

Instructions for use

Title Query-Aware Locality Sensitive Hashing for Similarity Search Problems

Author(s) 陸, 可鏡

Citation 北海道大学. 博士(情報科学) 甲第14585号

Issue Date 2021-03-25

DOI 10.14943/doctoral.k14585

Doc URL http://hdl.handle.net/2115/81266

Type theses (doctoral)

File Information Kakyo_Riku.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Query-Aware Locality Sensitive
Hashing for Similarity Search

Problems

Kejing Lu

Graduate School of Information Science and Technology

Hokkaido University

A thesis submitted for the degree of

doctor of information engineering(PhD)

mailto:your@email.net
http://www.something.net
http://www.something.net

Abstract

Similarity search is an old but fundamental research topic which has various

applications in database, data mining, information retrieval and machine

learning. Although the goal of similarity search, that is, finding most similar

points of issued queries in the dataset given a specified measure, is quite

straightforward, it is very challenging to solve this problem efficiently due

to the following two reasons. (1) In recent years, as the data size increases

rapidly, we need to deal with up to billion-scale datasets, on which many

traditional techniques lose the effectiveness. (2) Due to the phenomenon

called the curse of dimensionality, the distances among data points become

much closer as the dimension increases, which makes most of tree structures

perform even worse than the linear scan. In order to overcome these two

obstacles, many researchers have devoted to find more efficient techniques

in the past two decades and proposed various algorithms.

Although these algorithms vary much, the following two performance met-

rics always attract particular attention in their designs: one is the accuracy,

which is often indicated by the percentage of true points which are success-

fully found, also called, the recall rate, and the other one is the efficiency

which is often indicated by the running time of searching. In order to make

the accuracy more controllable, researchers have developed some techniques

with theoretical guarantees to satisfy specified success probabilities. Among

these techniques, Locality Sensitive Hashing (LSH) draws a particular in-

terest due to its attractive query performance and robust probability guar-

antee. The basic idea of LSH is to build a group of projected vectors and

select the most promising candidates only from the projection information

of those vectors. Such an idea becomes the starting point of the research

work introduced in this paper.

Since the solutions of similarity search problems vary highly over different

spaces and different measures, in this paper, we particularly focus on the

most important two situations: the Euclidean space equipped with `2 metric

and the inner product space. In practice, many applications are intimately

related to either of these two situations. Accordingly, this thesis is divided

into two major parts.

In the first part, we focus on the `2 metric and aim to solve approximate

nearest neighbor search problems. For this purpose, we propose two disk-

based LSH variants called VHP and R2LSH, which are highly inspired by

the concept of query-aware search window. By exploiting more accurate

projection information of the generated one-dimensional projected vectors,

these two methods build more effective query-centric search regions in the

projected spaces. Specifically, R2LSH builds multiple query-centric balls

in a group of two-dimensional projected subspaces, while VHP utilizes the

information of one-dimensional distances between the query and data points

on every projected vector. Both of these two methods can prune false points

more accurately than the existing query-aware LSH variants.

In the second part, we focus on the inner product space and solve the

maximum inner product search problem. For this purpose, we propose

a query-aware LSH variant called AdaLSH which is built on a multi-ring

structure. The basic idea of AdaLSH is that, based on different norms of

data points, we can control adaptively the width of the query-aware search

windows such that those points having larger norms can be examined more

carefully to ensure the accuracy. In order to realize this idea, we design

a multi-round search strategy such that query-aware search windows in

different rings extend at different paces, which not only achieves the goal

mentioned above, but also significantly decreases the total searching cost.

Since all three proposed methods are based on LSH, all of the proposed

algorithms possess probability guarantees in accuracy. Extensive experi-

ments confirm the superiority of these methods over existing state-of-the-art

methods. In particular, R2LSH and VHP scale up to billion-scale datasets,

because they are disk-based.

Acknowledgements

First, I would like to express the deepest gratitude to my supervisor, Pro-

fessor Mineichi Kudo, for his help in various aspects in the past four years.

He offered me the chance to study and conduct the research in Hokkaido

University, and gave me the freedom to the largest extent to research the

problem of my interest. For my each paper, he examined it word by word

and gave me many constructive suggestions to improve its quality. I will

always keep his help and rigorous attitude to the research in mind.

I would also like to thank Associate Professor Atsuyoshi Nakamura for his

invaluable suggestions for my future plan. My sincere thanks also go to my

research committee members, Professor Hideyuki Imai and Professor Akira

Tanaka, for offering constructive comments on my research work. I also

thank all the members in the PRML lab and really enjoy the experience

in the lab in the past three years. Especially, I thank the root members

in PRML lab for their arduous work in managing servers to ensure that I

could conduct my experiments smoothly.

Finally, I would like to thank my parents. Without their financial support

and encouragement, I could not make any progress in the research filed.

Also, I would like to thank my former supervisor Professor Hongya Wang

and Assistant Professor Lu Sun for their help and suggestions before and

after I started my study in Hokkaido University.

Contents

List of Figures v

List of Tables vii

List of Algorithms viii

1 Introduction 1

1.1 Background . 1

1.2 Locality sensitive hashing . 3

1.3 Organization of this paper . 5

2 Approximate Nearest Neighbor Search Problem 6

2.1 Introduction . 6

2.2 Related work . 7

2.2.1 LSH-based Algorithms . 7

2.2.2 Non-LSH Algorithms . 8

2.3 Preliminary . 9

2.4 Virtual Hypersphere Partitioning . 11

2.4.1 Motivation . 11

2.4.2 Virtual Hypersphere Partitioning 13

2.4.2.1 The Idea . 13

2.4.2.2 An Illustrative Example of Query Processing Workflow 15

2.4.2.3 The Algorithm . 17

2.4.2.4 Determine the Radii of Physical Hyperspheres 19

2.4.2.5 Calculate the Base Hypersphere Radii 23

2.4.3 Theoretical Analysis . 24

i

CONTENTS

2.4.3.1 Probability Guarantee for NN Search 24

2.4.3.2 Extension for c-k-ANN Search 26

2.4.4 Discussion . 27

2.4.4.1 Complexity analysis . 27

2.4.4.2 Comparison with existing methods 27

2.4.5 Experimental results . 27

2.4.5.1 Experiment Setup . 27

2.4.5.2 Parameter setting of VHP 29

2.4.5.3 The Effect of Approximation Ratio 30

2.4.5.4 Index Size, Indexing Time and Memory Consumption . 30

2.4.5.5 VHP vs. LSH-based Methods 32

2.4.5.6 Experimental results under the same recall 33

2.4.5.7 Experimental results under different k 33

2.5 R2LSH: LSH in two dimensional subspaces 33

2.5.1 Motivation . 33

2.5.2 Overview . 34

2.5.3 Indexing phase . 37

2.5.3.1 Construction of projected spaces 37

2.5.3.2 Partition of projected spaces 37

2.5.3.3 Reference Vector Selection 38

2.5.3.4 Indexing objects by B+-trees 38

2.5.4 Query phase . 39

2.5.4.1 Fundamental relationships 39

2.5.4.2 Scanning Process . 41

2.5.4.3 Algorithm and Quality guarantee 42

2.5.4.4 Extension to c-k-ANN search 43

2.5.5 Discussion . 44

2.5.5.1 Complexity Analysis . 44

2.5.5.2 Handling Update and parameter setting 45

2.5.6 EXPERIMENTS . 46

2.5.6.1 Experiment Setup . 46

2.5.6.2 Efficiency of R2LSH . 49

2.5.6.3 Index Size, Indexing Time, and Memory Consumption . 50

ii

CONTENTS

2.5.6.4 The effect of c . 51

2.5.6.5 R2LSH vs. other LSH-based methods 52

3 Maximum Inner Product Search Problem 55

3.1 Introduction . 55

3.2 Related work . 56

3.2.1 Exact MIPS methods . 56

3.2.2 LSH-based MIPS methods (learning-free) 57

3.2.3 Learning MIPS methods . 58

3.3 Preliminaries . 58

3.3.1 Brief review of H2-ALSH . 58

3.3.2 Notations and problem setting 59

3.4 Adaptive LSH . 60

3.4.1 The indexing phase . 60

3.4.2 The query phase . 60

3.4.2.1 Overview . 60

3.4.2.2 Basics . 64

3.4.2.3 Fundamental relationships 65

3.4.2.4 Search process . 66

3.4.2.5 Performance analysis 68

3.4.3 Comparison with other LSH methods 69

3.5 Experimental evaluation . 69

3.5.1 Experimental setup . 70

3.5.1.1 Datasets and queries . 70

3.5.1.2 Performance metrics . 71

3.5.1.3 Parameter setting of AdaLSH 71

3.5.2 Efficiency of AdaLSH . 72

3.5.2.1 Efficiency of multi-round strategy 73

3.5.2.2 Performance of AdaLSH under different parameters . . 73

3.5.3 The comparison study . 75

3.5.3.1 AdaLSH vs. other LSH-based methods 75

3.5.3.2 AdaLSH vs. H2-ALSH 76

4 Conclusion and Future Work 81

iii

CONTENTS

Bibliography 83

iv

List of Figures

2.1 A running example of query-centric hashing. 13

2.2 An illustrative example of the search spaces of virtual sphere partitioning

and collision-threshold-based filtering. 14

2.3 An illustrative example of how VHP works. 16

2.4 The impact of different parameters . 28

2.5 The performance of VHP under different approximation ratios 29

2.6 The comparison on the accuracy-efficiency tradeoffs of VHP, SRS and

QALSH . 31

2.7 The performances of VHP under different k at recall 80% 32

2.8 Query-centric Hash bucket (m = 2, τ = 2) vs. Query-centric Ball (τ = 1). 35

2.9 Overview of R2LSH . 37

2.10 Example of B+-trees for three clusters in a projected space (Left: geo-

metrical relationship. Right: leaf levels of B+-trees). 43

2.11 The effect of different parameters in R2LSH 48

2.12 I/O Cost and accuracy of R2LSH vs. c 51

2.13 I/O costs necessary to achieve overall ratio 1.01 52

2.14 I/O costs given recalls 20%, 40%, 60% and 80% (k = 100) 53

3.1 Indexing phase of AdaLSH. Any object o is normalized to õ (‖õ‖ = 1)

and then projected onto a line with a random Gaussian vector aj for

collision testing. 61

3.2 Multi-round search strategy, where tri denotes the threshold for window

size wi at rth round . 61

v

LIST OF FIGURES

3.3 Probabilistic examination order of norm-limited objects. All objects o ∈
Si are limited in their norm as `i ≤ ‖o‖ ≤ ui. Function g maps cos θ =

I(o)/ ‖o‖ with q̃ to c
√

2− 2 cos θ (c is a constant), where I(o) = 〈o, q̃〉 and

‖q̃‖ = 1. The objects are examined in the ascending order θ as g1, g2, . . .,

while the corresponding gu1 , gu2 , . . . are examined if guj < w. Let w =

g(Î/ui) with the current maximum inner product Î. Subsequently, if

I(oj) > Î, then guj < w; accordingly, gj < w. Therefore, it is sufficient

to verify objects satisfying gj < w. 62

3.4 Functions for setting round values . 63

3.5 Performances of AdaLSH under different b (c = 1.0, k = 100) 72

3.6 Performances of AdaLSH under different m (c = 1.0, k = 100) 72

3.7 Speeds of AdaLSH under different parameters on Nusw. The naive

search consumed approximately 107 ms 74

3.8 Recall rates of AdaLSH under different parameters on Nusw 74

3.9 Comparison of overall ratios on Cifar, Sun, Enron, Trevi, and Nusw (k

= 100, c = 0.5) . 76

3.10 Comparison of overall ratios on Msong, Gist, Ukbench, Deep, and Ima-

geNet (k = 100, c = 0.5) . 76

vi

List of Tables

1.1 Publication list . 5

2.1 Notations . 12

2.2 Comparison of index sizes. (CR means crash in the indexing phase) . . 30

2.3 Notations of R2LSH . 36

2.4 Real datasets . 47

2.5 B+-tree vs. R-tree on running times(s) necessary to achieve overall ratio

1.01. @k means the number of nearest neighbors. 49

2.6 Ratios of I/O costs in index access of R2LSH to those of QALSH. @k

means the number of nearest neighbors. 49

2.7 Running times(s) necessary to achieve overall ratio 1.01 under different

subspace dimensions. @k means the number of nearest neighbors. 50

2.8 Index sizes (c = 2). CR denotes crash in the indexing phase. 50

2.9 I/O costs (×105) necessary to achieve overall ratio 1.01 on Tiny80M and

Sift1B. @k means the number of nearest neighbors. 52

2.10 Speeds(s) given recall 70% (k = 100). 70% is selected because it can be

achieved by three methods and corresponds to targeted overall ratio of

approximately 1.01. 54

3.1 Comparison among state-of-the-art MIPS methods 58

3.2 Some notations . 59

3.3 Real datasets . 79

vii

LIST OF TABLES

3.4 Results on the artificial data (ms). The single-round search consumed

44.49 ms on S1 (the 1st column), while the multi-round search exam-

ined S1 (and S2) piecewise in the ascending order of the angle (2nd–4th

columns). 79

3.5 Recall rate(%) (k=100, c=0.5) . 79

3.6 Running time(ms) (k=100, c=0.5) . 80

3.7 AdaLSH vs. H2-ALSH (k=100) . 80

viii

List of Algorithms

1 VHP(q; c, t0, (lt01 , l
t0
2 , ..., l

t0
m)) . 18

2 Compute the base radii () . 24

3 Indexing phase of R2LSH . 39

4 Query phase of R2LSH . 44

5 Query phase of AdaLSH . 78

ix

Chapter 1

Introduction

1.1 Background

With the arrival of big data era, similarity search plays an important role in many fields

such as multimedia database, signal processing, space-time database, data mining and

analysis system[4, 32]. Especially after 1970s, similarity search is found in applica-

tions such as computer aided design (CAD), geographic information system (GIS) and

bioinformatics. Faced with million-scale datasets, even billion-scale datasets, the goal

of similarity search is to find the ”closest” objects of issued queries efficiently and ac-

curately. For different applications, the tackled data types, data spaces and similarity

measures vary much. For example, in the field of text mining, the widely used measure

is Jaccard similarity while in the filed of image retrieval, the widely used measures are `2

metric and cosine metric. In this paper, we only focus on the latter situation. More pre-

cisely, we deal with those datasets whose objects are represented by high-dimensional

vectors in a fixed Euclidean space.

From the goal of similarity search introduced in the preceding paragraph, it is easy

to see that such problems can always be solved by brute force, or say, the linear scan.

That is, we scan all objects in the dataset sequentially and maintain the closest one

during the examination process. However, such solution is unacceptable for most of

real applications due to the following two reasons. (1) The tackled real datasets are

both large-scale and high-dimensional. This means that the time complexity O(nd) for

a single query is too high to be accepted in practice, where n and d are the data size

and the data dimension, respectively. (2) For real-time systems, we have to process a

bunch of queries issued by users rather than a single query during a period of time.

1

1.1 Background

In this situation, the high time cost of linear scan will accumulate and lead to a very

long response time. Therefore, it is timely and important to design efficient methods

to solve similarity search problems. It is notable that currently, exact nearest neighbor

search problem (ENN), that is, finding the true nearest neighbor of the query, is often

thought to be intractable in the sub-linear time complexity. Thus, most of researchers

focus on its weaker version and only try to find approximate nearest neighbors (ANN),

that is, those points whose distances to the query are close to the smallest distance,

since finding such points are also acceptable for many applications in the real world.

Before proceeding, we need to point out that, even for the weak version, similarity

search problems are still non-trivial in high-dimensional spaces since, as the dimension

increases, many data points have very close distances to the query such that they are

approximately distributed on a query-centric sphere from the geometric viewpoint, in

which case, the true nearest neighbors of queries are hard to be distinguished from other

points. A straightforward consequence is that, the performances of those well-known

tree-based data structures, such as, R-tree [23], kd-tree [10], sr-tree [31] degrade signif-

icantly and run even slower than the linear scan in some cases [55]. This phenomenon

is called the curse of dimensionality [28].

It is widely accepted that an efficient solution to overcome this difficulty is to resort

to the projection techniques, which are based on the following intuitive fact: two close

points in the original space is very likely to be also close in the projected spaces. By

processing points in such low-dimensional spaces, we can lower the time complexity of

linear scan. Based on this fact, various projection-based methods have been proposed

and they can be roughly divided into the following two categories: (1) reducing the data

dimension directly based on the data distribution, and (2) building hash functions. For

methods in the first category, relatively less important subspace of the original space

will be removed. Then some search algorithms will be implemented in the subspace

with the reduced dimension. Representatives of such type are principal component

analysis (PCA) [24], linear discriminant analysis (LDA), manifold learning algorithms

such as LLE, Laplacian Eigenmap [8] [9]. The methods in the second category can be

further divided into two sub-categories: (1) building data-dependent hash functions,

and (2) building data-independent hash functions. Here, data-dependent hash functions

refer to those functions which are learned by utilizing characteristics or distributions

2

1.2 Locality sensitive hashing

of datasets. They can be further divided into unsupervised hash functions and super-

vised hash functions. Representatives of unsupervised hash functions are KLSH [46],

spectral hashing [56]. For data-independent hash functions, the construction of them is

independent of the distribution of the dataset and only depends on the used similarity

measure. As a typical example, locality sensitive hashing (LSH) is a data-independent

projection technique and is widely adopted in various applications. It has been proved

that LSH-based methods are superior to many other algorithms in terms of space con-

sumption and query efficiency [2]. This paper will focus on the design of LSH-based

indexes/methods to solve the similarity search problems.

1.2 Locality sensitive hashing

In this section, we briefly review the basic ideas of Locality Sensitive Hashing(LSH).

First, we give the following definition of r-nearest neighbor search problem: for a given

query q, find a point o whose distance to the query is not greater than r. To solve the

r-near neighbor search problem, Indyk and Motwani introduced the concept of LSH

in their influential paper [28]. The idea of random projection on which LSH based,

however, can be traced back to much earlier work in [11, 33]. The rationale behind

LSH is that, by using specific hashing functions, we can hash the points such that the

probability of collision for data points which are close to each other is much higher

than that for those which are far apart. In this section, we use H to denote a family

of hash functions mapping Rd to some universe U. For any two points o and q and

a hash function h that is chosen from H uniformly at random, the family H is called

locality sensitive if the probability that these two points collide (h(q) = h(o)) satisfies

the following condition, where c > 1 is a user-specified parameter called approximation

ratio. For an LSH family to be useful, it has to satisfy p1 > p2.

Definition 1 ([28]). A family H of hash functions is called (r, cr, p1, p2)-sensitive if

for any two points o, q ∈ Rd.

• if ‖q − o‖ ≤ r then PrH[h(q) = h(o)] ≥ p1

• if ‖q − o‖ ≥ cr then PrH[h(q) = h(o)] ≤ p2

3

1.2 Locality sensitive hashing

This condition can be applied to various measures. In the following introduction,

we focus on the LSH family designed for the Euclidian space. In [17], the authors

proposed the following LSH family for `2 metric: pick a group of random vectors ~a′s in

Rn and project o onto ~a′s. The 1-dimensional line (~a) is then chopped into segments

of length w. The number of segment which o falls into, after shifted by a random value

b ∈ [0, w), is the hash value of o. Formally, ha,b(o) =
⌊
~a·~o+b
w

⌋
. Each coordinate of

~a is drawn uniformly at random following the Gaussian distribution. The probability

of collision that any two points at distance r collides over the random vector ~a is as

follows:

peh(r) =

∫ w

0

1

r
g(
t

r
)(1− t

w
)dt (1.1)

where g(x) = 2f(x) and f(x) = 1√
2π
e−x

2/2.

The LSH approach to the approximate NNS problem is based on the existence of

the locality sensitive hash functions. Given a family of LSH functions H, the classic

LSH method works as follows [17, 28]. For parameters k and `, ` functions gj(q) =

(h1,j(q), . . . , hk,j(q)) are chosen, where hi,j(1 ≤ i ≤ k, 1 ≤ j ≤ `) is drawn independently

and uniformly at random from H [28]. Given a dataset D, ∀o ∈ D the bucket gj(o)

is computed for j = 1, . . . , `, and then o is inserted into the corresponding bucket. To

process a query q, one has to compute gj(q), j = 1, . . . , `, first, and then retrieve all

points that lie in at least one of these buckets. For simplicity, we denote h and h`k

as a random LSH function and a random LSH data structure respectively, and the

(uniformly drawn) samples of h`k and h are denoted by h`k and h, respectively.

As mentioned in Section 1.1, LSH and its variants are capable of providing, with

some constant success probability, excellent asymptotic performance in terms of space

consumption and query cost [20, 28, 40, 52]. The theoretical guarantee relies on the

fact that, for any point pair 〈q, o〉 such that d(q, o) = r, where d(q, o) is the distance

between q and o, the collision probability ph(r) that 〈q, o〉 collides over h decreases

monotonically with r [28]. As a quick result, the collision probability of 〈q, o〉 over h`k,

denoted by Ph`
k
(r), can be calculated using Equation (1.2) since k × ` hash functions

are drawn independently from H.

Ph`
k
(r) = 1− (1− ph(r)k)` (1.2)

4

1.3 Organization of this paper

Table 1.1: Publication list

Method Conference/Journal Solved problem Section

VHP [39] PVLDB’20 ANNS Sec. 2.4
R2LSH [37] ICDE’20 ANNS Sec. 2.5

AdaLSH [38] IEICE’21 MIPS Sec. 3

From this expression, it is easy to see that, by reasonably choosing the values of k

and `, LSH could ensure that the difference between Ph`
k
(r) and Ph`

k
(cr) is large enough

and thus distinguish those points within the query-centric sphere of radius r and points

outside the query-centric sphere of radius cr efficiently. In the later chapters, we will

see that this property is the starting point for almost all LSH-based methods.

1.3 Organization of this paper

The relevant published or accepted papers are listed in Table 1.1 and the rest of this

paper is organized as follows. In Chapter 2, we will introduce the applications of LSH

in the Euclidean space with `2 metric, and propose two LSH-based methods VHP

and R2LSH. Specifically, VHP will be introduced in Section 2.4.2 and R2LSH will be

introduced in Section 2.5. In Chapter 3, we will introduce the applications of LSH in

the inner product space and propose a related method called Adaptive LSH. In Chapter

4, we will conclude this paper and provide some ideas on the the future research.

5

Chapter 2

Approximate Nearest Neighbor
Search Problem

2.1 Introduction

In Chapter 2, we focus on the approximate nearest neighbor search problem (ANNS) in a

high-dimensional Euclidean space with `2 metric. To remove the curse of dimensionality

mentioned in Chapter 1, the common wisdom is to design efficient c-approximate NN

search algorithms by trading precision for speed [12]. A point o is called a c-approximate

NN (c-ANN) of query q if its distance to q is at most c times the distance from q to

its exact NN o∗, i.e., ‖q, o‖ ≤ c‖q, o∗‖, where c is the approximation ratio. As one of

the most promising c-ANN search algorithms, Locality Sensitive Hashing (LSH) owns

attractive query performance and probability guarantee in theory [28], and finds broad

applications in practice [2, 32].

As a matter of fact, the original LSH method (E2LSH) whose implementation is

introduced in Section 1.2, does not support c-ANN search directly and a naive extension

may cause prohibitively large storage cost [52]. To this end, several LSH variants such as

LSH-forest [52], C2LSH [20] and QALSH [26], have been proposed in order to answer

c-ANN queries with reasonably small indexes, constant success probability and sub-

linear query overhead. Inspired by these works, we proposed two novel and efficient

LSH-based methods called VHP and R2LSH which could improve the performances of

existing methods further. Both proposed methods are disk-based and their details will

be introduced from Section 2.4.

6

2.2 Related work

2.2 Related work

Before proceeding, let us review some important and efficient ANNS methods. Al-

though this paper mainly focuses on the design of LSH-based methods, some methods

of other types will also be mentioned in Sec 2.2.2 for the completeness.

2.2.1 LSH-based Algorithms

Among the approximate NN search algorithms, the Locality Sensitive Hashing is the

most widely used one due to its excellent theoretical guarantees and empirical perfor-

mance. E2LSH, the classical LSH implementations for `2 norm, cannot solve c-ANN

search problem directly. In practice, one has to either assume there exists a “magical”

radius r, which can lead arbitrarily bad outputs, or uses multiple hashing tables tai-

lored for different raddi, which may lead to prohibitively large space consumption in

indexing. To reduce the storage cost, LSB-Forest [52] and C2LSH [20] use the so-called

virtual rehashing technique, implicitly or explicitly, to avoid building physical hash

tables for each search radius. The index size of LSB-Forest is far greater than that of

C2LSH because the former ensures that the worst-case I/O cost is sub-linear to both

data size n and data dimension d whereas the latter has no such guarantee - it only

bounds the number of candidates by some constant but ignores the overhead in index

access.

Based on the idea of query-aware hashing, the two state-of-the-art algorithms

QALSH and SRS further improve the efficiency over C2LSH by using different index

structures and search methods, respectively. SRS uses an m-dimensional R-tree (typ-

ically m ≤ 10) to store the 〈g(o), oid〉 pair for each point o and transforms the c-ANN

search in the d-dimensional space into the range query in the m-dimensional projection

space. The rationale is that the probability that a point o is the NN of q decreases

as ∆m(o) increases, where ∆m(o) = ‖gm(q)− gm(o)‖ During c-ANN search, points are

accessed according to the increasing order of their ∆m(o). QALSH uses the so-called

dynamic collision counting technique to identify eligible candidates. Briefly, one hash

function h(·) defines many buckets (search windows) and two points collide if they fall

into the same bucket. With a compound hash function gm(·) = 〈h1(·), h2(·), · · · , hm(·)〉,
o is mapped from the feature space into the m-dimensional projection space. Point o

collides with q over gm(·) if the collision number out of m hash functions is no less

7

2.2 Related work

than L, where L is a pre-defined collision threshold. All points that collide with q are

regarded as candidates and further screened by QALSH.

Motivated by the observation that the optimal `p metric is application-dependent,

LazyLSH [57] is proposed to solve the NN search problem for the fractional distance

metrics, i.e., `p metrics (0 < p < 1) with a single index. FALCONN is the state-of-the-

art LSH scheme for the angular distance, both theoretically and practically [3]. Except

for E2LSH and FALCONN, the other algorithms are disk-based and thus can handle

datasets that do not fit into the memory.

All of the aforementioned LSH algorithms provide probability guarantees on the re-

sult quality (recall and/or precision). To achieve better efficiency, many LSH extensions

such as Multi-probe LSH [40], SK-LSH [36], LSH-forest [7] and Selective hashing [22]

use heuristics to access more plausible buckets or re-organize datasets, and do not

ensure any LSH-like theoretical guarantee.

2.2.2 Non-LSH Algorithms

Inspired by LSH, a vast amount of research efforts have been devoted to the learning-

based hashing for ANN search. Spectral hashing utilizes the spectral graph analysis

technique to embed points to the Hamming space based on the pairwise similarity

matrix [56]. DSH learns the LSH functions for kNN search directly by computing

the minimal general eigenvector and then optimizing the hash functions iteratively

with the boosting technique [21]. Production quantization (PQ) divides the feature

space into disjoint subspaces and then quantizes each subspace separately into multiple

clusters [29]. By concatenating codes from different subspaces together, PQ partitions

the feature space into a large number of fine-grained clusters which enables efficient

NN search. As pointed in [54], the high training cost (preprocessing overhead) is a

challenging problem for learning to hash while dealing with large datasets. Moreover,

almost all learning-based hashing methods are memory-based and do not ensure the

answer quality theoretically.

FLANN [42] is a meta algorithm which selects the most suitable techniques among

randomized kd-tree, hierarchical k-mean tree and linear scan for a specific dataset. As

a representative of graph-based algorithms, HNSW uses long-range links to simulate

the small-world property based on an approximation of the Delaunay graph [41]. The

experiment study in a recent paper shows that the main-memory-based ANN algorithms

8

2.3 Preliminary

such as HNSW and PQ find difficulty to work with large datasets in a commodity PC [5].

HD-Index [5] is proposed to support the approximate NN search for disk-based billion-

scale datasets. HD-Index consists of a set of hierarchical structures called RDB-trees

built on Hilbert keys of database objects. In the query phase, those objects which

are close to the query in an arbitrary RDBtree are determined as candidates. Again,

the best-effort nature makes these tree-based and graph-based algorithms devoid of

theoretical guarantee.

It is notable that Ciaccia and Patella have also considered using a hypersphere to

delimit the search space and proposed an algorithm PAC-NN to support probabilis-

tic kANN queries [14]. A recent experimental study extends some exact NN algo-

rithms, i.e., iSAX2+ and DSTree, to support PAC (probably approximately correct)

NN query [19]. The extension is based on the idea of PAC-NN [14], which makes the

probabilistic iSAX2+ and DSTree data dependent. As a result, it is reported that they

demonstrate better accuracy and efficiency than SRS and QALSH.

2.3 Preliminary

In Chapter 2, we focus on the Euclidean space with `2 norm. For a dataset D of N d-

dimensional data points, NN search finds the point o∗ in D with the minimum distance

to query q. For c-ANN search, only a c-approximate neighbor o needs to be returned,

that is, ‖q − o‖ ≤ c ‖q − o∗‖, where ‖q − o‖ denotes the `2 distance between q and o.

kNN search returns k results o∗j (1 ≤ j ≤ k), where o∗j is the j-th nearest neighbor

of q. Its c-approximate version, c-k-ANN, returns a set of k objects oj (1 ≤ j ≤ k)

satisfying ‖q − oj‖ ≤ c
∥∥q − o∗j∥∥.

Let d(o1, o2) denote ‖o1 − o2‖. Suppose ~a = [a1, a2, · · · , am] is a random projection

vector, each entry of which is an i.i.d. random variable following the standard normal

distribution N(0, 1). The inner product between ~a and vector ~o, denoted as h(o) = 〈~a, ~o〉
is an LSH signature of o. We have the following important Lemma [17].

Lemma 1. For any points o1, o2 in Rd, h(o1)− h(o2) follows the normal distribution

N(0, d2(o1, o2)).

Lemma 1 holds due to the fact that the standard normal distribution N(0, 1) is

a p-stable distribution for p = 2. Lemma 1 suggests that the difference between two

LSH signatures follows the normal distribution with mean 0 and standard deviation

9

2.3 Preliminary

d(o1, o2), i.e., the Euclidian distance between the two original points. This establishes

analytical connection between the distances in the projection space and original feature

space, which is the building block for constructing the LSH family.

Given a positive real number t, the interval [h(q) − t, h(q) + t] is referred to as a

query-aware search window. For ease of presentation, we will refer to it as a search

window [−t, t] henceforth. For any point o, the probability p(s) that h(o) (s = d(o, q))

falls into this window is given by Equation (2.1) [26].

p(s) = Pr[δ(o) ≤ t] =

∫ t
s

− t
s

ϕ(x)dx, (2.1)

where δ(o) = |h(q)−h(o)| and ϕ(x) is the probability density function (PDF) of N(0, 1).

It is easy to see that, for fixed t, p(s) is a monotonically decreasing function, which

means that the probability that q and o fall into the same search window decreases

with their Euclidian distance. According to the definition of locality sensitive hashing,

h(·) is shown to be the query-aware LSH family [26].

Suppose X follows the normal distribution N(µ, σ2) and lies within the interval

X ∈ [a, b], −∞ ≤ a < b ≤ ∞. Then X conditional on a ≤ X ≤ b has a truncated

normal distribution N(x ∈ [a, b];µ, σ2). Its probability density function, f , in support

[a, b], is defined by:

f(x;µ, σ2, a, b) =
ϕ(x−µσ)

Φ(b−µσ)− Φ(a−µσ)
(2.2)

where Φ(x) is the CDF of the standard normal distribution.

In fact, truncated normal distribution is important for the analysis of VHP intro-

duced later since, instead of only caring about whether q and o fall into the same bucket,

we exploit the precise position information of o to obtain a more fine-grained filtering

condition. Suppose o lies in the query-aware search window already, then h(q) − h(o)

follows the truncated normal distribution f(x; 0, d2(o1, o2),−t, t) instead of the normal

distribution N(0, d2(o1, o2)).

Next, we start from Equation (2.1) in another direction. Let g(o) = (h1(o), h2(o), . . .

, hm(o)) denote the random mapping of o from the original d-dimensional space to the

m-dimensional projected space and ∆(o) = ‖g(q)− g(o)‖. Sun et al. [51] observed that

∆2(o)/ ‖q − o‖2 follows the χ2(m) distribution. Thus, as a generalization of Lemma 1,

10

2.4 Virtual Hypersphere Partitioning

the probability p(s, r) that g(o) (s = ‖q − o‖) falls within the hyperball of radius r

centered at g(q) is expressed as

p(s, r) = Pr[∆(o) ≤ r] = Ψm(
r2

‖q − o‖2
), (2.3)

where Ψm(x) is the cumulative distribution function (CDF) of the χ2(m) distribution.

Equation (2.3) will be the building block for the theoretical analysis of R2LSH.

2.4 Virtual Hypersphere Partitioning

2.4.1 Motivation

In this section, we discuss how QALSH works and its limitations from a geometric

point of view. Compared with C2LSH, QALSH applies the query-aware search window

[−t, t] to each hash function hi(·). Point o collides with q with respect to hi(·) if

−t ≤ hi(o)− hi(q) ≤ t.
Given query q and the search window of size 2t, point o might not collide with q over

all m random hash functions. To distinguish relevant and irrelevant points, QALSH

counts the collision number for each point. If the collision number is greater than some

given threshold L, it is said that o collides with q over gm(·). A formal treatment for

this is given in inequality (2.4).

|{i, 1 ≤ i ≤ m | |hi(o)− hi(q)| ≤ t}| ≥ L (2.4)

In QALSH, the exact `2 distance between o and q is evaluated only if o collides

with q over gm(·), which avoids the traversal of whole dataset D. In the quick example

in Figure 2.1, three hash functions are used and the search window size is 9 (t=4.5).

Suppose the counting threshold L = 2, QALSH will mark o2 and o3 as relevant points

because they appear in the search windows twice and leave o1 untouched.

In this subsection, we will examine the principle of QALSH from a geometric point

of view, whereby its limitations are outlined. For the statement that o collides with

q w.r.t. h(·), a geometric interpretation is that o lies in the region bounded by two

hyperplanes, defined by
d∑
i=1

aixi = h(q)− t and
d∑
i=1

aixi = h(q) + t, in the d-dimensional

space.

Similarly, for QALSH, visiting candidates (points which collide with q over gm(·))
is like checking points in the region bounded by j ≥ L hyperplane pairs, which are

11

2.4 Virtual Hypersphere Partitioning

Table 2.1: Notations

Notation Explanation

ϕ(x) the probability density function (PDF) of N(0, 1).

Φ(x) the cumulative distribution function (CDF) of N(0, 1).

P∗ the success probability specified by users.

L the collision threshold used by QALSH.

o∗ the nearest neighbor of q.

omin the nearest neighbor returned by the NN search algorithm.

d(o1, o2) the exact `2 distance between o1 and o2.

s∗ s∗ = d(o∗, q)

m the number of projection vectors.

h(·) the locality sensitive hash function.

δi(o) the `2 distance between hi(o) and hi(q).

gm(·) the compound hash function 〈 h1(·), h2(·), · · · , hm(·) 〉.
li the radius of physical hypersphere in the i-constrained projection sub-

space.

σ̃(li) the radius of the virtual hypersphere associated with i and li.

[−t, t] the search window of size 2t.

It(o) The set of hash functions satisfying |hi(q)− hi(o)| ≤ t.
rt(o) the collision number of point o with respect to [−t, t].
∆t(o) the observable projection distance of point o in the rt(o)-constrained

projection subspace.

d̃(o, q) d̃(o, q) = σ̃(∆t(o)) is the estimated distance from o to q.

defined by j different hash functions. Since m, the number of projections, is often less

than the dimensionality d of the ambient space, the search space is actually irregular

and unbounded. It is difficult to visualize such space in high-dimensional cases, and

thus we depict a simple example in 2-dimensional space to train the reader’s intuition.

As illustrated in Figure 2.2, the dimensionality d of the feature space is 2, the num-

ber of hash functions m is 2 and the collision threshold L is set to 1. The search window

is of size 2t and the solid line represents a degraded hyperplane in the 2-dimensional

space. The crossroad-like region is the search space of collision-threshold-based filter-

ing, which is irregular and unbounded. Points in this region are estimated to be the

NNs by QALSH. In contrast, virtual sphere partitioning imposes a virtual hypersphere

in the feature space, which is isotropic and bounded. Points whose distances to q are

less than the radius of the hypersphere (in estimation) are regarded as candidates.

From this examples, it is easy to see that the search strategy of QALSH has two

12

2.4 Virtual Hypersphere Partitioning

01234567 21 3 4 5 6 7
xxx

01234567 21 3 4 5 6 7
xx x

01234567 21 3 4 5 6 7
xxx

1o
3o 2o

1o

1o

3o

3o

2o

2o

1h

2h

3h

q

q

q

x

x

x

Window Size

Figure 2.1: A running example of query-centric hashing.

limitations: (1) close points in the red areas (with collision number of 0) are missed

and (2) many irrelevant points that are far away from q (outside the hypersphere but

inside the crossroad-like region) may be examined since the region is unbounded. To

remedy these limitations, we will propose a more fine-grained filtering strategy called

VHP in the following discussion.

2.4.2 Virtual Hypersphere Partitioning

In this section, we present a novel disk-based indexing and searching algorithm VHP.

The idea of virtual hypersphere partitioning and an illustrative example of query pro-

cessing workflow are given in Section 2.4.2.1 and Section 2.4.2.2, respectively. The

detailed algorithm is described in Section 2.4.2.3.

2.4.2.1 The Idea

In view of the limitations of QALSH discussed earlier, we suggest to use a hypersphere

centered at the query, which is isotropic and bounded, to partition the original feature

space and distinguish promising candidates and irrelevant ones. The idea is illustrated

in Figure 2.2, where the inner region of the hypersphere is the search space. Since

imposing a real hypersphere directly in the original space is difficult, we propose to

use multiple physical hyperspheres to achieve the same goal. A few notations and

definitions are needed before we present our proposal.

Recall that the compound hash function gm(·) maps point o in Rd into the m-

dimensional projection space Rm. Due to the existence of search window [−t, t], a

13

2.4 Virtual Hypersphere Partitioning

t ! t

q

QALSH

Figure 2.2: An illustrative example of the search spaces of virtual sphere partitioning
and collision-threshold-based filtering.

point may lie in a query-centric i-constrained projection subspace, which is defined as

follows.

Definition 2. A query-centric i-constrained projection subspace is composed of x ∈ Rm

such that hj(q)− t ≤ xj ≤ hj(q) + t (1 ≤ j ≤ i) for any i out of m hash functions.

Let It(o) denote the set of hash functions spanning the i-constrained projection

subspace that o sits in and rt(o) = |It(o)|. We denote by ∆t(o) the distance between q

and o in this subspace. Take Figure 2.1 as an example, o1 and o2 lie in the 1-constrained

and 2-constrained projection subspaces, respectively. For o2, we have I4.5(o2) = {h1, h3}
and r4.5(o2) = 2. ∆4.5(o2) = 5 since h1(o2)−h1(q) = 4 and h3(q)−h3(o2) = 3, thus their

Euclidian distance is
√

42 + 32 =5. In the sequel, we will omit the term i-constrained

if it is obvious from the context.

There are m classes of the i-constrained (1 ≤ i ≤ m) projection subspaces in

total and m choose i i-constrained projection subspaces for each given i. Obviously,

different points may lie in different projection subspaces. For point o in any one of

the i-constrained projection subspaces, o is regarded as a candidate only if ∆t(o) ≤ li,
which is like imposing a physical hyperspheres of radius li, centered at the projection

signature of q, to distinguish candidates and irrelevant points. As will be discussed in

Section 2.4.2.4, such a physical hypersphere is equivalent (in estimation) to a virtual

14

2.4 Virtual Hypersphere Partitioning

hypersphere with radius σ̃(li) in the original space. Moreover, checking points such

that ∆t(o) ≤ li is like examining candidates satisfying d̃(o, q) ≤ σ̃(li).

We say that o collides with q under virtual hypersphere partitioning, i.e., o is a

candidate, if ∆t(o) ≤ li for any 1 ≤ i ≤ m, that is, Equation (2.5) holds. Note that the

statement o lies in some i-constrained projection subspace is equivalent to o collides

with q w.r.t. g(·) i times.

∨
i

{rt(o) = i ∧∆t(o) ≤ li}, 1 ≤ i ≤ m (2.5)

It is easy to see that Equation (2.5) is more stringent and will degrade to Inequal-

ity (2.4) if one sets li = 0 for 1 ≤ i < L and li = +∞ for L ≤ i ≤ m.

m physical hyperspheres lead to m virtual hyperspheres in the original space, which

may be of different radii. To emulate a single virtual hypersphere, we judiciously choose

li to make the radii of the m virtual hyperspheres identical with each other. In this

way, using Equation (2.5) as a filtering condition is like examining points whose exact

distances to q (in estimation) are less than the virtual radius.

2.4.2.2 An Illustrative Example of Query Processing Workflow

In this subsection, we highlight the workflow of the proposed solution using an illus-

trative example as shown in Figure 2.3.

Before query processing, we need to set proper li to guarantee the result quality.

As will be discussed in Section 2.4.2.4, the radii of physical hyperspheres depend on

the distance between the given query and its NN. To circumvent this issue, we first

calculate the base distance thresholds lt0i in an off-line fashion for user-specified success

probability, under the assumption that the base search window is [−t0, t0] and d(o∗, q) =

11.

As illustrated in Figure 2.3(a) and Figure 2.3(b), the half-width of search window

and radii of physical hyperspheres are set to t0 and lt0i (1 ≤ i ≤ m) in the beginning.

The corresponding virtual hypersphere VHP0 is depicted in Figure 2.3(c). Please note

that, while lt0i are of different values, they are chosen judiciously such that they are

equivalent to the radius of VHP0. When t = t0, both o1 and o2 are not located in

1In practice, we may set d(q, o∗) to the minimum possible NN distance. We set d(q, o∗) = 1 here
for ease of presentation.

15

2.4 Virtual Hypersphere Partitioning

1

4

3

2

0

4

t
l

1

1

t
l

1

2

t
l

1

3

t
l

0

1

t
l

0

3

t
l

0

2

t
l

1

4

t
l

2o

1o

0t−

0t−

0t−

0t−

1t−

1t−

1t−

1t−

0t

0t

0t

0t

1t

1t

1t

1t

1o

1o

2o

2o

2o

2o

q

q

q

q

collision number

1o

1o

q

0VHP

1VHP

1o

2o

0r

1r

0 0

0 1 4() ()
t t

r l l = = =

1 1

1 1 4() ()
t t

r l l = = =

 (a)

1

4

3

2

0

4

t
l

1

1

t
l

1

2

t
l

1

3

t
l

0

1

t
l

0

3

t
l

0

2

t
l

1

4

t
l

2o

1o

0t−

0t−

0t−

0t−

1t−

1t−

1t−

1t−

0t

0t

0t

0t

1t

1t

1t

1t

1o

1o

2o

2o

2o

2o

q

q

q

q

collision number

1o

1o

q

0VHP

1VHP

1o

2o

0r

1r

0 0

0 1 4() ()
t t

r l l = = =

1 1

1 1 4() ()
t t

r l l = = =

(b)

1

4

3

2

0

4

t
l

1

1

t
l

1

2

t
l

1

3

t
l

0

1

t
l

0

3

t
l

0

2

t
l

1

4

t
l

2o

1o

0t−

0t−

0t−

0t−

1t−

1t−

1t−

1t−

0t

0t

0t

0t

1t

1t

1t

1t

1o

1o

2o

2o

2o

2o

q

q

q

q

collision number

1o

1o

q

0VHP

1VHP

1o

2o

0r

1r

0 0

0 1 4() ()
t t

r l l = = =

1 1

1 1 4() ()
t t

r l l = = =

(c)

Figure 2.3: An illustrative example of how VHP works.

16

2.4 Virtual Hypersphere Partitioning

VHP0 because their estimated distances to q in the feature space are greater than the

corresponding hypersphere radius, that is, d̃(o1, q) > r0 and d̃(o2, q) > r0. This is

computationally done by evaluating ∆t0(o2) > lt03 and ∆t0(o1) > lt02 in the respective

projection subspaces (Figure 2.3(b)).

Figure 2.3 also illustrates how the search window, radii of physical hyperspheres

and the virtual hypersphere grow coordinately. To accommodate more candidates,

VHP extends the search window from t0 to t1 first (Figure 2.3(a)). As a result, o2

jumps from 3-constrained to 4-constrained projection subspace while o1 keeps the same

collision number with q. The physical hypersphere radii are updated from {lt0i } to {lt1i }
accordingly as shown in Figure 2.3(b). As one can see, both o1 and o2 are identified as

candidates since ∆t1(o2) ≤ lt14 and ∆t1(o1) ≤ lt12 . The equivalent effect is illustrated in

Figure 2.3(c), where o1 and o2 are bounded by the enlarged virtual hypersphere VHP1.

Please note that the radii σ̃(li) of all virtual hyperspheres are identical with each other

all the time.

By extending the search window and hypersphere radii gradually, VHP is able to

find o∗ no matter how far it is away from q. The theoretical analysis in Section 2.4.2.5

and Section 2.4.3.1 guarantees that, for arbitrary d(o∗, q), o∗ will be found with prob-

ability at least P∗ when the search window extends to [−d(omin, q)t0, d(omin, q)t0] and

the radii reach d(omin, q)l
t0
i , where omin is the nearest point found by VHP so far.

2.4.2.3 The Algorithm

Index Building Phase: To index the data, m LSH random projections ~ai are gener-

ated first. Then, each o ∈ D is projected from the d-dimensional feature space into m

1-dimensional spaces. For each projection vector ~ai, a sorted list is built to store the

hash values and object identifiers for all points, and the list is sorted in the ascending

order of hi(o). Finally, we index each sorted list using a B+-tree and store it on the

disk.

NN Search Phase: When a query q arrives, we perform a range search [h(q) −
t, h(q) + t] over each B+-tree for given search window of size 2t. During the range

search, each point o is associated with 2-tuple 〈rt(o),∆t(o)〉. Recall that rt(o) denotes

the collision number and ∆t(o) refers to the distance between o and q in the rt(o)-

constrained projection subspace. Take o2 in Figure 2.1 as an example, r4.5(o2) = 2 and

∆4.5(o2) = 5.

17

2.4 Virtual Hypersphere Partitioning

Algorithm 1: VHP(q; c, t0, (lt01 , l
t0
2 , ..., l

t0
m))

Input: q is the query point; c(c ≥ 1) is the approximation ratio; 2t0 and
(lt01 , l

t0
2 , ..., l

t0
m) are the base search window size and base radii,

respectively;
Output: omin

1 t = 0; omin = a point at infinity;
2 while d(omin, q)/c >

t
t0

do

3 t = t+ ∆t (∆t > 0);
4 ∀o ∈ D update rt(o) and ∆t(o) if necessary;

5 if o is not visited and ∆t(o) ≤ t
t0
lt0rt(o) then

6 calculate d(o, q);
7 update omin if necessary;

8 return omin

We present the probabilistic NN version of VHP in Algorithm 1, while leaving the

c-k-ANN version to Section 2.4.3.2. It takes the query q as the input, as well as a

set of parameters: the base search window of size 2t0 and the base hypersphere radii

(lt01 , l
t0
2 , ..., l

t0
m). The parameters m, t0 and (lt01 , l

t0
2 , ..., l

t0
m) are determined before the

query processing. VHP returns the point omin as the final answer.

Starting with t0, VHP extends the search window gradually, which brings in more

points. In each iteration, the 2-tuple 〈rt(o),∆t(o)〉 is updated if rt(o) increases (Line 4).

The exact distance between q and o will be computed if ∆t(o) is no greater than the

radius ltrt(o) = t
t0
lt0rt(o). Then omin is updated if necessary (Lines 5-7). The while loop

terminates if the window size becomes large enough to meet the success probability

(Line 2) and omin is returned as the final answer (Line 8).

Update of windows size: Since VHP uses B+-trees as the underlying index

structure, there is a natural way to determine ∆t (line 3 in Algorithm 1) as follows. We

maintain a minimum heap of size 2m, each element of which keeps track of the search

direction (left or right) and offsets w.r.t. the query for a hash function. The increment

in t (∆t) is determined in a data-driven fashion, i.e., VHP searches all B+-trees until

a new point is found in any B+-tree and the position of this point determines the new

window size.

18

2.4 Virtual Hypersphere Partitioning

2.4.2.4 Determine the Radii of Physical Hyperspheres

In this section, we will discuss how to determine the radii of physical hyperspheres,

which is divided into the following three steps. (1) Step 1: we derive the collision

probability between two points. (2) Step 2: we design a method to estimate the virtual

radius for one physical hypersphere (3) Step 3: we prove the soundness of virtual

hypersphere partitioning. The way to calculate the base hypersphere radii and the

practical termination condition are presented in Section 2.4.2.5.

(1) Collision Probability. To conduct theoretical analysis for virtual hypersphere

partitioning, we need to derive the collision probability for any two points first. To

start with, some prerequisites are needed. Let X1, X2, ..., Xj ∈ [−t, t] be i.i.d. random

variables following the truncated normal distribution N(x ∈ [−t, t];µ, σ2). Let Y =√
i∑

j=1
X2
j and obviously Y ∈ [0,

√
it]. We use Ωt

i(µ, σ
2) to denote the distribution of Y

and denote its CDF as Gti(x;µ, σ2).

Assume d(o, q) = s. Recall that δ(o) = h(q)− h(o) follows the normal distribution

N(0, s2) and It(o) denotes the set of h(·) over which o collides with q. We have the

following important fact.

Fact 1. For any hi(·) ∈ It(o), δi(o) follows the truncated normal distribution N(x ∈
[−t, t]; 0, s2) and ∆t(o) follows the distribution Ωt

rt(o)
(0, s2).

Let A denote the event ∆t(o) ≤ lrt(o) and B denote the event rt(o) = i (1 ≤ i ≤ m),

thus the conditional probability Pr[A|B] is:

Pr[A|B] = Gti(li; 0, s2)

It is easy to see that rt(o) obeys the Binomial distribution B(m, p(s)), that is,

Pr[B] = C(m, i)(p(s))i(1 − p(s))m−i. Then the joint probability Pr[A ∩ B] can be

written as

Pr[A ∩ B] = C(m, i)(p(s))i(1− p(s))m−i · Gti(li; 0, s2)

Since there are m classes of projection subspaces, the collision probability, denoted

by ptL(s), can be calculated as follows, where L = (l1, l2, · · · , lm) is the set of radii of

m hyperspheres.

ptL(s) =

m∑
i=1

C(m, i)(p(s))i(1− p(s))m−i · Gti(li; 0, s2) (2.6)

19

2.4 Virtual Hypersphere Partitioning

Suppose that we could know s∗ beforehand. Then, to achieve the success probability

P∗, we only need to choose proper m, t and L such that:

ptL(s∗) = P∗ (2.7)

There may exist many L’s that make Equation (2.7) hold. Next, we will show how

to determine a unique and reasonable sequence (l1, l2, ..., lm) in order to fulfill virtual

hypersphere partitioning.

(2) Estimate the Virtual Radius for One Physical Hypersphere. In this

subsection, we focus on working out the estimate of the radius for one physical hyper-

sphere in the feature space. To begin with, we need some notations and definitions

first. An observation x sampled from the normal distribution N(0, σ2) is called a full

observation if it lies in the interval t1 ≤ x ≤ t2 and a censored observation otherwise,

where t1 and t2 are two censoring points [15]. Here the term “censored” means that,

instead of the exact value of this sample, we only know that it is situated outside the

interval defined by the censoring points.

Suppose m i.i.d. samples xj , 1 ≤ j ≤ m are drawn from N(0, σ2). Without the loss

of generality, assume the first i samples are full observations, and there are c1 censored

observations such that x < t1 and c2 censored observations such that x > t2. It is easy

to see that i + c1 + c2 = m. Based on these evidences, the likelihood function L(σ)

is introduced in [15] to estimate the standard deviation of N(0, σ2) under the MLE

framework.

L(σ) = [Φ(t1; 0, σ2)]c1 · [1− Φ(t2; 0, σ2)]c2 ·
i∏

j=1

ϕ(xj ; 0, σ2)

where Φ(x;µ, σ2) and ϕ(x;µ, σ2) are the CDF and PDF of normal distribution with

mean µ and variance σ2.

Since we are only interested in the special case where two censoring points are

symmetric(−t1 = t2 = t), L(σ) can be rewritten as follows

L(σ) = [Φ(t; 0, σ2)]m−i ·
i∏

j=1

ϕ(xj ; 0, σ2) (2.8)

20

2.4 Virtual Hypersphere Partitioning

By taking the partial derivative of L(σ), the estimate of σ, denoted by σ̃(‖xj‖), could

be obtained by solving the following equation, where ‖xj‖ =

√
i∑

j=1
x2
j and ξ = −t/σ.

∂(lnL(σ))

∂σ
= −(m− i)ϕ(ξ; 0, σ2)

σΦ(ξ; 0, σ2)
− i

σ
+

1

σ3

i∑
j=1

x2
j = 0 (2.9)

Recall that δ(o) = |h(q) − h(o)| follows N(0, d2(o, q)) according to Lemma 1. By

regarding the search window [−t, t] as the interval defined by two censoring points, the

estimate of d(o, q), denoted by σ̃(∆t(o)), can be obtained using Equation (2.9) if we

substitute ‖xj‖ with ∆t(o). Similarly, by substituting ‖xj‖ with li, we can obtain the

estimate of the radius in the d-dimensional space, denoted by σ̃(li), for each physical

hypersphere. Note that the variance of the estimate is a constant for given m, t and li

as shown in [15].

It is easy to see that σ̃(‖xj‖) is a function of m, i, t and ‖xj‖. In order to express

their relation more clearly, we transform Equation (2.9) into the following equation,

where G(i, ξ) = [ξ · m−ii) · ϕ(ξ; 0, σ2) + Φ(ξ; 0, σ2)]/[ξ2 · Φ(ξ; 0, σ2)].

‖xj‖2 = it2G(i, ξ) (2.10)

Next, we present an important property of G(i, ξ).

Lemma 2. For fixed i > 0, Equation G(i, ξ) = 0 has only one root ξ0 < 0. In addition,

when ξ > ξ0, G(i, ξ) is monotonically increasing with ξ and lim
ξ→0−

G(i, ξ) = +∞.

By taking the derivative of G(i, ξ), one can prove Lemma 2 readily, which implies

that 1) a unique solution exists for Equation (2.10), and 2) σ̃(‖xj‖) increases monoton-

ically with ‖xj‖ for given m, i and t.

(3)Soundness of Virtual Hypersphere Partitioning. In this subsection, we

show the soundness of virtual hypersphere partitioning.

We can derive m estimated radii σ̃(li) (1 ≤ i ≤ m) for m physical hyperspheres.

To make them equivalent to a unique virtual hypersphere, it is reasonable to set σ̃(li)

identical to each other as follows.

σ̃(li) = σ̃(lj), 1 ≤ i, j ≤ m (2.11)

21

2.4 Virtual Hypersphere Partitioning

Next we will show that, given P∗, m, t and s, Equation (2.11) along with Equa-

tion (2.7) gives a unique solution for each li. To start with, we need to establish the

connection between σ̃(‖xj‖) with different i.

Lemma 3. Given i full samples xj (1 ≤ j ≤ i) out of m samples with respect to the

censoring points −t and t, let σ̃(

√
i∑

j=1
x2
j) (i ∈ [1,m − 1]) be the estimate calculated

using Equation (2.9), the inequality σ̃(

√
i+w∑
j=1

x2
j + w · t2) < σ̃(

√
i∑

j=1
x2
j) holds for any

w ≤ m− i.

Proof. We only need to consider the case w = 1 since more general cases can be proved

by induction. Let ξi = −t

σ̃(

√
i∑

j=1
x2j)

. By definition we know that
i∑

j=1
x2
j = it2G(i, ξi) and

i+1∑
j=1

x2
j = (i+ 1)t2G(i+ 1, ξi+1). Since |xj | ≤ t, we have

(i+ 1)t2G(i+ 1, ξi+1)− it2G(i, ξi) ≤ t2

We can prove the following inequality (the details are tedious and omitted)

(i+ 1)t2G(i+ 1, ξi)− it2G(i, ξi) > t2

As a result, G(i + 1, ξi) > G(i + 1, ξi+1) holds. Please note that ξi > ξ0, ξi+1 > ξ0

and G(i, ξ) increases monotonically with ξ > ξ0 for fixed i. Thus, we have ξi > ξi+1,

which leads to σ̃(

√
i∑

j=1
x2
j) > σ̃(

√
i+1∑
j=1

x2
j + t2) immediately.

With the help of Lemma 3, we can readily prove the following proposition by con-

tradiction.

Proposition 1. If (l1, l2, ..., lm) satisfies Equation (2.11), we have li < lj for any

1 ≤ i < j ≤ m.

Now we are in the position to show the uniqueness of (l1, l2, ..., lm) under the con-

straints of Equation (2.11) and Equation (2.7).

Theorem 1. Given P∗, m, t and s, there exists a unique sequence (l1, l2, ..., lm) such

that Equation (2.11) and Equation (2.7) hold.

22

2.4 Virtual Hypersphere Partitioning

(Sketch). This theorem can be proved by contradiction according to Proposition 1, the

facts that
m∑
i=0

C(m, i) pi(1 − p)m−i = 1 for 0 < p < 1, and functions Gti(li) and σ̃(li)

increase monotonically with li.

By Theorem 1 and the fact σ̃(‖xj‖) increases monotonically with ‖xj‖, we can

prove that the condition ∆t(o) ≤ li for any 1 ≤ i ≤ m (Equation (2.5)) is equiva-

lent to σ̃(∆t(o)) ≤ σ̃(li) readily, which justifies the soundness of virtual hypersphere

partitioning.

2.4.2.5 Calculate the Base Hypersphere Radii

Based on Theorem 1, we could come up with a simple algorithm to find NN if s∗ were

known somehow beforehand. Specifically, one can compute (l1, l2, ..., lm) first. Then by

examining all points such that ∆t(o) ≤ lrt(o), it is guaranteed that one can achieve P∗

in finding o∗.

Unfortunately, s∗ is unavailable in the first place. As a workaround, we first derive

the base hypersphere radii lt0i such that pt0L (1) = P∗ using Algorithm 2, under the

assumptions that the base search window is equal to [−t0, t0] and d(o∗, q) = 1. Thanks

to Proposition 2, we are able to scale the search window and hypersphere radii properly

and achieve the desirable success probability for any s.

Proposition 2. pst0Ls
(s) = pt0L1

(1) (s > 0), where L1 = {lt01 , lt02 , . . . , lt0m} and Ls =

{slt01 , slt02 , . . . , slt0m}

Proof. This proposition can be proved easily by the facts that, for any s > 0, Gst0i (slt0i ; 0,

s2) = Gt0i (lt0i ; 0, 1) and p(s) under t = st0 is equal to p(1) in the case of t = t0.

Proposition 2 suggests that, for any point o such that d(q, o) = s, we can simply

extend the search window and hypersphere radii from the base ones to [−st0, st0] and

(slt01 , slt02 ,. . . , slt0m) respectively to achieve P∗ for o. In addition to ensuring the success

probability, the other benefit of Proposition 2 is that we do not have to evaluate (l1,

l2,. . . , lm) at runtime as the search windows grow.

Based on Proposition 2, VHP can work as follows. Starting with the base hyper-

sphere radii {lt01 , lt02 , . . . , lt0m}, VHP enlarges the hypersphere radii in a coordinated way

by multiplying lt0i with t
t0

, where 2t is the new window size. By examining all points

such that ∆t(o) ≤ lrt(o), VHP maintains omin, which is the nearest point to q found so

23

2.4 Virtual Hypersphere Partitioning

Algorithm 2: Compute the base radii ()

Input: m is the number of hash functions; 2t0 is the search window size, s∗ = 1
is the distance between q and its NN and P∗ is the expected success
probability;

Output: radii (lt01 , l
t0
2 , ..., l

t0
m)

1 Solve Equation (2.11) and Equation (2.7) to get a unique solution (lt01 , l
t0
2 , ..., l

t0
m);

2 return (lt01 , l
t0
2 , ..., l

t0
m)

far. As will be proved in Section 2.4.3.1, the probability that VHP finds omin, which is

equal to p
d(q,omin)t0
L (d(q, omin)), is a lower bound of the probability of getting o∗. Then,

by setting p
d(q,omin)t0
L (d(q, omin)) ≥ P∗ as the termination condition, we can find o∗ with

probability P∗ for sure, which means that VHP will succeed with probability at least

P∗. In practice, we use the following Inequality (2.12) as the termination condition,

which is much cheaper to evaluate.

d(q, omin) ≥ t

t0
(2.12)

The equivalency between Inequality (2.12) and p
d(q,omin)t0
L (d(q, omin)) ≥ P∗ can be

proved readily using Proposition 2.

The following proposition, which can be proved using Equation (2.10), shows that

the radius of the virtual hypersphere is still unique after scaling.

Proposition 3. For any 1 ≤ i, j ≤ m and s > 0, if σ̃(lt0i) = σ̃(lt0j) then σ̃(lst0i) = σ̃(lst0j)

and σ̃(lst0i) = sσ̃(lt0i).

2.4.3 Theoretical Analysis

2.4.3.1 Probability Guarantee for NN Search

In this subsection we show that, by extending the search windows and increasing the

radii of the hyperspheres coordinately, VHP is guaranteed to find the NN of q with

probability at least P∗. To prove this, we need to introduce an Oracle algorithm VHPo

first. Simply put, VHPo is the same as VHP except that it is told by the Oracle the

distance between o∗ and q. Obviously, VHPo finds o∗ with probability P∗ for sure as

discussed in the last subsections.

According to the terminating condition in Algorithm 1 (Line 2), t∗ = s∗t0 and

lt∗i = s∗l
t0
i when VHPo terminates, where s∗ = d(o∗, q). Similarly, ta = sat0 and

24

2.4 Virtual Hypersphere Partitioning

ltai = sal
t0
i when the actual VHP terminates, where sa = d(omin, q). Since sa ≥ s∗,

we have ta ≥ t∗ and ltai ≥ lt∗i . In other words, the final search window size and radii

imposed by VHP are greater than those by VHPo. To show the probability with which

VHP finds o∗ is greater than that of VHPo, we need to prove the following Lemma

first.

Lemma 4. Given m random B+-trees, dataset D and two search windows of sizes 2t1

and 2t2 (t2 > t1), ∀o ∈ D, it holds that ∆t2(o) ≤ t2
t0
lt0rt2 (o) if ∆t1(o) ≤ t1

t0
lt0rt1 (o).

Proof. Assume the radii associated with lt1rt1 (o) and lt2rt2 (o) are σ̃(lt1rt1 (o)) and σ̃(lt2rt2 (o)),

respectively. To prove this Lemma, we only need to show that σ̃(∆t2(o)) ≤ σ̃(lt2rt2 (o)) if

σ̃(∆t1(o)) ≤ σ̃(lt1rt1 (o)).

By definition ∆t1(o) and ∆t2(o) are equal to
√ ∑
hi∈It1 (o)

δ2
i (o) and

√ ∑
hi∈It2 (o)

δ2
i (o),

respectively. Please note that It1(o) is a subset of It2(o). Let w = |It2(o)| − |It1(o)|.
Suppose there are two points o† and o‡ such that (1) It2(o†) = It1(o) and δi(o†) = t2

t1
δi(o)

for i ∈ It1(o); (2) It2(o‡) = It2(o) and δi(o‡) = t2
t1
δi(o) for i ∈ It1(o) and, (3) δi(o‡) =

δi(o) for i ∈ It2(o)− It1(o). By definition we have ∆t2(o†) =
√ ∑
hi∈It1 (o)

(t2t1 δi(o))
2. It is

easy to see that σ̃(∆t2(o†)) ≤ t2
t1
σ̃(lt1rt1 (o)) by Equation (2.10). Then, with the help of

Lemma 3 we know that σ̃(∆t2(o‡)) ≤ σ̃(∆t2(o†)) since (∆t2(o†))
2 + wt22 ≥ (∆t2(o‡))

2.

Recall that σ̃(∆t(o)) is an increasing function of ∆t(o) for fixed t and i, and thus we have

σ̃(∆t2(o)) ≤ σ̃(∆(t2o‡)) considering ∆t2(o) ≤ ∆t2(o‡). By putting these inequalities

together, it holds that σ̃(∆t2(o)) ≤ t2
t1
σ̃(lt1

rt1 (o)
). According to Proposition 3, we have

t2
t1
σ̃(lt1

rt1 (o)
) = σ̃(lt2

rt2 (o)
), thus complete this proof.

Lemma 4 indicates that, as VHP increases the radius of the virtual hypersphere

dynamically, the candidate set under [−t1, t1] is always a subset of that under [−t2, t2]

for any t2 ≥ t1. Thus, we proved the self-consistency of the virtual hypersphere parti-

tioning.

Now we are ready to show the correctness of VHP based on Lemma 4.

Theorem 2. Algorithm 1 returns the NN of q with probability at least P∗.

Proof. We first define the following two events:

E1: o∗ is found by VHPo.

E2: o∗ is found by VHP.

25

2.4 Virtual Hypersphere Partitioning

As discussed earlier, ta ≥ t∗ and ltai ≥ lt∗i hold. By Lemma 4 we know that the

points visited by VHPo are contained in a subset of those examined by VHP, and thus

P [E2] ≥ P [E1] follows. By the fact that VHPo is guaranteed to find o∗ with P∗, we

have P [E2] ≥ P∗, and thus complete the proof.

2.4.3.2 Extension for c-k-ANN Search

To support the c-k-ANN search, it is sufficient to replace the terminating condition

(line 2 in Algorithm 1) with
d(omink

,q)

c > t
t0

, where omink
is the k-th nearest neighbor of

q found so far. VHP outputs k neighbors, i.e. omin1 , omin2 , ..., omink
instead of omin. In

this way, VHP supports probabilistic NN and c-k-ANN search in the same framework.

Next, we will show that VHP returns c-ANN (c > 1) of q with probability at

least P∗. For clarity of presentation, we refer to VHPc (c > 1) as the c-ANN version

of Algorithm 1. For the c-k-ANN version of VHP, the probability guarantee can be

proved in the similar vein and omitted due to space limitation.

Theorem 3. VHPc returns a c-ANN of q with probability at least P∗

Proof. Besides the two events E1 and E2 defined in Theorem 1, we need the following

three events:

E3: VHPc terminates before the search window extends to [−t∗, t∗], where t∗ = s∗t0.

E4: a c-ANN of q is found.

E5: o∗ is found.

Let [−tc, tc] denote the final search window when VHPc terminates. Obviously we

have P [E4] = P [E4|E3]P [E3] +P [E4|Ē3]P [Ē3]. To prove the theorem, we only need to

show P [E4|E3] ≥ P [E1|E3] and P [E4|Ē3] ≥ P [E1|Ē3] since P [E1] = P∗. The former

inequality holds by the fact P [E4|E3] equals 1, which can be proved by contradiction.

Particularly, assume VHPc terminates before the search window reaches [−t∗, t∗], i.e.

tc < t∗, and did not find any c-ANN. Then we must have d(omin, q) > c · d(o∗, q). Ac-

cording to the terminating condition of Algorithm 1, VHPc terminates only if d(omin,q)
c

≤ tc
t0

, which implies that tc > t∗, and thus a contradiction. The latter inequality

holds because P [E4|Ē3] ≥ P [E5|Ē3] (with the same search window, a c-ANN must be

identified if o∗ is found) and P [E5|Ē3] ≥ P [E1|Ē3] (Lemma 4). Thus we conclude.

26

2.4 Virtual Hypersphere Partitioning

2.4.4 Discussion

2.4.4.1 Complexity analysis

In the worst case, the time complexity of VHP is O(n(m + d)). As will be discussed

in Section 2.4.5, m is far smaller than n and thus can be regarded as a small constant.

Thus, the worst case time complexity is reduced to O(nd), which is consistent with the

common wisdom on the hardness of NN search in high-dimensional spaces. However,

as shown in Section 2.4.5, the actual performance of VHP is far better than the worst

case one. The space consumption consists of two parts: the space for storing the data

set O(nd) and the space of index O(mn). Thus, the total space complexity of VHP is

O(n(m+ d)).

VHP can easily support updating (insertion, deletion and modification) due to

the utilization of B+-trees. It is notable that, although {lt0i } need to be determined

beforehand, their values only depend on the user-specified parameters m, P∗ and t0.

Hence, the updates, which might affect the data distribution, has no impact on {lt0i }.

2.4.4.2 Comparison with existing methods

While both VHP and PAC-NN use hyperspheres, there are two fundamental differences

between them: (1) PAC-NN uses a single physical hypershpere in the original space

directly, whereas VHP employs multiples physical hypersperes in projection subspaces

to emulate one virtual hypershpere in the original feature space. (2) PAC-NN and VHP

deliver different kinds of theoretical guarantee. Specifically, PAC-NN supports data-

dependent probability guarantee, which needs data distribution information around

each query. In contrast, as an LSH-sytle algorithm, VHP has no assumption on data

distribution, and thus is data independent.

2.4.5 Experimental results

2.4.5.1 Experiment Setup

• SRS [51]. We use SRS-2, a variant of SRS, in our experiments because SRS-2

supports arbitrary c ≥ 1 and P∗ < 1 like VHP. m was set to the default value, i.e. 6,

as suggested in [35, 51] and P∗ was set to 0.9 by default.

27

2.4 Virtual Hypersphere Partitioning

c=2

0.1

1

10

100

40 60 80

Running time (s)

Sun Deep

Gist Sift10M

× 10

𝑚

(a) Different m
c=2

0.1

1

10

100

1.3 1.4 1.5

Running time (s)

Sun Deep
Gist Sift10M

× 10

𝑡0

(b) Different t0

Figure 2.4: The impact of different parameters

• QALSH [26]. The success probability of QALSH was set to (1/2−1/e), as suggested

in [26]. m was computed using the method described in [26] as well. c was set to 2

by default unless stated otherwise.

• HD-index [5]. HD-index is a recently proposed representative of non-LSH methods

(without quality guarantee) for disk-based ANN search. All internal parameters of

HD-index were adjusted to be experimentally optimal, as suggested in [5].

• VHP. In all experiments, P∗ was set to the same value as that of SRS, i.e. P∗ = 0.9.

Optimal t0 and m depend on the concrete data distributions. As will be shown in

Section 2.4.5.2, VHP obtains near optimal performance when t0 = 1.4 and m = 60

for all datasets we experimented with. Thus, t0 and m were set to 1.4 and 60 by

default, respectively.

For all methods, we used their external-memory versions. To be specific, for SRS we

use the R-tree based external-memory version, which is originally proposed to support

billion scale datasets on a commodity PC [51]. As for HD-index and VHP, we build

RDB-tree/B+-tree by bulk loading such that they can scale in our setting.

We used six publicly available real-world datasets as listed below. The page size

was set to 4KB. The value of k is fixed to 100 unless stated otherwise.

• Sun1 consists of 79106 512-dim GIST features of images.

1http://groups.csail.mit.edu/vision/SUN/

28

2.4 Virtual Hypersphere Partitioning
aw

0

2

4

6

8

10

1 10 20 30 40 50 60 70 80 90 100
k

I/O cost ()
c=1.0
c=1.1
c=1.2

× 104

(a) Gist, I/O Cost

aw

0

3

6

9

12

15

1 10 20 30 40 50 60 70 80 90 100
k

Running time (s)

c=1.0

c=1.1

c=1.2

(b) Gist, Running time

Figure 2.5: The performance of VHP under different approximation ratios

• Deep1 contains 1 million 256-dim deep neural codes of natural images obtained from

the activations of a convolutional neural network.

• Gist2 is an image dataset which contains about 1 million 960-dim data points.

• Sift10M3 consists of 10 million 128-dim SIFT vectors.

• Sift1B4 consist of 1 billion 128-dim SIFT vectors.

• Deep1B5 consist of 1 billion 96-dim DEEP vectors.

2.4.5.2 Parameter setting of VHP

Parameters t0 and m have important impact on the performance and index size of

VHP. We empirically determine the near optimal t0 and m. Partial statistics over

four datasets under different combinations of t0 and m are shown in Figure 2.4, where

c = 1.0 and k = 100. According to the results, we can see:

(1) t0 = 1.4 is an appropriate choice under which VHP runs fastest for four datasets

when m is fixed. In fact, the performance degrades dramatically for too small or too

large t because the collision probability tends to 0 or 1 for all points.

(2) As for m, we can see that VHP works well when m = 60. It is notable that the

performance of VHP on Gist can be better in the case of m = 80. This is because the

dimensionality of Gist is much higher (dim 960) and more hash functions may help to

distinguish nearest neighbors better.

1https://yadi.sk/d/I yaFVqchJmoc
2http://corpus-texmex.irisa.fr/
3https://archive.ics.uci.edu/ml/datasets/SIFT10M
4http://corpus-texmex.irisa.fr/
5https://github.com/facebookresearch/faiss/tree/master/

29

2.4 Virtual Hypersphere Partitioning

Table 2.2: Comparison of index sizes. (CR means crash in the indexing phase)

SRS QALSH HD-index VHP

Sun 3.1M 21.2M 250M 18.9M
Deep 36.5M 350.9M 2.0G 228.5M
Gist 36.8M 350.9M 18.1G 228.5M

Sift10M 524.7M 4.1G 10.2G 2.5G
Sift1B 39.2G CR 1.2T 251G

Deep1B 39.5G CR 0.9T 251G

Based on these observations, we chose m = 60 and t0 = 1.4 as the default for all

datasets we experimented with.

2.4.5.3 The Effect of Approximation Ratio

Like most LSH-based methods, VHP can trade the result quality for speed by tuning

the approximation ratio c. Figure 2.5 depicts the performance of VHP on Gist under

different approximation ratios (similar trends were observed on other datasets). As one

can see, both I/O cost and running time of VHP increases with k. This is because

the larger k is, the more points have to be visited to achieve the desirable answer

quality. Also, by setting larger c, the searching process can be accelerated at the cost

of accuracy.

The overall ratios (answer quality) of VHP for k = 100 under c = 1.0, c = 1.1 and

c = 1.2 are around 1.001, 1.02 and 1,04, respectively. We can see the real overall ratio

is much smaller than the corresponding approximation ratio. The reason is that the

probability guarantee of VHP is obtained using the worst-case analysis, which is often

not the case of real datasets.

2.4.5.4 Index Size, Indexing Time and Memory Consumption

Table 2.2 lists the index size of four methods over the six datasets. We can see that

the index size of SRS is the smallest whereas HD-index requires the maximum space

consumption. The index size of VHP is around 6−7 times greater than that of SRS, but

around 1.5 times smaller than that of QALSH. This is because, for LSH-based methods,

the index size is proportional to the number of hash functions. QALSH crashed on large

datasets due to the out of memory exception.

30

2.4 Virtual Hypersphere Partitioning

c=2

0

8

16

24

32

40

60 70 80 90
Recall(%)

I/O cost ()
SRS QALSH

VHP

× 103

(a) Sun, I/O Cost c=2

0

6

12

18

24

30

60 70 80 90
Recall(%)

I/O cost ()
SRS QALSH

VHP

× 104

(b) Deep, I/O Cost c=2

0

9

18

27

36

45

60 70 80 90
Recall(%)

I/O cost ()
SRS QALSH
VHP

× 104

(c) Gist, I/O Cost

c=2

0

5

10

15

20

25

60 70 80 90
Recall(%)

I/O cost ()
SRS QALSH
VHP

× 105

(d) Sift10M, I/O Cost c=2

0

6

12

18

24

60 70 80 90
Recall(%)

I/O cost ()

SRS VHP

× 107

(e) Sift1B, I/O Cost c=2

0

5

10

15

20

60 70 80 90
Recall(%)

I/O cost ()

SRS VHP

× 107

(f) Deep1B, I/O Cost

c=2

0

0.25

0.5

0.75

1

1.25

1.5

60 70 80 90
Recall(%)

Running time (s)
SRS QALSH

VHP

(g) Sun, Running time c=2

0

3

6

9

12

15

60 70 80 90
Recall(%)

Running time (s)

SRS QALSH

VHP

(h) Deep, Running time c=2

0

8

16

24

32

40

60 70 80 90
Recall(%)

Running time(s)
SRS QALSH

VHP

(i) Gist, Running time

c=2

0

40

80

120

160

60 70 80 90
Recall(%)

Running time (s)

SRS QALSH

VHP

(j) Sift10M, Running time c=2

0

20

40

60

80

100

60 70 80 90
Recall(%)

Running time(s)

SRS VHP

× 102

(k) Sift1B, Running time c=2

0

20

40

60

80

60 70 80 90
Recall(%)

Running time (s)

SRS VHP

× 102

(l) Deep1B, Running time

Figure 2.6: The comparison on the accuracy-efficiency tradeoffs of VHP, SRS and QALSH

31

2.4 Virtual Hypersphere Partitioning

aw

0

5

10

15

20

25

1 10 20 30 40 50 60 70 80 90 100
k

I/O cost ()
SRS
VHP
QALSH

× 104

(a) Deep, I/O Cost

aw

0

3

6

9

12

1 10 20 30 40 50 60 70 80 90 100
k

Running time (s)
SRS
VHP
QALSH

(b) Deep, Running timeaw

0

50

100

150

200

250

1 10 20 30 40 50 60 70 80 90 100
k

I/O cost ()
SRS
VHP
QALSH

× 104

(c) Sift10M, I/O Cost

aw

0

30

60

90

120

150

1 10 20 30 40 50 60 70 80 90 100
k

Running time (s)
SRS
VHP
QALSH

(d) Sift10M, Running time

Figure 2.7: The performances of VHP under different k at recall 80%

Among all methods, the indexing time of VHP is the smallest, followed by QALSH,

SRS and HD-index. Take the largest dataset Sift1B as an example, VHP takes 18 hours

for indexing while SRS and HD-index need 4 days and 11 days, respectively. This is

because B+-tree costs less time than R-tree and RDB-tree in index construction.

As for the main memory consumption in the indexing phase, we report the results

on Sift1B as follows: SRS consumes 1.1GB, VHP takes 1.9GB and HD-index needs

97MB. Thus, the indexing phase of all three methods can be accomplished successfully

on a commodity PC.

2.4.5.5 VHP vs. LSH-based Methods

In this section, we compare VHP with the baseline LSH-based methods SRS and

QALSH. In order to make the comparison more reasonable, we fix the expected re-

call and measure how much running time and I/O cost it takes for three LSH-based

methods in this paper. Such a comparison is feasible because all of them can make the

tradeoff between cost and answer quality by tuning the approximation ratio c.

32

2.5 R2LSH: LSH in two dimensional subspaces

2.4.5.6 Experimental results under the same recall

In Figure 2.6, the target recalls are set to 60%, 70%, 80%, 90% because they are high

enough for the practical use. According to the results, we have following observations.

(1) At the same precision level, VHP needs only around 1
7 to 1

4 I/O cost of QALSH

and 1
3 to 1

2 I/O cost of SRS. The reason is that VHP uses a relatively small index

and more selective filtering method. Accordingly, VHP achieves up to 2x speedup over

SRS and up to 4x speedup over QALSH. Please note that the speedup is not exactly

proportional to the gain over I/O cost due to the (uncontrolled) impact of caching at

different levels.

(2) The superiority of VHP over the other two methods becomes relatively less sig-

nificant at low recall, say 60%. This is because, as the target recall is getting lower,

it becomes easier for all three methods to find answers satisfying the less strict re-

quirement, which in turn reduces the differences among their performance. In practice,

however, end users often expect high answer quality, where VHP can perform very

well as shown above. On datasets Sun and Gist of high dimensionality, VHP performs

better in speed than it does on those of low dimensionality, which indicates that VHP

is more preferable for high dimensional datasets.

2.4.5.7 Experimental results under different k

The results above were all obtained under k = 100, we also compared three methods

for different k in Figure 2.7. Due to space limitation, we only list the results of Sift10M

and Deep under target recall 80%. Similar trends were observed on other datasets.

From the results, we can see that (1) for all k, VHP beats SRS and QALSH in both

running time and I/O cost, which suggests that the performance of VHP is very stable

as k varies. (2) As k increases, the cost of QALSH increases dramatically while the

performance of VHP and SRS degrades rather smoothly. This indicates that VHP and

SRS are more promising than QALSH for the k-ANN search where k is large.

2.5 R2LSH: LSH in two dimensional subspaces

2.5.1 Motivation

First, let us analyse the limitations of QALSH from another perspective. From the

working mechanism of QALSH introduced earlier, it can remove most false objects by

33

2.5 R2LSH: LSH in two dimensional subspaces

collision testing. Thus, the size of the candidate set is fairly small, which significantly

reduces the I/O cost of retrieving candidates. However, before identifying candidates,

QALSH consumes a significant amount of I/Os to scan those objects colliding with q

owing to the inefficiency of one-dimensional hash buckets. Consider Figure 2.8(a) as

an example. For simplicity, we suppose there are only two hash functions ha1 and ha2 .

The threshold τ is set to two, which implies that only those objects that collide with

q in two hash buckets simultaneously can be considered as candidates (red points).

To obtain these candidates, QALSH has to scan all the objects (black points) that lie

between two hyperplanes at a distance of 2w from each other. Because the number of

scanned objects can be exceptionally large and these objects may appear in multiple

hash buckets, the scanning process incurs substantial I/O cost. Almost all the I/O cost

incurred in the query phase of QALSH originates from this scanning.

Thus, to reduce the I/O cost of scanning, we propose a more efficient indexing

and searching scheme named R2LSH. The fundamental concept underlying R2LSH is

illustrated in Figure 2.8(b). Similarly, we again consider the case of the two hash

functions ha1 and ha2 . First, using the mapping o 7→ (ha1(o), ha2(o)) (where o is an

arbitrary object in the dataset), we can construct a two-dimensional space M that

contains images of all the objects, such that the coordinate of the mapped o in M is

(ha1(o), ha2(o)). Then, rather than use two hash buckets, we construct a query-centric

ball of radius r in this space and ensure that all the objects within this ball can be

scanned by introducing a suitable index structure (a small number of objects outside

the ball may also be scanned). All the scanned objects are considered as candidates

(red points). Evidently, query-centric balls work more selectively than query-centric

hash buckets because only those objects whose projections are close to the query’s

projections on both the axes are likely to be scanned. Therefore, we can circumvent

substantial I/O cost in scanning false objects, which also leads to a smaller m (around

40) of R2LSH than that of QALSH (around or over 100) in practice.

2.5.2 Overview

An overview of R2LSH is depicted in Figure 2.9 and related notations are listed in Ta-

ble 2.3. In the indexing phase, we index all the data objects by multiple B+-trees as fol-

lows. First, we construct m two-dimensional projected spaces {Mi}mi=1 and map objects

34

2.5 R2LSH: LSH in two dimensional subspaces

1q

2q
1

1o

1

2o

1r =

3

1o

1

2

2

3
4

x

x

x

x

x

x

x

1a

other point

x

x

x

x

w−

ww

w

w−

w

candidate

Increase radii of
balls

Terminate
condition

Increase radii of
balls

Increase the
radius r of each

ball

Update collision
numbers of

objects

Find new
candidates

Construct m two
dimensional projected

spaces

Select reference
objects in each

space

Randomly generate
2m projection

vectors

Map objects
into each

Set query-centreic
balls with radii 0 in

projected spaces

Partition each
projected space

Collision testing

Return nearest
neighbors among

candidates

Yes

No

Build B+-trees in
each space

Index structure
of R2LSH

Query

Dataset

2a

1a

2a

1o

q
2o

1o
q

2o

2 1

1
ˆ (,) ()r d o q −=

2 1

2
ˆ (,) ()r d o q −=

r

r r r= +

1M 2M

r

m

m

i i 1{M } =

M

m

i i 1{M } =

2m

i i 1{a } =
iM

iM iMIndexing
 phase

Query
 phase

query
hyperplane

candidate

expansion

query
query-centric ball

(a) Hash bucket

1q

2q
1

1o

1

2o

1r =

3

1o

1

2

2

3
4

x

x

x

x

x

x

x

1a

other point

x

x

x

x

w−

ww

w

w−

w

candidate

Increase radii of
balls

Terminate
condition

Increase radii of
balls

Increase the
radius r of each

ball

Update collision
numbers of

objects

Find new
candidates

Construct m two
dimensional projected

spaces

Select reference
objects in each

space

Randomly generate
2m projection

vectors

Map objects
into each

Set query-centreic
balls with radii 0 in

projected spaces

Partition each
projected space

Collision testing

Return nearest
neighbors among

candidates

Yes

No

Build B+-trees in
each space

Index structure
of R2LSH

Query

Dataset

2a

1a

2a

1o

q
2o

1o
q

2o

2 1

1
ˆ (,) ()r d o q −=

2 1

2
ˆ (,) ()r d o q −=

r

r r r= +

1M 2M

r

m

m

i i 1{M } =

M

m

i i 1{M } =

2m

i i 1{a } =
iM

iM iMIndexing
 phase

Query
 phase

query
hyperplane

candidate

expansion

query
query-centric ball

(b) Ball (dim 2)

Figure 2.8: Query-centric Hash bucket (m = 2, τ = 2) vs. Query-centric Ball (τ = 1).

into these projected spaces. Then, we construct a suitable index structure to character-

ize data distributions in {Mi}. Because the projected space is not one-dimensional, we

cannot directly use an individual B+-tree to record the complete information of objects

in it. To overcome this challenge, in each Mi, we select α reference objects {Cij}αj=1

and construct β rings {Rij,l}(1 ≤ l ≤ β) sharing each center Cij so as to contain all

the objects in Mi. In addition, we select an additional reference vector vi in each Mi.

For each ring Rij,l, we translate vi such that its starting point coincides with Cij and

compute the reference angle of each object in Rij,l to vi. Then, we can construct a

B+-tree T ij,l corresponding to Rij,l such that the reference angle of each object in Rij,l is

considered as the key of this object in T ij,l. All such B+-trees form the index structure

of R2LSH.

In the query phase, given query q, we set up a query-centric ball B(gi(q), r) in

each Mi. Here, the center gi(q) is the image of q in Mi, and the radius r is initially

set to zero. As the search proceeds, we increase r (for each ball) in steps of ∆r and

scan objects newly included in the expanded balls. Two conditions play important

roles in this process. The first is the candidate condition, which determines whether

the scanned object can be presently considered as a candidate. Similar to C2LSH [20]

and QALSH [26], the candidate condition is obtained by collision testing. The second

is the termination condition. We stop the expansion of balls once and return results

from candidates if this condition is satisfied. This condition is intimately related to our

probability guarantee, which will be introduced in detail in Sec. 2.5.4.

35

2.5 R2LSH: LSH in two dimensional subspaces

Table 2.3: Notations of R2LSH

Notation Explanation

d the dimensionality of data object
c the approximation ratio specified by users
δ the error rate specified by users

o∗, o∗i the first and i th nearest neighbor of q
ô, ôi the first and i th nearest candidate of q
s∗, ŝ s∗ = ‖o∗ − q‖ and ŝ = ‖ô− q‖
m the number of generated projected spaces
Mi the i th projected space (1 ≤ i ≤ m)
α the number of reference objects in a single projected space
β the number of rings centered at each reference object

gi(o) the image of o in Mi

∆i(o) ∆i(o) = ‖gi(o)− gi(q)‖
B(gi(q), r) the query-centric ball centered at gi(q), of radius r
#Col(o; r) the collision number of o when the radii of query-centric balls are com-

monly set to r
Cij the i th reference object in Mi

Rij,l the l th ring centered at Cij in Mi

vi the reference vector in Mi

T ij,l the B+-tree contains the information of objects in Rij,l
τ the threshold on collision numbers

λ λ =
√

1
2m log 1

δ + τ
m

Φ CDF of the chi-square distribution χ2(2)

In order to increase the understandability, we present an example in Figure 2.10). In

this example, three sets of co-centered rings are constructed such that each set includes

part of the projected objects in ring. A ring set {Rj,l} centered at Cj constructs a

B+-tree set {Tj,l}. A B+-tree Tj,l is constructed over the projected objects in Rj,l

with respect to their angles to a reference vector v. For example, o1 ∈ R1,2 is included

only in T1,2, and the location is π/3 when a query is mapped into this space as q. A

query-centric circle of specified radius r (a red circle) is simulated by those B+-trees as

follows. The angle of q to v is examined, and each Tj,l is searched. Among these, only

the objects in the search interval of q need to be examined (for counting). Presently,

o4 is identified. More objects can be identified by expanding the query-centric ball (the

dotted circle) and increasing the size of the search intervals (dotted rectangles).

36

2.5 R2LSH: LSH in two dimensional subspaces

1q

2q
1

1o

1

2o

1r =

3

1o

1

2

2

3
4

x

x

x

x

x

x

x

1a

other point

x

x

x

x

w−

ww

w

w−

w

candidate

Increase radii of
balls

Terminate
condition

Increase radii of
balls

Increase the
radius r of each

ball

Update collision
numbers of

objects

Find new
candidates

Construct m two
dimensional projected

spaces

Select reference
objects in each

space

Randomly generate
2m projection

vectors

Map objects
into each

Set query-centreic
balls with radii 0 in

projected spaces

Partition each
projected space

Collision testing

Return nearest
neighbors among

candidates

Yes

No

Build B+-trees in
each space

Index structure
of R2LSH

Query

Dataset

2a

1a

2a

1o

q
2o

1o
q

2o

2 1

1
ˆ (,) ()r d o q −=

2 1

2
ˆ (,) ()r d o q −=

r

r r r= +

1M 2M

r

m

m

i i 1{M } =

M

m

i i 1{M } =

2m

i i 1{a } =
iM

iM iMIndexing
 phase

Query
 phase

query
hyperplane

candidate

expansion

query
query-centric ball

Figure 2.9: Overview of R2LSH

2.5.3 Indexing phase

In this section, we introduce a method to construct the index structure of R2LSH (Al-

gorithm 12). The whole indexing phase can be divided into four steps: 1) construction

of projected spaces, 2) partition of projected spaces, 3) reference vector selection, and

4) indexing objects by B+-trees. These are introduced below in that order.

2.5.3.1 Construction of projected spaces

First, we generate 2m hash functions {hai}2mi=1, where the vectors {ai}2mi=1 are i.i.d

samples from the Gaussian distribution N(0, Id). For any object o ∈ Rd, we can compute

its hash values as (ha1(o), ha2(o), · · · , ha2m(o)). Furthermore, we couple successive pairs

of values as gi(o) = (ha2i−1(o), ha2i(o)) to construct a two-dimensional projected space

Mi ∈ R2 (1 ≤ i ≤ m). o is mapped to this space by gi as gi(o) ∈Mi.

2.5.3.2 Partition of projected spaces

Let us focus on a projected space Mi. The partition process is divided into two steps: 1)

select the necessary number of reference objects in Mi, and 2) construct concentric rings

centered at each reference object such that each object in Mi is uniquely contained in

one of the rings. We consider the following two strategies for selecting reference objects.

Cluster-based selection. If the dataset D is well clustered, it is highly likely that

the cluster structure is maintained uniform in Mi. Therefore, Mi can be considered as a

subspace of the original space. In this case, we determine α clusters in Mi by clustering.

Then, the centroid of each cluster is considered as a reference object. By clustering, we

can make each object lie in a large ring centered at a certain cluster centroid. Finally,

for each centroid, we equi-partition its corresponding ring into β concentric sub-rings

{Rij,l}
β
l=1 centered at Cij such that each Rij,l (1 ≤ l ≤ β) contains an identical number

of objects.

37

2.5 R2LSH: LSH in two dimensional subspaces

Simple selection. In certain cases, we need to address dynamic datasets with

distributions drifting over time. In this case, for convenient update, we select the center

of the data space as a reference object (α = 1). Then, we partition its corresponding

ring into β sub-rings of equal area.

2.5.3.3 Reference Vector Selection

In this section, we describe a method to determine a reference vector vi in each Mi (1 ≤
i ≤ m). Because objects in a ring are distinguished only by their angles to the reference

vectors in B+-trees, the angle between any two vi’s is expected to be close to π/2 to the

extent feasible. First, note that two axes of Mi are constructed by randomly generated

vectors a2i−1 and a2i. These can be represented as
n∑
j=1

aijej and
n∑
j=1

bijej , respectively.

Here, {ej}dj=1 is the natural basis of the original d-dimensional space, and {aij}, {bij}
are coefficients. Thus, vi can be represented as vi(λ

i
1, λ

i
2) =

m∑
j=1

(λi1a
i
j + λi2b

i
j)ej , where

λi1 and λi2 are coefficients to be determined.

Then, in the average sense, we adopt the following strategy to determine {vi} se-

quentially in the greedy way.

Step 1: For the first projected space M1, we arbitrarily select a normalized vector

in M1 as v1.

Step 2: Suppose that we have determined i − 1 reference vectors v1, . . . , vi−1. For

vi, we require
i−1∑
j=1

〈
vi(λ

i
1, λ

i
2), vj

〉
= 0. In addition, we require (λi1)2 + (λi2)2 = 1 and

λi1 ≥ 0 for the norm of vi to have no effect on the angle computation. It is evident that

under the above constraints, λi1 and λi2 can be obtained uniquely, and thereby, vi can

be determined. Then, we repeat Step 2 until all the vi’s are obtained.

2.5.3.4 Indexing objects by B+-trees

In Figure 2.10, we describe a method to construct B+-trees in a projected space, say

Mi (others are addressed similarly). First, note that after the preceding steps, each

mapped object is included in only one ring of the ring set {Rj,l} in Mi, e.g., o1, o2 ∈ R1,2

and o3 ∈ R2,1. For each ring Rj,l, we construct a B+-tree Tj,l to index all the objects

in Rj,l. Let us focus on the ring R1,2 and the corresponding vector v centered at C1.

We measure the angle of each object in R1,2 to v as its key. Thus, the key of o1 is π/3

38

2.5 R2LSH: LSH in two dimensional subspaces

Algorithm 3: Indexing phase of R2LSH

Input: D is the dataset; m is the number of projected spaces; α is the number
of reference objects in a projection space; β is the number of rings
centered at each reference object;

Output: the index structure {Rij,l, T ij,l}
1 Generate 2m hash functions {hi}2mi=1 by random projection;
2 Construct m two-dimensional projected spaces {Mi}mi=1;
3 for i = 1 to m do
4 ∀o ∈ D map o to Mi by o→ (h2i−1(o), h2i(o));
5 Select α reference objects {Cij}αj=1 in Mi;

6 Select reference vector vi;
7 for j = 1 to α do

8 Construct β concentric rings {Rij,l}
β
l=1 centered at Cij ;

9 for l = 1 to β do
10 ∀o ∈ D compute o’s reference angle to vi;
11 Construct B+-tree T ij,l;

12 Return {Rij,l, T ij,l} (1 ≤ i ≤ m, 1 ≤ j ≤ α, 1 ≤ l ≤ β);

and that of o2 is 4π/3. We can construct a B+-tree T1,2 with these keys. Note that in

this manner, each object belongs to only one of the B+-trees.

2.5.4 Query phase

In this section, we illustrate the query phase of R2LSH. The goal of this phase is to

identify candidates by query-centric balls. In Sec. 2.5.4.1, by deriving certain funda-

mental relationships, we demonstrate a method to determine the radii of rings to ensure

that o∗, the nearest neighbor of o, is identified with the expected success probability. In

Sec. 2.5.4.2, we verify that all the objects inside the query-centric balls are necessarily

scanned by our index structure. After the descriptions of these preparations, we present

the algorithm and the related probability guarantee, in Secs. 2.5.4.3 and 2.5.4.4.

2.5.4.1 Fundamental relationships

First, let us consider a simper problem. Given query q and error rate 0 < δ < 1, when

s∗ = ‖o∗ − q‖ is known before the search, how do we identify o∗ with probability at

39

2.5 R2LSH: LSH in two dimensional subspaces

least 1− δ? According to Equation (2.3), we have the following equation:

Pr[∆i(o
∗) ≤ r] = Φ(

r2

(s∗)2
), (2.13)

where r is a positive number, i (1 ≤ i ≤ m) is an arbitrary suffix of the projected

space, and Φ is the CDF of the chi-square distribution χ2(2). Then, according to the

definition of ∆i(o), Equation (2.13) is re-expressed as

Pr[gi(o) ∈ B(gi(q), r)] = Φ(r2/(s∗)2). (2.14)

Meanwhile, from the fact that {Mi}mi=1 are constructed independently, we know that

#Col(o∗; r) (the number of those projected spaces where o∗ falls inside the query-centric

balls with radii r) follows the Bernoulli distribution Ber(m,Φ(r2/(s∗)2). Therefore, by

the Hoeffding’s inequality, we have

Pr[#Col(o∗; r) ≥ τ] ≥ 1− exp{−2m(Φ(r2/(s∗)2)− τ/m)2} (2.15)

where the positive integer τ denotes a threshold. This will be determined subse-

quently. For a specified error rate δ, to permit Pr[#Col(o∗; r) ≥ τ] ≥ 1− δ to hold, we

only require that the following inequality holds:

Φ(
r2

(s∗)2
) ≥

√
1

2m
log

1

δ
+
τ

m

= λ(m, δ, τ)

(2.16)

When m, δ, and τ are evident from the context, we use λ for λ(m, δ, τ). Because

Φ(x) is monotonically increasing in x and a bijection from R+ to [0, 1], it suffices to

adopt an r such that

r ≥ r∗ =
√

(s∗)2Φ−1(λ). (2.17)

Under Inequality (2.17), we can guarantee that o∗ passes the collision testing, i.e.

#Col(o∗; r) ≥ τ , with probability at least 1− δ. Apparently, all the objects that pass

this collision testing are considered as candidates. As the input parameters λ, m, and

δ are specified, the collision threshold τ is determined from Equation (2.16) by

τ =

⌊
mλ−

√
m

2
ln

1

δ

⌋
. (2.18)

40

2.5 R2LSH: LSH in two dimensional subspaces

However, in practice, we cannot directly determine r∗ by (2.17) because s∗ is un-

known. However, this challenge can be overcome by the dynamic counting technique

proposed in [20]. At the beginning of the search, we set a query-centric ball of radius

zero in each Mi. As the search proceeds, we increase the radius r of each ball in steps

of ∆r and update the collision numbers of data objects. During this process, we keep

the nearest neighbor ô of q among the accessed candidates and accurately calculate its

distance to q, i.e., ŝ = ‖ô− q‖. If we identify that r ≥ ŝ
√

Φ−1(λ) holds for a fixed λ,

then we know r ≥ r∗ from (2.17). This is because

r ≥ ŝ
√

Φ−1(λ)⇒ r ≥ s∗
√

Φ−1(λ)⇒ r ≥ r∗. (2.19)

Thus, r > ŝ
√

Φ−1(λ) is considered as the termination condition of R2LSH.

2.5.4.2 Scanning Process

The remaining problem is to identify the objects that lie in query-centric balls. Because

all the objects are contained in one of the rings in each projected space, we need to

consider only the relationship between the query-centric ball and a ring. Given a query

ball B(gi(q), r) and a ring region R centered at C with inner radius r− and outer radius

r̄ in Mi. Let s0 = ‖C − gi(q)‖, we consider the following two cases:

Case 1: s0 − r > r̄ or s0 + r < r−. Evidently, in this case, the ball does not intersect

with R. Therefore, we omit the examination of R.

Case 2: r−− r ≤ s0 ≤ r + r̄. In this case, we first compute the reference angle θq of

gi(q) to the reference vector vi of R. Then, we consider three more detailed cases and

compute θ as follows:

θ =

arccos((s0)2+r̄2−r2

2s0r̄
) (s0)2 − r2 > r̄2

arcsin(r/s0) r−
2 ≤ (s0)2 − r2 ≤ r̄2

arccos(
(s0)2+r−

2−r2

2s0 r−
) (s0)2 − r2 < r−

2

(2.20)

It is evident from elementary calculation that given r > 0, we only need to scan

those objects in R whose reference angles to vi lie in [θq−θ, θq+θ] so that all the objects

that fall in B(gi(q), r) can be covered. It is convenient to access these objects in the

external memory because they are sequentially stored (in mod 2π) in the leaf nodes of

T , i.e., the corresponding B+-tree of R. Therefore, the complete scanning process of

41

2.5 R2LSH: LSH in two dimensional subspaces

R can be illustrated as follows (Figure 2.10): given a query q, we first determine the

location of θq in the leaf nodes of T . In each step, according to r, we can determine the

search interval [θq−θ, θq+θ] in which the objects need to be scanned. In the next step,

r is increased by ∆r, and θ is updated according to Equation (2.20). At this stage, we

only need to extend [θq − θ, θq + θ] in two directions. This can be realized conveniently

at leaf levels of B+-trees. If θq − θ < 0 or θq + θ > 2π, we only need to replace θq − θ
by θq − θ + 2π or replace θq + θ by θq + θ − 2π. This implies that the interval extends

from the other end of the leaf level.

It is notable that for a few objects that lie outside balls, they are also likely to

lie in the interval that needs to be examined (such as o4 in Figure 2.10). However,

for the desired object o∗, this only marginally increases the likelihood that it passes

the collision testing. Therefore, the probability guarantee obtained in Sec. 2.5.4.1 still

holds.

Finally, the setting of ∆r can be computed by a minimum heap. Specifically, we

only scan a leaf node of a B+-tree in each step. According to the key value θ of the

last scanned object in this step and (2.20), we can reversely compute r. Thus, for

each B+-tree that needs to be examined, we can maintain two corresponding values r0

and r1. Here, r0 and r1 correspond to the left and right directions, respectively. By

means of the minimum-heap, in each step, we can determine the B+-tree and the search

direction corresponding to the minimum r0 or r1, and examine the next leaf node.

2.5.4.3 Algorithm and Quality guarantee

The query phase is displayed as Algorithm 4 for solving the c-ANN problem (c ≥ 1, k =

1). The probability guarantee of Algorithm 4 is as follows:

Theorem 4. For a specific query q and approximation ratio (c ≥ 1), Algorithm 4

returns a c-approximate NN of q with probability at least 1− δ.

Proof. Let us consider the following two cases in order:

Case 1: (c = 1). According to the termination condition, the query phase can

terminate only when r ≥
√

Φ−1(λ)ŝ holds. By the preceding analysis, o∗ is returned

with probability at least 1− δ.
Case 2: (c > 1). First, three events need to be defined. E0: ô is a c-approximate

object, E1: #Col(o∗; r∗) ≥ τ , and E2: r < r∗. We need to establish that Pr[E0] ≥ 1−δ.

42

2.5 R2LSH: LSH in two dimensional subspaces

20

0

0

0

0

2

2

2

2

3

1,1T

1,2T

2,1T

3,1T

3,2T

1o
2o

4
3

4

q

q

60

v

v

v

1,2R

1,1R

2,1R

3,1R

3,2R

1o

2o

3o

240

45

1C

2C

3C

4o

q

4o q

q
3o

q
1,1R

1,2R

2,1R

3,1R

3,2R

Figure 2.10: Example of B+-trees for three clusters in a projected space (Left: geomet-
rical relationship. Right: leaf levels of B+-trees).

When E2 occurs, we obtain ŝ ≤ cs∗ according to the definition of E2. This implies that

we have identified c-approximate objects, i.e., E0 occurs. When both Ē2 and E1 occur,

we also know E0 occurs for o∗ is found. Because E2 and E1∩ Ē2 are disjoint, we obtain

the following inequalities:

Pr[E0] ≥ Pr[E2] + Pr[E1Ē2] (2.21)

≥ Pr[E1E2] + Pr[E1Ē2] (2.22)

= Pr[E1] (2.23)

Because Pr[E1] has been established to be at least 1− δ in Case 1, we conclude.

2.5.4.4 Extension to c-k-ANN search

Algorithm 4 can be modified conveniently as follows to support c-k-ANN search:

(i) A priority queue Q needs to be maintained to store k nearest neighbors ô1, . . . , ôk

among the candidates.

(ii) The termination condition in Step 3 needs to be modified as r ≤
√

Φ−1(λ)ŝk/c.

Here, ŝk = ‖ôk − q‖.

43

2.5 R2LSH: LSH in two dimensional subspaces

Algorithm 4: Query phase of R2LSH

Input: D is the dataset; q is the query point; m is the number of projected
spaces; {Rij , T ij} (1 ≤ i ≤ m, 1 ≤ j ≤ N) is the index structure, where N
is the number of rings in a projected space; δ (0 < δ < 1) is the error
rate; λ (0 < λ < 1) is the parameter for computing the threshold; c
(c ≥ 1) is the approximation ratio;

Output: omin

1 r ← 0, ŝ←∞, omin ← NULL;

2 τ ←
⌊
mλ−

√
m ln(1/δ)/2

⌋
;

3 while r ≤
√

Φ−1(λ)ŝ/c do
4 r ← r + ∆r (∆r > 0);
5 for i = 1 to m do
6 for j = 1 to N do
7 if B(gi(q), r) ∩Rij 6= ∅ then

8 Update the search interval in T ij by (2.20);

9 else
10 continue;

11 ∀o ∈ D update #Col(o; r) when necessary;
12 if o is not visited and #Col(o; r) ≥ τ then
13 Calculate ŝ = ‖q − o‖;
14 Update omin and ŝ when necessary;

15 Return omin

When we apply our previous analysis on o∗ to o∗i (1 ≤ i ≤ k) (where o∗i is the

true ith nearest neighbor of q), in accordance with Theorem 4, we have the following

corollary:

Corollary 1. For an arbitrary suffix i (1 ≤ i ≤ k), the probability that a c-approximate

nearest neighbor of o∗i is returned by Algorithm 4 is at least 1− δ. Moreover, if c is set

to one, the expectation of recall rate is at least 1− δ.

2.5.5 Discussion

2.5.5.1 Complexity Analysis

Time Complexity. In the indexing phase, R2LSH consumes O(nd) time to compute

the images of each object in the projected spaces. Then, R2LSH consumes O(n) time

to partition the spaces based on reference objects and to select reference vectors. For

44

2.5 R2LSH: LSH in two dimensional subspaces

each ring, R2LSH consumes O(n) time to compute the reference angle of each object

to the reference vector and O(n log n) time to construct the corresponding B+-tree.

Therefore, the time complexity of the indexing phase is O(nd+ n log n).

In the query phase, R2LSH requires O(n) time to scan all the B+-trees and O(nd)

time to accurately compute the distances between q and the candidates. This implies

that in the worst case, the time complexity of R2LSH is linear. This does not imply that

R2LSH is inefficient because unlike many other c-ANN methods, R2LSH can support

any value of c (≥ 1), with probability guarantee. To the authors’ knowledge, there is

no search method can achieve the same goal in sub-linear complexity. On real datasets,

R2LSH only computes the exact distances of q to a very small number of objects by

the tuning of c and thus performs highly effectively, as demonstrated by experiments

described in Section 2.5.6.

Space Complexity. In the indexing phase, R2LSH first consumes O(md) space

to restore m projection vectors. Then, R2LSH consumes the corresponding B+-tree

for each ring, consuming O(n) space to restore the projections of the objects. During

the phase of constructing B+-trees, R2LSH requires a buffer of size equal to the I/O

page size, to restore a leaf/index node of the B+-tree. Therefore, the total space cost

is O(n+md).

In the query phase, before the search, R2LSH first needs to load certain auxiliary

information of the index structure into the main memory. The information includes

those on (1) 2m projection vectors, (2) reference objects and the reference vector in

each Mi, and (3) the inner and outer radii of each ring, which is totally O(md). During

the search process, R2LSH needs to maintain an array of size n to record the present

collision numbers of the objects. In addition, for each ring that needs to be searched,

R2LSH maintains two buffers to restore the I/O pages read from disks. This is because

the leaf level is searched in two directions. If the I/O page size is set to 4KB, the

space cost of this part is at most 8mαβ KB. α and β are defined in Table 2.3. Because

n� mαβ for large datasets, the total space cost in the query phase is also O(n+md).

2.5.5.2 Handling Update and parameter setting

Update. For the datasets updated frequently, we recommend users to adopt a sim-

ple selection strategy. This is because the learning step in the indexing phase is not

45

2.5 R2LSH: LSH in two dimensional subspaces

required, implying that the cost of re-learning owing to the alterations in data distri-

butions could be saved. In the experiments, we demonstrate that for most datasets, a

simple selection strategy can be effective. Meanwhile, because our index structure is

formed by B+-trees, the update (insertion, deletion, and modification) can be supported

conveniently.

Parameter setting. The parameters that need to be determined are m, λ, and

β. It is evident that their optimal values depend on both data distribution and query

distribution. To support dynamic and large datasets, in this study, we experimentally

determined the default values of these three parameters and applied these values to

all the real datasets. The experiments revealed that R2LSH could perform effectively

under such default setting of parameters.

2.5.6 EXPERIMENTS

R2LSH was implemented in C++. All the experiments were carried on a PC with

Intel(R), 3.40 GHz i7-4770 eight-core processor with 8 GB RAM, in Ubuntu 16.04,

unless stated otherwise.

2.5.6.1 Experiment Setup

We chose following methods in the experiments.

• SRS [51]. We select SRS-2, a variant of SRS, in our experiments. This is because

SRS-2 supports arbitrary c ≥ 1 and 0 < δ < 1. The dimension of the R-tree was set

to eight, as recommended in [25, 35, 51]. δ was set to 0.1.

• QALSH [26]. According to the authors’ recommendations, δ was set to 1/2 +

1/e. The number of hash functions m and other internal parameters were computed

according to the methods proposed in [26] as well.

• R2LSH. δ was set to 0.1. The parameters λ, m, and β were set as described in

Sec. 2.5.6.1. In addition, to compare R2LSH and the other LSH methods without

bias, we adopted the simple selection strategy (α = 1) introduced in Sec. 2.5.3.2

(unless stated otherwise). This causes all LSH methods to be learning-free.

• HD-index [5]. We select HD-index as a representative of non-LSH methods (with-

out quality guarantees). All the internal parameters of HD-index were adjusted to

be experimentally optimal, as recommended in [5].

46

2.5 R2LSH: LSH in two dimensional subspaces

Table 2.4: Real datasets

Dataset Dimension Size Type

Sun 512 79,106 Image
Enron 1369 94,987 Text
Msong 420 992,272 Audio
Deep 256 1,000,000 Image
Gist 960 1,000,000 Image

Imagenet 150 2,340,373 Image
Tiny10M 384 10,000,000 Image
Sift10M 128 11,164,666 Image
Tiny80M 384 79,302,017 Image

Sift1B 128 999,494,170 Image

Datasets. We select ten real datasets of different sizes [5, 35, 51] (Table 3.3):

The I/O page sizes, denoted by B, were set to 4KB on all the datasets, as suggested

in [5].

Evaluation metrics. We used the following metrics for the performance evalua-

tion.

• I/O cost. I/O cost, which denotes the number of pages to be accessed, is an

important metric for external memory algorithms. We follow SRS and QALSH to

use this metric to evaluate the efficiency. As discussed earlier, I/O costs consist of

the overhead for both index and data access.

• Running time. The running time for processing a query is also considered. It is

defined as the wall clock time for a method to solve the k-ANN problem.

• Overall ratio. For methods to solve c-k-ANN search, overall ratio is a standard

metric used to measure the query accuracy. For c-k-ANN search, the overall ratio is

defined as 1
k

k∑
i=1
‖q − ôi‖ / ‖q − o∗i ‖.

• Recall. Recall is used as another important metric to measure the accuracy of

algorithms. Its value is equal to the ratio of the number of returned true nearest

neighbors to k (for k-ANN search).

Parameter settings. We recommend users to set λ, m, and β to 0.7, 40, and 30,

respectively, by default. This is because such settings are suitable for most datasets.

In Figure 2.11, we demonstrate the effect of different parameters on I/O costs, through

experiments on five datasets.

47

2.5 R2LSH: LSH in two dimensional subspaces

c=2

1000

10000

100000

1000000

0.3 0.5 0.7 0.9
λ

I/O Cost

Sun Imagenet
Msong Gist
Deep

(a) Different λ (m = 40,
β = 30)

c=2

1000

10000

100000

1000000

20 40 60 80
m

I/O Cost

Sun Imagenet
Msong Gist
Deep

(b) Different m (λ = 0.7,
β = 30)

c=2

1000

10000

100000

1000000

10 20 30 40
β

I/O Cost

Sun Imagenet
Msong Gist
Deep

(c) Different β (λ = 0.7,
m = 40)

Figure 2.11: The effect of different parameters in R2LSH

• Figure 2.11(a) shows that λ = 0.7 is suitable because the least I/O cost is incurred on

each dataset under this setting. If λ is set too small or too large, it will be challenging

to distinguish NNs from other false objects owing to their close possibilities of falling

inside query-centric balls.

• Figure 2.11(b) shows that m should not be too small because R2LSH requires an

adequate number of balls for the collision testing to be efficient. Meanwhile, when

m ≥ 40, almost all the curves remain stable except the curve of Gist. This implies

that it is effective to set m to 40. With regard to Gist, we can achieve higher

performance when m is set larger because Gist is a high-dimensional dataset and

requires more balls in the indexing phase.

• Figure 2.11(c) shows that the I/O cost required under β ≥ 20 is marginally less than

that under β = 10. This is because we can scan a lower number of objects by using

more rings. Meanwhile, β should not be too large because we have to generate a

B+-tree for each ring. Therefore, we set β to 30. This is observed to be suitable for

all the five datasets.

Cluster-based selection vs Simple selection. On all the datasets of size within

1 M, we compared R2LSH with α = 4 (four reference objects were determined by K-

means) and the standard R2LSH (α = 1) with the simple selection strategy, under

c = 1. Compared with the standard R2LSH, R2LSH (α = 4) can save 5% ∼ 20%

I/O cost on each dataset. This implies that R2LSH based on cluster-based selection

performs marginally higher than the standard R2LSH even in the general case.

48

2.5 R2LSH: LSH in two dimensional subspaces

Table 2.5: B+-tree vs. R-tree on running times(s) necessary to achieve overall ratio 1.01.
@k means the number of nearest neighbors.

Sift(@1) Sift(@10) Tiny(@1) Tiny(@10)

B+-tree 5.3 7.5 9.9 11.2
R-tree 23.2 33.3 46.3 60.7

Table 2.6: Ratios of I/O costs in index access of R2LSH to those of QALSH. @k means
the number of nearest neighbors.

Sift(@1) Sift(@10) Tiny(@1) Tiny(@10)

Ratio 0.05 0.04 0.06 0.06

2.5.6.2 Efficiency of R2LSH

In this section, we describe the experiment by which it was demonstrated that the design

of R2LSH is reasonable. It concerns the following two aspects: (1) the superiority of B+-

trees over other tree structures, and (2) the superiority of Dimension 2 (the subspace

dimension of R2LSH) over other dimensions. All the experiments described in this

section were performed on Tiny10M and Sift10M.

B+-tree vs. R-tree. We first demonstrate that B+-trees are superior to other

tree structures in the searching process of R2LSH. Here, we select R-tree as the bench-

mark tree structure because it can be realized in the external memory. In this case, we

adjust the number of subspaces and the dimension of R-trees for them to be experi-

mentally optimal. Moreover, we use an R-tree to scan objects sequentially as the radius

of the search ball increases in each subspace. The comparison results are presented in

Table 2.5. The results reveal that R-trees are less effective than B+-trees in our search-

ing scheme. This is because objects are stored sequentially on B+-trees, whereas the

scanning on R-trees results in significantly more random I/Os (other low-dimensional

tree-structures also exhibit this limitation). Thus, for our algorithm to save time, we

use B+-trees to form our data structure.

Dimension 2 vs. Dimension 1. Because the query-centric hash bucket can

be considered as the one-dimensional query-centric ball, it suffices to demonstrate the

superiority of R2LSH (Dim 2) over QALSH (dim 1). In this section, we focus only on

the comparison results of I/O costs in index access, which reflects the most important

advantage of R2LSH over QALSH. The results in Table 2.6 illustrate that R2LSH

49

2.5 R2LSH: LSH in two dimensional subspaces

Table 2.7: Running times(s) necessary to achieve overall ratio 1.01 under different sub-
space dimensions. @k means the number of nearest neighbors.

Sift(@1) Sift(@10) Tiny(@1) Tiny(@10)

Dim 2 5.3 7.5 9.9 11.2
Dim 3 13.2 18.5 26.9 30.8
Dim 4 15.4 22.7 32.3 35.6

Table 2.8: Index sizes (c = 2). CR denotes crash in the indexing phase.

Dataset SRS QALSH R2LSH HD-index

Sun 4.1MB 21.2MB 13.5MB 250MB
Enron 4.6MB 26.5MB 16.6MB 1.5GB
Msong 47.5MB 341.1MB 164.4MB 3.9GB
Deep 47.4MB 350.9MB 169.1MB 2.0GB
Gist 47.3MB 350.9MB 169.1MB 18.1GB

Imagenet 110.8MB 836.0MB 380.0MB 4.1GB
Tiny10M 476.7MB 3.8GB 1.6GB 31.3GB
Sift10M 524.7MB 4.1GB 1.8GB 10.2GB
Tiny80M 3.6GB CR 12.6GB 241.3GB

Sift1B 51.2GB CR 177.8GB 1.2TB

requires 4%–6% of the I/O cost for index access of QALSH because of the higher

selectivity of two-dimensional query-centric balls.

Dimension 2 vs. higher dimensions. R2LSH can be conveniently generalized to

support higher subspace dimensions. Here, for each hyper-ring, we construct a B+-tree

to store the angles of objects to a reference vector (although we can construct multiple

B+-trees for each subspace, this will cause the total number of B+-trees to be excessive)

and search for the candidates similarly. Table 2.7 presents the results under different

subspace dimensions. The results reveal that when we select a higher dimension (>

2), the performance is inferior to that under Dimension 2. This is because it is more

challenging to prune false objects in subspaces of higher dimensions unless more B+-

trees or other low-dimensional tree structures are used. However, as discussed earlier,

this will also incur significant additional cost.

2.5.6.3 Index Size, Indexing Time, and Memory Consumption

Table 2.8 presents the index sizes of three methods. Because the index size of QALSH

depends on the approximation ratio c, we report only the results under c = 2. According

to the results, on each dataset, the index size of SRS is the smallest, followed by

50

2.5 R2LSH: LSH in two dimensional subspaces

c=2

0

20000

40000

60000

80000

100000

1 10 20 30 40 50 60 70 80 90 100
k

I/O Cost

c=1.1 c=1.2
c=1.4 c=1.6

(a) Gist, I/O Cost

c=2

1

1.02

1.04

1.06

1.08

1 10 20 30 40 50 60 70 80 90 100
k

Overall Ratio
c=1.1 c=1.2
c=1.4 c=1.6

(b) Gist, Overall Ratio

Figure 2.12: I/O Cost and accuracy of R2LSH vs. c

R2LSH, QALSH, and HD-index. This is because the index structure of SRS is an

R-tree, whereas R2LSH and QALSH use multiple B+-trees. Meanwhile, although the

number of B+-trees of R2LSH (1200) is more than that of QALSH (60-100), each object

appears only 40 (equal to the number of projected spaces) times in the index structure

of R2LSH. Therefore, the index size of R2LSH can be less than that of QALSH.

With regard to the indexing time, on our PC, R2LSH is the fastest, followed by

QALSH, SRS, and HD-index, on all the datasets. For example, on Sift1B, R2LSH,

SRS, and HD-index consume 13 h, 5 days, and 11 days, respectively, to construct the

index. The construction of B+-trees is more time-consuming than that of an R-tree.

Thereby, SRS consumes more time in the indexing phase although its index size is the

smallest among the three LSH-methods.

In addition, we report the main memory consumption of each method on the largest

dataset Sift1B as follows. In the indexing phase, SRS, R2LSH, and HD-index consume

1.1GB, 1.6GB, and 97MB. SRS and R2LSH are both projection-based methods and

require more space in the main memory to store projection values.

2.5.6.4 The effect of c

In Figure 2.12, we study the effect of different values of the approximation ratio c on

the performance of R2LSH. Owing to the space limitation, we present the results only

on Gist. Similar trends were observed on other datasets. The following observations

are based on the results:

• The real overall ratio is significantly smaller than the value of c, a required lower

bound. This is because the probability guarantee of R2LSH is obtained in the worst

case, and the performances of R2LSH on real datasets can be significantly higher.

51

2.5 R2LSH: LSH in two dimensional subspaces

Table 2.9: I/O costs (×105) necessary to achieve overall ratio 1.01 on Tiny80M and
Sift1B. @k means the number of nearest neighbors.

Sift(@10) Sift(@100) Tiny(@10) Tiny(@100)

R2LSH 81 98 6 9
SRS 307 379 55 70

c=2

0

6000

12000

18000

24000

30000

1 10 20 30 40 50 60 70 80 90 100
k

I/O Cost

SRS R2LSH

(a) Enron

c=2

0

50000

100000

150000

200000

250000

1 10 20 30 40 50 60 70 80 90 100
k

I/O Cost

SRS QALSH

R2LSH

(b) Gist

c=2

0

600000

1200000

1800000

2400000

3000000

1 10 20 30 40 50 60 70 80 90 100
k

I/O Cost
SRS QALSH

R2LSH

(c) Tiny10M

c=2

0

300000

600000

900000

1200000

1500000

1 10 20 30 40 50 60 70 80 90 100
k

I/O Cost
SRS QALSH

R2LSH

(d) Sift10M

Figure 2.13: I/O costs necessary to achieve overall ratio 1.01

• As c decreases, R2LSH achieves higher query quality at the expense of higher I/O

cost. This is consistent with our termination condition in Algorithm 2. This implies

that according to the practical requirement, we can achieve a good balance between

query cost and precision by tuning the approximation ratio. Figure 5 shows that

R2LSH performs well under c = 1.2.

2.5.6.5 R2LSH vs. other LSH-based methods

This section describes our comparison of R2LSH with other state-of-the-art LSH-based

methods, i.e., SRS and QALSH.

Comparison on I/O costs. First, we compare the required I/O costs of R2LSH,

QALSH, and SRS (Figure 2.13 and Table 2.9). Please note that we measured I/O

costs or time necessary for achieving a specified value of overall ratio instead of a same

52

2.5 R2LSH: LSH in two dimensional subspaces

c=2

0

100000

200000

300000

400000

20 40 60 80
Recall(%)

I/O Cost
SRS QALSH

R2LSH

(a) Gist

c=2

0

150000

300000

450000

600000

20 40 60 80
Recall(%)

I/O Cost
SRS QALSH

R2LSH

(b) Imagenet

c=2

0

600000

1200000

1800000

2400000

3000000

20 40 60 80
Recall(%)

I/O Cost
SRS QALSH

R2LSH

(c) Tiny10M

c=2

0

500000

1000000

1500000

2000000

20 40 60 80
Recall(%)

I/O Cost
SRS QALSH

R2LSH

(d) Sift10M

Figure 2.14: I/O costs given recalls 20%, 40%, 60% and 80% (k = 100)

value of approximation ratio c 1. This is because R2LSH, QALSH, and SRS adopt

different methods to obtain probability guarantees. Consequently, SRS incurs less I/O

cost, whereas QALSH achieves higher accuracy for the same value of c. Note that all

the three methods can support arbitrary c (c > 1) and can achieve different accuracies

by tuning c. Therefore, for fair comparison, we set the overall ratio to a constant and

measure the I/O cost they incur to attain the objective overall ratio by tuning c. In

Figure 2.13, we fix the overall ratio to 1.01 and compare the performances of the three

methods. c = 1.01 is selected because it is adequately low, and all the methods can

achieve this ratio on most of the datasets. The results reveal that the performance of

R2LSH is the highest on each dataset. Specifically, R2LSH incurs 15%–30% of the I/O

costs incurred by SRS or QALSH to achieve an identical precision level. This reveals

that R2LSH is more I/O efficient than other LSH-based methods. We also observe that

the performance of QALSH degrades significantly as the data size increases. This is

because QALSH first fixes the size of the candidate set and then computes the number

of required hash functions. For large datasets, a similar setting makes the candidate set

1In previous papers, c = 2 is considered as the standard setting. However, it is impractical because
for many high-dimensional real datasets, over 30% of the data objects are candidates when c = 2.

53

2.5 R2LSH: LSH in two dimensional subspaces

Table 2.10: Speeds(s) given recall 70% (k = 100). 70% is selected because it can be
achieved by three methods and corresponds to targeted overall ratio of approximately
1.01.

Dataset R2LSH
Gain of R2LSH over
QALSH SRS

Sun 0.28 1.00x 3.02x
Enron 0.41 \ 2.97x
Msong 0.93 2.83x 4.28x
Deep 1.41 4.33x 5.63x
Gist 2.70 5.66x 3.70x
Imagenet 2.53 12.19x 5.72x
Tiny10M 12.66 14.61x 6.77x
Sift10M 9.51 9.15x 7.13x
Tiny80M 81.53 \ 7.82x
Sift1B 793.18 \ 7.27x

of QALSH too small whereas the I/O cost of index access becomes excessively large.

This makes the search inefficient.

In Figure 2.14, we vary the targeted recall and compare these methods under k =

100. We can see that under different precision levels, R2LSH always exhibits the highest

performance. In addition, as the targeted recall increases, the advantage of R2LSH over

SRS or QALSH becomes more obvious.

Comparison on running times. We also compare the running times of the three

methods in Table 2.10. We first observe that R2LSH exhibits apparent advantages over

SRS on speeds. This is because the index structure of R2LSH is formed by B+-trees.

During the scanning process, the objects on B+-trees can be scanned sequentially, which

is efficient in terms of time-consumption. In contrast, SRS processes objects by an R-

tree, which incurs more time for distance computation and searching for new index

nodes.

Meanwhile, we observe that R2LSH runs significantly faster than QALSH, particu-

larly on large datasets. This is consistent with the results on I/O costs. It is noteworthy

that on the small dataset Sun, the running times of two methods are very close. This is

because R2LSH constructs more B+-trees than QALSH on small datasets, which incurs

more time for locating projections of the query. However, such cost is comparatively

small for large datasets.

54

Chapter 3

Maximum Inner Product Search
Problem

3.1 Introduction

In this chapter, we focus on the inner product space and research the Maximum inner

product search problem(MIPS), which has been regarded as a fundamental problem

in many applications such as recommender systems [34], multi-label predictions [18],

reasoning concerning extracted facts in open relation extractions [45], deep learning [50],

and structural SVM [30]. Given a large dataset D in Rd with an L2 norm and a query

q, the objective of MIPS is to find the MIP object o in D such that the inner product

〈o, q〉 is the maximum. We call such a problem the exact MIPS problem. Although

the objective is straightforward, an exact MIPS problem is difficult to solve efficiently

in high-dimensional spaces, owing to the curse of dimensionality. Hence, researchers

have focused on the approximate MIPS problem, for which approximate MIP objects

are acceptable, and proposed various approximate MIPS methods. For some of these

approximate methods, the approximation ratio c is introduced to control the difference

between the true and approximate MIP objects. Specifically, an approximate MIP

object is called a c-MIP object (of q) if its inner product with q is not less than c times

the true maximum inner product; we refer to those approximate MIPS methods that

can return c-MIP objects as c-approximate MIPS methods.

In recent years, many exact and approximate MIPS methods have been proposed.

They can be classified into the following three classes:

(1) Methods that exploit suitable index structures to realize an efficient

55

3.2 Related work

search. They exploit special data structures, such as balls and trees [16, 44]. In

general, they perform well in low-dimensional spaces. But they are defeated by the

brute-force search in high-dimensional spaces owing to the curse of dimensionality.

(2) Methods that transform the MIPS problem into approximate nearest

neighbor search (ANNS) or maximum cosine similarity (MCS) problems.

This class includes L2-ALSH [48], Sign-ALSH [49], Simple-ALSH [43], XBOX [6] and

H2-ALSH [27]. Owing to the utilization of the locality sensitive hashing (LSH) tech-

nique, these methods can return c-MIP objects with probability guarantees and are

efficient. However, in the probability guarantees, there exists a significant gap between

theory and application.

(3) Methods that generate data-dependent binary codes, typically by

deep leaning. The representative method is asymmetric inner-product binary cod-

ing (AIBC) [47]. Compared with data-independent methods in the second class, these

methods can generate more efficient codes by fully exploiting data distributions. How-

ever, their learning are more time consuming, which presents a problem in feasibility

on extremely large or dynamic datasets. Furthermore, owing to the lack of probability

guarantees, it is difficult to improve their query accuracies to user-specified levels.

3.2 Related work

Because MIPS is a fundamental problem, it has gained significant attention from re-

searchers. In this section, we briefly review some state-of-the-art MIPS methods.

3.2.1 Exact MIPS methods

The most straightforward solution is brute-force searching, i.e., to compute the inner

products between the query vector and the vectors, and output all probe vectors with

the largest inner product. However, it is costly in practice especially for large and

high-dimensional datasets. Hence, other exact MIPS methods have been proposed.

A practicable solution is to use tree-based index structures for searching, such as cone

trees [44] and cover trees [16]. Another efficient method for an exact MIPS is LEMP [53],

which prunes false objects quickly based on an efficient index structure. In general,

these methods yield good performances on low-dimensional datasets; however, as the

dimension increases, their effectiveness is lost because of the curse of dimensionality.

56

3.2 Related work

3.2.2 LSH-based MIPS methods (learning-free)

In many applications, approximate MIP objects can be accepted by users and found

more efficiently than exact MIP objects. Thus, many approximate MIPS methods have

been proposed to trade accuracy for speed. To overcome the curse of dimensionality,

these methods first transform MIPS to ANNS or MCS and then adopt LSH techniques

(by random projection) to solve the transformed problems. Owing to the favorable

properties of LSH, such methods can perform well even for high-dimensional datasets.

According to the type of transformed problem, these methods can be divided into the

following two categories. 1) Methods in the first category transform MIPS to ANNS,

such as L2-ALSH [48] and H2-ALSH [27]. After the transformation, L2-ALSH solves

ANNS by E2LSH [1], while H2-ALSH solves ANNS by QALSH [26]. 2) Methods in the

second category transform MIPS to MCS, such as Sign-ALSH [49] and Simple-LSH [43].

After the transformation, Sign-ALSH and Simple-LSH solve MCS by SimHash [13].

For existing methods of such a type, an efficient transformation is paramount under

the condition that two objects with a large inner product are close to each other in the

mapped space. The transformations are further divided into symmetric and asymmetric

transformations. If the same transformation applied to probe vectors is applied to the

query, we call it a symmetric transformation. Otherwise, we call it an asymmetric

transformation. Simple-LSH adopts the symmetric transformation, while L2-ALSH,

Sign-ALSH, and H2-ALSH adopt the asymmetric transformation.

Although such transformations render the utilization of LSH techniques feasible,

existing LSH-based methods exhibit the following limitations. 1) For some methods,

such as L2-ALSH and Sign-ALSH, the transformation error cannot be avoided. That

is, the order of the inner products cannot be perfectly preserved after converting MIPS

to ANNS/MCS, which results in inaccurate query results. 2) For other methods such

as XBOX and H2-ALSH, the transformation error can be avoided but another type

of error, e.g., the distortion error [27], cannot be avoided. Specifically, two objects

with a large inner product may become very close to each other in the mapped space

owing to the transformation, which increases the searching difficulty. Although it has

been experimentally shown that H2-ALSH can incur fewer distortion errors than other

methods, such an error is inevitable.

57

3.3 Preliminaries

Table 3.1: Comparison among state-of-the-art MIPS methods

Methods
Approximate or Learning Probability Transformation

exact solver? method? guarantee? required?

Sign-ALSH [49] Approximate No Yes Yes
Simple-ALSH [43] Approximate No Yes Yes
H2-ALSH [27] Approximate No Yes Yes
AdaLSH(proposed) Both No Yes No
AIBC [47] Approximate Yes No No

3.2.3 Learning MIPS methods

In recent years, many learning-based methods have been proposed. By fully exploit-

ing the data distribution, those methods generate efficient binary codes. However, as

indicated in [47], most learning-based methods were designed to address approximate

nearest neighbor search and their performances in solving the MIPS problem are not

highly satisfactory. Hence, the authors of [47] developed an asymmetric binary code

learning method called AIBC for solving MIPS problems. AIBC learns two sets of

coding functions such that the inner products between their generated binary codes

can reveal the inner products between the original data, which shows a good accuracy-

efficiency tradeoff in practice.

3.3 Preliminaries

Before we provide the details of AdaLSH, we will provide some introductions in this

section. In Sec. 3.3.1, we briefly review the mechanism of a highly related method,

H2-ALSH and analyze its limitations. In Sec. 3.3.2, we introduce some notations and

definitions for later use.

3.3.1 Brief review of H2-ALSH

The recently proposed H2-ALSH [27] outperforms other state-of-the-art methods of

LSH type. In the preprocessing phase, H2-ALSH partitions a dataset into disjoint

subsets S1, S2, . . . , Sn, which can be viewed as concentric rings geometrically (S1 has

the smallest radius, followed by S2, and so on). Subsequently, in each subset Si, objects

(in Si) are mapped into a one-dimension-higher (d+ 1) space, such that an object with

a larger value of inner product with q in the original space will have a smaller distance

58

3.3 Preliminaries

Table 3.2: Some notations

Notations Explanations

δ The error rate specified by users (0 < δ < 1)
c The approximation ratio specified by users (0 < c ≤ 1)
o∗ The true MIP object of q
ô The MIP object among candidates
n The number of rings
Si The ith ring with inner radius ri and outer radius ri−1

b b = ri/ri−1 for all i’s
m The number of hash functions
ai The ith projection vector
hai The ith hash function generated by random projection

[−wi, wi] The search window in Si
#Col(o1, o2) The collision number of objects o1 and o2

tij The threshold for wj at the ith round

to q in the mapped space. In the query phase, from Sn to S1, H2-ALSH repeats the

ANN search.

Although H2-ALSH performs well, it exhibits the following two limitations. (1) Its

probability guarantee is not always based on correct assumptions on data distributions1.

In other words, for some specific data distributions, the real performances of H2-ALSH

may be inconsistent with the predicted performances. (2) As mentioned in Sec. 3.1,

the success probability guaranteed by H2-ALSH is low (only 1/2− 1/e). Therefore, to

fulfill the user-specified precision, a number of repetitions are required to increase the

success probability, which incurs additional cost.

3.3.2 Notations and problem setting

We consider a set D ⊆ Rd of objects o’s and a query q ∈ Rd. Our goal is to find

o∗ ∈ D, whose inner product with q is maximal. Let the angle between o and q be θ

(0 ≤ θ ≤ π). We use the tilde (∼) for normalization, i.e., õ = o/‖o‖, and the hat (∧)

for “optimal candidates,” such as ô for o∗. The goal of the c-approximate maximum

inner product (c-AMIP) problem is to find object ô satisfying 〈ô, q〉 ≥ c〈o∗, q〉 for a

given c (0 < c ≤ 1) (c = 1 for an exact MIPS). Herein, we primarily consider the

method to find a single c-AMIP object; however, it is easy to extend the algorithm to

1In Theorem 4.2 [27], they limit the cosine angle in [a, 1] for some a > 0, specifically a = c40−1/(bc40)
for parameters c0 and b; however, this does not always hold. In addition, for an arbitrary object o, the
angle between o and q is assumed to be uniformly distributed in [0, π], which is impractical.

59

3.4 Adaptive LSH

find k c-AMIP objects (we only need to ensure that the first MIP object corresponds

to the kth one). In addition, if 〈o∗, q〉 is negative, a slight modification is required in

our algorithm, such as replacing c by 1/c. As the modification is effortless, we only

focus on the typical case 〈o∗, q〉 > 0.

Table 3.2 lists some important notations herein for reference. Some of them will be

introduced later.

3.4 Adaptive LSH

In this section, we explain how AdaLSH works.

3.4.1 The indexing phase

First, AdaLSH generates m projection vectors {aj}mj=1. Next, AdaLSH divides the

dataset D into n distinct subsets S1, S2, . . . , Sn that are separated by concentric circles

centered at zero with radii r0, r1, . . . , rn in the descending order (maxo∈D ‖o‖ = r0 >

r1 > · · · > rn > 0), that is, Si = {o|ri < ‖o‖ ≤ ri−1}. Let `i = mino∈Si ‖o‖, and

ui = maxo∈Si ‖o‖. Subsequently, AdaLSH normalizes objects falling inside the same

ring and projects them onto the generated vectors by hash functions hai(õ) = 〈ai, õ〉,
where õ is the normalized object in the ring. We apply such an operation to all rings

and thus obtain n groups of hash functions, each of which corresponds to some ring

(See Figure 3.1 for an example).

3.4.2 The query phase

This phase is the core of AdaLSH. First, we present an overview of our search strategy.

Next, we derive some basics and fundamental relationships. Subsequently, we introduce

our search strategy in detail. Finally, we present the algorithm and describe the related

probability guarantee. For clarity, we primarily address the case c = 1 (exact MIPS)

and generalize it for c < 1 later.

3.4.2.1 Overview

The search process was performed over multiple rounds. In each round, we examined

S1, S2, . . . , Sn from the outside to the inside. That is, we first limited the objects by

their norms. In each subset Si whose member o has a norm in [`i, ui], we further limited

60

3.4 Adaptive LSH

iS

1()ah o

1o
q

ja

(q)ah

12 2 o , q−

q

1o

3o

3o

2o

2o

i-1S

r=1

Figure 3.1: Indexing phase of AdaLSH. Any object o is normalized to õ (‖õ‖ = 1) and
then projected onto a line with a random Gaussian vector aj for collision testing.

1q

2q

1(q)NN

2(q)NN

search in two directions
m projection vectors

1

1
T 1

1
T 1

1
T 1

1
T 1

1
TT

2q

extension directions

q

iw−
iw

1o

2o

2o

2o

1o

1o

3
o

iw

iw

iw

iw−

iw−

iw−

1a

2
a

3a

ma

3o

3o

3

1

iS

1
()

ja
h o

1o

r=1

2o

2o

1o

j
a

3o

3o

3E

2E
3E

2E

1E
1E

q

1i
S

−

i
S

*
()I o

1o
2o

*

3
o o=

i
u

i
l

4()I o

2u
4

o

5o

6o

0 0
(cos ;) (() / ;)

i iu u i i
g g p g I o u p= = =

0 0(cos ;) (() / ;)i i i ig g p g I o o p= =

*

3
g g=

()I o

cos

3u ug g

=1

g
2g

w

1u
g

2u
g

4u
g

2

1S

2S

3S

1

1
t

2

1t

1

2t
2

2t

1

3t
2

3t

nS

extension directions

1st round 2nd roundq

w

 w

iS

2o

12 2 ,o q−

1T

2T

3T

nT

iS

1()ah o

1o
q

a

(q)ah

3

2 2 o , q−

q

1o

3o

3o

2o

2o

i-1S

r=1

Figure 3.2: Multi-round search strategy, where tri denotes the threshold for window size
wi at rth round

61

3.4 Adaptive LSH

q

o =o*
o

u

l

i

i

θ

o

o

12

4

3

o6

Si

Si-1

g*=g
3

g
1

g
2

g
u4

g* =g
u

g
u1

g
u2u3

I(o)θ

2

I(o)4

~

I(o)*

o5

θu2

w

gj = g(cos θj; p0) = g(I(oj)/‖oj‖; p0)
≤ guj = g(cos θuj; p0) = g(I(oj)/ui; p0)

Figure 3.3: Probabilistic examination order of norm-limited objects. All objects o ∈ Si

are limited in their norm as `i ≤ ‖o‖ ≤ ui. Function g maps cos θ = I(o)/ ‖o‖ with q̃ to
c
√

2− 2 cos θ (c is a constant), where I(o) = 〈o, q̃〉 and ‖q̃‖ = 1. The objects are examined
in the ascending order θ as g1, g2, . . ., while the corresponding gu1

, gu2
, . . . are examined if

guj < w. Let w = g(Î/ui) with the current maximum inner product Î. Subsequently, if

I(oj) > Î, then guj
< w; accordingly, gj < w. Therefore, it is sufficient to verify objects

satisfying gj < w.

62

3.4 Adaptive LSH

=0.2

=0.5

=0.7

=0.9

y

1((;);1/ 2)y g g −=

Figure 3.4: Functions for setting round values

the objects by their cosine angles cos θ, which were estimated correctly to support the

query-centric LSH technique. The cosine angle was estimated through collision testing

in multiple hash functions (projection lines), which will be explained later in detail,

with a random vector a ∼ N(0, Id), ha(õ)−ha(q̃) ∼ N(0, 2−2 cos θ) (Figure 3.1). That

is, õ and q̃ have a high collision probability in a window of fixed size 2w if they are

close to each other, i.e., cos θ ≈ 1, while they have a low collision probability if they

are distant from each other, i.e., cos θ ≈ −1. Based on this property, we estimated

the value of cos θ by the collision number in m projection lines associated to randomly

generated a1, · · · , am. We established an anchor window [−wi, wi] in common to m

projection lines for the collision tests of o ∈ Si and q. For verifying the objects in the

descending order of the cosine angles, the value of wi was increased gradually by ∆w.

When wi became larger than a round threshold tri in the rth round, we terminated the

search in Si and proceeded to verify the next subset Si+1 (Figure 3.2). When Sn has

been processed, the next round starts. The details will be explained in Sec. 3.4.2.4.

63

3.4 Adaptive LSH

3.4.2.2 Basics

Let us start by summarizing the facts that will be applied in this study. The inner

product is defined as

〈o, q〉 = ‖o‖‖q‖ cos θ. (3.1)

The solution of the problem, MIP(D, q), is given as

o∗ = arg max
o∈D
‖o‖‖q‖ cos θ (3.2)

= arg max
o∈D

I(o)(= ‖o‖ cos θ). (3.3)

It is noteworthy that the inner product I(o) is evaluated as the product of the norm

of o and the cosine angle with the query.

Let us consider a random hash function ha(o) = 〈a, o〉, where a is generated ran-

domly according to the d-dimensional standard Gaussian distribution N(0, Id). It is

well known [17] that for two points o and q,

ha(o− q) = ha(o)− ha(q) ∼ N(0, ‖o− q‖2). (3.4)

Suppose that o and q have been normalized to õ and q̃, respectively. In query-aware

search [26], we regard ha(q̃) as the origin, i.e., ha(q̃) = 0. Thus, for õ with distance

s = ‖õ− q̃‖ =
√

2(1− cos θ), we have

ha(õ) ∼ N(0, s2). (3.5)

Once we establish an (anchor) window with width 2w centered at the origin on the line

of direction vector a, the probability that ha(õ) falls inside the anchor window is given

by

P (ha(õ) ∈ [−w,w]) = f(w/s) =
1√
2π

∫ w/s

−w/s
e−x

2/2dx. (3.6)

Let us rewrite this probability by p(s, w) as

p(s, w) = f(w/s). (3.7)

According to Equation (3.7), p(s, w) is decreasing in s and increasing in w. For

a set of hash functions H = {ha1 , ha2 , . . . , ham} with {aj}mj=1 randomly generated, we

denote the number of collisions (of o) by #Col(õ, q̃) (if õ falls inside window [−w,w],

we say that õ collides with q̃ in this window).

64

3.4 Adaptive LSH

3.4.2.3 Fundamental relationships

Equation (3.6) indicates that we must control the window size 2w appropriately, de-

pending on the distance s to ensure the validity of the collision testing. More concretely,

the following question arises: what size of w is necessary to find a specific object o,

with distance s = ‖õ− q̃‖, by the collision test with m hash functions? From (3.6) and

Hoeffding’s inequality on the sum of independent bounded random variables, for o with

distance s = ‖õ− q̃‖ and w, we have

P (#Col(õ, q̃) ≥ m/2) ≥ 1− e−2m(p(s,w)−1/2)2 . (3.8)

According to Equation (3.8), for a given number of projections m and error rate δ (0 <

δ < 1), for the probability that o passes the collision test above at least 1−δ, we require

p(s, w) = f(w/s) ≥ 1/2 +

√
1

2m
log

1

δ
. (3.9)

Let p0 = 1/2 +
√

1
2m log 1

δ be the required rate of collision in a single projection.

Hereinafter, we assume that m is set such that p0 < 1 for a given δ. Therefore,

Equation (3.9) means that w must satisfy

w/s ≥ f−1(p0). (3.10)

because f is bijective and monotonically increasing in w/s.

With notation I(o) = ‖o‖ cos θ, the distance s between õ and q̃ can be written as

s = ‖õ− q̃‖ =
√

2(1− cos θ) =
√

2 (1− I(o)/‖o‖). (3.11)

We define a function g as

g

(
I(o)

‖o‖ ; p0

)
=

√
2

(
1− I(o)

‖o‖

)
f−1(p0) =

√
2− 2 cos θf−1(p0). (3.12)

Therefore, condition (3.10) becomes

w ≥ sf−1(p0) = g(I(o)/‖o‖; p0). (3.13)

That is, g(I(o)/ ‖o‖ ; p0) shows the necessary size of the window to find o with the cosine

angle cos θ = I(o)/ ‖o‖ to q with the probability of at least 1− δ. It is noteworthy that

65

3.4 Adaptive LSH

g(I/r; p) is bijective (in the range 0 ≤ θ ≤ π) in I/r, decreasing in I, and increasing in

r. Furthermore, g(I/r; p) is increasing in the parameter p. Hence, we have

g(I(o)/ ‖o‖ ; p0) ≤ g(I(o)/ui; p0), o ∈ Si. (3.14)

Our goal is to determine an appropriate value of w for finding o∗. To achieve this,

from (3.13), it suffices to determine the value of w such that

w ≥ g(I(o∗)/‖o∗‖; p0). (3.15)

However, neither I(o∗) nor ‖o∗‖ is known in advance; hence, we cannot directly

determine w by (3.15). We will describe a strategy to address this in the following

section.

3.4.2.4 Search process

First, let us consider a simpler problem: if we know the subset Si∗ in which o∗ lies, then

how do we determine the value of wi∗ in Si∗? This problem can be solved efficiently

by the dynamic counting technique [20] as follows. At the beginning of the search, we

set wi∗ to 0. As the search proceeds, we increase the value of wi∗ stepwise by ∆wi∗ . If

some object o passes the collision test (#Col(õ, q̃) ≥ m/2), we view o as a candidate

for o∗ and compute I(o) (It is noteworthy that #Col(õ, q̃) is nondecreasing in wi∗).

During this process, we update ô, the current most promising candidate of o∗, and the

corresponding inner product Î = I(ô) when an object o with I(o) > Î is found. Because

I(o∗) ≥ Î and ‖o∗‖ ≤ ui∗ , we have

g(Î/ui∗ ; p0) ≥ g(I(o∗)/ ‖o∗‖ ; p0). (3.16)

Thus, for (3.15) to hold, it suffices to set wi∗ to g(Î/ui∗ ; p0). The search step is

illustrated in Figure 3.3.

Because the value of i∗ is unknown, we must verify every i as follows: we set wi

(1 ≤ i ≤ n) to Ti = g(Î/ui, p0), which results in wi∗ to Ti∗=g(Î/ui∗ ; p0). If o ∈ Si

satisfies I(o) > Î, then the normalized object õ passes the collision test with window

size 2Ti and probability of at least 1−δ. As a special case, I(o∗) is found in Si∗ . However,

it is costly to use Ti directly because multiple objects pass the collision test with Ti. For

a more efficient search process, we adopted a multi-round search strategy (Figure 3.2).

66

3.4 Adaptive LSH

That is, in the rth round, we stopped the examination of Si when wi reached tri (< Ti);

subsequently, we proceeded to Si+1. Therefore, the problem became, “how does one set

the values of tri ”? We considered an increasing sequence τ(1) < τ(2) < · · · < τ(R) = 1,

where τ(r) = r/R. Subsequently, based on the current Î, which was appropriately

initialized, we determined an upper bound tri of wi at round r as follows. First, we

estimated the expected inner product Ib(r) in S1 at round r such that

Ib(r)/u1 = g−1(g(Î/u1; τ(r)); 1/2). (3.17)

Here, for a fixed value of x, because g−1(g(α; τ), 1/2) is decreasing in τ , we have

1 > Ib(1) > · · · > Ib(R) = −∞ (Figure 3.4).

Subsequently, we determine the value of tri (1 ≤ i ≤ n) by

tri = g(Ib(r)/ui; 1/2). (3.18)

Therefore, we share the same criterion, that is, Ib(r) in all subsets S1, · · · , Sn. This

tri guarantees that an object o ∈ Si with I(o) ≥ Ib(r) has the expected collision number

of at least m/2 if τ(r) > 1/2. This can be confirmed from tri = g(Ib(r)/ui; 1/2) ≥
g(Î/ui; 1/2) ≥ g(I(o)/ ‖o‖ ; 1/2) for τ(r) > 1/2 (the first inequality is derived from

Equations (3.17)). This multi-round search is expected to accelerate the termination

in an earlier round. Furthermore, because we set τ(R) to 1 and derived Ib(R) = −∞
and tRi = +∞ (1 ≤ i ≤ n), the termination condition wi ≥ g(Î/ui; p0) = Ti is satisfied

before reaching the Rth round (Figure 3.3).

Next, we describe the complete search process (Figure 3.2). We divide the search

process into R rounds and introduce a round bound tri for wi (i = 1, · · · , n) at the

rth round by Equations (3.17) and (3.18). At the rth round (r = 1, 2, · · · , R) in

Si (i = 1, · · · , n), we verify every object that passes the collision test in [−wi, wi] (a

candidate) and then increase the value of wi gradually by ∆w until wi reaches tri . When

wi exceeds tri , we proceed to Si+1. After Sn is examined in this round, we return to S1

and restart the search at the (r + 1)th round.

In the middle of the search process, we can terminate the examination of Si if one

of the following three termination conditions is satisfied.

TC1. We can skip the examination of Si, Si+1, . . . , Sn, if ui < Î. This is because

any o ∈ ∪j≥iSj satisfies ‖o‖ ≤ ui; thus, I(o) = ‖o‖ cos θ ≤ ui.

67

3.4 Adaptive LSH

TC2. If wi ≥ g(Î/ui; p0) = Ti, we can terminate the search in Si because (3.15) is

satisfied (see Figure 3.3). This is a special case of the following condition, TC3.

TC3. For any c (0 < c ≤ 1), we can terminate the search in Si if wi ≥ g(Î/(cui); p0).

The reason will be explained in Theorem 5 later.

3.4.2.5 Performance analysis

The details of the query phase are shown in Algorithm 5. Let us analyze its time com-

plexity. In the worst case, we must scan the entire hash tables and compute the exact

inner products between q and all objects in D, which means that the time complexity

in the worst case is O(Nd), where N is the size of D and d is the data dimension.

This is intuitive as AdaLSH can support an exact MIPS. However, AdaLSH performs

excellently for real datasets because the worst case does not occur in practice usually.

We can guarantee the performance of AdaLSH as follows:

Theorem 5. For a given error rate δ (0 < δ < 1), AdaLSH solves the c-AMIP problem

AMIP(D, q, c) with the probability of at least 1− δ, where 0 < c ≤ 1.

Proof. First, the main loop steps (7–21) verifies every i in the order of i = 1, 2, . . . , n.

For each subset Si, the examination of Si can be terminated when either TC1 or

condition TC3 (TC2 is a special case) is satisfied (it is noteworthy that tRi is +∞
in the Rth round, which ensures for each Si that either of these two conditions is

satisfied). However, only when the examinations of all subsets have been terminated

can we terminate the query phase. Thus, it suffices to consider Si∗ only. Condition TC1

cannot be applied to Si∗ because ui∗ ≥ I(o∗) ≥ Î. When condition TC3 is applied to Si∗ ,

either wi∗ ≥ g(I(o∗)/ ‖o∗‖ ; p0) or wi∗ ≤ g(I(o∗)/ ‖o∗‖ ; p0) holds. According to (3.15),

the former case implies that we can find o∗ with the probability of at least 1− δ. In the

latter case, we have g(Î/(cui∗); p0) ≤ wi∗ ≤ g(I(o∗)/ ‖o∗‖ ; p0) ≤ g(I(o∗/ui∗ ; p0)). This

means that Î = I(o) ≥ cI(o∗), implying that some object o has already been found

such that I(o) ≥ cI(o∗). Thus, regardless of the case, we can find a c-AMIP object

with the probability of at least 1− δ.

Although we have not considered the case Î < 0, it suffices to replace the ter-

mination condition in Step #19 with wi ≥ g(cÎ/`i; p0) in the case thereof. Under

this modification, Theorem 5 still holds. For finding k (k > 1) c-AMIP objects, we

must maintain k MIP objects among the candidates and replace Î in Algorithm 5 with

68

3.5 Experimental evaluation

Îk = I(ôk), where ôk is the kth MIP object among the candidates. By applying our

discussion on o∗ to o∗i , where o∗i is the true ith MIP object, Theorem 5 can be easily ex-

tended for the c-k-AMIP problem. In addition, we have the following results regarding

recalls:

Corollary 2. For a given error rate δ (0 < δ < 1), AdaLSH can find k MIP objects

with the expectation of the recall rate of at least 1− δ when c = 1.

3.4.3 Comparison with other LSH methods

In this subsection, we compare AdaLSH with other LSH methods with probability

guarantees from the theoretical perspective. For this goal, we selected H2-ALSH as the

representative because it has a better theoretical guarantee than other methods [27].

(1) The guaranteed success probability. As shown in Algorithm 5, AdaLSH

supports arbitrary error rate. To guarantee this error, it is sufficient to ensure that p0

lies in the interval (0,1) such that the computation of g(Î/(cui); p0) is practical. This

is feasible because the value of p0 depends on m, that is controllable by choosing an

appropriate value of p0. In contrast, the error rate of H2-ALSH cannot be less than

1/2− 1/e. This is because (1) the probability guarantee of H2-ALSH was obtained in

the worst case, and in the searching phase, the full information was not exploited, and

(2) many loose inequalities were used in the derivation of its theoretical guarantee.

(2) The tuning of approximation ratio c. As shown in Algorithm 5, AdaLSH

terminates when the inequality wi ≥ g(Î/(cui); p0) holds. Since function g(x, y) is

decreasing in x given y, the value of g(Î/(cui); p0) can be controlled by adjusting c.

In other words, AdaLSH can terminate earlier by selecting a smaller c. H2-ALSH also

supports any value of c in (0, 1), but the algorithm cannot gain efficiency even for a

small value of c due to its theoretical limitations. Relevant experiments are shown in

Sec. 5.

3.5 Experimental evaluation

AdaLSH was implemented in C++. All the experiments were performed on a PC with

Intel(R), 3.40 GHz i7-4770 eight-core processor with 8 GB RAM, in Ubuntu 16.04.

69

3.5 Experimental evaluation

3.5.1 Experimental setup

3.5.1.1 Datasets and queries

We selected ten real datasets for the experiments (Table 3.3). Let λ = min ‖o‖ /max ‖o‖
(o ∈ D) be the ratio of the minimum norm to the maximum norm over all data in the

dataset. If for any dataset on which λ ≥ b holds (b = ri/ri−1), that is, all objects fall

in the same ring on this dataset, we call it a homocentric dataset, otherwise, we call

it a non-homocentric dataset. Among these ten real datasets, Deep and Ukbench

are homocentric, and the others are non-homocentric. Note that although ImageNet

is non-homocentric in the definition, it is homocentric in essence because most of the

objects fall in the same ring. Thus, we consider ImageNet as a homocentric dataset.

In addition, for each dataset, we selected 200 queries randomly from its corresponding

query set and generated the ground truth set in advance by a linear scan. In this

section, all results are the average results over 200 queries.

• Cifar1 is a labeled subset of TinyImage dataset, with each image represented by

a 512-d GIST feature vector.

• Sun2 comprises GIST features of images.

• Enron3 originates from a collection of emails and contains feature vectors of

bi-grams.

• Trevi4 comprises 0.4 million 1024 bitmap(.bmp) images, each containing a 16 ×
16 array of image patches.

• Nusw 5 includes approximately 2.7 million web images, each as a 500-dimensional

bag-of-words vector.

• Msong6 is a collection of audio features and metadata for 1 million contemporary

popular music tracks.

• Gist7 is an image dataset comprising approximately 1 million data points.

• Ukbench8 contains approximately 1 million 128-d features of images.

1http://www.cs.toronto.edu/ kriz/cifar.html
2http://groups.csail.mit.edu/vision/SUN/
3http://www.cs.cmu.edu/ enron/
4http://phototour.cs.washington.edu/patches/default.htm
5https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
6http://www.ifs.tuwien.ac.at/mir/msd/download.html
7http://corpus-texmex.irisa.fr/
8http://vis.uky.edu/ stewe/ukbench/

70

3.5 Experimental evaluation

• Deep1 contains deep neural codes of natural images obtained from the activations

of a convolutional neural network.

• ImageNet 2 is introduced and employed by “The ImageNet Large Scale Visual

Recognition Challenge”, which contains approximately 2.4 million data points

with 150 dimensions of dense SIFT features.

3.5.1.2 Performance metrics

We selected the following performance metrics in our experiments. The overall ratio and

recall were used because they were related to the probability guarantees of AdaLSH.

• Approximation ratio (c). Each of answered k approximate MIP objects has

to be close to the corresponding true MIP object in inner product with at least

ratio c (0 < c ≤ 1), where c is given by the user.

• Running time. It indicates the time consumed in the query phase. The faster

is, the better as long as approximation condition is satisfied.

• Overall ratio. It indicates the average of approximation ratios of answered k

MIP objects. For c-k-MIPS, the overall ratio is defined as 1
k

k∑
i=1
〈ôi, q〉 / 〈o∗i , q〉.

Note that this values is not directly related to the approximation ratio c. For

example, a high value of overall ratio, say 0.9, for c = 0.5, can be worse than 0.6,

if a single MIP object is approximated only by 0.4 for c = 0.5.

In addition, we use the following metrics for two-class (positive and negative) prob-

lems.

• Precision. It indicates the ratio of correct answers to all answers.

• Recall rate. It indicates the ratio of correct answers to positive data.

• PR curve. It shows the relationship between precision and recall. The higher

the curve is, the better the corresponding method is.

3.5.1.3 Parameter setting of AdaLSH

The parameters to be determined are b and m, where m is the number of generated hash

functions and b denotes the ratio of the radii of two neighbor rings, i.e., b = ri/ri−1.

1https://yadi.sk/d/I yaFVqchJmoc
2https://cloudcv.org/objdetect/

71

3.5 Experimental evaluation

c=2

1

10

100

1000

0.9 0.98 0.99
b

Running time(ms)

Cifar
Nusw
ImageNet
Deep

Figure 3.5: Performances of AdaLSH under different b (c = 1.0, k = 100)

c=2

1

10

100

1000

30 40 50
m

Running time(ms)

Cifar

Nusw

ImageNet

Deep

Figure 3.6: Performances of AdaLSH under different m (c = 1.0, k = 100)

Figures 3.5 and 3.6 show the speeds of AdaLSH under different combinations of b and

m (the recalls were omitted because they were all close to 100%). Here, we only show

the results on Cifar, Nusw, Deep, and ImageNet. Similar trends were observed on

other datasets. From the results, it is clear that (1) the performances of AdaLSH are

not highly sensitive to the change in these two parameters, and (2) b = 0.98, m = 40 are

suitable settings because AdaLSH runs the fastest in this case. Therefore, hereinafter,

we use b = 0.98, m = 40 as our default setting unless stated otherwise.

3.5.2 Efficiency of AdaLSH

In this section, we will describe the efficiency of AdaLSH from the following two aspects:

(1) the effect of the multi-round search strategy, and (2) the tuning capability based

72

3.5 Experimental evaluation

on the parameters.

3.5.2.1 Efficiency of multi-round strategy

We first used an artificial dataset to confirm the advantage of the multi-round search

strategy (a small portion of each Si was examined in each round) used in AdaLSH

against its counterpart, i.e., the single-round search (adopted by H2-ALSH). We ran-

domly generated a query q and 2 · 105 objects of D such that their angles to q were

larger than 7π/18. By adjusting their norms, we halved D into S1 and S2 such that

objects in S1 have larger norms than those in S2. Furthermore, we added object o∗ such

that it was in S2 (closer to the origin), and its angle to q was one of three candidate

angles { π/18, π/6, 5π/18} . Thus, we generated a situation where the angle of o∗ to

q was smaller than those of the other o ∈ D, but the norm ‖o∗‖ was relatively small.

For each candidate angle, we generated the MIP object o∗ 50 times and conducted an

exact MIPS by AdaLSH (c = 1.0, δ = 0.1) on the same D and q. The results are shown

in Table 3.4. First, we observe that all MIP objects were found at 100% accuracy, even

for the required value of 90% (= 1 − δ). In Table 3.4, the column of S1 shows the

searching time of S1 only (it is noteworthy that in the single-round search, we did not

proceed to S2 until the entire S1 was examined). The fact that the total running time

(28.17 ms or 12.58 ms) of the π/6 or π/18 case is less than the searching time of S1 (=

44.49 ms) demonstrates that we can find MIP objects with small norms earlier by the

multi-round search strategy. Hence, the search process can be accelerated efficiently.

3.5.2.2 Performance of AdaLSH under different parameters

For several combinations of k, c, and δ, we present the speeds of AdaLSH in Figure

3.7 and the recall rates in Figure 3.8. Here, we only present the results on Nusw

because similar trends were observed on other datasets. As shown in Figure 3.7, (1) as

k increases, AdaLSH requires more query time. This is a natural expense for finding

more MIP objects; (2) the smaller the c and the larger the δ, the faster is AdaLSH.

Particularly, it is clear that the decrease in c is more effective than the increase in δ.

Figure 3.8 shows that a higher recall rate can be obtained by increasing the value of

c or by decreasing the value of δ. Although both c and δ can affect the query accuracy,

the performance of AdaLSH is more sensitive to the change in c. Combined with the

73

3.5 Experimental evaluation

c=2

0

4

8

12

16

20

1 10 20 30 40 50 60 70 80 90 100
k

Time(ms)
c=1,δ=0.1
c=0.8,δ=0.1
c=0.5,δ=0.1
c=1,δ=0.3
c=1,δ=0.5

Figure 3.7: Speeds of AdaLSH under different parameters on Nusw. The naive search
consumed approximately 107 ms

c=2

80

84

88

92

96

100

1 10 20 30 40 50 60 70 80 90 100
k

Recall Rate(%)

c=1,δ=0.1
c=0.8,δ=0.1
c=0.5,δ=0.1
c=1,δ=0.3
c=1,δ=0.5

Figure 3.8: Recall rates of AdaLSH under different parameters on Nusw

74

3.5 Experimental evaluation

observations above, we conclude that the tuning of c is important for achieving different

tradeoffs between cost and quality.

3.5.3 The comparison study

In this subsection, we compare AdaLSH with other state-of-the-art MIPS methods.

Since the performance metrics mentioned in Sec. 3.5.1.3 do not apply to each method

due to their different proposals, we divide them into three classes and compared our

method with them separately. In Sec. 3.5.3.1, we compare AdaLSH with L2-ALSH [48],

Simple-ALSH [43], Sign-ALSH [49], and Xbox [6]. These four compared methods are

learning-free, as mentioned previously; however, they cannot support the arbitrary

approximation ratio c. Thus, we conduct the experiments under c = 0.5, as suggested

by their authors. In Sec. 3.5.3.2, we compare AdaLSH with H2-ALSH, a state-of-the-

art LSH method that can support any c in (0,1).

The internal parameters of the benchmark methods were all set suitably, as sug-

gested by their authors. More specifically, we selected c = 0.5 as the standard setting

of L2-ALSH, Simple-ALSH, and Sign-ALSH, and we selected 64 bits as the binary code

length for AIBC. For AdaLSH, b and m were set to 0.98 and 40, respectively, as shown

in Sec. 3.5.1.3, and the error rate δ was fixed to 0.1 in all experiments.

3.5.3.1 AdaLSH vs. other LSH-based methods

The experimental results are listed in Table 3.5 and Table 3.6. The summary of the

results is as follows:

(1) On all non-homocentric datasets except Trevi, AdaLSH runs the fastest and

achieves the highest recall rates. This shows that by selecting a suitable value of c,

say 0.5, AdaLSH can perform more efficiently than other LSH-based methods on non-

homocentric datasets.

(2) On homocentric datasets Ukbench and Deep, Sign-ALSH and SimpleLSH

outperformed AdaLSH because the homocentric hypersphere structure loses its effec-

tiveness on these two datasets. However, as will be shown later, even on these two

datasets, AdaLSH can achieve high recalls by selecting a larger c, say 0.99.

75

3.5 Experimental evaluation

0.2

0.4

0.6

0.8

1

Cifar Sun Enron Trevi Nusw

Sign-ALSH Simple-LSH H2-ALSH AdaLSHOverall Ratio

Figure 3.9: Comparison of overall ratios on Cifar, Sun, Enron, Trevi, and Nusw (k =
100, c = 0.5)

0.8

0.85

0.9

0.95

1

Msong Gist Ukbench Deep ImageNet

Sign-ALSH Simple-LSH H2-ALSH AdaLSHOverall Ratio

Figure 3.10: Comparison of overall ratios on Msong, Gist, Ukbench, Deep, and ImageNet
(k = 100, c = 0.5)

3.5.3.2 AdaLSH vs. H2-ALSH

Next, we replaced L2-ALSH with H2-ALSH, and compared their overall ratios, recall

and time. We considered two cases: a loose requirement of c = 0.5 and a tight require-

ment of c = 0.99 (H2-ALSH cannot support c = 1). Here, c = 0.5 is the recommended

setting of H2-ALSH. The results are shown in Figure 3.9, Figure 3.10, and Table 3.7.

Note that it is important that the values of overall ratio are greater than a given ap-

proximate rate c regardless of large and small of the values. In addition, we have the

following.

(1) Under c = 0.5, the overall ratios of H2-ALSH and AdaLSH are higher than the

required value (c = 0.5), which is consistent with the theoretical guarantees. Mean-

while, AdaLSH requires a significantly shorter running time to achieve the goal of

0.5-ANNS than H2-ALSH, especially on nonhomocentric datasets. This is because the

termination condition of AdaLSH is adjusted dynamically based on the current search

results; therefore, AdaLSH terminates much earlier than H2-ALSH when the search

goal has been achieved.

(2) Under c = 0.99, both H2-ALSH and AdaLSH can achieve high recalls (over 99%)

76

3.5 Experimental evaluation

on non-homocentric datasets; meanwhile, on homocentric datasets, AdaLSH achieves

a higher recall (99%) than H2-ALSH (91% and 96%). As for speed, AdaLSH is faster

than H2-ALSH on non-homocentric datasets, but slower on homocentric datasets. This

is due to the multi-round search strategy of AdaLSH.

(3) It is clear that the recall rate and speed of H2-ALSH do not change largely even

if the value of c is increased from 0.5 to 0.99. This shows the inadaptability of H2-

ALSH to the parameter change. In contrast, AdaLSH adopts the change of the value of

c and succeed in gaining efficiency. Table 3.7 shows that, when c = 0.5, AdaLSH only

requires 10%-25% of running time of H2-ALSH on most non-homocentric datasets.

77

3.5 Experimental evaluation

Algorithm 5: Query phase of AdaLSH

Input: q: query;
c: approximation ratio (0 < c ≤ 1);
δ: error rate(0 < δ < 1);
m: the number of generated hash functions;
R: maximum round times;
{(Si, ui, `i)}ni=1: divided subsets of objects;
H = {haj}mj=1: hash functions;
Output: ô: a c-approximate MIP object for q;

1 S← {1, 2, · · · , n};
2 Î ← 〈o′, q̃〉,where o′ = arg max

o
‖o‖;

3 wi ← 0 (i = 1, 2, . . . , n); r ← 1;

4 p0 ← 1/2 +
√

(1/(2m)) log (1/δ);

5 while S 6= ∅ and r ≤ R do

6 Ib ← u1g
−1(g(Î/u1; τ(r)); 1/2); % see (13)

7 for i ∈ S in ascending order do

8 if ui < Î then
9 S← S\{i};

10 break

11 ti ← g(Ib/ui; 1/2); % see (14)
12 while wi ≤ ti do
13 wi ← wi + ∆wi; % extend windows
14 for o ∈ Si do
15 if #Col(õ, q̃) ≥ m/2 then
16 I ← 〈o, q̃〉;
17 if I > Î then

18 update ô and Î with o and I;

19 if wi ≥ g(Î/(cui); p0) then
20 S← S\{i};
21 break

22 r ← r + 1

23 return ô

78

3.5 Experimental evaluation

Table 3.3: Real datasets

Dataset Dimension Size(×103) Type

Cifar 512 50 Image
Sun 512 79 Image
Enron 1369 95 Text
Trevi 4096 100 Image
Nusw 500 269 Image
Msong 420 922 Audio
Gist 960 1000 Image
Ukbench 128 1000 Image
Deep 256 1000 Image
ImageNet 150 2340 Image

Table 3.4: Results on the artificial data (ms). The single-round search consumed 44.49
ms on S1 (the 1st column), while the multi-round search examined S1 (and S2) piecewise
in the ascending order of the angle (2nd–4th columns).

Angle S1 5π/18 π/6 π/18

Running time 44.49 61.93 28.17 12.58
Recall rate − 100 100 100

Table 3.5: Recall rate(%) (k=100, c=0.5)

Dataset Xbox L2-ALSH Simple-LSH Sign-ALSH AdaLSH

Cifar 36.46 41.13 67.98 68.93 79.16
Sun 25.58 26.34 59.90 64.56 64.85

Enron 1.11 11.69 83.71 78.76 97.32
Trevi 43.02 62.45 83.85 79.25 79.28

ImageNet 1.46 8.08 33.07 31.84 35.59
Gist 25.92 32.42 68.75 61.71 69.34

Ukbench 52.55 38.41 49.73 43.91 15.17
Nusw 13.92 9.57 15.95 20.91 80.77
Msong 53.19 7.11 70.87 80.42 89.71
Deep 33.95 25.68 42.20 38.54 8.07

79

3.5 Experimental evaluation

Table 3.6: Running time(ms) (k=100, c=0.5)

Dataset Xbox L2-ALSH Simple-LSH Sign-ALSH AdaLSH

Cifar 6.01 4.81 4.12 4.11 0.08
Sun 11.31 9.68 6.34 6.27 0.09

Enron 17.04 21.44 7.91 7.93 0.19
Trevi 15.80 8.09 9.63 9.62 0.49

ImageNet 1250.28 1232.72 176.42 176.11 35.95
Gist 310.10 331.57 85.38 86.78 0.97

Ukbench 173.11 181.12 82.81 82.64 88.97
Nusw 62.55 58.73 20.61 20.58 1.39
Msong 264.31 221.94 75.19 74.77 0.51
Deep 164.63 175.51 75.62 75.57 95.71

Table 3.7: AdaLSH vs. H2-ALSH (k=100)

Dataset
c = 0.5 c = 0.99

Recall(%) Speed(ms) Recall(%) Speed(ms)
H2ALSH AdaLSH H2ALSH AdaLSH H2ALSH AdaLSH H2ALSH AdaLSH

Cifar 99 79 1.04 0.08 100 100 2.11 1.05
Sun 99 65 0.94 0.09 99 100 1.80 1.06

Enron 100 97 0.23 0.19 100 100 0.25 0.23
Trevi 100 79 2.46 0.49 100 100 2.70 1.83

ImageNet 86 36 51.35 35.95 98 99 151.32 171.31
Gist 99 69 26.83 0.97 100 100 39.26 20.24

Ukbench 96 11 95.75 88.97 96 99 100.01 241.38
Nusw 99 81 8.42 1.39 100 99 23.49 12.26

Msong 100 90 2.19 0.51 100 100 3.53 2.30
Deep 91 8 100.11 95.71 91 99 102.48 381.33

80

Chapter 4

Conclusion and Future Work

In this paper, we comprehensively review the applications of LSH in two spaces: the

Euclidean space with `2 metric (the first part) and the inner product space (the second

part). In the first part, we proposed two novel LSH based methods VHP and R2LSH.

Compared with existing methods, VHP still works on a group of one-dimensional

hash functions but utilize more projection information, that is, partial distances, while

R2LSH works in multiple 2-dimensional subspaces, which could distinguish true near-

est neighbors much accurately than classical LSH methods based on one-dimensional

projected vectors. Both proposed methods could work with an arbitrarily small approx-

imation ratio c ≥ 1 and is guaranteed to identify c-k-ANN with the specified success

probability. Extensive experiments show that, compared with state-of-the-art LSH

methods SRS and QALSH, VHP and R2LSH save significant I/O costs and running

times under identical answer quality.

In the second part, we herein proposed a novel search method named AdaLSH that

supported both exact and approximate MIPS with a strict probability guarantee. Com-

pared with state-of-the-art LSH methods, AdaLSH demonstrated a tighter probability

guarantee in the general case, which filled the gap between the real performance and

the theoretical guarantee, thereby allowing users to predict the query results more pre-

cisely. In addition, from the experimental results, it was clear that AdaLSH performed

excellently on non-homocentric datasets owing to the efficient search strategy. That

is, compared with other state-of-the-arts LSH methods, our method required a shorter

running time but achieved a higher (or close) recall. Therefore, we recommend users

to use our method on datasets of such characteristics. Meanwhile, for homocentric

datasets, although the performance of AdaLSH degraded significantly, AdaLSH could

81

still achieve high recalls by selecting large approximation ratios, owing to the theoretical

guarantee. Thus, users are recommended to use our method on homocentric datasets

if top priority is given to precision.

For future studies, I think it is promising to apply some core ideas of LSH to ANN

search methods of other types. For example, in recent years, graph-based methods have

shown their superiority over many other search methods. However, the research on how

to select the connected edges for each node, which represents a data point, is sill in

progress. If we can select several data-dependent hash functions, we can partition the

neighborhood of each node into many cells. Then we select connected neighbors such

that they are contained in different cells. In this way, we can ensure that the distances

among connected neighbors are large enough to improve the search efficiency.

82

Bibliography

[1] A. Andoni and P. Indyk. E2lsh manual. In http://web.mit.edu/andoni/www/LSH.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

[3] A. Andoni, P. Indyk, T. Laarhoven, I. P. Razenshteyn, and L. Schmidt. Practical

and optimal LSH for angular distance. In NIPS, pages 1225–1233, 2015.

[4] W. G. Aref, A. C. Catlin, J. Fan, A. K. Elmagarmid, M. A. Hammad, I. F. Ilyas,

M. S. Marzouk, and X. Zhu. A video database management system for advancing

video database research. In Multimedia Information Systems, pages 8–17, 2002.

[5] A. Arora, S. Sinha, P. Kumar, and A. Bhattacharya. Hd-index: Pushing the

scalability-accuracy boundary for approximate knn search in high-dimensional

spaces. PVLDB, 11(8):906–919, 2018.

[6] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir, N. Koenigstein,

N. Nice, and U. Paquet. Speeding up the xbox recommender system using a

euclidean transformation for inner-product spaces. In Eighth ACM Conference

on Recommender Systems, pages 257–264, Foster City, Silicon Valley, CA, USA,

October 2014. ACM.

[7] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning indexes for similarity

search. In WWW, pages 651–660, 2005.

[8] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embed-

ding and clustering. In NIPS, pages 585–591, 2001.

[9] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and

data representation. Neural Computation, 15(6):1930–1941, 2013.

83

BIBLIOGRAPHY

[10] J. L. Bentley. K-d trees for semidynamic point sets. In SoCG, pages 187–197,

1990.

[11] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering

of the web. Computer Networks, 29(8-13):1157–1166, 1997.

[12] A. Chakrabarti and O. Regev. An optimal randomised cell probe lower bound for

approximate nearest neighbour searching. In FOCS, pages 473–482, 2004.

[13] M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC,

pages 380–388, 2002.

[14] P. Ciaccia and M. Patella. PAC nearest neighbor queries: Approximate and con-

trolled search in high-dimensional and metric spaces. In ICDE, pages 244–255,

2000.

[15] A. C. Cohen. Truncated and censored samples : theory and applications. CRC

Press, 1991.

[16] R. R. Curtin, P. Ram, and A. G. Gray. Fast exact max-kernel search. Statistical

Analysis and Data Mining, 7(1):1–9, February–December 2014.

[17] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing

scheme based on p-stable distributions. In SoCG, pages 253–262, 2004.

[18] T. Dean, M. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik.

Fast, accurate detection of 100,000 object classes on a single machine. In CVPR,

pages 1814–1821, 2013.

[19] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim. Return of the

lernaean hydra: Experimental evaluation of data series approximate similarity

search. PVLDB, 13(3):403–420, 2019.

[20] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based on

dynamic collision counting. In SIGMOD, pages 541–552, 2012.

[21] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi. DSH: data sensitive hashing for

high-dimensional k-nnsearch. In SIGMOD, pages 1127–1138, 2014.

84

BIBLIOGRAPHY

[22] J. Gao, H. V. Jagadish, B. C. Ooi, and S. Wang. Selective hashing: Closing the

gap between radius search and k-nn search. In SIGKDD, pages 349–358, 2015.

[23] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIG-

MOD, pages 47–57, 1984.

[24] H.Hotelling. Analysis of a complex of statistical variables into principal compo-

nents. Journal of Educational Psychology, 24:417–441, 1933.

[25] Q. Huang, J. Feng, Q. Fang, W. Ng, and W. Wang. Query-aware locality-sensitive

hashing scheme for lp norm. VLDB J., 26(5):683–708, 2017.

[26] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-aware locality-sensitive

hashing for approximate nearest neighbor search. PVLDB, 9(1):1–12, 2015.

[27] Q. Huang, G. Ma, J. Feng, Q. Fang, and A. K. H. Tung. Accurate and fast

asymmetric locality-sensitive hashing scheme for maximum inner product search.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 1561–1570, London, UK, August 2018. ACM.

[28] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the

curse of dimensionality. In STOC, pages 604–613, 1998.

[29] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor

search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, 2011.

[30] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural svms.

Machine Learning, 77(1):27–59, October–December 2009.

[31] N. Katayama and S. Satoh. The sr-tree: An index structure for high-dimensional

nearest neighbor queries. In SIGMOD, pages 369–380. ACM Press, 1997.

[32] Y. Ke, R. Sukthankar, and L. Huston. An efficient parts-based near-duplicate and

sub-image retrieval system. In ACM Multimedia, pages 869–876, 2004.

[33] J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.

In STOC, pages 599–608, 1997.

85

BIBLIOGRAPHY

[34] N. Koenigstein, P. Ram, and Y. Shavitt. Efficient retrieval of recommendations in

a matrix factorization framework. In CIKM, pages 535–544, 2012.

[35] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, and X. Lin. Approximate nearest

neighbor search on high dimensional data - experiments, analyses, and improve-

ment. CoRR abs, 2016.

[36] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen. SK-LSH: an efficient index

structure for approximate nearest neighbor search. PVLDB, 7(9):745–756, 2014.

[37] K. Lu and M. Kudo. R2lsh: A nearest neighbor search scheme based on two-

dimensional projected spaces. In ICDE, pages 1045–1056, 2020.

[38] K. Lu and M. Kudo. Adalsh: Adaptive lsh for solving c-approximate maximum

inner product search problem. IEICE Trans. Inf. Syst., 104-D(1):138–145, 2021.

[39] K. Lu, H. Wang, W. Wang, and M. Kudo. Vhp: Approximate nearest neighbor

search via virtual hypersphere partitioning. PVLDB, 13(9):1443–1455, 2020.

[40] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: Efficient

indexing for high-dimensional similarity search. In VLDB, pages 950–961, 2007.

[41] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neigh-

bor search using hierarchical navigable small world graphs. CoRR, abs/1603.09320,

2016.

[42] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimen-

sional data. IEEE Trans. Pattern Anal. Mach. Intell., 36(11):2227–2240, 2014.

[43] B. Neyshabur and N. Srebro. On symmetric and asymmetric lshs for inner product

search. In Proceedings of the 32nd International Conference on Machine Learning,

pages 192–1934, Lille, France, July 2015.

[44] P. Ram and A. G. Gray. Maximum inner-product search using cone trees. In The

18th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 931–939, Beijing, China, August 2012. ACM.

86

BIBLIOGRAPHY

[45] S. Riedel, L. Yao, B. M. Marlin, and A. McCallum. Relation extraction with

matrix factorization and universal schemas. In Human Language Technologies:

Conference of the North American Chapter of the Association of Computational

Linguistics, pages 74–84, Atlanta, Georgia, USA, June 2013. The Association for

Computational Linguistics.

[46] B. Scholkopf, A. J.Smola, and K.-R. Muller. Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[47] F. Shen, Y. Yang, L. Liu, W. Liu, D. Tao, and H. T. Shen. Asymmetric binary

coding for image search. IEEE Trans. Multimedia, 19(9):2022–2032, 2017.

[48] A. Shrivastava and P. Li. Asymmetric lsh (alsh) for sublinear time maximum inner

product search (mips). In Annual Conference on Neural Information Processing

Systems, pages 2321–2329, Montreal, Quebec, Canada, December 2014.

[49] A. Shrivastava and P. Li. Improved asymmetric locality sensitive hashing (alsh)

for maximum inner product search (mips). In Proceedings of the Thirty-First

Conference on Uncertainty in Artificial Intelligence, pages 812–821, Amsterdam,

The Netherlands, July 2015. AUAI Press.

[50] R. Spring and A. Shrivastava. Scalable and sustainable deep learning via random-

ized hashing. In KDD, pages 445–454, 2017.

[51] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving c-approximate

nearest neighbor queries in high dimensional euclidean space with a tiny index.

PVLDB, 8(1):1–12, 2014.

[52] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high dimensional

nearest neighbor search. In SIGMOD, pages 563–576, 2009.

[53] C. Teflioudi and R. Gemulla. Exact and approximate maximum inner product

search with lemp. ACM Trans. Database System, 42(1):1–49, February–December

2017.

[54] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen. A survey on learning to

hash. IEEE Trans. Pattern Anal. Mach. Intell., 40(4):769–790, 2018.

87

BIBLIOGRAPHY

[55] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces. In VLDB, pages

194–205. Morgan Kaufmann, 1998.

[56] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, pages 1753–1760,

2008.

[57] Y. Zheng, Q. Guo, A. K. H. Tung, and S. Wu. Lazylsh: Approximate nearest

neighbor search for multiple distance functions with a single index. In SIGMOD,

pages 2023–2037, 2016.

88

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	Locality sensitive hashing
	Organization of this paper

	Approximate Nearest Neighbor Search Problem
	Introduction
	Related work
	LSH-based Algorithms
	Non-LSH Algorithms

	Preliminary
	Virtual Hypersphere Partitioning
	Motivation
	Virtual Hypersphere Partitioning
	The Idea
	An Illustrative Example of Query Processing Workflow
	The Algorithm
	Determine the Radii of Physical Hyperspheres
	Calculate the Base Hypersphere Radii

	Theoretical Analysis
	Probability Guarantee for NN Search
	Extension for c-k-ANN Search

	Discussion
	Complexity analysis
	Comparison with existing methods

	Experimental results
	Experiment Setup
	Parameter setting of VHP
	The Effect of Approximation Ratio
	Index Size, Indexing Time and Memory Consumption
	VHP vs. LSH-based Methods
	Experimental results under the same recall
	Experimental results under different k

	R2LSH: LSH in two dimensional subspaces
	Motivation
	Overview
	Indexing phase
	Construction of projected spaces
	Partition of projected spaces
	Reference Vector Selection
	Indexing objects by B+-trees

	Query phase
	Fundamental relationships
	Scanning Process
	Algorithm and Quality guarantee
	Extension to c-k-ANN search

	Discussion
	Complexity Analysis
	Handling Update and parameter setting

	EXPERIMENTS
	Experiment Setup
	Efficiency of R2LSH
	Index Size, Indexing Time, and Memory Consumption
	The effect of c
	R2LSH vs. other LSH-based methods

	Maximum Inner Product Search Problem
	Introduction
	Related work
	Exact MIPS methods
	LSH-based MIPS methods (learning-free)
	Learning MIPS methods

	Preliminaries
	Brief review of H2-ALSH
	Notations and problem setting

	Adaptive LSH
	The indexing phase
	The query phase
	Overview
	Basics
	Fundamental relationships
	Search process
	Performance analysis

	Comparison with other LSH methods

	Experimental evaluation
	Experimental setup
	Datasets and queries
	Performance metrics
	Parameter setting of AdaLSH

	Efficiency of AdaLSH
	Efficiency of multi-round strategy
	Performance of AdaLSH under different parameters

	The comparison study
	AdaLSH vs. other LSH-based methods
	AdaLSH vs. H2-ALSH

	Conclusion and Future Work
	Bibliography

