7;
2: for s = 1, . . . , D do . Applies the RK map to x̃, S̃, and {wV }V ∈S̃
3: Generate Rademacher vector ωs ∈ {−1,+1}d̃;
4: Compute Zs = KS̃(x̃;ωs, {

√
wV }V ∈S̃);

5: end for
Output: ZRK(x;M, {wm}m∈M) = (Z1, . . . , ZD)>/

√
D

for the item-multiset kernel Kmulti
M (·, ·; {wm}m∈M) is shown in Algorithm 8. In principle,

any random feature map for the itemset kernel with RFA can be used for the item-multiset
kernel. Therefore, we mainly consider the itemset kernel hereinafter.

Unfortunately, Algorithm 8 cannot be used for allM∈ Nd
≥0. While the cardinality of

the family of itemset S ⊆ 2[d] is always finite, that of the family of item-multisetM⊆ Nd

can be countable. If it is, RFA cannot be applied because it requires explicit computation
of a countable infinite-dimensional vector x̃. In Section 4.6, we show the subsampled RK
map, which generates sparse random features when the original feature vector x is sparse.
Interestingly, the subsampled RK map with RFA solves the issue of not being able to use
RFA whenM is countable.

The method used for construction of S̃ in Algorithm 7 (lines 10–17) is not unique. We
introduce another construction method in Section 4.6. The subsampled RK map with
RFA based on it includes the RM map as a special case.

4.5 Sparse Random Kernel Map
Although random feature maps overcome the scalability issue of canonical kernel methods,
it is hard to use random feature maps for very-large-scale sparse datasets, which can
reside in memory due to their sparsity. Most random feature maps generate dense random
features and thus cause memory explosion when the dataset is very large and sparse. For
example, consider a dataset X with N = 107, d = 105, and sparsity of 99.99%. The
number of non-zero entries in this dataset is nnz (X) = 0.0001×ND = 108, so this dataset
requires 108 × 64 × 3 bit = 800 × 3 MB even if it is represented as a sparse matrix in
coordinate format, which represents a sparse matrix as a set of lists of values, row indices,
and column indices of the non-zero entries. If a random feature map is applied to this
dataset with D = 2d, the number of non-zero entries of random feature matrix Z ∈ RN×D

is nnz (Z) = ND = 2×1/(1−0.9999)×nnz (X), so 2×10, 000×800 MB = 16 TB memory
is required, which would be prohibitive in most cases. One might consider that using a
stochastic solver such as stochastic gradient descent [11] can solve this memory issue by not
computing random feature maps of all instances before optimization but only computing
that of one instance in each optimization iteration. Unfortunately, the computational cost
of each optimization iteration is dominated by that of computing a random feature map.
Given a random feature vector, the computational cost of each optimization iteration
of a stochastic solver is typically O(D). On the other hand, the computational cost of
computing a random feature is typically O(Dd). There have been several researches
for efficient online kernel learning with random features [16, 47]. They have achieved
good prediction performances with small D. However, their computational cost at each
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iteration is also dominated by that of computing a random feature map. Although several
researchers have proposed structured random feature maps [36, 20, 75], which run more
efficiently than non-structured random feature maps (typically O(D log d) time), their
computational costs also dominate that of each stochastic optimization iteration.

In this section, we propose a variant of the RK map. Like the SCRK map, this
algorithm is faster and more memory efficient than the RK map. Moreover, this algorithm
produces sparse random features when original feature is sparse, i.e., this algorithm is
applicable to large-sclae sparse datasets.

Each element of the RK map ZRK(x;S, {wV }V ∈S)s is the itemset kernel between x
and the sampled random vector ωs: KS(x,ωs; {

√
wV }V ∈S). From the definition of the

itemset kernel in (2.22), KS(x,ωs) = 0 if supp(x) ∩ supp(ωs) = ∅. Therefore, if random
basis vectors ωs for all s ∈ [D] are sparse, the RK map generates sparse random features
for sparse original feature x. Proposition 4.6 states that all distributions with a mean
of zero and a variance of one can be used for the RK map. Thus, we propose using the
following distribution, which maintains the approximation property of the RK map and
generates sparse random features for a sparse original feature vector:

ω =


−1√
1−p with probability 1−p

2
,

0 with probability p,
1√
1−p with probability 1−p

2
,

(4.26)

where p ∈ [0, 1) is the sparsity parameter. We call this distribution a sparse Rademacher
distribution and call an RK map with a sparse Rademacher distribution a sparse RK map.
The mean and variance of the sparse Rademacher distribution are clearly zero and one,
respectively, so it can be used as the distribution of the random basis vectors for the RK
map. The larger p, the sparser the random basis vectors and hence the sparser the random
features. Moreover, sparse basis vectors require less memory than dense random basis
vectors. Furthermore, ZRK(x;S, {wV }V ∈S)s = KS(x,ωs; {

√
wV }V ∈S) can be computed

more efficiently when x and/or ωs are/is sparse. Therefore, a sparse RK map runs faster
and uses less memory than a canonical RK map based on the Rademacher distribution.
To be more precise, a sparse RK map requires O(dD(1− p)) memory for random basis
vectors in expectation. For an m-order ANOVA kernel, a well-known example of the
itemset kernel, a sparse RK map runs in O(mdD(1− p)) time in expectation.

4.5.1 Efficient Sampling Algorithm from Sparse Rademacher Dis-
tribution

Next, we present an efficient algorithm for sampling random basis vectors from a sparse
Rademacher distribution. It runs in linear time w.r.t the number of non-zero entries in the
sampled basis vectors, O(nnz (Ω)) (i.e, O(Dd(1− p)) in expectation) time whereas a naïve
algorithm requires O(Dd) time. The procedure of the efficient sampling algorithm is shown
in Algorithm 9 2. The key components of our algorithm are Walker’s alias method [69],
which is a sampling method for discrete distributions, and the Fisher-Yates (FY) shuffle
algorithm [34], a method for sampling a permutation in linear time. Instead of naïvely

2In an actual implementation, ω1, . . . ,ωD are represented as a sparse matrix such as in coordinate
format, compressed sparse row format, or compressed sparse column format. The sampling algorithm
outputs not only the value of the non-zero entries but also several lists of integers that represent the
indices of the non-zero entries. The lists created depend on the format of the sparse matrix. We thus
simply denote “Output: ω1, . . . ,ωD” in Algorithm 9.
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Algorithm 9 Efficient Sampling Algorithm for Sparse Rademacher Distribution
Input: p ∈ [0, 1), d, D.
1: Preprocess of Walker’s alias method for a binomial distribution Bin(1− p, d);
2: aj ← j for all j ∈ [d];
3: for s← 1, . . . , D do
4: Sample the number of non-zero elements ds in ωs from Bin((1 − p), d) by using

Walker’s alias method; . O(1)
5: for i← 1, . . . , ds do . Determines indices of non-zero elements;
6: Sample u from [d− i+ 1] uniformly;
7: Shuffle: ai, au+i−1 ← au+i−1, ai;
8: end for
9: Generate ωs,ai ∈ {−1, 1} from Rademacher distribution for all i ∈ [ds];
10: ωs,ai ← ωs,ai/

√
1− p for all i ∈ [ds];

11: end for
Output: ω1, . . . ,ωD . Regards non-sampled entries as zeros

sampling ωs,j from a sparse Rademacher distribution Dd times, Algorithm 9 repeats the
following for all s ∈ [D].

1. The number of non-zero elements ds in ωs is sampled from the binomial distribution
Bin(1− p, d) (line 4).

2. The indices of non-zero elements a1, . . . , as (lines 5-8) are sampled by using a
portion of the FY shuffle algorithm. Because the proposed algorithm requires not
a permutation of [d] but only a subset of [d] with ds elements, the procedure from
line 5 to line 8 is repeated only ds times (this procedure is repeated d times in the
original FY shuffle algorithm).

3. The values of non-zero elements ωs,a1 , . . . , ωs,ads are sampled.

The following proposition guarantees the efficiency and correctness of Algorithm 9.

Proposition 4.10. Algorithm 9 runs in O(nnz (Ω)) and the distribution of its output is
the sparse Rademacher distribution (4.26).

Proof. We first show that Algorithm 9 runs in O(nnz (Ω)). The computational cost of
each component in Algorithm 9 are as follows:

• The preprocess for Walker’s alias method: O(d) (line 1).

• The preprocess for the FY shuffle: O(d) (line 2).

• Sampling the number of non-zero elements ds in ωs: O(1) (line 4).

• Sampling the indices of non-zero elements a1, . . . , as in ωs by using a portion of the
FY shuffle algorithm: O(ds) (lines 5-8).

• Sampling the values of non-zero elements ωs,a1 , . . . , ωs,as in ωs: O(ds) (line 9 and
10).
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Algorithm 10 Subsampled Random Kernel Map

Input: x ∈ Rd, S ⊆ 2[d], {wV }, {Sλ}λ∈Λ ⊆ 2S , {αλ}λ∈Λ ∈ R|Λ|≥0, s.t.
∑

λ∈Λ αλKSλ(·, ·) =

KS(·, ·), and {pλ}λ∈Λ ∈ ∆|Λ|−1 s.t. pλ > 0 ∀λ ∈ Λ.
1: for s← 1, . . . , D do
2: Sample index of sub-family of itemsets: λs ∈ Λ with probability pλs ;
3: Generate Rademacher vector ωs ∈ {−1, 1}d;
4: Zs ←

√
αλs/pλsKSλs (x,ωs; {

√
wV }V ∈Sλs );

5: end for
Output: Z(x) = (Z1, . . . , ZD)>/

√
D

Therefore, the computational cost of Algorithm 9 is O(d+
∑D

s=1 ds) = O(nnz (Ω)), which
is linear w.r.t the number of non-zero elements of the sampled random basis vectors. Next,
we show that the distribution of ωs,j is the sparse Rademacher distribution (4.26). The
probability of ωs,j 6= 0 in Algorithm 9 is

p(ωs,j 6= 0) =
ds∑
k=1

p(j is included in a1, . . . , ads | ds = k)p(ds = k) (4.27)

=
d∑

k=1

(
d−1
k−1

)(
d
k

) (d
k

)
pd−k(1− p)k (4.28)

= (1− p)
d−1∑
k′=0

(
d− 1

k′

)
pd−1−k′(1− p)k′ = 1− p. (4.29)

Thus, both the probability of ωs,j = 1/
√

1− p and ωs,j = −1/
√

1− p are (1 − p)/2. It
means that ωs,j is governed by the sparse Rademacher distribution. The independence of
each element can be derived in a similar calculation, so we omit it.

Note that not only the Rademacher distribution but also other distributions with
a mean of zero and a variance of one can be used in Algorithm 9 (line 9 and 10), In
other words, although we use a sparse version of the Rademacher distribution, one can
use not only a sparse version of the Rademacher distribution but also a sparse version
of the standard Gaussian distribution N (0, 1), the uniform distribution U(−

√
3,
√

3),
the Laplace distribution Laplace

(
0, 1/
√

2
)

= 1√
2

exp
(
−
√

2|ω|
)
, etc. This is easily seen

from Proposition 4.6. The reason we use a sparse Rademacher distribution is Lemma 4.7:
the Rademacher distribution achieves the minimax optimal variance of the approximation
error of the RK map among the distributions with a mean of zero and a variance of one.

4.6 Subsampled Random Kernel Map
The next proposed method subsampled RK map also generates sparse random features
when the original feature vector x is sparse. Moreover, the subsampled RK map solves
the issue of RFA described in Section 4.4.3: RFA cannot be used for a countable family of
item-multisetM.

The subsampled RK map procedure is shown in Algorithm 10. The subsampled
RK map has some hyperparameters: Λ, {Sλ}λ∈Λ ⊆ 2S , {pλ > 0}λ∈Λ, and {αλ > 0}λ∈Λ.
{Sλ}λ∈Λ is a family of S, i.e., a set of subset of S. {pλ}λ∈Λ is a probability distribution on
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{Sλ}. {αλ}λ∈Λ is a set of weights for {Sλ}, which is introduced to satisfy the requirement
of the approximation in (4.1). Λ is an index set and introduced for convenience. Each
feature of the canonical RK feature vector is KS(x,ωs; {

√
wV }V ∈S) and it uses all itemsets

S as in (4.7). On the other hand, each feature of the subsampled RK feature vector
ZSubRK(x)s does not use all itemsets S but use a subset Sλ of S:

ZSubRK(x;S, {wV }V ∈S)s =
√
αλs/pλsKSλs (x,ωs; {

√
wV }V ∈Sλs ). (4.30)

Sλs is sampled from {Sλ} in accordance with {pλ} (in line 2).
The following proposition states that the subsampled RK map approximates the

item-multiset kernel.

Proposition 4.11. For all x,y ∈ Rd, S ⊆ 2[d], and {wV }V ∈S, the subsampled RK map
approximates the itemset kernel; i.e.,

E[〈ZSubRK(x), ZSubRK(y)〉] = KS(x,y; {wV }) (4.31)

holds if the inputs of the subsampled RK map {Sλ ⊆ S}λ∈Λ, {αλ ∈ R≥0}λ∈Λ ⊆ and
{pλ}λ∈Λ ∈ ∆|Λ|−1 satisfy∑

λ∈Λ

αλKSλ(·, ·) = KS(·, ·), pλ > 0 ∀λ ∈ Λ. (4.32)

Proof. It is sufficient to prove E[ZSubRK(x)s · ZSubRK(y)s] = KS(x,y):

E[ZSubRK(x)s · ZSubRK(y)s] =
∑
λ∈Λ

pλE
[√

αλ
pλ
KSλ(x,ω)

√
αλ
pλ
KSλ(y,ω)

]
(4.33)

=
∑
λ∈Λ

pλ
αλ
pλ

E [KSλ(x,ω)KSλ(y,ω)] (4.34)

=
∑
λ∈Λ

αλKSλ(x,y) = KS(x,y). (4.35)

(4.35) follows from the condition (4.32) and the approximation property of the canonical
RK map.

The idea of the subsampled RK map is similar to that of the sparse RK map. Each
element in the RK map is an itemset kernel between a feature vector and a sampled
random base ωs, as described above. From the definition of the itemset kernel (2.22),
the itemset kernel can be zero if the original feature vector x is sparse and the family of
itemsets S is small. For example, KS′(x, ·) = 0 if S ′ = {V : V ∈ S, V 3 1} for all x such
that x1 = 0. Therefore, the RK map can be made to generate a sparse random feature
vector when the original feature vector is sparse by modifying the algorithm of the RK
map: (1) sampling S ′ ⊆ S such that |S ′| � |S| from a family of S: {Sλ}λ∈Λ and (2) using
sampled S ′ instead of all itemsets S.

4.6.1 Choice of Family of S
As described above, the subsampled RK map has some hyperparameters: an index set
Λ (it can be considered a subset of 22[d] or 2S), a family of S: {Sλ}λ∈Λ, probabilities
{pλ}λ∈Λ, and weights {αλ}λ∈Λ. We must specify these hyperparameters such that the
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Algorithm 11 Subsampled Random Kernel Map with RFA

Input: x ∈ Rd, M ⊆ Nd
≥0, {wm}, {Mλ}λ∈Λ ⊆ 2M, {αλ}λ∈Λ ∈ R|Λ|≥0, s.t.∑

λ∈Λ αλKMλ
(·, ·) = KM(·, ·), and {pλ}λ∈Λ ∈ ∆|Λ|−1 s.t. pλ > 0 ∀λ ∈ Λ.

1: for s← 1, . . . , D do
2: Sample index of sub-family of ite-multimsets: λs ∈ Λ with probability pλs ;
3: Compute S̃λs , x̃, and {wV }V ∈S by using RFA forMλs and x;
4: Generate Rademacher vector ωs ∈ {−1, 1}d̃;
5: Zs ←

√
αλs/pλsKSλs (x̃,ωs; {

√
wV }V ∈Sλs );

6: end for
Output: ZSubRK(x;M, {wm}m∈M) = (Z1, . . . , ZD)>/

√
D

condition (4.32) is satisfied. Fortunately, it is not hard to construct only valid ones. If
{Sλ} is a partition of S and αλ = 1 for all λ ∈ Λ, the condition (4.32) holds for any
{pλ > 0}. However, the choice of these hyperparameters can greatly affect the sparsity
and approximation performances of the subsampled RK map.

From the point of view of sparsity, we propose a family of S such that the features
used in each family of itemsets is restricted:

Λ =

(
[d]

k

)
,Sλ = {V ∈ S : V ⊆ λ}, (4.36)

where k ∈ N>0 is the number of features used in each small family of itemsets, Sλ. In
this case, Sλ ⊆ S is the family of itemsets that use only the features included in λ. The
following is an example for the choice of the family of S.

Example 4.2. Let d = 3, S = {{1, 2}, {1, 3}, {2}}, and k = 2. Then,

Λ = {{1, 2}, {1, 3}, {2, 3}}, {Sλ}λ∈Λ = {{{1, 2}, {2}}, {{1, 3}}, {{2}}}. (4.37)

If this construction of {Sλ}λ∈Λ is used for the subsampled RK map with a small k, the
subsampled RK map generates sparse random features (when the original feature vector is
sparse). However, this construction cannot be used for all S and k. When k < maxV ∈S |V |,
there are no valid {Sλ} and {αλ} because

⋃
λ∈Λ Sλ 6= S. Moreover, if k is set to a large

value for constructing a valid {Sλ} and {αλ}, |Sλ| becomes large, so the random feature
vector is not sparse. There are, however, several advantages.

1. This construction method with k ≥ m is valid for the m-order ANOVA kernel, which
is a well-known example of the itemset kernel.

2. The subsampled RK map with this construction method runs efficiently. Only the
ωj for all j ∈ λs need to be sampled because ωj for all j 6∈ λs are not used in
ZSubRK(x)s = KSλs (x,ωs). To be more precise, the subsampled RK map with this
construction method requires not O(Dd) but O(Dk) time and space for sampling
ω1, . . . ,ωD.

4.6.2 Random Feature Maps for Item-multiset Kernel with Count-
able M

As described in Section 4.4.2, an RK map with RFA can approximate an item-multiset
kernel with a finite-cardinality M but cannot approximate one with a countable M.
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Fortunately, this issue can be solved by using a subsampled RK map instead of a canonical
RK map. Let us consider the family ofM such that the cardinalities of all elements are
finite: {Mλ ⊆M}λ∈Λ s.t. |Mλ| <∞ for all λ ∈ Λ. Then, Λ is a countable set because
M is countable, and the subsets of N≥0 with finite cardinality can be numbered as the sum
of their elements and dictionary order. Therefore, one can sample theMλ by giving each
λ a distinct non-negative integer nλ and sampling it with pnλ = 1/2nλ+1. Because each
Mλ is a finite set, RFA can be used for the Kmulti

Mλ
. Thus, the subsampled RK map can

approximate the item-multiset kernel with countableM. The procedure of the subsampled
RK map with RFA is shown in Algorithm 11.

4.6.3 Relationship between Subsampled Random Kernel Map and
Random Maclaurin Map

Finally, we discuss the relationship between the proposed subsampled RK map and RM
map. The RM map is a special case of the subsampled RK map with RFA. For a given dot
product kernel Kdot(x,y) =

∑∞
n=0 an 〈x,y〉

n, there exists a family of item-multisets and
their weights s.t. Kdot(x,y) = Kmulti

M (x,y; {wm}), as described in Section 4.4.2. Consider
the following hyperparameter setting:

• M = Nd
≥0,Λ = N≥0,

• {Mn = {m ∈M = Nd
≥0 : |m| = n}}n∈Λ,

• {αn = an}n∈Λ,

• {pn = 1/2n+1},

• wV = 1 for all V ∈ S̃ns ,

where ns corresponds to λs in Algorithm 11. Then, for s-th feature in the output random
feature vector, we have

ZSubRK(x)s =

√
αns
Dpns

KS̃ns

(
x̃,ω; {1}V ∈S̃ns

)
and (4.38)

x̃ = (x1, . . . , x1︸ ︷︷ ︸
ns

, x2, . . . , x2︸ ︷︷ ︸
ns

, . . . , xd, . . . , xd) ∈ Rnsd (4.39)

since the maximum multiplicity of j-th feature is ns for all j ∈ [d]. Moreover, we modify the
conversion of the family of item-multisetMns into the family of itemset S̃ns in Algorithm 7
as follows:

S̃ns := {V ⊆ [nsd] : |V | = ns, i 6≡ j mod ns for all i, j ∈ V } (4.40)

=
ns∏
t=1

{t, t+ ns, . . . , t+ (d− 1)ns}. (4.41)

Clearly,
∣∣∣S̃ns∣∣∣ = dns = |M̃ns | and

Kmulti
Mns

(x,y; {1m}m∈Mns
) = KS̃ns (x̃, ỹ; {1V }V ∈S̃ns ) (4.42)
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Table 4.1: Datasets used in Section 4.7

Datasets d Ntrain Nvalid Ntest

ML100K 78 21, 200 1, 000 20, 202
phishing 30 9, 000 555 1, 500
IJCNN 22 35, 000 14,900 91, 701

holds, i.e., the above hyperparameter setting is valid. Moreover, the following holds for
ZSubRK(x)s:

ZSubRK(x)s =

√
αns
Dpns

KS̃ns

(
x̃,ω; {1}V ∈S̃ns

)
=

√
αns
Dpns

 ∑
V ∈S̃ns

∏
j∈V

x̃jωj

 (4.43)

=

√
αns
Dpns

ns∏
t=1

〈x̃[t],ω[t]〉 =

√
αns
Dpns

ns∏
t=1

〈x,ω[t]〉 = ZRM(x)s, (4.44)

where ω[t] is a d-dimensional sub-vector of ω such that

ω[t] = (ωt, ωns+t . . . , ω(d−1)ns+t)
> (4.45)

for all t ∈ [ns], and similarly for x̃[t]. That is, the RM map is a special case of the
subsampled RK map (with RFA). Clearly, the algorithm of the RM map is much simpler
than that of the subsampled RK map for the dot product kernel. Therefore, the RM
map can be regarded as a subsampled RK map with techniques that make the algorithm
simple. For dot product kernels, sparse random features can be generated by our proposed
subsampled RK map with the construction of family of S in (4.36) while sparse random
features are not generated by the RM map, that is, by setting Λ = N≥0 and {Mn = {m ∈
M : |m| = n}}n∈Λ.

4.7 Experiments for RK Map and SCRK Map
In this section, we demonstrate the effectiveness of the RK map and SCRK map.

4.7.1 Datasets

We used three datasets: MovieLens 100K (ML100K) [25], phishing [44] and IJCNN
dataset [57]. We normalized each feature vector by their `1 norm. Table 4.1 shows the
overview of datasets.

4.7.2 Accuracy of Approximation

We first evaluated the accuracy of our proposed RK feature map. We calculated the
absolute error of the approximation of ANOVA kernels (m = 2 or 3) and all-subsets kernel
on the training datasets. Each feature vector was normalized by its `1 norm. Only 10, 000
instances were used. We calculated the mean absolute errors for these instances for 100
trials using Rademacher, Gaussian, Uniform, and Laplace distributions in the RK feature
maps and compared the results. For the ANOVA kernels, we also compared them with
the SCRK feature map. We varied the dimension of the random features: 2, 4, 8 and 16
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Table 4.2: Absolute errors of RK feature maps for second-order ANOVA kernel, third-order
ANOVA kernel, and all-subsets kernel using different distributions for ML100K dataset.
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Table 4.3: Absolute errors of RK feature maps for second-order ANOVA kernel, third-order
ANOVA kernel, and all-subsets kernel using different distributions for phishing dataset.
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Table 4.4: Absolute errors of RK feature maps for second-order ANOVA kernel, third-order
ANOVA kernel, and all-subsets kernel using different distributions for IJCNN dataset.
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Figure 4.1: Comparisons of mapping times of RK and SCRK feature maps for second-order
ANOVA kernel (left) and third-order ANOVA kernel (right) with different dimensions of
original feature vector for synthetic dataset (d is shown in log scale).

times that of the original feature vectors. We used Scipy [31] implementations of FFT and
IFFT (scipy.fftpack) in the SCRK and TS feature maps.

As shown in Section 4.7.2 Table 4.3, and Table 4.4, the RK feature map with the
Rademacher distribution had the lowest absolute error and variance for the second- and
third-order ANOVA kernels. In contrast, the differences in the absolute errors between
the distributions were small for the all-subsets kernel. The variances were large even for
D = 16d, so the RK feature map for the all-subsets kernel requires a larger D. For the
third-order ANOVA kernel, the performance of the SCRK feature map was as good as that
of the RK feature map with the Rademacher distribution. However, for the second-order
ANOVA kernel, that of the SCRK feature map was not good. As described above, the
SCRK feature map is not efficient when order m is even because σ is meaningless.

We next evaluated the effectiveness of the SCRK feature map, which is more time and
memory efficient than the RK one w.r.t the dimension of the original feature vector. We
created synthetic data with various dimensions of the original features and compared the
mapping times of the SCRK and RK feature maps for the second-order ANOVA kernel.
We used N (0, 1) as the distribution of original features and changed the dimension of the
original features: d = 512, 1, 024, 2, 048 and 4, 096. We set D = 8, 092 for all d.

As shown in Fig. 4.1, when the dimension of the original feature vector d was large,
the SCRK feature map was more efficient. Although the running time of the RK feature
map increased linearly w.r.t d, that of the SCRK feature map increased logarithmically.
However, when d = 512, the RK feature map was faster than the SCRK feature map. This
may be because of the following reasons. First, the difference between d and log d is small,
if d is small. Furthermore, the SCRK feature map requires FFT and IFFT, and hence its
dropped constants in Big-O notation are larger than that of the RK feature map.

4.7.3 Performance Comparison on Supervised Learning Setting

We next evaluated the performance of linear models using our proposed RK/SCRK
feature maps on the ML100K, phishing, and IJCNN datasets. For the ML100K dataset,
We converted the recommender system problem to a binary classification problem. We
binarized the original ratings (from 1 to 5) by using 5 as a threshold. We varied the random
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Figure 4.2: Test prediction errors and times for linear SVM using RK feature map
approximating (a) second-order ANOVA kernel, (b) third-order ANOVA kernel, and (c)
all-subsets kernel and for two existing methods on ML100K dataset. Upper graphs show
test prediction errors; lower ones show training and test times (time is shown in log scale).

features dimension in a manner similar to that used in the first evaluation. We compared
the prediction errors and learning and testing times for linear SVMs using the proposed RK
feature map for the ANOVA/all-subsets kernel, for linear SVMs using the SCRK feature
map for the ANOVA kernel, for non-linear SVMs with the ANOVA/all-subsets kernel,
and for m-order FMs, and for the all-subsets model. Although there was a linear term
in the original FMs, we ignored it for simplicity. All the methods have a regularization
hyperparameter, which we set on the basis of the validation test prediction error of the
non-linear SVMs. For the linear SVMs using random feature maps, we ran ten trials
with a different random seed for each trial and calculated the mean of the values. We
used a Rademacher distribution for the random vectors. For the FMs and all-subsets
model, we also ran ten trials and calculated the mean of the values. We used coordinate
descent [9] as the optimization method. Because this optimization requires many iterations
and much time, we ran the optimization process for the same length of time used for the
non-linear SVMs. For the rank hyperparameter, we followed Blondel et al. [9] and set it
to 30. We used LinearSVC and SVC in scikit-learn [54] as implementations of linear SVMs
and non-linear SVMs. LinearSVC used liblinear [18] and SVC used libsvm [12]. For the
implementation of FMs, we used FactorizationMachineClassifier in polylearn [48].

As shown in Fig. 4.2, when the number of random features D = 1, 248 = 16d, the
prediction errors of the linear SVMs using the proposed RK feature map were as good
as those of the non-linear SVMs, FMs, and all-subsets model. Furthermore, even though
D = 1, 248, their training and testing times were 2–5 times less than those of the non-linear
SVMs, FMs, and all-subsets model. Because the dimension of the original feature vector
was small, the running times of the linear SVMs using the SCRK feature map were longer
than those of the linear SVMs using the RK feature map when m = 3. The prediction
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Figure 4.3: Test prediction errors and times for linear SVM with RK feature map approxi-
mating (a) second-order ANOVA kernel, (b) third-order ANOVA kernel and (c) all-subsets
kernel, kernel SVMs and FMs on phishing dataset. Upper graphs show test prediction
errors; lower ones show training and test times.

errors of the linear SVMs using the SCRK feature map were as good as those of the linear
SVMs using the RK feature map, and the SCRK feature map required only O(D log d)
time.

We also compared the prediction errors and learning and testing times among random-
feature-based methods for the polynomial-like kernel: linear SVMs using the proposed
RK/SCRK feature map for the ANOVA kernel, TS feature map, and the RM feature
map for the polynomial kernel. Similar to the evaluation above, we set the regularization
parameter on the basis of the validation test prediction error of the non-linear SVMs (we
also ran the polynomial kernel SVMs). We again ran ten trials with a different random
seed for each trial and calculated the mean of the values.

As shown in Fig. 4.5 Fig. 4.6, and Fig. 4.7, when the number of random features D is
small, the prediction errors of linear SVMs using the TS/RM feature map were better than
those of linear SVMs using the RK feature map. However, when the numbers were larger,
the prediction errors of linear SVMs using the RK feature map were as good as those
of linear SVMs using the TS feature map. The linear SVMs using the RM feature map
achieved the best performance. However, their running times were clearly longer compared
to those of the other methods. Moreover, the RM feature map is not space-efficient: it
requires O(Ddm) memory for them-order polynomial kernel while the proposed RK/SCRK
feature map for an m-order ANOVA kernel requires only O(Dd)/O(D) memory. The
training and testing times of linear SVMs using the RK feature map were the lowest among
all methods.
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Figure 4.4: Test prediction errors and times for linear SVM with RK feature map approxi-
mating (a) second-order ANOVA kernel, (b) third-order ANOVA kernel and (c) all-subsets
kernel, ANOVA kernel SVMs, and FMs on IJCNN dataset. Upper graphs show test
prediction errors; lower ones show training and test times.

4.8 Experiments for Sparse RK Map and Subsampled
RK Map

In this section, we demonstrate the effectiveness of the Sparse RK map and Subsampled
map on sparse datasets.

4.8.1 Datasets

We evaluated the performance of linear models using our sparse/subsampled RK map on
the RCV1 dataset and the MovieLens 1M (ML1M) dataset, which are large-scale sparse
datasets for the news document classification task and the movie recommendation task, re-
spectively. In particular, we used the RCV1 binary dataset available at https://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary. The number
of training, validation, and testing instances were 558, 112, 69, 764, and 69, 765. The density
(i.e., nnz (X) /Nd) of the RCV1 dataset was 1.55× 10−3. The number of features (i.e., d)
was 47, 236 for the RCV1 dataset. For the ML1M dataset, unlike the ML100K dataset, we
used the id of users and movies, occupation, gender, age, zip-code, and genres information
as features. We converted the recommendation task to a binary classification problem by bi-
narizing the original ratings (there were from 1 to 5 ratings, and we used 4 as a threshold).
The raw dataset was available at https://grouplens.org/datasets/movielens/1m/.
The dimension of the feature vector was 13, 410 for the ML1M dataset. The number
of training, validation, and testing instances were 800, 167, 100, 022, and 100, 022. The
density of the ML1M dataset was 6.04× 10−4. For both datasets, we scaled all feature
vectors by their `1 norm.
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Figure 4.5: Test prediction errors and times for linear SVM with RK/SCRK feature
map approximating (a) second-order ANOVA kernel and (b) third-order ANOVA kernel
and linear SVM with TS/RM approximating (a) second-order polynomial kernel and (b)
third-order polynomial kernel on ML100K dataset. Upper graphs show test prediction
errors; lower ones show training and test times.
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Figure 4.6: Test prediction errors and times for linear SVM with RK/SCRK feature
map approximating (a) second-order ANOVA kernel and (b) third-order ANOVA kernel
and linear SVM with TS/RM approximating (a) second-order polynomial kernel and (b)
third-order polynomial kernel on phishing dataset. Upper graphs show test prediction
errors; lower ones show training and test times.
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Figure 4.7: Test prediction errors and times for linear SVM with RK/SCRK feature
map approximating (a) second-order ANOVA kernel and (b) third-order ANOVA kernel
and linear SVM with TS/RM approximating (a) second-order polynomial kernel and (b)
third-order polynomial kernel on IJCNN dataset. Upper graphs show test prediction errors;
lower ones show training and test times.
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Table 4.5: Datasets used in Section 4.8.

Dataset d Ntrain Nvalid Ntest

RCV1 47, 236 558, 112 69, 764 69, 765
ML1M 13, 410 800, 167 100, 022 100, 022

4.8.2 Performance Comparison on Supervised Learning Setting

We compared the training times, which included sampling random basis vectors time and
transforming data points time for random feature methods, and testing times and the
classification error rates for the prediction of testing data for following nine methods:

• SparseRK: linear support vector machines (SVMs) using sparse RK map for ANOVA
kernel.

• SubRK: linear SVMs using subsampled RK map with the construction of family of
S in (4.36) for ANOVA kernel.

• SparseRM: linear SVMs using RMmap for polynomial kernel with sparse Rademacher
distribution.

• SubRM: linear SVMs using subsampled RK map with the construction of family of
S in (4.36) for polynomial kernel.

• RK: linear SVMs using canonical RK map for ANOVA kernel.

• RM: linear SVMs using canonical RM map for polynomial kernel.

• TS: linear SVMs using tensor sketching (TS), which is a random feature map for
the polynomial kernel [56].

• KernelSVM: SVMs with ANOVA or polynomial kernel.

• FM: factorization machines without the linear term [61].

We set the order of the ANOVA kernel and the polynomial kernel to 2 for all methods.
For SparseRK, we set the sparsity parameter p in the sparse Rademacher distribution to
0.999 for the RCV1 dataset, and 0.996 for ML1M dataset. For SubRK, we used (4.36)
to construct the family of S and set the sampling probability of each λ as pλ = 1/|Λ|
for all λ ∈ Λ. We show the derivation of the valid {αλ} in the Appendix. The number
of sub-features k was set to d(1 − p) for both datasets. For both the SparseRK and
SubRK, we set the the number of random features D to 2d = 94, 472, 3d = 141, 708,
and 4d = 188, 944 for the RCV1 dataset, and 2d = 26, 820, 4d = 53, 640, 6d = 80, 460,
and 8d = 107, 280 for the ML1M dataset. The settings for SparseRM and SubRM
were similar, respectively, to those of SparseRK and SubRK described above. For the
SubRM, we also show the derivation of the valid {αλ} in the Appendix. For RK, RM,
and TS, we set D to 2, 048 because they generate dense random features for the RCV1
dataset, and 1, 048 for the ML1M dataset. The memories required by the random feature
matrix of the canonical random feature methods were almost the same as those required
by the random feature methods (SparseRK, SubRK, SparseRM, and SubRM). For
FM, we set the rank-hyperparameter to 30 by following [9]. Table 4.5 shows the summary
of the datasets and hyperparameter settings. Similarly in Section 4.7, we used LinearSVC
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Figure 4.8: Test prediction errors and times for methods using second-order ANOVA
kernel (upper) and second-order polynomial kernel (lower) on RCV1 dataset. Left graph
shows prediction errors; right one shows sum of training time, which includes sampling
random basis vectors time and transforming data points time for random feature method,
learning linear model time, and test time (time is shown in log scale).

in scikit-learn [54] as the implementation of the linear SVM for the linear SVMs with
random feature maps. For KernelSVM, we sampled 160, 000 samples from the training
instances and used only those instances because using all instances would have required an
enormous amount of time for training and testing KernelSVM. We used SVC in scikit-
learn [54] as the implementation of nonlinear SVMs. We set the size of the cache used in
KernelSVM to 16 GB. For the FM implementation, we used FactorizationMachineClassifier
in polylearn [48]. All the methods have a regularization hyperparameter, which we set on
the basis of the validation classification errors of KernelSVM. For all methods, we ran
the experiment ten times with different random seeds.

The experimental results are shown in Fig. 4.8 for the RCV1 dataset and Fig. 4.9
for the ML1M dataset. We compared the methods among those using a second-order
ANOVA kernel and those using a second-order polynomial kernel, respectively. For
both the test prediction error and the training and testing time, lower is better. The
canonical random feature maps with a small D (RK, RM, and TS) were faster but
their performances were worse. Although KernelSVM and FM performed well, they
required a large amount of training and testing time. The proposed sparse random feature
methods (SparseRK, SubRK, SparseRM, and SubRM) performed as well as FM
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Figure 4.9: Test prediction errors and times for methods using second-order ANOVA
kernel (upper) and second-order polynomial kernel (lower) on ML1M dataset. Left graph
shows prediction errors; right one shows sum of training time, which includes sampling
random basis vectors time and transforming data points time for random feature method,
learning linear model time, and prediction time (time is shown in log scale).

and KernelSVM. Furthermore, their training and testing times were 2–130 times less
than those of FM and KernelSVM. In proposed SparseRK, SubRK, SparseRM,
and SubRM, the times for training linear models were small; the computation of random
features took most of the times. For the ML1M datasets, FM achieved the best performance
because the ML1M dataset extremely sparse and parameters of FMs can be estimated
well for large-scale sparse datasets [61] as described in Section 2.6. Therefore, when the
dataset is extremely sparse and long training time is acceptable, using FMs is a good
choice. We must note that the hyperparameter tuned on KernelSVM was used for the
other methods, which further improved the performances of the proposed method.

Next, we investigated the effect of sparsity parameter p (and k = d(1 − p)) on the
performance of the linear model by comparing the proposed methods (i.e., SparseRK
and SubRK) with the canonical method (i.e., RK) by setting the same number of
random features (D) and changing the sparsity parameters. For this comparison, we
used the protein dataset because the RK required an enormous amount of memory and
time for the RCV1 dataset and the ML1M dataset. The protein dataset is available
at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html.
The number of features was 357 and the number of training, validation, and testing instances

59

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html


0.010 0.015 0.020 0.025 0.030 0.035 0.040
Density of Random Bases (1-p)

0.3500

0.3525

0.3550

0.3575

0.3600

0.3625

0.3650

Te
st

 P
re

di
ct

io
n 

Er
ro

r

SparseRK
SubRK
RK ((1-p)=1)

0.010 0.015 0.020 0.025 0.030 0.035 0.040
Density of Random Bases (1-p)

10

20

30

40

50

60

Tr
ai

n+
Te

st
 T

im
e 

(s
ec

)

SparseRK
SubRK
RK ((1-p)=1)

Figure 4.10: Test prediction errors and times for methods using second-order ANOVA
kernel on protein dataset. Left graph shows prediction errors; right one shows sum of
training time, which includes sampling random basis vectors time and transforming data
points time for random feature method, learning linear model time, and test time.

were 14, 895, 2, 871, and 6, 621, respectively. For all methods, we set D = 16d = 5, 712.
For SparseRK, we set the sparsity parameter p to 0.99, 0.98, and 0.96. For SubRK, we
set the number of sub-features k to d(1− p), i.e., 3, 7, and 14. In this experiment, we also
ran and evaluated each method ten times with different random seeds.

The experimental results are shown in Fig. 4.10. The x-axes represent 1− p, i.e., the
density of the random basis vectors. When p = 0.96 (i.e., (1− p) = 0.040), SparseRK
and SubRK performed as well as RK. Even when sparsity parameter was high (p = 0.99),
the differences of the test prediction error between proposed SparseRK/SubRK and
RK were small; 0.014 and 0.009, respectively. Moreover, SparseRK and SubRK ran
3–6 times faster than RK while they performed as well as RK.

4.9 Conclusion
In this chapter, we have presented a random feature map that approximates the itemset
kernel. Although the itemset kernel depends on S, the error bound we have presented does
not depend on it or the original dimension d. Moreover, we have showed that the proposed
random kernel feature can be used not only with the Rademacher distribution but also with
other distributions with zero mean and unit variance. Furthermore, we have showed that
the Rademacher distribution achieves the minimax optimal variance both theoretically and
empirically. We have also showed how to efficiently compute the random kernel feature map
for the ANOVA kernel by using a signed circulant matrix projection technique. Moreover,
we have proposed the sparse random kernel map and the subsampled random kernel map,
which generate sparse random features and therefore can be applied to a large-scale sparse
dataset. In addition, we have extended our methods to the item-multiset kernel, which is
a generalization of the itemset kernel. Our evaluation showed that linear models using the
proposed random kernel feature map are good alternatives to factorization machines and
kernel methods for several classification tasks.
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4.10 Proofs

4.10.1 Proof of Proposition 4.2

Proof. Let us consider the product of itemset kernels KS(x,ω) and KS(y,ω), where
ω ∈ {−1,+1}d is a Rademacher vector:

KS(x,ω)KS(y,ω) =

(∑
V1∈S

∏
j1∈V1

xj1ωj1

)(∑
V2∈S

∏
j2∈V2

yj2ωj2

)
(4.46)

=
∑
V1∈S

∑
V2∈S

∏
j1∈V1

xj1ωj1
∏
j2∈V2

yj2ωj2 . (4.47)

Then, ω2
j = 1 for all j because ωj ∈ {−1,+1}. Hence, (4.47) can be rewritten as∑

V1∈S

∑
V2∈S

∏
j1∈V1

xj1ωj1
∏
j2∈V2

yj2ωj2 (4.48)

=
∑
V1∈S

∑
V2∈S

∏
j4∈V1∩V2

ω2
j4

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 (4.49)

=
∑
V1∈S

∑
V2∈S

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 , (4.50)

where V14V2 is the symmetric difference between V1 and V2: V14V2 = (V1∪V2)\ (V1∩V2).
Furthermore, V14V2 = ∅ if and only if V1 = V2. Therefore, one can separate (4.50) as∑

V1∈S

∑
V2∈S

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2

=
∑
V1=V2

∏
j1∈V1

xj1
∏
j2∈V2

yj2 +
∑
V1 6=V2

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 (4.51)

=
∑
S∈S

∏
j∈S

xjyj +
∑
V1 6=V2

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 . (4.52)

The first term in (4.52) is KS(x,y). The expectation over ω of the second term is 0
because this term always contains ωj, and each ωj is sampled from a Rademacher (fair
coin) distribution. Therefore, Eω[KS(x,ω)KS(y,ω)] = KS(x,y) and hence

Eω1,...,ωD [〈ZRK(x), ZRK(y)〉] = E

[
D∑
s=1

1√
D
K(x,ωs)

1√
D
K(y,ωs)

]
(4.53)

= K(x,y). (4.54)

4.10.2 Proofs for Analyses (Section 4.3.1)

Proofs of Lemma 4.3

Proof. The all-subsets kernelKall(·, ·) uses all feature combinations. Hence, supKS(x,ω) ≤
supKall(x,ω) and inf KS(x,ω) ≥ − supKall(x,ω) holds for all S ⊆ 2[d], that is, |KS(x,ω)| ≤
supKall(x,ω). Therefore, we consider here supKall(x,ω) in order to derive an upper
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bound of approximation error. For all d ≥ 1, x ∈ Rd and ω ∈ {−1,+1}d, the following
inequality holds under the assumption that ‖x‖1 ≤ R:

sup
x,ω

Kall(x,ω) = sup
x,ω

d∏
j=1

(1 + xjωj) = sup
x

d∏
j=1

(1 + |xj|) (4.55)

=

(
1 +

R

d

)d
< lim

d→∞

(
1 +

R

d

)d
= eR. (4.56)

Therefore, |KS(x,ω)KS(y,ω)| < e2R, and then (4.9) can be easily obtained from Hoeffd-
ing’s inequality.

Proof of Lemma 4.4

Lemma 4.3 gives the absolute error bound of any x,y ∈ B1(0, R). We show the uniform
error bound of the RK map by following the analysis in [32]. We first derive the upper
bound of ‖∇xE(x,y)‖2 and ‖∇yE(x,y)‖2, that is, the Lipschitz constant of E(·, ·) because
their method requires it.

Lemma 4.12. For all S ⊆ 2[d],

sup
x,y∈B1(0,R)

‖∇xE(x,y)‖2 = sup
x,y∈B1(0,R)

‖∇yE(x,y)‖2 ≤
√
de2R. (4.57)

Proof. From the proof of Proposition 4.2,

E(x,y) =
1

D

D∑
s=1

∑
V1∈S

∑
V2 6=V1

∏
j3∈V14V2

ωs,j3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 . (4.58)

From the triangle inequality,

‖∇xE(x,y)‖2 ≤
1

D

D∑
s=1

∥∥∥∥∥∇x ∑
V1∈S

∑
V2 6=V1

∏
j3∈V14V2

ωs,j3
∏
j1∈V1

xj1
∏
j2∈V2

yj2

∥∥∥∥∥
2

. (4.59)

Clearly,

sup
x,y∈B1(0,R)

‖∇xE(x,y)‖2 ≤ sup
x,y,ω

∥∥∥∥∥∇x ∑
V1∈S

∑
V2 6=V1

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2

∥∥∥∥∥
2

. (4.60)

Because the `2 norm of∇xE(x,y) is
(∑d

j=1{∂E(x,y)/∂xj}2
) 1

2 , let us consider ∂E(x,y)/∂xj :

∂E(x,y)

∂xj
= ∂

(∑
V1∈S

∑
V2∈S,V2 6=V1

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2

)
/∂xj (4.61)

= ∂

(
xj
∑
V13j

∑
V2 6=V1

∏
j3

ωj3
∏

j1∈V1,j1 6=j

xj1
∏
j2∈V2

yj2 +
∑
V1 63j

∑
V2 6=V1

∏
j3

ωj3
∏
j1∈V1,

xj1
∏
j2∈V2

yj2

)
/∂xj

(4.62)

=
∑
V13j

∑
V2 6=V1

∏
j3

ωj3
∏

j1∈V1,j1 6=j

xj1
∏
j2∈V2

yj2 . (4.63)
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From (4.60), (4.63), and the inequality KS(|x|,1) ≤ Kall(|x|,1) < eR, where 1 is a
d-dimensional vector in which all coordinates are one,

sup
x,y∈B1(0,R)

‖∇xE(x,y)‖2 (4.64)

≤ sup
x,y,ω

 d∑
j=1

{∑
V13j

∑
V2 6=V1

∏
j3

ωj3
∏

j1∈V1,j1 6=j

xj1
∏
j2∈V2

yj2

}2
 1

2

(4.65)

≤ sup
x,y

 d∑
j=1

{∑
V13j

∑
V2 6=V1

∏
j1∈V1,j1 6=j

|xj1|
∏
j2∈V2

|yj2|

}2
 1

2

(4.66)

≤ sup
x,y

 d∑
j=1

{(∑
V1∈S

∏
j1∈V1

|xj1|

)(∑
V2∈S

∏
j2∈V2

|yj2|

)}2
 1

2

(4.67)

= sup
x,y

[
d∑
j=1

{KS(|x|,1)KS(|y|,1)}2

] 1
2

(4.68)

<

[
d∑
j=1

{
eR · eR

}2

] 1
2

=
√
de2R. (4.69)

Similarly, supx,y∈B1(0,R)‖∇yE(x,y)‖2 ≤
√
de2R can be shown.

Finally, we show the proof of Lemma 4.4 by using Lemma 4.3, Lemma 4.12, and the
results in [32].

Proof. It is well known that a d-dimensional compact set B can be covered at most
T = (4diam(B)/r)d balls of radius r by constituting ε-net [15]. We assume that x,y ∈
B ⊆ B1(0, R) ⊆ B2(0, R) and hence diam(B) is at most 2R. Let T be the ε-net with
radius r (set of the centers of the balls). Then, for all x,y ∈ B, there exists x′ and y′ that
satisfy |x− x′| ≤ r, |y − y′| ≤ r, and

sup
x∈B2(x′,r)∩B,
y∈B2(y′,r)∩B

|f(x,y)− f(x′,y′)| ≤ 2Lr (4.70)

for a L-Lipschitz bivariate function f : B × B → R (Lemma 5 in [32] (Lemma 9 in its
arXiv version)). Furthermore, if T provides an (ε/2)-close approximation to KS , that is,
supx′,y′∈T |E(x′,y′)| ≤ ε/2, applying (4.70) by f = E derives

sup
x,y∈B

|E(x,y)| = sup
x,y∈B

|E(x,y)− E(x′,y′) + E(x′,y′)| ≤ ε/2 + 2Lr (4.71)

because there exists x′,y′ ∈ T such that x ∈ B2(x
′, r) and y ∈ B2(y

′, r). Therefore,
by choosing r = ε/4L, supx,y∈B |E(x,y)| ≤ ε if supx′,y′∈T |E(x′,y′)| ≤ ε/2. Then, |T | ≤
(32RL/ε)d, and following inequality can be obtained from Lemma 4.3 and Lemma 4.12 :

p

(
sup
x,y∈B

|E(x,y)| > ε

)
≤ p

(
sup

x′,y′∈T
|E(x′,y′)| > ε

2

)
(4.72)

≤ 2

(
32RL

ε

)2d

exp

(
−Dε

2

8e4R

)
= 2

(
32R
√
de2R

ε

)2d

exp

(
−Dε

2

8e4R

)
. (4.10)
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Proof of Lemma 4.5

Proof. If |Km
A (x,ω)| ≤ Rm this lemma clearly holds from Hoeffding’s inequality, similar

to Lemma 4.3. For the ANOVA kernel, there is a recursion [9]:

Km
A (x,y) =

1

m

m∑
t=1

(−1)t+1Km−t
A (x,y)Dt(x,y), (4.73)

where Dt(x,y) :=
∑d

j=1 x
t
jy
t
j = 〈x◦t,y◦t〉. We prove |Km

A (x,ω)| ≤ Rm by induction
based on this recursion. For m = 1, |K1

A(x,ω)| = | 〈x,ω〉 | ≤ R. Now suppose that this
inequality is true for m− 1 ≥ 1. Then,

Km
A (x,ω) =

1

m

m∑
t=1

(−1)t+1Km−t
A (x,ω)Dt(x,ω) ≤ 1

m

m∑
t=1

Rm−t

∣∣∣∣∣
d∑
j=1

xtjω
t
j

∣∣∣∣∣ (4.74)

≤ 1

m

m∑
t=1

Rm−t
d∑
j=1

|xj|t ≤
1

m

m∑
t=1

Rm−t‖x‖t1 ≤ Rm. (4.75)

We can also obtain −Rm ≤ Km
A (x,w). Therefore, |Km

A (x,w)Km
A (y,w)| ≤ R2m holds,

meaning that Lemma 4.5 can be obtained in a manner similar to that for Lemma 4.3.

Proof of Proposition 4.6

Proof. From the proof of Proposition 4.2, in the general case

KS(ω,x)KS(ω,y) =
∑
S∈S

∏
j∈S

ω2
jxjyj +

∑
V1 6=V2

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 . (4.76)

From (4.76), clearly E[KS(ω,x)KS(ω,y)] = KS(x,y) for all x,y if and only if E[ωj] = 0
and V[ωj] = E[ω2

j ]− E[ωj]
2 = E[ω2

j ] = 1 for all j ∈ [d].

Proof of Lemma 4.7

Before proving Lemma 4.7, we present a lemma for the relationship between the second
and fourth moments.

Lemma 4.13. For the second and fourth moments of any probabilistic distribution p(x),

E[x4] ≥ 2E[x2]− 1. (4.77)

Proof.

E[x4]− E[x2] =

∫ ∞
−∞

p(x)x2(x2 − 1)dx (4.78)

=

∫ −1

−∞
p(x)x2(x2 − 1)dx+

∫ 1

−1

p(x)x2(x2 − 1)dx+

∫ ∞
1

p(x)x2(x2 − 1)dx (4.79)

≥
∫ −1

−∞
p(x)(x2 − 1)dx+

∫ 1

−1

p(x)(x2 − 1)dx+

∫ ∞
1

p(x)(x2 − 1)dx (4.80)

=

∫ ∞
−∞

p(x)(x2 − 1)dx = E[x2]− 1. (4.81)
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Finally, we prove Lemma 4.7.

Proof. The variance of the dot product of random kernel maps, V[〈ZRK(x), ZRK(y)〉], can
be written as

V[〈ZRK(x), ZRK(y)〉] =
1

D

{
E
[
(KS(ω,x)KS(ω,y))2]−KS(x,y)2

}
. (4.82)

By simple expansion, without loss of generality, E
[
(KS(ω,x)KS(ω,y))2]−KS(x,y)2 can

be written as

E
[
(KS(ω,x)KS(ω,y))2]−KS(x,y)2

=
∑

V1,V2,V3,V4,V5,V6∈2[d]

aV1,V2,V3,V4,V5,V6

×
∏
j1∈V1

E[ω4
j1

]x2
j1
y2
j1

×
∏
j2∈V2

E[ω3
j2

]x2
j2
yj2

×
∏
j3∈V3

E[ω3
j3

]xj3y
2
j3

∏
j4∈V4

xj4yj4

×
∏
j5∈V5

x2
j5

∏
j6∈V6

y2
j6

+
∑

V1,V2∈S

∏
j∈V1∩V2

(E[ω4
j1

]− 1)x2
j1
y2
j1

∏
j2∈V14V2

xj2yj2 , (4.83)

where aV1,V2,V3,V4,V5,V6 ∈ N≥0 (V1, V2, V3, V4, V5, V6 ⊆ 2[d]) is coefficient that depends on only
S. Although E[ω4

j ]x
2
jy

2
j , x

2
j and y2

j are always non-negative for all j ∈ [d],x,y ∈ B∞(0, R),
and p ∈ P0,1 (distribution for ω), E[ω3

j ]x
2
jyj,E[ω3

j ]xjy
2
j , and xjyj can be negative. This

makes it difficult to compare the variances of the dot products of random kernel maps
with different distributions for ω.

Fortunately, the maximum variances can be compared relatively easily. For all S, p and
(x∗,y∗) ∈ arg maxx,y∈B∞(0,R) Vω1,...,ωD∼p[〈ZRK(x), ZRK(y)〉], all terms in (4.83) are non-
negative. For example, in the case E[ω3] ≥ 0, E[ω3]x2

jyj,E[ω3]xjy
2
j and xjyj are clearly non-

negative if xj ≥ 0 and yj ≥ 0 for all j ∈ [d]. Similarly, for E[ω3] ≤ 0, E[ω3]x2
jyj,E[ω3]xjy

2
j

and xjyj are non-negative if xj ≤ 0 and yj ≤ 0 for all j ∈ [d]. Therefore, obviously
x∗jy

∗
j ≥ 0 for all j ∈ [d]. Furthermore, from Lemma 4.13, E[ω4] − 1 ≥ 0. Therefore, the

last term in (4.83) is also non-negative for all S and p, all (x∗,y∗).
Hence, a distribution p̃ ∈ P0,1 with the third and fourth moments of 0 clearly achieves

minimax optimal variances, and it is just the Rademacher distribution.

4.10.3 Proof of Proposition 4.8

Proof. Recall the definition of the weighted itemset kernel:

KS(x,y; {wV }V ∈S) =
∑
V ∈S

wV
∏
j∈V

xjyj, (2.22)

where S ⊆ 2[d] is the family of itemsets and wV ∈ R≥0 for all V ∈ S is the weight for
itemset V .
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It is sufficient to prove

E[KS(x,ω; {
√
wV }) ·KS(y,ω; {

√
wV })] = KS(x,y; {wV }) (4.84)

because 〈ZRK(x), ZRK(y)〉 =
∑D

s=1 KS(x,ωs; {
√
wV })·KS(y,ωs; {

√
wV })/D and ω1, . . . ,ωD

are sampled independently. The inside term of the expectation in (4.84) is

KS(x,ω; {
√
wV })KS(y,ω; {

√
wV }) (4.85)

=

(∑
V1∈S

√
wV1

∏
j1∈V1

xj1ωj1

)(∑
V2∈S

√
wV2

∏
j2∈V2

yj2ωj2

)
(4.86)

=
∑
V1∈S

∑
V2∈S

√
wV1
√
wV2

∏
j1∈V1

xj1ωj1
∏
j2∈V2

yj2ωj2 . (4.87)

Then, ω2
j = 1 for all j because ωj ∈ {−1,+1}. Hence, (4.105) can be rewritten as∑

V1∈S

∑
V2∈S

√
wV1
√
wV2

∏
j1∈V1

xj1ωj1
∏
j2∈V2

yj2ωj2 (4.88)

=
∑
V1∈S

∑
V2∈S

√
wV1
√
wV2

∏
j4∈V1∩V2

ω2
j4

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 (4.89)

=
∑
V1∈S

∑
V2∈S

√
wV1
√
wV2

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 , (4.90)

where V14V2 is the symmetric difference between V1 and V2: V14V2 = (V1∪V2)\ (V1∩V2).
Furthermore, V14V2 = ∅ if and only if V1 = V2. Therefore, one can separate (4.90) as∑

V1∈S

∑
V2∈S

√
wV1
√
wV2

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2

=
∑
V1=V2

√
wV1
√
wV1

∏
j1∈V1

xj1
∏
j2∈V2

yj2

+
∑
V1 6=V2

√
wV1
√
wV2

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 (4.91)

=
∑
V ∈S

wV
∏
j∈S

xjyj +
∑
V1 6=V2

√
wV1
√
wV2

∏
j3∈V14V2

ωj3
∏
j1∈V1

xj1
∏
j2∈V2

yj2 . (4.92)

The first term in (4.92) is KS(x,y; {wV }) and it is surely the weighted itemset kernel.
The expectation over the ω of the second term is 0 because this term always contains
ωj, and each ωj is sampled from the Rademacher (fair coin) distribution. Therefore, we
have (4.84).

4.10.4 RK Map Cannot Approximate Polynomial Kernels

Although the item-multiset kernel is closely similar to the itemset kernel, the RK map can-
not approximate the item-multiset kernel. We show that the RK map cannot approximate
the second-order polynomial kernel, which is an example of the item-multiset kernel.

We assume d > 1, where d is the dimension of the feature vector. It is sufficient to
prove

E
[
Kmulti
M (x,ω; {

√
wm}) ·Kmulti

M (y,ω; {
√
wm})

]
6= Kmulti

M (x,y; {wm}) ∃x,y ∈ Rd.
(4.93)
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For the second-order polynomial kernel case, M = {m ∈ Nd
≥0 : ‖m‖1 = 2}, and

wm = ‖m‖0. Then, because ω2
j = 1 for all j ∈ [d] (as shown in the above section),

Kmulti
M (x,ω; {

√
wm}) =

d∑
j=1

ω2
jx

2
j +
√

2
∑
j1>j2

ωj1ωj2xj1xj2 (4.94)

=
d∑
j=1

x2
j +
√

2
∑
j1>j2

ωj1ωj2xj1xj2 , (4.95)

and similarly for Kmulti
M (y,ω; {√wm}). For the product of them, we have

E
[
Kmulti
M (x,ω; {

√
wm}) ·Kmulti

M (y,ω; {
√
wm})

]
(4.96)

=

(
d∑
j=1

x2
j

)(
d∑
j=1

y2
j

)
+ 2

∑
j1>j2

xj1xj2yj1yj2 (4.97)

= Kmulti
M (x,y; {wm}) +

d∑
j1 6=j2

x2
j1
y2
j2
. (4.98)

Therefore, (4.93) holds.

4.10.5 Valid Parameters of Subsampled RK Map

Here we derive the valid parameters of the subsampled RK Map using the construction
method of the family of the S described in (4.36) for the ANOVA kernel and polynomial
kernels, which are used in SubRK and SubRM. Recall the proposed construction of
family of S in (4.36):

Λ =

(
[d]

k

)
,Sλ = {V ∈ S : V ⊆ λ}, (4.36)

where k ∈ {l, . . . , d} is the number of subfeatures (hyperparameter). The subsampled
family of itemsets Sλ is the set of itemsets that use features only in λ. As desribed in
Section 5, we must set the {αλ}λ∈Λ such that∑

λ∈Λ

αλKSλ(x,y) = KS(x,y). (4.99)

ANOVA Kernel Case. We first derive the valid parameters for the n-order ANOVA
kernel case. For any V ∈

(
[d]
n

)
, there exists

(
d−n
k−n

)
index sets that include V , i.e., |{λ ∈ Λ :

λ ⊇ V }| =
(
d−n
k−n

)
. Therefore, we have

∑
λ∈Λ

KSλ(x,y) =
∑

j1<···<jn

(
d− n
k − n

) n∏
i=1

xjiyji =

(
d− l
k − l

) ∑
j1<···<jn

n∏
i=1

xjiyji (4.100)

=

(
d− n
k − n

)
KS(x,y), (4.101)

and thus by setting αλ = 1/
(
d−n
k−n

)
for all λ ∈ Λ, the subsampled RK map can approximate

the n-order ANOVA kernel.
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Polynomial Kernel Case. For SubRM, we do not implement the subsampled RK
map with RFA in Algorithm 7, naïvely. To derive our SubRM algorithm, we first present
following lemma.

Lemma 4.14. For given n ≤ k ≤ d ∈ N>0, let Λ =
(

[d]
k

)
, and ω1, . . .ωn ∈ {−1, 1}d are

the random vectors sampled from the Rademacher distribution. Then,

∑
λ1∈Λ

· · ·
∑
λn∈Λ

Eω1,...,ωn

[
n∏
t=1

(∑
j∈λt

xjωt,j

)(∑
j∈λt

yjωt,j

)]
=

(
d− 1

k − 1

)n
〈x,y〉n . (4.102)

Proof. We first fix λ1, . . . , λn. Then, we have

Eω1,...,ωn

[
n∏
t=1

(∑
j∈λt

xjωt,j

)(∑
j∈λt

yjωt,j

)]
(4.103)

=
n∏
t=1

Eωt

[(∑
j∈λt

xjωt,j

)(∑
j∈λt

yjωt,j

)]
(4.104)

=
n∏
t=1

(∑
j∈λt

xjyj

)
. (4.105)

Next, we consider the summation of (4.105) with respect to the λ1, . . . , λn. Let Sλt :=∑
j∈λt xjyj. For any j ∈ [d], there exists

(
d−1
k−1

)
itemsets that include j ∈ [d] in Λ =

(
[d]
k

)
,

i.e., |{V : V ∈ Λ, j 3 V }| =
(
d−1
k−1

)
. Therefore,

∑
λt∈Λ Sλt =

(
d−1
k−1

)∑d
j=1 xjyj and we have

∑
λ1∈Λ

· · ·
∑
λn∈Λ

n∏
t=1

(∑
j∈λt

xjyj

)
=
∑
λ1∈Λ

· · ·
∑
λn∈Λ

n∏
t=1

Sλt (4.106)

=
n∏
t=1

(∑
λt∈Λ

Sλt

)
=

n∏
t=1

((
d− 1

k − 1

) d∑
j=1

xjyj

)
(4.107)

=

(
d− 1

k − 1

)n
〈x,y〉n . (4.108)

From this Lemma 4.14, we propose Algorithm 12, which approximates n-order polyno-
mial kernels. This algorithm can be regarded as the subsampled RM map with the con-
struction in (4.36). In Algorithm 12, α =

(
1/
(
d−1
k−1

))n
corresponds to αλ and p =

(
1/
(
d
k

))n
corresponds to pλ in the subsampling RK map (Algorithm 6/7). We use it as the SubRM
in our experiments.
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Algorithm 12 Subsampled Random Maclaurin Map for n-order Polynomial Kernel

Input: x ∈ Rd, k ∈ N≥n
1: p←

(
1/
(
d
k

))n
;

2: α←
(
1/
(
d−1
k−1

))n
;

3: c← α/p = (d/k)n;
4: for s = 1, . . . , D do
5: Generate n Rademacher vectors ωs,1, . . . ,ωs,n ∈ {−1,+1}d;
6: Generate n itemsets λs,1, . . . , λs,n ∈

(
[d]
n

)
uniformly and independently;

7: Compute Zs =
√
c
∏n

t=1

∑
j∈λs,t ωs,j, xj;

8: end for
Output: ZRM(x) = (Z1, . . . , ZD)>/

√
D
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Chapter 5

Conclusion

In this doctoral dissertation, we have studied machine learning algorithms using feature
interactions. Especially, we have developed models using higher-order feature interactions
across objects for feature-based link prediction and efficient learning methods for predictive
models based on feature interactions.

For feature-based link prediction, we have presented models based on higher-order
feature combinations only across the two objects being compared in Chapter 3. Our
proposed model, HOPairNet, can be regarded as a higher-order generalization of the
factorized bilinear model or pairwise extension of the higher-order factorization machine.
We have also presented an algorithm for efficiently computing higher-order feature combi-
nations only across two objects. Moreover, we have proposed an efficient CD algorithm
for the proposed model. Furthermore, we have proposed the HOPairDNN, which is a
DNN-extension of the HOPairNet. In addition, we have also presented the relationships
among proposed methods, existing methods for feature-based link prediction, and for
index-based link prediction.

We have tackled the scalability issue of kernel methods in Chapter 4. We have presented
a random feature map, random kernel map, that approximates the itemset kernel as well
as some theoretical analyses on the proposed method. By using the proposed method,
machine learning users can apply the kernel machines using feature interactions to a
large-scale dataset. We have also shown how to efficiently compute the random kernel
feature map for the ANOVA kernel by using a signed circulant matrix projection technique.
Moreover, we have proposed the sparse random kernel map and the subsampled random
kernel map, which generate sparse random features and therefore can be applied to a
large-scale sparse dataset. These methods are faster and more memory efficient than the
canonical random kernel map and useful for a large-scale sparse dataset since they use a
sparse random feature matrix and can generate sparse random features. In addition, we
have extended our methods to the item-multiset kernel, which is a generalization of the
itemset kernel.

In future work, I plan to develop a method to make predictive models using feature
interactions more interpretable. To tell the truth, I have already developed a feature
interaction selection method of FMs that can improve the interpretability of FMs. For
more details, please see our preprint [3].
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