Title	Coupled nitrogen and oxygen isotope effects of anaerobic ammonium oxidation (anammox) [an abstract of dissertation and a summary of dissertation review]
Author(s)	小林, 香苗
Citation	北海道大学. 博士(工学) 甲第14449号
Issue Date	2021-03-25
Doc URL	http://hdl.handle.net/2115/81648
Rights(URL)	https://creativecommons.org/licenses/by/4.0/
Туре	theses (doctoral - abstract and summary of review)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Kanae_Kobayashi_abstract.pdf (論文内容の要旨)

学 位 論 文 内 容 の 要 旨

博士の専攻分野の名称 博士(工学) 氏名 小林 香苗

学 位 論 文 題 名

Coupled nitrogen and oxygen isotope effects of anaerobic ammonium oxidation (anammox) (アナモックス細菌の窒素および酸素同位体分別の解析)

Natural abundance of stable nitrogen (N) and oxygen (O) isotopes (δ^{15} N and δ^{18} O) are invaluable biogeochemical tracers for assessing the N transformations in the environment. To fully exploit these tracers, the N and O isotope effects ($^{15}\varepsilon$ and $^{18}\varepsilon$) associated with the respective N transformation processes must be known. Anaerobic ammonium oxidation (anammox) and denitrification are the two major sinks of fixed N. In addition, anammox bacteria contribute to re-oxidation of nitrite to nitrate, because they fix CO₂ into biomass with reducing equivalents generated from oxidation of nitrite to nitrate. Nitrate production by anammox bacteria influences the nitrite and nitrate N and O isotope effects in freshwater and marine systems. Despite the significant importance of anammox bacteria in the global N cycle, $^{15}\varepsilon$ and $^{18}\varepsilon$ of anammox are not well known. Therefore, the never yet determined $^{15}\varepsilon$ and $^{18}\varepsilon$ associated with anammox were investigated in this study.

Firstly, the $^{15}\varepsilon$ were determined for 'Ca. Scalindua sp.', 'Ca. Jettenia caeni', and 'Ca. Brocadia sinica' growing in continuous enrichment cultures. All three anammox species yielded similar $^{15}\varepsilon$ values of NH₄⁺ oxidation to N₂ ($^{15}\varepsilon_{NH_4^+\to N_2}=30.9\sim32.7$ ‰) and inverse kinetic isotope effects of NO₂⁻ oxidation to NO₃ ($^{15}\varepsilon_{NO_2^-\to NO_3^-}=-45.3$ ‰ ~-30.1 ‰). In contrast, the values of NO₂ reduction to N₂ was significantly different among three species ($^{15}\varepsilon_{NO_2^-\to N_2}=5.9\sim29.5$ ‰), which is probably because individual anammox bacteria species might possess different types of nitrite reductase.

Secondly, the $^{18}\varepsilon$ were determined for 'Ca. Scalindua sp.', which is a putative marine species. Determination of $^{18}\varepsilon$ of anammox is more challenging because the $\delta^{18}O_{NO_2^-}$ value is affected by abiotic O isotope exchange between NO_2^- and H_2O (k_{eq} , $^{18}\varepsilon_{eq}$) and incorporation of a water-derived O atom into NO_3^- during NO_2^- oxidation to NO_3^- ($^{18}\varepsilon_{H_2O}$). In order to determine abiotic k_{eq} , $^{18}\varepsilon_{eq}$, and $^{18}\varepsilon_{H_2O}$, batch experiments with different $\delta^{18}O_{H_2O}$ values of medium were conducted. Oxygen isotope ratio measurements of NO_2^- and NO_3^- by the azide method and denitrifier method are sensitive to the $\delta^{18}O_{00}$ of sample water. However, the influence of $\delta^{18}O_{00}$ on those measurements has not been quantitatively evaluated and documented so far. Therefore, the influence of $\delta^{18}O_{00}$ of sample on $\delta^{18}O_{00}$ analysis of NO_2^- and NO_3^- were quantitatively evaluated. Then, the rate of abiotic O isotope exchange between NO_2^- and NO_3^- were quantitatively evaluated. Then, the rate of abiotic O isotope exchange between NO_2^- and NO_3^- were quantitatively evaluated. To determine NO_3^- as equilibrium isotope effects: NO_3^- were experimentally determined. To determine NO_3^- of each reaction, batch culture experiments with different NO_3^- values of medium (NO_3^- of each reaction, batch culture experiments with different NO_3^- values of medium (NO_3^- of each respective NO_3^- of anammox reaction, resulting in NO_3^- of each respective NO_3^- of anammox reaction, resulting in NO_3^- of each NO_3^- of each NO_3^- of anammox reaction, resulting in NO_3^- of each NO_3^- of ea

These obtained dual N and O isotopic effects could provide significant insights into the contribution

of anammox bacteria environments.	to the fixed N	N loss and nitr	ite reoxidation i	n (recycling N) i	in various natural