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Abstract

Seismic surface waves are powerful means to map the heterogeneity and the

anisotropy in the upper mantle. The use of higher-mode surface waves is

essential for enhancing the vertical resolution of seismic tomography models

since they are much more sensitive to the deep structure of the Earth’s man-

tle than fundamental-mode surface waves. However, measuring multi-mode

phase speeds is not a straightforward issue since wavetrains of different modes

overlap each other in a seismogram, which cannot readily be separated.

Recently, a number of high-density broad-band seismic networks have

been deployed in many continental areas. One of the most remarkable

continent-wide arrays is the high-density Transportable Array (USArray)

in North America. The North American continent encompasses a variety of

complex structural features, including tectonically active regions and stable

cratons. The deployment of USArray across the contiguous United States

has facilitated seismological studies to unravel the crust and mantle struc-

ture of the North American upper mantle. To delineate the deep root of

the cratonic lithosphere and asthenosphere, the use of higher-mode surface

waves is essential, although such studies have still been limited.

In the first half of this study, we developed the two-step array-based

method for higher-mode analysis, consisting of (1) multi-mode phase speed

measurements based on a classical f -k analysis using a long-range linear

array of several-thousand kilometers (e.g., Nolet, 1975) and (2) modal wave-

form decomposition for the centroid location of a linear array using the linear
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Radon transform (e.g., Luo et al., 2015). The synthetic experiments reveal

that the precise measurement of multi-mode phase speeds requires a long lin-

ear array, longer than 2000―3000 km. The extracted dispersion curves well

represent the weighted-average structure depending on the station distribu-

tion in a linear array. The decomposed modal waveforms at the centroid of an

array match well with theoretically predicted waveforms. These decomposed

waveforms can be used to perform subsequent dispersion analyses.

By applying our linear array-based method to a large data set of seismo-

grams at USArray, we mapped phase speed distributions in North America.

We could obtain reliable phase speed maps of the fundamental-mode surface

waves. Although the large-scale anomalies (i.e., fast anomalies in cratons

in the stable eastern U.S., slow anomalies in the tectonically-active western

U.S.) can be identified, the lateral resolution of the phase speed maps was

insufficient compared to the inter-station/array-based tomography models.

This suggests that the small-scale tectonic features tend to be blurred and

averaged out due to the use of long linear arrays (2000–4000 km).

In the latter half of this study, we employed the single-station method

of multi-mode dispersion measurements based on a fully nonlinear waveform

fitting method (Yoshizawa & Kennett, 2002a; Yoshizawa & Ekström, 2010)

to extract the multi-mode phase speeds for each source-receiver path for

permanent and temporary stations in North America. These measurements

are then applied to the array-based eikonal tomography (Lin et al., 2009). At

first, in this hybrid approach, multi-mode phase speeds for all stations from

each seismic event are used to reconstruct travel-time fields by tracking the

phase front for each mode and period. The phase speed distributions derived

from the lateral gradient of travel-time fields are stacked and averaged for

all events to reconstruct the final phase speed maps. Our hybrid method is

applied to teleseismic events (M ≥ 5.8) from 2007 to 2015, including over 700
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events for Rayleigh and Love waves. The contiguous United States can be

covered with many single-station ray paths (e.g., over 100000 paths for the

fundamental-mode Rayleigh wave at 100.0 s), which allows us to reconstruct

phase speed models with 3.0◦ × 3.0◦ grids.

We could successfully retrieve phase speed maps of Love and Rayleigh

waves for the fundamental-mode and up to the 4th higher modes with this

hybrid approach. The images of small-scale features in the U.S., such as

the Snake River Plains, Colorado Plateau and Rio Grande Rift, are well

imaged in the eikonal tomography models for the fundamental mode. Some

large-scale tectonic features are imaged in the higher-mode models, such as

the fast anomaly related to deep cratonic root. However, the interpretation

of the higher-mode phase speed maps is not straightforward due to their

complicated vertical sensitivities.

These multi-mode phase speed maps are then used to map a radially

anisotropic 3-D shear wave model in a wide depth range, including the con-

tinental lithosphere and asthenosphere in the U.S. The multi-mode phase

speed maps in a wide period range allow us to image the continental mantle

to the depth of the transition zone. We can image the root of the cratonic

lithosphere at the depth of around 200–250 km. The model of the radially

anisotropic parameter (ξ = (VSH/VSV )
2) have shown faster SH wave speed

(ξ > 1) under North America at depth shallower than 100 km and faster SV

wave speed (ξ < 1) corresponding to the slab subduction and the possible

delamination of the cratonic keel deeper than 250 km depth.
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Chapter 1

Introduction

Seismic imaging of detailed three-dimensional structures of the Earth’s man-

tle is one of the most important topics in global seismology and physics of the

Earth’s interior. Understanding the structure and dynamic processes in the

Earth can be the basis of geosciences by unraveling the history and evolution

of the Earth and the plate tectonic and mantle dynamic processes that have

taken place in the Earth’s interior. Seismic surface waves enable us to re-

construct spatial variations of the heterogeneity and anisotropy in the upper

mantle, which directly reflect the dynamic processes in the solid Earth. In

this chapter, we first review a variety of methods used in the surface wave

analysis and their application to tomographic studies in the upper mantle.

Then we will overview the objective and contents of this thesis.

1.1 Upper mantle imaging using surface waves

Seismic surface waves (Love and Rayleigh waves) are sensitive to Earth’s

shallow layers and have been the major sources of information for investigat-

ing the lateral variations of both heterogeneity and anisotropy in the crust

and upper mantle. Surface waves are characterized by their large amplitude

and dispersive characters, representing the frequency dependence of propa-

gation speeds. They can be represented by the summation of Earth’s normal

1



1.2. Multi-mode surface wave studies 2

modes, which comprise the fundamental-mode with a large amplitude and

several higher-modes or overtones equivalent to multiply reverberated body-

wave arrivals (e.g., Aki & Richards, 2002; Dahlen & Tromp, 1998).

There are various types of surface wave observables, such as phase speed,

group speed, amplitude anomaly, arrival-angle anomaly and Rayleigh wave’s

ellipticity, all of which are primarily sensitive mostly to the shear wave struc-

ture in the crust and upper mantle. Fig. 1.1 displays the vertical sensitivity

kernels of phases speeds of Rayleigh and Love waves calculated for Prelimi-

nary Reference Earth Model (PREM, Dziewoński & Anderson, 1981). Since

surface-wave phase speeds are sensitive to the S-wave structure at different

depths depending on mode and period (e.g., Takeuti & Saito, 1972; Dahlen

& Tromp, 1998), we can construct a 3-D S-wave structure from multi-mode

phase speeds of surface waves.

Tomographic studies using surface waves have been initiated in early1980s

(e.g., Nakanishi & Anderson, 1982, 1983; Tanimoto & Anderson, 1985). Sev-

eral methods for phase speed measurements were devised based on the single-

station analysis (e.g., Levshin et al., 1972), the inter-station (two-station)

analysis (e.g., Dziewoński & Hales, 1972), and the multiple-station analy-

sis (e.g., Nolet, 1975; Cara, 1978). Of these three types, the single-station

method has been widely employed due to the limited numbers of seismic

stations in the world in earlier days of tomographic studies. They were em-

ployed for constructing many global-scale seismic tomography models (e.g.,

Trampert & Woodhouse, 1995; Ekström et al., 1997).

1.2 Multi-mode surface wave studies

Higher-mode surface waves have multiple sensitivity peaks in deeper parts

of the mantle than the fundamental mode so that they can be of help in

imaging the deep mantle. However, the phase speed measurements of higher
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Figure 1.1: Example of vertical sensitivity kernels of (a) the multi-mode
Love waves and (b) the multi-mode Rayleigh waves calculated for PREM
(Preliminary Reference Earth Model by Dziewoński & Anderson (1981)) at a
period of (black) 40.8 s, (blue) 50.0 s, (green) 62.5 s, (brown) 83.3 s, (yellow)
100.0 s and (red) 125.0 s. Solid lines represent the sensitivity of phase speed to
S-wave speed. These sensitivity kernels are calculated by DISPER80 (Saito,
1988).
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modes are intrinsically difficult since the wavetrains of several higher modes

propagate with similar group speeds and overlap each other in a seismogram.

For example, as Foster et al. (2014c) reported, we cannot ignore the effects

of the higher-mode contamination on the fundamental-mode Love waves,

which causes about 10% errors in the Love-wave phase speeds measured by

the conventional inter-station analysis.

Most of the current practical techniques to measure multi-mode phase

dispersions are based on the single-station methods (e.g., van Heijst & Wood-

house, 1997; Stutzmann & Montagner, 1993; Beucler et al., 2003; Yoshizawa

& Kennett, 2002a). van Heijst & Woodhouse (1997) developed the mode-

branch stripping technique to separate several overtones through iterative fit-

ting and stripping processes. A phase speed dispersion curve of a given mode

with the largest amplitude is first measured using cross-correlation functions;

then, the corresponding mode-branch waveform is subtracted from the origi-

nal seismogram, repeating this procedure for several mode-branches in order

of relative amplitude. Stutzmann & Montagner (1993) presented a different

method using a set of seismograms of teleseismic events at different depths in

the same area recorded at the same station. Beucler et al. (2003) proposed a

so-called ‘roller-coaster’ technique in which the phase velocity perturbation

is obtained by fitting synthetic seismograms to real data.

An alternative method for measuring higher-mode phase speeds is based

on a nonlinear waveform fitting technique originally developed by Yoshizawa

& Kennett (2002a) and have been automated later by Yoshizawa & Ekström

(2010), in which a path-specific 1-D profile is used as a guide to represent

multi-mode phase dispersion curves. Similar approaches were also employed

by Visser et al. (2007, 2008), and Xu & Beghein (2019), who utilized the

hierarchical transdimensional Bayesian approach for nonlinear waveform fit-

tings.
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The applications of higher-mode phase speed data to tomographic recon-

struction have been limited to large-scale (global or regional-scale) studies

based on either single-station multimode dispersion measurements (e.g., van

Heijst & Woodhouse, 1999; Beucler et al., 2003; Yoshizawa & Kennett, 2004;

Visser et al., 2008; Yoshizawa & Ekström, 2010; Yoshizawa, 2014) or ex-

tracting path-average 1-D models through waveform fittings, such as, Parti-

tioned Waveform Inversion (PWI), Automated Multi-mode Inversion(AMI)

that are subsequently used to construct 3-D S velocity models (e.g., Nolet,

1990; van der Lee & Nolet, 1997a; Debayle & Kennett, 2000; Lebedev et al.,

2005).

Practical techniques for the measurement of higher-mode phase speeds

in tomographic mapping have been mostly based on the waveform analy-

sis with a single-station (source–receiver) path; the mode-branch stripping

method (van Heijst & Woodhouse, 1997; van Heijst & Woodhouse, 1999) and

the nonlinear waveform fitting method (Yoshizawa & Kennett, 2002a; Visser

et al., 2007; Yoshizawa & Ekström, 2010). There are some intrinsic limi-

tations in these single-station approaches. First, the single-station method

requires synthetic seismograms that are influenced by uncertainties in the

estimated source parameters. Second, the epicentral distance must be longer

than 30◦ for the mode-branch stripping, and 10◦ for the nonlinear waveform

fitting to avoid the severe overlapping by the preceding body-wave arrivals.

Furthermore, the overlapped modes make it difficult to extract each modal

contribution in an observed seismogram, and thus the reliable measurements

of higher-mode phase speeds can be available only in the limited frequency

range.

An alternative approach for measuring higher-mode phase dispersions

is a classical array-based analysis using a long-range linear array (Nolet,

1975, 1976; Nolet & Panza, 1976; Cara, 1978; Cara & Minster, 1981), which
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enables us to extract the average multi-mode phase speeds over the array.

In this technique, the slant-stacking process of multiple seismograms reduces

the influence of noise included in each seismogram while enhancing coherent

signals. One of the most important advantages of this array analysis is that

any information of source mechanisms is not required since we do not need

to use synthetic seismograms. However, this classical method has not been

applied to modern high-density broad-band seismic arrays yet. One of the

main reasons is that this style of linear array analyses has been considered

it unable to assess localized structural variations within a linear array (e.g.,

Laske & Widmer-Schnidrig, 2015).

1.3 Array-based surface wave studies

Some classical methods for the multi-mode phase speed measurements based

on an array-based analysis with a long linear array were developed in the

1970s, and their validities and limitations were investigated in earlier studies

(e.g., Nolet, 1975, 1976; Nolet & Panza, 1976; Cara, 1978; Cara & Minster,

1981). These studies are based on a beamforming technique with a time-

variant filter such as a group-speed windowing to separate different higher-

mode branches, which enables us to extract the average phase speeds along

the array. Using a power spectrogram in the “phase-speed”-“group-speed”

domain at a fixed frequency, the spectral peaks corresponding to overlapped

modes can be separated well each other. Nolet & Panza (1976) showed that

the precision of phase speed measurements largely depends on a linear-array

size through synthetic experiments. These approaches have been applied

to the seismograms recorded along a linear array of long-period stations for

studying structures in Western Europe and North America (Nolet, 1975,

1976; Cara et al., 1980, 1981).

There are some studies that have proposed new mode separation tech-
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niques based on a 1-D-array-based analysis in the last decade. Datta (2019)

tried to implement a fk–MUSIC method (Schmidt, 1986; Goldstein & Archuleta,

1987), which was developed originally for the signal processing used in electri-

cal engineering applications, for extracting the multi-mode phase dispersions.

Luo et al. (2015) have proposed a method for decomposing fundamental-mode

Love waves from observed waveforms in which multiple mode signals are

overlapped, based on the linear Radon transform with the iterative conjugate

gradient algorithm (Luo et al., 2008, 2009). Using a set of decomposed single-

mode waveforms, more precise measurements of Love wave phase speeds can

be made by inter-station analysis or array-based analysis.

With a dense 2-D broad-band array, the f -k analysis with beamformings

can be used to estimate average phase speeds as well as arrival angles of

surface waves in the array (e.g., Alvizuri & Tanimoto, 2011; Tanimoto &

Prindle, 2011). Foster et al. (2014a) mapped arrival-angle anomalies in the

U.S. from the array-based analysis, which investigated the wave propagation

across the array and model accuracy. The development of high-density broad-

band seismic arrays, such as the USArray, also facilitates the studies of new

approaches for surface wave analysis using multiple seismic stations. For

example, Forsyth & Li (2005) developed the multiple plane wave method

to estimate both phase speeds and arrival-angles for each of two incoming

plane waves. Eikonal tomography with phase front tracking (Lin et al., 2009)

and its extension to a finite-frequency case, Helmholtz tomography (Lin &

Ritzwoller, 2011), have been used mainly for ambient noise tomography.

1.4 Recent progress in surface wave mapping

Recently, high-density broad-band seismic networks have been developed in

many regions in the world, for example, Transportable Array (TA) of USAr-

ray in the United States in Fig. 1.2 (e.g., Busby et al., 2018), SKIPPY and its
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succeeding arrays deployed throughout Australia, F-net Broadband Seismo-

graph Network in Japan, NECESSArray in north-eastern China, AlpArray

around the Alps Mountains in Europe. Seismic waveform data derived from

these high-density broad-band arrays have been of great help in enhancing

our knowledge of the crust and upper mantle structures in many continental

regions in the last two decades.

For example, the Transportable Array in the U.S. (USArray) as a part of

the Earthscope project was launched in 2004 to investigate the deep Earth

structure under the North American continent (Fig. 1.3). Its deployments

started from the western quarter of the U.S. and reached the east coast in

2013. Each station continued to record the ground motion for two years, then

gradually migrates to the eastern region of the contiguous U.S. Broad-band

seismic stations comprising USArray were installed with nearly about 70◦

km grid spacing, which has allowed us to construct high-resolution regional-

scale phase speed maps and 3-D shear wave models at an unprecedented

lateral resolution. Both teleseismic earthquake signals (e.g., Yoshizawa &

Ekström, 2010; Foster et al., 2014b; Hamada & Yoshizawa, 2015; Schaeffer

& Lebedev, 2014) and ambient noise (Lin et al., 2009; Lin & Ritzwoller,

2011; Jin & Gaherty, 2015; Ekström, 2017) have been widely used for the

model construction in the U.S. and North America. Foster et al. (2014b) and

Hamada & Yoshizawa (2015) achieved about 100-km lateral resolution for

the fundamental-mode model by using the inter-station method. Yoshizawa

& Ekström (2010) constructed higher-mode phase speed models in North

America using the single-station method with a fully nonlinear waveform

fitting.

Combining surface-wave waveforms and SKS splitting measurements, Yuan

& Romanowicz (2010) and Yuan et al. (2011) constructed 3-D radially and

azimuthally anisotropic models of the North American upper mantle. Their
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Figure 1.2: Configuration of US Transportable Array and GSN stations.
Top panel shows all of the station in 2007–2015 and bottom panel shows the
stations for each year.
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Figure 1.3: Topographic map of North America. CP: Colorado Plateau,
CRP: Columbia River Plateau, NMSZ: New Madrid Seismic Zone, OP: Ore-
gon Plateau, RGR: Rio Grande Rift, SRP: Snake River Plains, YS: Yellow
Stone Hotspot, GP: Gorda Plate and JdFP: Juan de Fuca Plate. The bound-
aries between the geoprovinces are repoducted from Reed & Bush (2007).
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azimuthally anisotropic models show depth dependence of fast directions

of shear wave propagations. In their model, two anisotropic layers within

the cratonic lithosphere beneath North America were found, which was in-

terpreted as chemical and thermal boundary layers in the continental litho-

sphere. Nettles & Dziewoński (2008) inverted radial anisotropy from Rayleigh

and Love wave dispersion data in the Pacific and North America. They sug-

gested notable difference in radial anisotropy beneath oceans and continents.

In particular, anomalously faster SH wave speed than SV was found under

the Pacific plate. A high-resolution Pacific plate model has recently also

been obtained by using multi-mode surface waves incorporating the data

from broad-band ocean bottom seismic networks (e.g., Isse et al., 2019).

There are also many tomographic studies by a joint inversion of sur-

face wave phase speeds and other observations; for example, the amplitude

anomalies (Hamada & Yoshizawa, 2015), Rayleigh wave ellipticity (e.g., Lin

et al., 2012) and receiver functions (e.g., Bodin et al., 2016; Calò et al.,

2016; Taira & Yoshizawa, 2020). The amplitude data of surface waves can

be of help to recover the strength of heterogeneity since they are sensitive

to the lateral variations of velocity gradient (Hamada & Yoshizawa, 2015).

Rayleigh-wave ellipticity is sensitive to the shallower layer than phase speeds,

which can be used as a strong constraint on sediment layers and the shallow

crust depending on the employed frequency (Tsuboi & Saito, 1983; Tanimoto

& Tsuboi, 2009). Bodin et al. (2016) and Calò et al. (2016) employed joint

inversion of phase speeds and receiver functions with a trans-dimensional

Bayesian method, which resulted in the layered structure model beneath

North America. A similar method has also been applied to the Australian

continent incorporating higher-mode dispersion data by Taira & Yoshizawa

(2020). Kaban et al. (2015) have constructed a 3-D compositional density

model by using gravity and topography data with estimated mantle temper-
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ature from the 3-D S-wave model derived from the earlier North American

tomography model by van der Lee & Nolet (1997b) and revealed the de-

formed root of the Superior craton due to the basal drag by the convecting

mantle under the cratonic lithosphere.

1.5 The scope of this study

This thesis develops and implements some new approaches for dispersion

analysis of multi-mode surface waves using dense broad-band seismic net-

works. We employ hybrid approaches incorporating several different tech-

niques to reconstruct the 3-D mantle structure with multi-mode surface

waves. The overlapped modes in an observed seismogram can be separated

and measured by phase speeds of each mode using long-range linear seismic

arrays. Furthermore, with a two-dimensional array, we can estimate aver-

age phase speeds of surface waves propagating in arbitrary directions due to

the effects of lateral heterogeneity and anisotropy, enabling us to enhance

the accurate reconstruction of seismic structure in the Earth. The multiple

approaches for waveform analyses and mapping processes in this thesis are

summarized in the flow chart shown in Fig. 1.4.

In chapters 2 and 3, we employ our original method of multi-mode disper-

sion analysis based on the 1-D linear array analysis (Matsuzawa & Yoshizawa,

2019). This is a two-step array-based method for multi-mode surface wave

analysis (Matsuzawa, 2018; Matsuzawa & Yoshizawa, 2019); (1) multi-mode

phase speed measurements based on a classical f–k analysis modeled on an

early work of Nolet (1976), and (2) modal waveform decomposition for the

centroid location of an array, based on the linear Radon transform (Luo

et al., 2008). In chapter 2, we summarize the methodology for the linear

array-based analysis and demonstrate its validity through synthetic experi-

ments and application to observed data in USArray. In chapter 3, using the
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Figure 1.4: The flow chart of this thesis.
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phase speeds the modal waveforms decomposed at the centroid of the linear

array, we construct several types of phase speed maps in the United States

derived from the following three approaches:

(a) direct use of average phase speeds of the long linear array,

(b) inter-station (inter-centroid) phase speeds (Hamada & Yoshizawa, 2015),

(c) eikonal tomography (Lin et al., 2009) based on the phase tracking across

the 2-D array using the mode-branch waveforms at the centroids.

We will demonstrate and discuss the utility and limitations of the linear

array-based analysis by comparing the above different phase speed mapping

approaches.

In chapters 4 and 5, we propose and employ an alternative hybrid ap-

proach for multi-mode phase speed measurements and structural mapping,

combining the single-station multi-mode dispersion measurement and the

eikonal tomography. In chapter 4, we first show the results of the single-

station multi-mode dispersion measurements based on the fully nonlinear

waveform fitting by Yoshizawa & Kennett (2002a); Yoshizawa & Ekström

(2010) for USArray stations. This multi-mode dispersion analysis naturally

enables us to separate modal contributions from the overlapped modes. The

collected phase speed data for the dense seismic network allows us to track

the phase front of each mode, so that we can construct high-resolution phase

speed models in the U.S. using the eikonal tomography including several

higher-mode waves. These eikonal tomography models are also compared

with another type of phase speed models derived from the conventional lin-

earized inversion, which appears to be contaminated by uneven path cover-

age. Using these multi-mode phase speed maps in chapter 4, we construct

radially anisotropic 3-D S wave speed models in the U.S. in chapter 5 and
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discuss the structural characteristics and their tectonic and geodynamic im-

plications. We will then summarize the results of this thesis in chapter 6,

with some indications for future works.



Chapter 2

Linear array analysis for multi-mode
dispersion measurements of surface waves

2.1 Introduction

In this study, we use the two-step array-based method developed by Mat-

suzawa (2018) and Matsuzawa & Yoshizawa (2019). Their detailed theory

and formulations have been described in those papers. In this section, the

method and procedure are briefly reviewed through their application to syn-

thetic seismograms. More details of the formulations are given in Appendix

A. Throughout this study, we have used a program package, MINEOS v1.0.2

(Masters et al., 2011), for calculating normal-mode based synthetic seismo-

grams. MINEOS enables us to compute synthetics through the summation

of normal modes for a non-rotating spherical Earth.

2.2 Methods of Linear-array Analysis

2.2.1 Multi-mode surface-wave dispersion measurements

Our 1-D-array-based analysis has been designed on a kind of slant-stacking

techniques with group speed window originally developed by Nolet (1975,

1976). Here, we explain this analysis with synthetic waveforms in an ideal

setting. We consider a linear array of seismic stations of the total 4000-

16
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Figure 2.1: (a) A linear array with an assumed source mechanism of a strike-
slip fault. Black triangles indicate locations of seismic stations. (b) A record
section of synthetic seismograms (transverse component) for all stations in
(a), including the fundamental-mode and 1st-8th overtone Love waves calcu-
lated for no-oceanic PREM.
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km span with a given focal mechanism as shown in Fig. 2.1a. Synthetic

seismograms of the transverse component for all the stations are shown in

Fig. 2.1b. The background seismic structure under the array is supposed to

be uniform. We employ the no-oceanic PREM (Preliminary Reference Earth

Model) (Dziewoński & Anderson, 1981) as our reference model. A strike-

slip source is located 6000 km away from the array at 200 km depth, which

excites both fundamental- and higher-mode Love waves.

At first, time windows of a given group speed are applied to seismograms

of all the stations to extract seismic signals that propagate with this speed.

Next, a beam spectrum is obtained by slant-stacking Fourier spectra of the

windowed seismograms, assuming a constant phase speed across an array.

Here, they are stacked with respect to the centroid of an array (i.e., the ref-

erence position) by shifting phases with the given phase speed. This stacking

process enhances coherent signals and cancels out incoherent ones as well as

random noises effectively.

The beam spectra can be expressed as a function of group speed, U , phase

speed, c, and angular frequency ω. As a result, we make a spectrogram in the

c-U domain at each ω. An example of the beam power spectra at ω = 2π/30

(or 30 s period) is shown in Fig. 2.2a, which is derived from the synthetic

waveforms of Fig. 2.1b.

The black triangles in the figure indicate the true spectral peaks cal-

culated from the normal modes for the reference model (i.e., no-oceanic

PREM). We can see that the triangles are collocated with the true spec-

tral peaks, but many “spurious” peaks exist along the “phase-speed” axis.

This is mainly because the beam spectrum represents the weighted aver-

age at centroid locations multiplied by the array response function, H(k) =

1
N

∑N
j=1 exp [ik (xj − x̄)], as shown in Fig. 2.3, which is determined only by

the array configuration. The spurious peaks in Fig. 2.2a are attributed to
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Figure 2.2: Power spectra at period T = 30.0 s in the c–U domain, calculated
from the synthetic waveforms shown in Fig. 2.1(b). (a) Before and (b) after
the cleaning process of spurious peaks due to the sidelobes of array response.
Black triangles indicate the true spectral peaks for no-oceanic PREM.



2.2. Methods of Linear-array Analysis 20

Figure 2.3: An example of the array response function for the linear array in
Fig. 2.1b. The red line indicates its mainlobe.

the sidelobes in Fig. 2.3.

We can eliminate these spurious peaks and enhance the true peaks through

an iterative cleaning process based on the array response function described

by Nolet (1975, 1976). This process corresponds to a narrow wavenumber

filtering applied to the array response function around its main lobe. Figure

2.2b shows the spectrogram after the cleaning process. Only the conspicuous

peaks corresponding to each mode remain, implying that the process works

well.

Next, the beam spectrogram in the c-U domain at each frequency ω

is projected in the c-T domain (where T is the period), which eventually

provides us with multi-mode dispersion curves as continuous spectral peaks.

Figure 2.4b shows the normalized multi-mode dispersion curves extracted

from the set of seismograms in Figure 2.1b. Black dashed lines are the

theoretical curves calculated from the reference model. Spectral peaks in
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Figure 2.4: (a) Love wave group speed curves for the fundamental mode
and 1st–8th higher modes calculated from no-oceanic PREM. (b) Estimated
multi-mode phase speed curves (power spectrogram) in the c–T domain.
Black and white dashed lines are the theoretical dispersion curves of each
mode from no-oceanic PREM.
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Figure 2.5: Comparison of theoretical (black dashed line) and decomposed
(red solid line) mode-branch waveforms of Love waves: (a) fundamental
mode, (b) 1st higher mode, (c) 2nd higher mode and (d) 4th higher mode.

Figure 2.4b agree well with the reference dispersion curves, and lower-order

modes are mutually separated well even in a short period range (T < 50 sec)

where group speeds of different modes overlap each other (Fig. 2.4a).

It should be noted that when we obtain the spectrum in Figure 2.4b,

we employ a narrow Gaussian filter with a standard deviation of 1.0 % of

wavenumber for the fundamental-mode Love wave. The subjective selection

of this filter width is not unique, but it is practically useful to improve the

resolution of the dispersion spectrogram.

2.2.2 Decomposition into modal waveforms

Our multi-mode dispersion spectrogram such as Fig. 2.4b can be used for

extracting modal waveforms for several lower modes. An individual modal
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waveform should include only a single mode, which may lead to more pre-

cise dispersion measurements through the subsequent interstation analysis

or array-based analysis, minimizing the contaminations of neighboring mode

branches. In this study, we used a method based on the Linear Radon Trans-

form (Luo et al., 2015) for the decomposition into the set of single-mode

waveforms. The details of the LRT formulation have been described by Luo

et al. (2015) and Matsuzawa (2018). A brief summary of the method is also

given in Appendix A. Using LRT, we can perform the linear transform from

the spectra in the “phase-speed”–“period” domain to that in the “distance”–

“period” domain. The LRT can therefore reconstruct single-mode waveforms

from a single-mode dispersion spectrogram extracted from the array-based

dispersion analysis explained in the previous section.

The single-mode waveforms of Love waves obtained from the mode sep-

aration are shown in Fig. 2.5. They correspond to the waveforms derived

from the spectrogram shown in Fig. 2.4b at the centroid location of the lin-

ear array in Fig. 2.1. Since several filters have been applied during multiple

steps for extracting the c–T spectra, absolute amplitudes of each mode can-

not be fully recovered. The waveform amplitudes in Fig. 2.5 are normalized

by the maximum amplitude of the fundamental-mode Love wave. Neverthe-

less, we can see clear relative differences in amplitude among mode-branch

seismograms and their phases for the first five modes. For the fundamental

and the first higher modes, main wavetrains with the largest amplitude have

been retrieved almost perfectly. While major phases of these seismograms

with long periods match well, the recovery of relative amplitudes in a shorter

period range becomes degraded, mainly due to the uncertainty in spectral

amplitudes of the phase–dispersion spectrogram. For the same reason, the

accuracy of mode-branch waveforms for other higher modes tends to be lim-

ited in comparison with that for the fundamental mode. Still, the major



2.2. Methods of Linear-array Analysis 24

features of mode-branch seismograms can be recovered well, enabling us to

utilize such modal seismograms in a framework of classical dispersion analy-

sis with a single-plane wave approximation, such as the inter-station method

and/or two-dimensional array-based method.

Matsuzawa & Yoshizawa (2019) have shown that the decomposed modal

waveform with the LRT can be used to improve the inter-station phase speed

measurements of the fundamental-mode Love waves. Our synthetic results

suggest that the uncertainty in measurements can be reduced dramatically to

less than 1.5 % by the decomposed fundamental-mode Love waves, compared

to those derived from the waveforms without decomposition, particularly for

shorter interstation distances less than 2000 km. This is mainly because

we can reduce the well-known higher-mode interference on the fundamental

mode Love waves. Furthermore, our results suggest that the higher-mode

phase speed can be measured by the inter-station analysis using the decom-

posed modal waveforms.

2.2.3 Numerical experiments for the effect of array length

It should be noted that resulting c-T power spectrograms such as Fig. 2.4 are

affected directly by the excitation level of each mode and the array size, as

indicated by Nolet & Panza (1976). For stable measurements of multimode

phase speeds with the present array-based method, we need a long-range

linear array to isolate the effects of several overlapping modes that propagate

with different or similar group speeds. If the array scale is sufficiently greater

than the wavelength of surface waves, the multimode phase dispersion can

be precisely estimated in a wider period range.

Fig. 2.6 shows the results of estimated multi-mode dispersion spectro-

grams for Love waves in the c–T domain using the linear array method with

different array lengths: (a) 1500 km, (b) 2000 km, (c) 2500 km and (d) 3000
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Figure 2.6: Results of synthetic experiments for extracting c–T spectrograms
with different array lengths; (a) 1500 km, (b) 2000 km, (c) 2500 km and (d)
3000 km. The black and white dashed lines are the theoretical dispersion
curves for no-oceanic PREM.
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km. Seismic stations are assumed to be located at every 100 km, and the

centroid location of the array is set to be at 8000 km from the epicenter.

Synthetic seismograms of the transverse component at each station are cal-

culated for no-oceanic, isotropic PREM using the focal mechanism shown in

Fig. 2.1a with the source depth of 200 km.

Even wit relatively short-range arrays with 1500 km or 2000 km (Figs

2.6(a and b)), we can see clear spectral peaks of the fundamental mode, but

their spectrograms are contaminated by spurious striped spectra that make

it difficult to identify higher mode dispersion curves precisely. Although the

spectral peaks of the first-higher mode can be identified in the period range

of 30–45 s, they appear to be mixed up with the fundamental mode. We may

concluded that, a short array relative to the wavelength of higher modes, the

enhancement of higher mode signals through the slant-stacking process does

not work properly.

With an array over 2500 km in length (Fig. 2.6c), we can extract multi-

mode spectrogram with distinct spectral peaks of the fundamental, first and

second higher modes. There still remain some spurious peaks, but they are

almost eliminated if an array span exceeds 3000 km (Fig. 2.6d), in which

the phase dispersion of the first six modes can be retrieved fairly well. The

resolution in the c–T domain is primarily controlled by the mainlobe width

of the array response function, which is used as a basis for the wavenumber

filtering. The overall width of the mainlobe is inversely proportional to the

array length. The present synthetic experiments suggest that a linear array

longer than 2500 km is necessary to properly extract multi-mode dispersion

curves in our target period orange (20-150 s) through the isolation of the

spectral peaks of several higher modes.
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Figure 2.7: (Top) The seismic structure and the location of array. (Bottom)
The power spectrogram in the c–T domain. The black and white dashed
lines are the weighted-average dispersion curves. The weight functions are
shown in Fig. 2.10. The centroid of the array is 9400 km away from the
source.
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Figure 2.8: Same to Figure 2.7, but the centroid of the array is 10200 km
away from the source.
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Figure 2.9: Same to Figure 2.7, but the centroid of the array is 11100 km
away from the source.
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Figure 2.10: The weight functions associated with each linear array shown
in the top panel of Figs. 2.7–2.9.
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2.2.4 Numerical experiments for heterogeneous models

Similar to the classical beamforming method, the method explained in the

previous section assumed a laterally homogeneous structure under the given

long-range array. However, it is obviously not practical in the real Earth.

Now we verify how well our method works for laterally heterogeneous struc-

tures.

Examples of synthetic experiments with a laterally heterogeneous struc-

ture beneath the array are shown in Figs. 2.7–2.9. The top panel of each

figure shows the employed seismic structure with a given array location. The

S wave speeds in the top 220 km are perturbed from −4% to +4% with

respect to the reference model (no-oceanic PREM) in the target area be-

neath the array; −2% between 8200 and 9000 km, +4% between 9800 km

and 10600 km, +2% between 10600 km and 11400 km, and −4% between

11400 km and 12200 km in epicentral distances. The average structure is the

reference model (no oceanic PREM). While all the 4000-km arrays in the top

panel of Figs. 2.7–2.9 cover the same heterogeneous region, their centroid

locations (blue star) are different: 9400 km in Fig. 2.7, 10200 km in Fig. 2.8

and 11000 km in Fig. 2.9, away from the source, respectively.

The bottom panels in Figs. 2.7–2.9 show the c–T spectrograms extracted

by using our method. We can see dominant spectral peaks corresponding to

the reference dispersion curves represented by black and white dashed lines.

In the extraction of these curves from the heterogeneous structure in the

top panel, we employ weight functions shown in Fig. 2.10. Each function is

derived from the array response function associated with the array. The array

response function is determined only by the station configuration of each

array. Each phase speed measurement can be interpreted as the average

weighted by its array response function. Therefore, the weight functions

shown in Fig. 2.10 are generated by the inverse Fourier transform from the
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wavenumber (k) domain to the space (x) domain based on the main lobe

of the array response function used for the cleaning process. The weight

functions look like a Gaussian one, and its sensitivity peak coincides with

the centroid location of each array. These results suggest that our 1-D-

array method works well for measuring multi-mode phase speed dispersions,

even in the case of heterogeneous structures beneath the array. The final

measurement reflects the averaged phase speed within the entire array around

its centroid location.

2.3 Application to Observed Data in USArray

In this section, the linear array-based method described in the previous sec-

tions is applied to the actual seismograms recorded at broad-band stations

in the United States.

2.3.1 Multi-mode dispersion measurements

We show three selected examples of the c–T power spectrograms of dispersion

curves in a period range of 20–150 s derived from our array-based method:

one for multi-mode Love waves and two for multi-mode Rayleigh waves.

The configuration of the employed array for Love-wave dispersion spec-

trograms is displayed in Fig. 2.11. We used an event in Equador on August

12 (11:54 UT), 2010, with the moment magnitude 7.1 at a depth of 197.8

km. The azimuth from the source to the array is 331◦. The array length is

about 3300 km with the epicentral distance of its centroid at 4975 km. The

array, which crosses from south-east to north-west in the North American

continent, comprises 33 stations mostly in the western and central U.S. Its

centroid coincides with a cratonic region of fast seismic speed. The orignal

record section of the transverse component in Fig. 2.12 shows the propa-

gation and dispersion of coherent signals including the fundamental- and
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higher-mode Love waves along this long-range array.

Fig. 2.13 shows the c-T dispersion spectrum of the multi-mode Love

waves obtained by applying our 1-D-array-based analysis to the seismograms

of Fig. 2.12. We can identify several continuous spectral peaks corresponding

to the dispersion curves of fundamental and first four higher modes in a wide

period range over 25 s. This result is due to the sufficiently long array length

compared to the wavelength of higher modes, which are well excited by the

deep event (about 200 km). The measured phase speeds are mostly close

to the reference curves indicated by the dashed lines computed from global

3-D crust and upper mantle models; that is, CRUST1.0 (Laske et al., 2013)

and S362ANI+M (Moulik & Ekström, 2014; Trabant et al., 2012). In a

period range shorter than 50 s, the measured phase speeds are faster than

the reference ones by 0.1 − 0.3 km/s, reflecting localized structure around

the centroid. We next extract modal waveforms decomposed using the c–T

spectrogram by applying the LRT. Fig. 2.14 shows the modal waveforms of

the fundamental and first two higher-mode Love waves at the centroid of the

array, as well as the observed seismograms recorded at T27A (TA), which

is the nearest station to the centroid. These waveforms are normalized by

the maximum amplitude of the fundamental mode. Even for the present

real data, their phases and relative amplitudes can be retrieved successfully,

indicating the utility of the LRT.

For Rayleigh wave dispersion analysis, we employ two linear arrays, “Az-

imuth45” and “Azimuth50” shown in Fig. 2.15. In this analysis, we used an

event that occurred near Tonga Islands on October 22nd (12:56 UT), 2008,

with the moment magnitude 6.4 at a depth of 224.0 km. These two arrays are

about 2800 km long with the centroid of the epicentral distance of 9300–9400

km. The number of stations is 36 in both cases.

The c–T spectrograms derived from the seismograms in Fig. 2.16 are
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Figure 2.11: Locations of the source and linear arrays; the great-circle path
(azimuth: 331◦) from the source (pink line), seismic stations (black and red
triangles; red triangles indicate selected stations for the linear array) and the
centroid of the array (blue star). The employed event occurred on August
12th, 2010. (Left) Overview (Right) Zoom-in view of the U.S. The source
location and the focal mechanism are taken from the Global CMT catalog.
(Dziewoński et al., 1981; Ekström et al., 2012)

Figure 2.12: Transverse-component seismograms observed at stations along
a great-circle path in direction of azimuth 331◦ indicated by red triangles in
Fig. 2.11. A wide bandpass filter (6.67–25 mHz) was applied.
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Figure 2.13: An example power spectrogram of the multi-mode Love wave
dispersion in the c–T domain derived from seismograms shown in Fig 2.12.
The dashed lines represent the reference dispersion curves calculated from
global 3-D model.
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Figure 2.14: Comparison of (a) observed full waveforms at TA.T27A station
(4988.6 km from the source) and (b-f) decomposed Love wave modes. (b)
the sum of the first four modes, (c) the fundamental-mode, (d) 1st-higher
mode (e) 2nd-higher mode and (f) 3rd-highwe mode at the centroid (4975.4
km from the source) of the linear array.
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shown in Fig. 2.17. Similar to the Love wave case, we can see several spec-

tral peaks, especially, equivalent to the fundamental and 1st-higher mode

dispersion in a longer period than 60 s.

While the conspicuous peaks in Array45 are consistent with reference

curves extracted from the global 3-D model, those in Array50 are faster than

the reference ones by 2–3%. This may reflect the local-scale fast anomalies

near the centroid slightly shifted to the east.

2.3.2 2-D mini-array analysis with the decomposed modal wave-
forms

In this section, the decomposed mode-branch waveforms at centroid locations

of linear arrays are applied to secondary two-dimensional array analysis using

the same data set from the Tonga Islands earthquake as in the previous

section. Here we briefly explain the procedures for the two-dimensional mini-

array analysis for mode-branch waveforms.

At first, an original long linear array along a given great circle is selected

(e.g. Fig. 2.15), then several subarrays are constructed from the original one;

that is, all the sub-arrays share the two end points, with different combina-

tions of station groups inside the original, resulting in sets of slightly shifted

centroid locations (e.g., Fig 2.18). The centroid of each sub-array (Fig. 2.19)

can be treated as an imaginary station, and the decomposed waveforms at all

the centroids are then used as a data set for the 2-D array analysis. Here, we

employ the classical 2-D-array analysis based on the beamforming approach

to extract average phase speed and propagation direction of a plane wave

passing through the 2-D array (e.g., Tanimoto & Prindle, 2011; Alvizuri &

Tanimoto, 2011; Maupin, 2011).

Fig. 2.19 shows two examples of circular mini-arrays (‘Array-I’ and ‘Array-

II’) with a diameter of about 500 km, indicated by orange stars. While

Array-I is located around the Array45 and consists of 27 centroids within a
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circle with a radius of 250 km centered on (39◦N, 112◦W), Array-II arround

the Array50 of 44 centroids with a radius of 250 km centered on (35◦N,

107◦W) (see Table 2.1.) The epicentral distance of centroid locationed at

these two mini-arrays are over 9000 km away from the source and locate the

northwestern and the southeastern edges of the Colorado Plateau.

Figs. 2.20 and 2.21 show the resultant power spectrograms in the 2-D

slowness domain (x- and y-axes represent east-west and north-south direc-

tions, respectively) at several periods for the fundamental-mode and 1st-

higher-mode Rayleigh waves. The dominant peak (the white star in each

spectrogram) indicates the slowness and the back azimuth of an incoming

single-plane wave. The obtained phase speeds of the fundamental- and 1st-

higher mode are mostly consistent with the global model by Visser et al.

(2008), reflecting the influence of large-scale tectonics in the U.S. While the

arrival angles of the fundamental-mode are slightly shifted to the north, those

of the 1st-higher mode corresponds to great-circle paths.

2.4 Discussion

We have proposed a new hybrid approach of array-based analysis for multi-

mode surface waves by combining (1) multimode phase speed measurements

based on f–k analysis with a long-range linear array, and (2) decomposition

of a single original seismogram into mode-branch waveforms using the LRT.

The present method has been applied to synthetic seismograms for arrays as

well as seismograms obtained by USArray.

In its practical application, we need to use a linear array longer than

2000–3000 km for the precise measurement of higher mode phase speeds. We

can extract weighted-average dispersion curves within the array, depending

on its station configuration. As shown in Fig. 2.15, our dispersion analysis

works well even if the background structure rapidly changes in the linear
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Table 2.1: Information of mini-arrays of centroids shown in Fig. 2.19.

Array location Number of
Latitude Longitude Distance ‘centroid’

Array-I 38.7◦ −111.3◦ 9172 km 27
Array-II 35.5◦ −106.9◦ 9339 km 44

Table 2.2: Rayleigh wave phase speed and arrival angle anomaly for the
fundamental and 1st-higher mode. These are obtained from the dominant
peak in the power spectrogram shown in Figs. 2.20 and 2.21.

Array-I Array-II
Period Phase speed Arrival angle Angle anomaly Phase speed Arrival angle Angle anomaly

Fundamental mode

50.0 s 3.98 km/s 243.5◦ 4.4◦ 3.86 km/s 242.0◦ −0.3◦

60.0 s 3.89 km/s 238.5◦ −0.6◦ 3.96 km/s 247.0◦ 4.7◦

80.0 s 3.98 km/s 239.0◦ −0.1◦ 3.97 km/s 241.0◦ −1.3◦

100.0 s 3.99 km/s 243.0◦ 3.9◦ 4.02 km/s 240.0◦ −2.3◦

1st-higher mode

50.0 s 4.78 km/s 242.5◦ 3.4◦ 4.27 km/s 240.5◦ −1.8◦

60.0 s 5.25 km/s 240.5◦ 1.4◦ 5.13 km/s 243.0◦ 0.7◦

80.0 s 5.42 km/s 241.0◦ 1.9◦ 5.37 km/s 242.5◦ 0.2◦

100.0 s 5.72 km/s 238.0◦ −1.1◦ 5.72 km/s 242.0◦ −0.3◦

array.

These dispersion curves can help us to decompose the original waveform

into the mode-branch waveforms at the centroid location by the LRT. Such

decomposed waveforms at the centroid can be utilized in the subsequent

secondary analyses, such as interstation dispersion measurement and local 2-

D array analysis. In the examples of the classical 2-D array analyses shown

in Figs. 2.20 and 2.21, both phase speed and arrival angle (the propagation

direction) can be measured for each mode, which suggest that the extracted

modal seismograms can be used to constrain local phase speeds fairly well.
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Figure 2.15: Locations of the source and linear arrays along the great-circle
path. (a) “Array45” (azimuth: 45◦) and (b) “Array50” (50◦) from the source
(pink line), seismic stations (black and red triangles; red triangles are used in
each linear array) and the centroids of the arrays (blue stars). The employed
event occurred on October 22nd, 2008. (Top) Overview (Bottom) Zoom-in
view of the U.S. The source location and the focal mechanism are taken from
the Global CMT catalog. (Dziewoński et al., 1981; Ekström et al., 2012)
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Figure 2.16: Vertical-component seismograms observed at stations of (a)
Array45 and (b) Array50, indicated by red triangles in Fig. 2.16. A wide
bandpass filter (6.67–25 mHz) was applied.
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Figure 2.17: Example power spectrograms of the multi-mode Rayleigh wave
dispersion in the c–T domain derived from seismograms of (a) Array45 and
(b) Array50 shown in Fig 2.16. The dashed lines represent the reference
dispersion curves calculated from global 3-D model.
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Figure 2.18: Examples of the subarray extracted from Array45. The centroid,
which locates (a) 9081.1 km, (b) 9400.4 km and (c) 9563.1 km away from the
source, sifted from west to east.
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Figure 2.19: Centroid locations of sub-arrays extracted from the stations in
Fig. 2.15. The orange stars indicate the centroids used as imaginary stations
in the two mini-arrays, “Array-I” and “Array-II”. Back azimuth to the source
from the center of mini arrays is 239.1◦ for Array-I and 242.3◦ for Array-II.
Information of these mini-array are summarized in Table 2.1.
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Figure 2.20: Power spectra by the 2D f -k beamforming for the fundamental-
mode and the 1st-higher-mode Rayleigh waves at 50 s, 60 s, 80 s and 100
s. The spectral peaks (white star and solid line) indicate phase velocity of
surface wave propagating within the Array-I. The azimuth to the source is
indicated by black solid line.
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Figure 2.21: Same as Fig. 2.20, but for the Array-II.



Chapter 3

Phase Speed Mapping with a Linear-
array Method

3.1 Introduction

In this chapter, the linear-array method in the previous chapter is applied

to a large dataset of seismograms observed at broadband seismic stations

in the contiguous United States. We will demonstrate the validity of our

method and the difference among several mapping techniques by comparing

fundamental-mode phase speed maps. Seismic waveform data were down-

loaded from the IRIS Data Management Center using “SOD” (Standing Or-

der for Data, Owens et al., 2004). Event locations and focal mechanisms

were taken from the Global CMT catalog (Dziewoński et al., 1981; Ekström

et al., 2012).

3.2 Methods for Phase Speed Mapping

Using the multi-mode dispersion data derived from a long linear-array in the

previous chapter, here we employ three different ways to construct phase

speed maps.

47



3.2. Methods for Phase Speed Mapping 48

3.2.1 Phase speed maps (1): the direct use of long linear arrays

The most straightforward approach for phase speed mappings is based on a

linearized inversion with ray theory. The phase speeds measured from the

1-D linear array analysis along great-circle paths can be simply mapped into

the space domain through the conventional tomographic inversion scheme

incorporating the weight function along the path, as shown in Fig. 2.7 in

the previous chapter. In this study, the method of surface wave tomography

developed by Yoshizawa & Kennett (2002a, 2004) has been employed to

construct phase speed maps using the path-averaged data derived from long

linear arrays. Spatial parameters (local phase speeds) are expanded in the

spherical B-spline functions. Linear simultaneous equations are solved by a

damped least-squares scheme using the LSQR algorithm (Paige & Saunders,

1982). A damping parameter for each period is assessed by visually checking

the trade-off curve between the data misfit and model roughness (Yoshizawa

& Kennett, 2004).

3.2.2 Phase speed maps (2): inter-centroid (inter-station) disper-
sion analysis

An alternative linear inversion approach is to incorporate the inter-station

dispersion analysis, which has been also employed to construct another set

of phase speed maps in this study. The inter-station analysis based on fully

nonlinear waveform fittings (Hamada & Yoshizawa, 2015; Hamada, 2017) is

applied to the decomposed fundamental-mode waveforms at the centroid lo-

cation of each linear sub-array derived from the method described in Chapter

2. A set of modal waveforms at centroid locations is used to extract inter-

centroid (i.e., equivalent to inter-station) phase speeds with different centroid

pairs.

The inter-station method by Hamada & Yoshizawa (2015) utilizes the
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Neighbourhood Algorithm (Sambridge, 1999a,b) as a global optimizer for a

fully nonlinear waveform fitting between seismograms at two stations on a

common great-circle path, by modulating both phase and amplitude terms

of the fundamental-mode surface waves. In this study, we use only the phase

term derived from this method. The reliability parameter for each measure-

ment, which represents how well the waveforms at two stations can be fitted

in the time-frequency domain, is used as a data selection criterion as well as

the weight value on each measurement during the linear inversion. The linear

inversion scheme for phase speed mapping is the same as described in the

previous section. Since the path-length of the inter-station (inter-centroid)

analysis is generally shorter than that of the single-station method (i.e., 1-D

linear array analysis), the horizontal resolution of phase speed maps derived

from inter-station (inter-centroid) analysis can be much enhanced.

3.2.3 Phase speed maps (3): eikonal tomography with 2-D array
analysis

The other method of phase speed mapping is based on the eikonal tomog-

raphy (Lin et al., 2009). This method uses two-dimensional array analysis

based on the eikonal equation. From the Helmholtz equation derived from

the wave equation, we can derive the following relation (e.g., Wielandt, 1993;

Lay & Wallace, 1995; Shearer, 1999):

1

c (ω, r)2
= |∇τ (ω, r)|2 − ∇2A (ω, r)

A (ω, r)ω2
, (3.1)

where ω is the angular frequency, r = (x,y) the 2-D position vector, c the

phase speed, A the wave amplitude, and τ the phase travel time, respectively.

∇ represents the 2-D differential operator (∂/∂x, ∂/∂y), and ∇2 the 2-D

Laplacian (∂2/∂x2 + ∂2/∂y2). The left-term represents the slowness term,

while the first and second terms in the right-term mean the gradient of the

traveltime field and the effects of ray bending such as focusing and defocusing.
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The eikonal equation can be derived from eq (3.1) by neglecting the amplitude

term with the high-frequency approximation (or the weak spatial changes in

the amplitude field):

1

c (ω, r)2
= |∇τ (ω, r)|2

=⇒ p (ω, r) ≃ ∇τ (ω, r) ,

where p = (px, py) is the slowness vector. This equation enable us to directly

derive the phase speed distributions from the gradients of the 2-D travel-

time field without solving any inverse problems. It should be noted that

the tomographic technique based on the Helmholtz equation (or Helmholtz

tomography) incorporating both phase travel-time and amplitude variations

has been recently used widely in the ambient noise tomography (Lin & Ritz-

woller, 2011).

The eikonal tomography complements traditional surface wave tomogra-

phy methods in several ways (Lin et al., 2009). First, there are no explicit

regularizations, so that the method is free from some empirical choices of

a priori constraints. Second, this tomography accounts for ray bendings

automatically, without ray tracings. The gradient of the travel-time field

naturally includes the information of the local traveling direction of waves.

Finally, in the construction of phase speed maps, the matrix construction and

inversion of traditional methods are replaced by constructing the travel-time

field, that is, the computation of its gradients and averaging. Therefore, the

computational costs of the eikonal tomography are relatively small.

The eikonal tomography has been widely used for the ambient noise data

(e.g., Ritzwoller et al., 2011; Zhou et al., 2012; Lin et al., 2013). Our method

of the modal waveform decomposition makes it possible to use this tech-

nique for mode-branch waveforms of each mode. In this study, after the

decomposition, we apply the single-station dispersion analysis with FTAN,
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a frequency-time analysis (e.g., Levshin et al., 1972; Ritzwoller & Levshin,

1998) to each modal waveform for each event. Then, we construct the travel

time field at each period for each mode. The phase speed maps are then

obtained by averaging the gradients for each event.

3.3 Data and Processing

3.3.1 Linear-array phase speed measurements

We used 710 teleseismic events (Mw ≥ 5.8, excluding multiple concurrent

earthquakes) shown in Fig. 3.1 to map phase speed distributions for the

multi-mode Rayleigh and Love waves. These events occurred from 2007 to

2015, corresponding to the duration of USArray deployment. Our data set

consists of seismograms recorded at USArray (TA), Berkeley Digital Seismo-

graph Network (BK), Southern California Seismic Network (CI), Canadian

National Seismic Network (CN), GEOSCOPE (G), GEOFON (GE), United

States National Seismic Network (US) and Global Seismographic Network

(II, IU).

We eliminated stations located in the nodal directions of surface wave

radiation or too close to the epicenter (with the epicentral distance less than

2000 km). We also excluded stations located at epicentral distances more

than 12000 km for Rayleigh wave analysis and 14000 km for Love wave away

to avoid contaminations due to the R2/X2/G2 phases propagating along

the major-arc (Hariharan et al., 2020). Prior to the multi-mode dispersion

analysis, waveforms are preprocessed by removing offset and linear trends,

deconvolving the instrument response of each seismometer, and applying a

wide bandpass filter (0.002–0.1 Hz). We eliminated seismograms with an S/N

ratio lower than 0.7, defined by the ratio between the maximum amplitude of

the signal and the root-mean-square of noises before the P-wave arrival. We

also eliminated seismograms that appear to be incoherent with those of the
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Figure 3.1: Distribution of the events used in this chapter. The color indi-
cates the source depth. (red) 0–50 km, (orange) 50–100 km, (green) 100–150
km, (cyan) 150–200 km and (blue) deeper than 200 km.



3.3. Data and Processing 53

neighboring stations in an array, for example, the correlation coefficient is less

than 0.7. These preprocessings help us to avoid the phase speed spectrogram

contaminated by high background noises.

We have collected about 105000 measurements along a linear array and its

subarrays for Rayleigh waves and 45000 measurements for Love waves. The

numbers of measurements are as much as those of the collected centroids.

Two examples of path coverage maps for Rayleigh and Love waves are dis-

played in Fig. 3.2. Adequate path coverages across the contiguous U.S. are

achieved in both cases. Fig. 3.3 displays checkerboard resolution tests for

Rayleigh and Love models at a period of 100 s. In all the cases, the input

checkerboard models have the maximum perturbations of about ±6.0% from

the reference phase speed. In the resulted maps (Fig. 3.3), we can see some

smearing effects mainly in the NW-SE direction, which is mainly caused by

the relatively small number of events located in the northeast of the U.S.

3.3.2 Inter-centroid phase speed measurements

For the application of the subsequent inter-station (inter-centroid) disper-

sion analysis for the fundamental-mode waveforms, we employ about 33000

centroid-pairs for Rayleigh waves and about 8000 centroid-pairs for Love

waves. The centroid-pairs with distances shorter than the target wavelength

(150–500 km) are eliminated. Fig. 3.4 shows the distributions of ray paths

(line segments) between centroids for Rayleigh and Love waves at the period

of 100 s.

Since the centroids for long linear arrays with a few thousand kilometers

are mostly located in the middle of the continent, the line segments (ray

paths) connecting two centroids tend to be concentrated only in the inland

area, but only a few in the coastal areas. Thus, the resulting phase velocity

maps will have sufficient resolution only in the center of the continent. This
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Figure 3.2: The sub-array path coverage in and around the U.S. for (a)
Rayleigh and (b) Love waves.
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Figure 3.3: Examples of checkerboard resolution tests for the fundamental-
mode Rayleigh and Love wave phase speed maps derived from the average
phase speeds along the linear arrays at 100.0 s with cell sizes of 3.0◦ × 3.0◦,
5.0◦ × 5.0◦ and 8.0◦ × 8.0◦. Left panels are input checkerboard patterns, and
center and right panels are output models for Rayleigh and Love wave.
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is suggested by our checkerboard tests similar to the previous case (Fig. 3.5).

In the maps with cell sizes of 3.0◦, 5.0◦ and 8.0◦, heterogeneity patterns are

well recovered especially in the inland area covered with the many ray paths,

but not in the coastal areas. This effect tends to be remarkable in a long

period range since their wavelengths become long and short-path information

cannot be reliably extracted.

3.3.3 Phase travel times at linear-array centroids for eikonal to-
mography

We implemented the eikonal tomography using all the centroids of the linear

array obtained for each of 710 events. After the modal wave decomposition,

the FTAN is applied to each of the mode-branch waveforms to map the travel

time field (Fig. 3.6a). Then, we obtained a phase speed map of a the small

region covered with the centroids using the gradient of the travel time field

(Fig. 3.6b). The phase speed distribution in the entire U.S. is derived by

averaging maps of all the event.

3.4 Three-types of Phase Speed Maps with Linear-
array Measurements

Examples of fundamental-mode phase speed maps of the U.S. at periods of

40.0 s, 60.0 s, 80.0 s, and 100.0 s are shown in Fig. 3.7 for Rayleigh waves

and in Fig. 3.8 for Love waves. We compare the following three different

phase-speed mapping methods;

(A) linear inversion using the average phase speed of each long linear array

(B) linear inversion using the ”inter-centroid” phase speeds

(C) eikonal tomography using the mode-branch waveforms at centroids of

subarrays
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Figure 3.4: The coverage of inter-centroid paths (connecting two centroids
of the subarrays) for the fundamental-mode (a) Rayleigh and (b) Love waves
at a period of 100 s.
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Figure 3.5: Examples of checkerboard resolution tests for the fundamental-
mode Rayleigh and Love wave phase speed maps derived from the inter-
centroid phase speeds at 100.0 s with cell sizes of 3.0◦ × 3.0◦, 5.0◦ × 5.0◦ and
8.0◦×8.0◦. Left panels are input checkerboard patterns, and center and right
panels are output models for Rayleigh and Love wave.
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Figure 3.6: The procedure of the eikonal tomography. (a) Travel time field
for the fundamental-mode Rayleigh wave at (left) 60.0 s and (right) 100.0
s. (b) The phase speed distribution within the centroids obtained by the
gradient of the travel time field shown in (a). The triangles indicate the
centroids of the linear array.
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Figure 3.7: The phase speed maps for the fundamental-mode Rayleigh waves
at 40 s, 60 s, 80 s, and 100 s derived from the linear inversion of (A) phase
speeds for long linear array and (B) the inter-centroid phase speeds. (C)
Eikonal tomography using the mode-branch waveforms at the centroids of
subarrays.
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Figure 3.8: Same as Fig. 3.7, but for the fundamental-mode Love waves.
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Figure 3.9: The phase speed maps for (top) the higher-mode Rayleigh and
(bottom) Love waves derived from the linear inversion of (A) phase speeds
for long linear array and (B) the inter-centroid phase speeds. (C) Eikonal
tomography using the mode-branch waveforms at the centroids of subarrays.
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In Figs. 3.7 and 3.8, we plot phase speed perturbations from −10% (red)

to +10% (blue) with respect to the average in the U.S. for the models (A),

(B) and (C). The achieved variance reductions by these inversions are (A) 30–

40 % and (B) 70–75 % for Rayleigh waves, and (A) 40–50 % and (B) 36–51

% for Love waves. Fig. 3.9 displays phase speed distributions of higher-

modes; 1st-higher-mode Rayleigh wave (refereed as R1 below) at 125.0 s,

2nd-higher-mode Rayleigh wave (R2) at 100.0 s, 1st-higher-mode Love wave

(L1) at 125.0 s and 2nd-higher-mode Love wave (L2) at 100.0 s. The variance

reductions of the higher-mode inversions are (A) R1: 22 %, R2: 40 %, L1: 8

%, L2: 10 % and (B) R1: 7 %, R2: 6 %, L1: 7 %, L2: 6 %, which tend to be

much lower than those of the fundamental modes.

The average phase speeds are consistent with each other for the fundamental-

mode models. A strong phase speed contrast between the western and central

United States divided by the Rocky Mountains has been imaged well in all

the cases. Such a typical tectonic feature has been commonly observed in ear-

lier tomography models of North America in both global-scale (e.g., Nettles

& Dziewoński, 2008; Visser et al., 2008; Ekström, 2011) and continental-

scale studies (e.g. Yoshizawa & Ekström, 2010; Schaeffer & Lebedev, 2014;

Hamada & Yoshizawa, 2015). While the phase speed maps in (B) and (C)

have the horizontal resolution equivalent to global-scale models (5.0◦–8.0◦),

small-scale heterogeneities can be more visible in the maps in (A). For exam-

ple, in the fundamental-mode Rayleigh wave models at 40 s, we can see fast

anomalies corresponding to Colorado Plateau, which was observed in earlier

high-resolution tomographic studies using the inter-station method by Fos-

ter et al. (2014b); Hamada & Yoshizawa (2015). However, many small-scale

and linear heterogeneities in (A) do not represent the tectonic features in the

U.S., which are likely to be affected by relatively larger measurement errors

in some specific paths.
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In the phase speed models in both Rayleigh and Love wave models of (B)

and (C), relatively fast anomalies corresponding to the Colorado Plateau

cannot be very well resolved. These small-scale anomalies seem to be buried

in the typical large-scale slow anomalies of the western U.S., indicating that

local-scale tectonic features with 100-km-scales cannot be well resolved with

our long linear-array-based measurements.

In the higher-mode models in Fig. 3.9, the average phase speeds of (A)

and (B) are consistent with each other, but those of (C) are very different.

The interpretation of higher-mode phase speed maps is difficult since their

vertical sensitivity to the shear-wave structure is complex. The eikonal to-

mography maps in (C) are too patchy and unrealistic. The phase speed maps

from inter-centroid measurements in (B) show the large-scale patterns of 400–

500-km-scale, which are also difficult to interpret. These models in (B) and

(C) indicate the difficulty in applying the decomposed higher-mode wave-

forms for the inter-centroid measurements and eikonal tomography based on

the phase-front tracking. On the contrary, the model of (A) shows the large-

scale pattern of the slow anomaly in the western area and fast anomaly in the

eastern area, consistent with the previous higher-mode models in Yoshizawa

& Ekström (2010).

3.5 Discussion

Based on the 1-D linear array analysis for multi-mode phase speed measure-

ments and the modal waveform decomposition described in chapter 2, we

have developed several methods to construct phase speed maps utilizing a

variety of techniques to extract localized phase speeds. Using the linear ar-

ray analysis, we can measure the multi-mode phase speeds in a broad period

range even if several surface-wave modes overlap. We can also untangle the

observed waveforms in a linear array to the mode-branch waveforms at the
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centroid of the array, which helps us to extract the local heterogeneities for

each mode in the subsequent dispersion analysis as proposed by Matsuzawa

& Yoshizawa (2019).

In this chapter, we applied the above linear array methods to the seis-

mograms recorded at broad-band stations, including USArray and several

seismic networks in North America, for constructing several types of phase

speed maps. Such a 1D-array-based analysis was originally developed in the

1970s (e.g., Nolet, 1975, 1976; Cara, 1978), but has been rarely applied for

tomographic studies. One of the main reasons was due to the consideration

that this style of linear array analyses does not allow us to extract variations

within a long linear array (e.g., Laske & Widmer-Schnidrig, 2015). However,

this problem may be overcome with seismic data of the modern highly-dense

broad-band arrays such as USArray.

The resultant phase speed maps are shown in Fig. 3.7 for fundamental-

mode Rayleigh waves, Fig. 3.8 for fundamental-mode Love waves and Fig. 3.9

for several higher-modes. The maps in (A) are derived from the linear in-

versions using the average phase speed along a linear array. Although the

large-scale anomalies (i.e., fast anomalies in cratons in the stable eastern

U.S., slow anomalies in the tectonically-active western U.S.) can be identi-

fied, the lateral resolution of phase speed maps was insufficient to discuss

local-scale tectonic features. These results suggest that small-scale (several

hundred kilometers) tectonic characteristics tend to be blurred and averaged

out with the direct measurements of phase speeds for a long linear array

(2000–4000 km).

The phase speed maps derived from the inter-station (inter-centroid) dis-

persion analysis with nonlinear waveform fittings (Hamada & Yoshizawa,

2015; Hamada, 2017) are shown in panels (B) of Figs. 3.7, 3.8 and 3.9, and

the maps derived from the eikonal tomography method (Lin et al., 2009) are
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shown in panel (C). Their lateral resolution is slightly higher than that of

global models but lower than the earlier regional models. One of the causes

for degrading the apparent resolution of these models may be the accumula-

tion of errors through several processes during the data analysis; for example,

the mode decomposition, the phase speed measurements by the inter-station

(inter-centroid) analysis or the FTAN method, and the calculation of the

finite difference for gradients of the travel-time fields for the eikonal tomog-

raphy. Those accumulated errors may mask smaller-scale tectonic features in

the U.S. in our tomography models, originally based on the long-range linear

array measurements. However, it is difficult to assess the errors included in

each phase speed measurements from the data set of modal waveforms.



Chapter 4

A Hybrid Approach for Multi-mode Phase
Speed Mapping: Single-station Disper-
sion Measurements and Eikonal Tomog-
raphy

4.1 Introduction

In the previous chapter, we have investigated several types of phase speed

maps based on our linear array analysis. Nevertheless, the lateral resolu-

tion of these models appears to be limited compared to the conventional

tomography models. To overcome this problem, we now investigate an alter-

native hybrid approach by employing single-station multi-mode dispersion

measurements and 2-D array analysis.

In this chapter, we implement this hybrid method combining the single-

station analysis for the multi-mode surface wave dispersion measurements

(e.g., Yoshizawa & Kennett, 2002a; Yoshizawa & Ekström, 2010) and the

eikonal tomography for mapping the phase speed distributions (Lin et al.,

2009). We first measure multi-mode phase speeds for many source-receiver

pairs using USArray data. These measurements are, first, inverted directly

for phase speed maps using the finite-frequency tomography by Yoshizawa

& Kennett (2004). We next apply those phase speed data to the eikonal to-

67
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Table 4.1: Threshold values of the reliability parameters and normalized ra-
diation amplitude used as selection criteria of reliable multi-mode dispersion
measurements (Yoshizawa & Ekström, 2010). These threshold values vary
depending on the waveform misfit values.

Waveform Minimum reliability Minimum
misfit Fundamental mode Higher modes radiation

0.00–0.01 8.0 2.0 0.50
0.01–0.02 9.0 2.5 0.60
0.02–0.03 10.0 3.0 0.70

mography, which may allow us to extract high-resolution phase speed models

for local-scale lateral heterogeneities in a dense seismic array.

4.2 Method of Single-station Multi-mode Dispersion
Measurements

We measure multi-mode phase speeds using the single-station dispersion

analysis developed by Yoshizawa & Kennett (2002a) and automated by Yoshizawa

& Ekström (2010). This approach is based on non-linear waveform inversions

with the Neighbourhood Algorithm (NA) by Sambridge (1999a), which is

used as the global optimizer.

Here we explain this method briefly with an example of applying to a

waveform observed at a USArray station (E13A) in Fig. 4.1. The event used

in this example is located in the Fiji Islands region with focal depth at 30

km. The station E13A is located in Montana with the epicentral distance of

about 9500 km. Its ray path traverses the Pacific Ocean from the southwest

to the northeast.

The path-specific 1-D shear wave speed profile, which best fits the ob-

served waveform, is derived from the global search through the automatic

waveform fitting process using the NA. Several time windows, including

multiply-reflected S-waves and surface wave portions, are selected from an
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Figure 4.1: The procedure of the single-station multi-mode dispersion analysis
(Yoshizawa & Ekström, 2010): (a) a ray path (black dashed line) between a source (red
star in Fiji) and a receiver (purple triangle, TA.E13A station of USArray). (b) The orig-
inal waveform observed at E13A. (c) Path-average 1-D S wave profile along the path in
(a). The red line represents the best model with the minimum waveform misfit, and the
best 3000 models (in a total of 5050 models) are ranked in order of the smaller misfit and
plotted with colors varying from green (larger misfit) to yellow (smaller misfit). (d) the re-
sultant waveform fit between the observed (the solid black lines) and synthetic waveforms
(the colored dashed lines) in multiple time windows. (e) Resultant dispersion curves from
the fundamental-mode to the 8th higher-mode Rayleigh waves calculated for the best-fit
model in (c). (f) The reliability parameters of dispersion measurements for each mode.
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observed waveform, based on the pre-defined multiple group-speed windows

(four for Rayleigh / three for Love waves). Multiple band-pass filters are

then applied to each window as described by Yoshizawa & Ekström (2010).

Fig. 4.1(d) shows waveforms in selected time windows. The normal-mode

synthetic waveforms (solid black lines in Fig. 4.1(d)) are calculated for a

bunch of 1-D models derived from NA, based on the surface-wave WKBJ

theory (Dahlen & Tromp, 1998) using the focal mechanism taken from the

global CMT catalog (Ekström et al., 2012). The observed and synthetic seis-

mograms are then fitted in all the time windows with multiple band-pass

filters.

The 1-D shear wave speed profile with the minimum waveform misfit,

searched by the NA, is shown as the solid red line in Fig. 4.1(c). This 1-D

model is used to compute the multi-mode phase dispersion from the funda-

mental mode up to the 8th higher-mode. Fig. 4.1(e) displays the resultant

dispersion curves along the ray path in Fig. 4.1(a). This dispersion curve

reflects the typical oceanic S wave structure. The reliability parameters of

phase speed measurements as a function of a frequency are shown in Fig.

4.1(f), estimated from the waveform misfit and the relative power of modal

excitations at the source. In our single-station multi-mode dispersion mea-

surements, we use the same a priori constraints (such as the number of model

parameters searched by NA) and the thresholds of measurement reliability

as those used by Yoshizawa & Ekström (2010) (see Table 4.1.)

In this study, we first measure the multi-mode phase speeds by the single-

station analysis with non-linear waveform fittings for many seismic stations

in a dense seismic array using teleseismic events. Then, the phase front maps

(i.e., travel-time fields) are computed from these phase speed measurements

using a dense seismic network, enabling us to construct the phase speed maps

within the array at each frequency based on the eikonal tomography. The
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final model is obtained by averaging these maps over a set of events. Through

such a hybrid approach of multi-mode dispersion measurements for many

stations and eikonal tomography, we can take into account the separation

of the overlapped modes through the multi-mode waveform fitting process,

and the correction of the off-great-circle propagation and the arrival-angle

anomalies through the mapping of phase speed distributions.

4.3 Data Sets

4.3.1 Data for hybrid phase speed mapping

As in the previous chapter, we employed 710 teleseismic events from 2007

to 2015 with the moment magnitude greater than 5.8. The event distribu-

tion used in our hybrid phase speed mapping is displayed in Fig. 3.1. We

used the vertical-component seismograms for Rayleigh wave analysis and the

transverse-component for Love wave analysis. We collected 80000–100000

paths for the fundamental-mode Rayleigh waves, about 50000 paths for the

fundamental-mode Love waves, 10000–70000 paths for higher modes of both

Rayleigh and Love waves (Fig. 4.2). Since we employed the same thresholds

as those used in Yoshizawa & Ekström (2010), the frequency dependence of

the numbers of ray paths is similar to those of Yoshizawa & Ekström (2010)

for both Rayleigh and Love waves.

Fig. 4.2 displays coverages, back azimuths and densities of ray paths

around the U.S. for the fundamental-mode Rayleigh wave and the 4th-higher-

mode Love wave. We have achieved very good coverage across the contiguous

U.S. in both cases, even though the present ray path densities are undoubt-

edly different between these two cases.

For the eikonal tomography, the resolution check in the model space is not

straightforward since we do not solve any inverse problems. Here, we show

the results of checkerboard resolution tests for linear inversions using the



4.3. Data Sets 72

Figure 4.2: Numbers of measurements of multi-mode phase speeds for (a)
Rayleigh waves and (b) Love waves, as a function of period.
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Figure 4.3: The ray path coverage, back azimuths and densities around the
U.S. region for (a) the fundamental-mode Rayleigh wave at 125.0 s and (b)
the 4th-higher-mode Love wave at 50.0 s.
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Figure 4.4: Examples of checkerboard resolution tests for the fundamental-
mode Rayleigh-wave phase speed maps at 125.0 s with cell sizes of (top)
3.0◦ × 3.0◦ and (bottom) 5.0◦ × 5.0◦. Left panels are input checkerboard
patterns, and right panels are output models.
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Figure 4.5: Same as Fig. 4.4, but for the 4th-higher-mode Love-wave phase
speed maps at 50.0 s with cell sizes of (top) 4.0◦ × 4.0◦ and (bottom) 6.0◦ ×
6.0◦.
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path-averaged phase speed measurement along source-receiver path, which

provides us with the insight into the lateral resolution of our data sets. Some

examples of the present checkerboard tests are shown in Fig. 4.4 for the

fundamental-mode Rayleigh wave and in Fig. 4.5 for the 4th-higher-mode

Love wave. In all cases, input checkerboard models have the maximum of

perturbations from the reference phase speed to be about ±6.0%. In Fig. 4.4

with the cell sizes of both 3.0◦ and 5.0◦ for Rayleigh waves, both strength

and pattern of phase speed perturbations in the whole U.S. can be recovered

well. This is mainly because a large number (over 100000) of crossing paths

from various directions in each cell. In the case of higher-mode Love waves

(Fig. 4.5), the number of the ray paths is only about 15000. Thus, the lateral

resolution of the maps tends to be limited compared to those of Fig. 4.4,

although the large-scale features are mostly recovered. It should be noted

that, in principle, small-scale structures cannot be resolved well by higher-

mode waves, whose wavelengths are longer than those of the fundamental

mode in a same period. We can see some smearing effects in the NW-SE

direction in maps of Fig. 4.5, since the deep events used in this study, which

excites the sufficient energy of higher modes, are mostly located in the NW

and SE directions of North America.

To estimate the standard errors of the phase speed maps derived from

the eikonal tomography, we performed a jackknife resampling test for the

fundamental-mode Rayleigh wave, for which we could gather a large number

of ray paths. Our jackknife resamples were generated by removing 10% of

the original data (710 events). We created 10 sets of resampled data that are

independently used to obtain phase speed maps by the eikonal tomography.

The standard deviation σ of phase speeds at each grid can be estimated as
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Figure 4.6: Results of jackknife resampling tests for the fundamental-mode
Rayleigh wave at 50.0 s: the standard errors of phase speeds obtained by the
eikonal tomography.
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follows (e.g., Friedl & Stampfer, 2006; Nishimura, 2020):

σ =

√√√√ 9

10

10∑
k=1

{c (k)− c̄}2, (4.1)

where c(k) is the local phase speed derived from the k-th data set, and c̄

is the average phase speed from 10 resampled data sets. Fig. 4.6 displays

the results of the jackknife tests for the fundamental-mode Rayleigh wave at

50 s. The estimated errors are mostly less than 1.0–1.5 %, which are not

very significant. We can see that the standard errors tend to be relatively

large around the Cascadia subduction zone or the northern part of the Great

Plains. Both of them coincide with locations where the lateral changes in

seismic structure are relatively large, and ray paths (or phase fronts) are

likely to be distorted severely. This result may suggest that the rapid lat-

eral changes in the mantle structure lead to the instability of the derivative

calculation in the eikonal tomography.

4.3.2 Data for the linearized inversion

For making a comparison, we conducted another phase-speed mapping by

the linearized inversion based on the method of surface-wave tomography

of Yoshizawa & Kennett (2004), incorporating approximate effects of finite

frequency (Yoshizawa & Kennett, 2002b). We used only seismic events with

epicentral distances of 8000 km or less resulting in 247 events and 35000

paths for the fundamental-mode Rayleigh waves and 15000–20000 paths for

higher-modes, 245 events and 20000 paths for the fundamental-mode Love

waves and 5000–10000 paths for higher-mode.
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4.4 Phase Speed Maps with Single-station and Hybrid
Methods

Now we show the phase speed maps derived from our hybrid approach based

on the single-station analysis and the eikonal tomography, for the fundamen-

tal mode in Fig. 4.7 and 4.9 and for the higher modes in Fig. 4.11 and

4.12 We compare the maps derived from the single-station analysis and the

linearized inversions based on the finite-frequency theory, in a similar way

to the conventional surface-wave tomography (e.g., Yoshizawa & Ekström,

2010) in Figs. 4.8, 4.10, 4.11 and 4.12.

Phase speed maps in Figs. 4.7–4.12 are displayed as perturbations from

the average in the U.S. of our data set. Some examples of vertical sensitivity

kernels to S-wave speed for each mode and period are shown in Fig. 1.1.

Phase speed models for the fundamental mode derived from the eikonal

tomography (Figs. 4.7 and 4.9) are mostly consistent with those from the

linearized tomographic inversions (Figs. 4.8 and 4.10).

A typical large-scale pattern of slow anomalies in the west and fast

anomaly in the east are apparent. In addition, relatively small-scale (a

few hundred-kilometer-scale) tectonic features have been also imaged clearly,

particularly in the eikonal tomography maps. Our fundamental-mode maps,

which mostly sample the uppermost mantle, primarily reflect surface tectonic

features. Both Rayleigh and Love wave maps of Figs. 4.7 and 4.9 resolve

slow anomalies corresponding to the Yellowstone hotspot, the Snake River

Plain, the Great Basin, and the Rio Grande Rift in the western U.S. A local

fast anomaly corresponding to the Colorado Plateau can also be imaged in

the fundamental-mode Rayleigh maps, particularly in a period range shorter

than 70 s.

This fast anomaly in the Rayleigh wave model from the linear inversion

appears to be shifted to the north from the surface location of the Plateau.
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Figure 4.7: Phase speed maps derived from the eikonal tomography in the
U.S. for the fundamental-mode Rayleigh wave at a period of (a) 40.0 s, (b)
50.0 s, (c) 62.5 s, (d) 83.3 s, (e) 100.0 s and (f) 125.0 s.
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Figure 4.8: Same as Fig. 4.7, but from the linear tomographic inversions.
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Figure 4.9: Same as Fig. 4.7, but for the fundamental-mode Love wave at a
period of (a) 40.0 s, (b) 50.0 s, (c) 62.5 s, (d) 83.3 s, (e) 100.0 s and (f) 125.0
s.
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Figure 4.10: Same as Fig. 4.9, but from the linear tomographic inversions.
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In the eastern U.S., phase speed maps at all the periods are dominated by

the fast anomalies related to the old cratons on the surface.

Higher-mode Rayleigh wave maps of Fig. 4.11 show somewhat smaller

perturbations compared to the fundamental mode ones. We can see common

features in large-scale heterogeneity distribution with our higher-mode maps

obtained from both the linear inversion and the eikonal tomography. A

similar feature was found in previous studies on higher-mode dispersion maps

of the global scale by Visser et al. (2008) and of the regional scale in North

America by Yoshizawa & Ekström (2010). For example, in the second higher-

mode Rayleigh maps (Figs. 4.11b), there is a slow anomaly in the south-

eastern U.S. On the contrary, the higher-mode Love maps by both the linear

inversion and the eikonal tomography in Fig. 4.12 show different anomaly

patterns.

Higher mode waves sample the mantle structure in a very different way

from the fundamental mode wave (see, Fig. 1.1). Although the 3rd (83.3 s)

and the 4th higher-modes (50.0 s) of Rayleigh waves have complicated sen-

sitivities to the upper and lower mantle, their peak sensitivities are located

at about 75 km in depth, similar to that of the fundamental-mode Rayleigh

wave (50 s). These maps (Figs. 4.11c and d), therefore, show similar fea-

tures to the fundamental-mode map (Fig. 4.7b), although the strength of

heterogeneity tends to be weak in the higher-mode models.

4.5 Discussion

In this chapter, the multi-mode phase speed maps have been constructed us-

ing a hybrid approach with the single-station multi-mode dispersion analysis

(Yoshizawa & Kennett, 2002a; Yoshizawa & Ekström, 2010) and the eikonal

tomography (Lin et al., 2009). This method is computationally efficient, and

thus it can be applied to large datasets of USArray. In the case of the linear
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Figure 4.11: Higher-mode Rayleigh wave phase speed maps in the U.S. for (a)
the 1st-higher-mode at 125.0 s, (b) the 2nd-higher-mode at 100.0 s, (c) 3rd-
higher-mode at 83.3 s, and (d) the 4th-higher-mode at 50.0 s The models are
derived from (left) the linear inversion and (right) the eikonal tomography.
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Figure 4.12: Same as Fig. 4.11 but for Love waves for (a) the 1st-higher-
mode at 125.0 s, (b) the 2nd-higher-mode at 100.0 s, (c) 3rd-higher-mode at
83.3 s, and (d) the 4th-higher-mode at 50.0 s.
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inversions for regional-scale maps, we used only short ray paths for events

within the target region of tomographic inversions, which leads to the limited

numbers of events and paths. On the contrary, for the eikonal tomography,

we can also use long ray paths. Thus the large numbers of events can be

used in combination of a dense seismic array, resulting in the high lateral

resolution of about 3.0◦ × 3.0◦.

The fundamental-mode maps by the linear inversion have enabled us to

image large-scale anomalies. However, some small-scale structural features

seem to be deviated from realistic geologic features, mainly due to the limited

number of crossing paths and an uneven path distribution in target areas.

On the other hand, those by the eikonal tomography have successfully im-

aged small-scale anomalies corresponding to surface geologic features. These

results suggest that the single-station multi-mode dispersion measurements

by Yoshizawa & Kennett (2002a); Yoshizawa & Ekström (2010) enable us

to extract the dispersion curve of each mode, allowing us to extract phase

front information across the dense seismic array, and resulting in reliable

mappings of phase speed distributions based on the eikonal tomography (Lin

et al., 2009).

It should be noted that the fundamental-mode Love waves tend to be con-

taminated by higher modes since they share similar group speeds. Some ear-

lier studies (Nettles & Dziewoński, 2011; Foster et al., 2014c) have reported

that, without proper mode separations, the phase speed measurements of the

fundamental-mode Love waves are likely to include large measurement errors

of about 10% for inter-station measurements, and up to 20% for mini-array

measurements. Since we have separated the modal contributions through

the multi-mode waveform analysis in this study, the influence of the higher-

mode contamination should have been reduced. Thus, the reliability of our

fundamental-mode Love waves measurements is likely to be higher than that
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of conventional inter-station or mini-array methods, which directly employ

observed waveforms without mode separations. The improved and stable

Love wave measurements are essential to improve the accuracy of the final

3-D S-wave models, including the radial anisotropy, which will be discussed

in detail in the next chapter.

We have also collected a large number of higher-mode phase speeds, de-

spite the intrinsic difficulties in their measurements, by using the automated

method based on the full nonlinear waveform fitting by Yoshizawa & Ekström

(2010). The interpretation of higher-mode phase speed maps is generally not

straightforward since their vertical sensitivity to the shear-wave structure is

much more complicated than the fundamental mode one. Nevertheless, the

eikonal tomography maps for higher modes represent reasonable phase speed

distributions compared with those by the linear inversions with the limited

ray path coverage. Detailed mantle structures should be discussed based

on the shear wave speed models obtained from inversions of the multi-mode

dispersion maps (in the chapter 5). Combining these high-resolution multi-

mode phase speed maps for both Rayleigh and Love waves would allow us

to construct a radially anisotropic shear wave structure over a wide depth

range in the mantle, which can be derived from a joint inversion of Love and

Rayleigh waves.



Chapter 5

Radially Anisotropic 3-D Shear Wave
Structure in North America Using Array-
based Multi-mode Phase Speed Map-
ping

5.1 Introduction

Using the phase speed maps of multi-mode Rayleigh and Love waves obtained

in chapter 4, we now construct radially anisotropic 3-D S-wave speed models

following the method by Yoshizawa (2014), which is based on the generalized

nonlinear least-squares inverse scheme of Tarantola & Valette (1982). Local

dispersion curves at each grid point derived from the set of phase speed

maps are used to constrain local 1-D shear wave profiles, including radial

anisotropy, which eventually form a 3-D anisotropic shear wave model.

5.2 Method of Inversions for 1-D S-wave Models

The phase speed maps obtained in chapter 4 can be used to construct 3-D

S wave models. In the inversion for a radially anisotropic model, we can use

either set of model parameters (a) [ρ, α, ϕ, β, ξ, η] and (b) [ρ, αv, αh, βv, βh, η].

Here, ρ is a density, α represents P-wave speed and β S-wave speed. αv and αh

are respectively PH (horizontally polarized P) and PV (vertically polarized

89
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Figure 5.1: 1-D P and S velocity profiles of the anisotropic PREM.



5.2. Method of Inversions for 1-D S-wave Models 91

P) wave speeds, βv and βh are respectively SV (vertically polarized S) and

SH (horizontally polarized S) wave speeds. η, ϕ and ξ are the anisotropic pa-

rameters, where η represents the directional dependency of wave speeds, and

ϕ = (αv/αh)
2 and ξ = (βh/βv)

2, representing the polarization dependency

of wave speeds. Through the careful considerations of vertical sensitivity

kernels for multi-mode Love waves for these two different sets of parameter-

izations, Yoshizawa (2014) has argued that the parameter set (a) should be

better to be used in the inversions for radially anisotropic S wave models, so

we employ the model parameters (a).

The linear relationship between phase speed perturbations and model

parameters in this study can be expressed as follows Dahlen & Tromp (e.g.,

1998),

δc
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=
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for Rayleigh waves, and
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for Love waves, where RE is the average Earth radius (= 6371 km), δc
(n)
R , δc

(n)
L

are phase speed perturbation of the nth-mode Rayleigh and Love waves.

K
(n)
ρ , K

(n)
αv , K

(n)
αh , K

(n)
βv

K
(n)
βh

and K
(n)
η are sensitivity kernels to represent the

partial derivatives of multi-mode phase speeds with respect to each of the

model parameters. The effects of density and P-wave speeds are smaller than

those of S-wave speeds. Thus, we take density and P-wave speed into account

through a scaling relationship to S-wave speeds as used in Yoshizawa (2014).

Therefore, we used only S-wave speed perturbations as independent model

parameters for inversions.

In the inversion of a local dispersion curve for a local 1-D shear-wave

speed model, we first constructed a local reference model at each point, which
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comprises the local crustal structure taken from the 3SMAC model (Nataf &

Ricard, 1996) combined with the mantle and core structure from anisotropic

PREM (Dziewoński & Anderson, 1981) at the reference period of 1 s, with

a modification to smooth the boundary at 220 km in depth. The effects of

physical dispersion due to the anelastic attenuation (Kanamori & Anderson,

1977) is taken into account using the Q values of PREM, except that Q

for S waves in the crust has been replaced by that of the 3SMAC. In our

inversions, the amplitude of shear wave perturbations and the smoothness of

vertical variations of the model are controlled by two a priori parameters; a

standard deviation, σ, and a correlation length, L, which forms a Gaussian

function for the covariance matrix used in the inversion (e.g., Nishimura &

Forsyth, 1989). In this study, we employed 0.020 km/s, and 5 km above the

Moho, 0.030 km/s and 10 km in the upper mantle, 0.050 km/s and 20 km in

the mantle transition zone and 0.050 km/s and 30 km in the lower mantle,

respectively．

We performed the vertical resolution tests in the same way as Yoshizawa

(2014). The Examples are displayed in Fig. 5.2. We created the synthetic

1-D SV and SH wave speed models with a 5%–fast anomaly at the depths of

80 km, 100 km, 150 km, 200 km, 250 km and 300 km. Then, we calculated

synthetic dispersion curves for both Love and Rayleigh waves including up

to the 4th-higher modes. The period range for each mode is summarized

in Table 5.1. As in the real data inversions, we employed the same scaling

relations to P wave speeds and density in the calculations of synthetic disper-

sion data. In each case, we could retrieve the input anomaly fairly well for

all the target depths, despite some smearing effects in the deeper structure.

The radial anisotropy models calculated from the retrieved SV and SH wave

speed profiles were also recovered well.
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Figure 5.2: Vertical resolution tests for the retrieval of anisotropic 1-D shear
wave speed models. All the inversions for SV and SH wave speeds are initi-
ated from the starting models (green solid dashed lines), and resultant models
are plotted with solid blue and orange lines in the top panels. The radial
anisotropy parameter, ξ, in the bottom panels is calculated from the SV and
SH wave speed profiles.
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5.3 3-D S-wave Models in North America with USAr-
ray

To construct radially anisotropic 3-D shear-wave models in the contiguous

U.S., we applied the iterative nonlinear inversion method by Tarantola &

Valette (1982) to the local multi-mode dispersion data derived from the phase

speed maps in chapter 4. The period range for each mode used in our inver-

sion is summarized in Table 5.1. A radially anisotropic 3-D S wave model

(expressed by the parameters βv, βh, and ξ = (βh/βv)
2), derived from the

multi-mode phase speed maps based on the eikonal tomography, is shown

in Fig. 5.3 for depths from 60 km to 400 km. We also display five vertical

cross-sections across the continent in the east-west directions in Fig. 5.5.

We calculate the upper (red solid line) and lower (black and white dashed

line) bounds of the Lithosphere–Asthenosphere Transition (LAT), which is

originally defined by Yoshizawa (2014) to quantify smoothly varying litho-

spheric roots derived from surface wave tomography. The upper bound of

LAT is determined from the negative peak of the vertical gradient of the 1-D

shear wave speed profile, and the lower bound is determined from the slowest

shear wave speed in the low-velocity zone beneath the upper bound. We also

constructed and compared another 3-D model using the multi-mode phase

speed maps based on the linear inversions, as shown in Figs. 5.4 and 5.6.

S-wave speed maps and vertical cross-sections are plotted as perturbations

from the isotropic PREM in ranging from −12% to +12%, and ξ from 0.85

to 1.15.

In the uppermost mantle at depth shallower than 200 km, we find large S-

wave speed variations over ±6% in Fig. 5.3. These anomalies are consistent

with some notable geological features in the U.S., for example, strong lateral

velocity contrast between the tectonically active western U.S. and the stable

cratonic eastern U.S. At depth shallower than 100 km, the Snake River Plain
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can be imaged as a remarkable slow anomaly, and the Colorado Plateau can

be imaged as a fast anomaly. The dominant fast anomaly in the eastern

region is found down to about 200 km, reflecting a thick cratonic lithosphere

in North America (Gung et al., 2003; King, 2005; Yuan & Romanowicz, 2010;

Calò et al., 2016). We can also see a fast anomaly extending in NNW–SSE

in the western region at a depth of 400 km, which may be related to the

subducted Juan de Fuca slab from the Cascadia subduction zone (Sigloch

et al., 2008). In the five vertical E-W cross-sections of Fig. 5.5, a sharp

contrast between the slow western and the fast eastern U.S. can be seen

clearly at the Rocky Mountain front. In the northern cross section at N45◦,

we can see a deepened portion of the Superior craton around −95◦, whose

location coincides well with the location of density anomaly that may reflect

the deformation of the cratonic root due to the basal drag found in an earlier

study of Kaban et al. (2015).

For the radially anisotropic parameter, the entire continent at depths

shallower than 100 km is characterized by ξ > 1, representing faster SH-

wave speed (βh) than SV-wave speed (βv). This agrees well with the previous

tomographic models in both global (e.g. Nettles & Dziewoński, 2008; Chang

et al., 2014) and in the regional-scales in North America (e.g. Yuan et al.,

2011; Zhu et al., 2017). The ξ values in our models are mostly consistent with

those in the model of Nettles & Dziewoński (2008) and Zhu et al. (2017), but

larger than those of Yuan et al. (2011). Frozen-in anisotropy is one possible

interpretation of the existence of ξ > 1 beneath the continent. The contrast of

ξ beneath the eastern U.S. suggests that the lithospheric keel of the Superior

craton, which corresponds to the LAB, can be estimated at depth of 200–250

km. Deeper than 300 km, the two zones of ξ < 0.95 are noticeable: beneath

the Cascadia Range and the Superior Craton. When the low ξ is interpreted

as the mantle up- or the down-welling, the one beneath the Cascadia Range
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Table 5.1: The period ranges of multi-mode phase speed maps used to con-
struct the 3D S-wave models.

Mode Rayleigh Love

Fundamental mode 35.7–250.0 s 35.7–250.0 s
1st-higher mode 66.7–250.0 s 83.3–200.0 s
2nd-higher mode 66.7–200.0 s 90.9–125.0 s
3rd-higher mode 55.5–90.9 s 62.5–83.3 s
4th-higher mode 40.0–62.5 s 45.5–55.6 s

reflects slab subduction, while the other beneath the Superior Craton might

reflect the cratonic root delamination. The former is also supported by a fast

anomaly in our isotropic S-wave speed model. The latter is consistent with

the fast anomaly in the model of Zhu et al. (2017).

5.4 Discussion

For the SV- and SH-wave speed structures shallower than 200 km, which is

constrained mainly by the fundamental-mode surface waves, we could obtain

models with high lateral resolution. The upper mantle at such depth beneath

the U.S. is characterized by faster SH wave speed than SV, particularly in the

shallow lithosphere (Figs 5.3 and 5.5). The small-scale pattern of the hetero-

geneity found in the eikonal model well reflects geologic features throughout

the U.S. The 3-D models derived from the phase speed maps with the lin-

ear inversion (Figs. 5.4a–d) have some patchy or linear features, which may

be originated from the uneven path coverage of our data set used to con-

struct the phase speed maps based on the linearized tomographic inversions.

On the other hand, our phase speed database in the USArray is sufficiently

large enough to construct high-resolution eikonal tomography maps for both

Rayleigh and Love waves. In particular, we could successfully separate the

influence of the overlapped higher-modes through the nonlinear waveform fit-

ting process. As a result, the subsequent phase-front tracking with the dense
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Figure 5.3: Radially anisotropic S-wave speed maps, derived from the phase
speed maps based on eikonal tomography, at the depths of (a)60 km, (b)80
km, (c)100 km, (d)150 km, (e)200 km, (f)300 km and (g) 380 km. Left and
middle panels show the perturbations of SV- and SH-wave from the average
isotropic S-wave speeds in the U.S. Right panel shows the radially anisotropic
parameter ξ = (βh/βv)

2.
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Fig. 5.3 (continue)
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Figure 5.4: Same as Fig. 5.3, but from the phase speed maps based on the
linear inversion.
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Fig. 5.4 (continue)
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Figure 5.5: Vertical cross-sections of isotropic S wave speed and radial
anisotropy models in the E-W direction along the latitudes of (A)45◦, (B)42◦,
(C)39◦, (D)36◦, and (E)33◦, derived from the phase speed maps based on
eikonal tomography. The left panel shows the perturbations of isotropic
(Voigt-average) shear wave speeds from the PREM in the upper right, and
the right panel shows the radially anisotropic parameter ξ. The red solid line
and black dashed line in the left panels are respectively the upper and lower
bounds of LAT. The thin black solid line on the top of each panel represents
the topography along the latitudes.
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Figure 5.6: Same as Fig. 5.5, from the phase speed maps based on the linear
inversion.
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seismic array allows us to improve the resolution and accuracy of the phase

speed maps, resulting in the robust and reliable 3-D S wave speed model.

The present method works well even for Love waves, with limited numbers

of ray paths compared with that of Rayleigh waves, enabling us to construct

a reliable radially anisotropic S-wave structure. Our anisotropic model is

consistent with recent North American models obtained by the adjoint to-

mography (Zhu et al., 2017) and by the joint inversion of SKS splitting and

surface waves (Yuan et al., 2011).

In our S-wave models deeper than 200–250 km, constrained mainly by

higher modes, there is noticeable differences between the eikonal and lin-

ear inversions due to the difficulty in collecting a number of ray paths that

evenly cover the U.S. We can see some artificial features in the linear in-

version models, which are not seen in the array-based eikonal tomography

model, for example, a fast linear-shaped anomaly in the N-S direction in

Figs. 5.4(a-d) and that in the NE-SW direction in Figs. 5.4(f-g) in the cen-

tral U.S. Since the number of ray paths used for the higher-mode mapping is

limited, these models are affected by specific paths with large measurement

errors and/or uneven path coverage. In the eikonal tomography, a number of

measurements at many seismic stations allow us to avoid such biases in the

ray path coverage. In vertical cross-sections of the isotropic S-wave model,

the velocity contrast between the western and the eastern U.S. at a depth

shallower than 100–150 km is clearly imaged in the eikonal model. On the

contrary, such lateral heterogeneities tend to be smoothly varying in the lin-

ear inversion model, likely reflecting the effect of smearing due to the longer

and uneven paths used in the inversion. This feature directly affects the

lateral variations of the estimated LAT depth. In the linear inversion model,

the upper and lower bounds of the LAT smoothly vary across the U.S. in the

west-east direction in the depth range around 150–250 km. However, in our
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eikonal model, we can see significant lateral changes in the LAT across the

Rocky Mountains; e.g., the LAT tends to be shallower at around 100–200

km depth in the tectonically active western region but becomes deeper at

around 150–300 km depth in the eastern stable cratonic areas. Also, some

local tectonic features can be seen in the LAT of the eikonal model; e.g.,

the lithospheric thinning with the shallow upper bound in the New Madrid

Seismic Zone around −92◦ in Line E of Fig. 5.5. Since the eikonal model

can effectively use the relatively small number of higher-mode measurements,

both the lateral and vertical resolutions have been improved in our model,

allowing us to image the localized lateral variations that reflect surface tec-

tonics and cratonic roots.

In the previous and present chapters, we have shown the multi-mode

phase speed distributions together with radially anisotropic shear wave struc-

ture in North America. Those inversion results suggest that our hybrid

method for the multi-mode surface wave tomography, incorporating multi-

mode single-station measurements and the eikonal tomography, can be of

help in enhancing both lateral and vertical resolutions. Such an approach

with the efficient use of the modern high-density seismic arrays enables us to

image the whole upper mantle beneath the continents with much improved

resolution.



Chapter 6

Conclusions and Future Directions

6.1 Summary of this thesis

The use of higher-mode surface waves is essential for enhancing the vertical

resolution of 3-D shear wave structure, although the measurement of their

phase speeds is intrinsically difficult due to the overlapping of several modes

in a recoreded seismogram. In this thesis, we have developed and devised sev-

eral array-based approaches for analyzing multi-mode dispersions to improve

surface wave tomography utilizing a recent high-density seismic network.

First of all, we have developed a two-step array-based method for the

multi-mode phase speed measurements based on the f–k analysis and the

modal waveform decomposition for the centroid location of a long linear array,

based on the linear Radon transform. In chapter 2, we explained and demon-

strated our linear array analysis through several experiments with synthetic

and observed waveforms. The method allows us to measure the multi-mode

surface wave dispersions by the classical single-plane-wave beamforming tech-

nique. The weighted-average phase speeds within a linear array longer than

2000-3000 km can be obtained precisely in a wide period range in which

the wavetrains of several modes overlapped each other in the original data.

After determining multi-mode dispersion curves for a long linear array, the

linear Radon transform enables us to extract mode-branch waveforms from

105
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a dispersion spectrogram in the c–f domain. This approach can be used in

the subsequent analysis for further extraction of localized phase speeds, such

as inter-station analysis and two-dimensional array analysis. Our numerical

experiments with real seismograms observed at USArray also suggest that

local phase speeds and propagation direction can be retrieved well from the

2-D array analysis using the mode-branch waveforms.

This linear array analysis has been applied to the large dataset of USAr-

ray to map fundamental-mode phase speed distributions in chapter 3. We

have employed the inter-station analysis (Hamada & Yoshizawa, 2015) and

the eikonal tomography technique (Lin et al., 2009). We have obtained three

types of phase speed maps in the U.S.; (a) a low-resolution large-scale hetero-

geneity model inverted from the average phase speed along each long linear

array, and two types of high-resolution maps inverted from (b) average phase

speeds of centroid pairs, and (c) the eikonal tomography based on the phase

tracking across two-dimensional centroid arrays using mode-branch wave-

forms. Since the number of employed events is limited (greater than Mw

6.5 in this case), the eikonal models appear to suffer from relatively large

measurement errors. On the other hand, the inter-station model enables us

to image some small-scale tectonic features.

In chapter 4, as another approach for mapping multi-mode phase speed

distributions of surface waves, we have devised a hybrid method combining

the single-station dispersion analysis (Yoshizawa & Kennett, 2002a) and the

eikonal tomography (Lin et al., 2009). Applying this hybrid technique to

USArray data, we have obtained phase speed maps of the first five modes

in the U.S. The lateral resolution of the fundamental-mode maps is nearly

comparable to recent high-resolution tomographic models in the U.S. We

can retrieve the well-known and distinct large-scale heterogeneity contrast

between the active western and the stable eastern U.S., as well as the small-
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scale anomalies indicating major tectonic features in North America. The

higher-mode models can be determined stably in eikonal tomography mod-

els since the large number of measurements can be used for near-field and

teleseismic events.

In chapter 5, radially anisotropic shear wave structures have been con-

structed from the multi-mode surface wave models in chapter 4. The multi-

mode phase speed maps in a wide period range allow us to image the con-

tinental upper mantle to the depth of the mantle transition zone. We can

find the deep root of the cratonic lithosphere of North America at 200–250

km depth. The distributions of the radially anisotropic parameter (ξ) shows

that ξ > 1 in North America at depth shallower than 100 km and ξ < 1

related to the Juan de Fuca slab subduction and the possible delamination

of cratonic keels at depth deeper than 250 km.

6.2 Discussion on multi-mode dispersion analyses and
their applications to structural reconstruction

In this thesis, we employed two different ways of the multi-mode dispersion

analysis; the one based on the long-linear-array analysis (in chapters 2 and

3), and the other based on the hybrid method of the single-station dispersion

measurements and the eikonal tomography (in chapters 4 and 5).

In the former case, as mentioned in chapter 2, a linear array longer than

2000–3000 km is required for the precise measurement of higher-mode phase

speeds using our linear-array analysis. This style of array-based analysis al-

lows us to measure multi-mode dispersions using only observed waveforms

without any synthetics or seismic source mechanism. However, for sepa-

rating the overlapped modes using the linear array, seismic signals of the

target mode and frequency need to propagate a certain distance equivalent

to several wavelengths along the array. In practical applications, such a dis-
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tance limitation holds an important key. In phase speed mapping using the

average phase speeds of long arrays with several thousand kilometers, it is

not easy to resolve heterogeneities of a scale of a few hundred kilometers.

The method can be used in larger-scale areas where the lateral heterogeneity

varies smoothly, such as the oceanic mantle in the Pacific, but it may not be

very suitable to resolve regional/local-scale tectonic features in the contigu-

ous United States covered by USArray, whose lateral extent is only about

4000 km in the east-west and about 2000 km in the north-south directions.

Also, azimuthal coverages can be limited when we apply the linear array

method to USArray, which makes it difficult to reconstruct the phase speed

model, including azimuthal anisotropy.

To overcome such intrinsic limitations in the linear-array method for mak-

ing regional-scale tomography models using USArray, we devised an alter-

native hybrid approach combining the single-station multi-mode dispersion

measurements and the eikonal tomography in the later chapters (4 and 5)

of this thesis. Unlike the array-based analysis, the multi-mode dispersion

measurements using the single-station method (e.g., Yoshizawa & Kennett,

2002a; Yoshizawa & Ekström, 2010) requires synthetic seismograms using the

global CMT solutions. Still, this method does not impose significant restric-

tions on the propagation distances and has been applied to many regional-

scale tomographic studies (e.g., Yoshizawa, 2014; Isse et al., 2019). Thus,

we can use many observed waveforms to extract multi-mode dispersion in-

formation in the entire array. In the conventional mapping methods using

the single-station measurements, path-average phase speeds for many source-

receiver pairs have been inverted for tomography models based on linearized

inversions. In contrast, we applied the measured multi-mode dispersion data

to extract the local multi-mode phase speed structures in the array using

the eikonal tomography method. Since this eikonal method requires a very
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dense seismic network to properly reconstruct the phase fronts (or travel-time

fields) of each mode and frequency, the contiguous U.S. covered by USArray

is one of the best-suited target areas of this hybrid approach. The successful

recovery of the 3-D tomographic model in the U.S. using our hybrid ap-

proach implies the utility of this style of analysis for continental regions with

high-density broad-band seismic networks, as discussed in the next section.

Both approaches used in this study have pros and cons, and a proper

choice of the method suited for the target areas and the available seismic

network is essential. Also, both methods require multiple steps of data pro-

cessing. To retrieve the precise phase speed models, it is important to elim-

inate unwanted data that may affect the final results, e.g., observed wave-

forms with a weak excitation at source, a bad S/N ratio, and phase speed

measurements with large errors and lower reliability.

6.3 Future directions

Our linear array-based analysis explained in chapter 2 can be applied to am-

bient noise tomography. In recent years, distributed acoustic sensing (DAS)

using fiber-optic telecommunication cables have been used to image subsur-

face structures (e.g., Dou et al., 2017) as a very dense linear array. By ap-

plying the noise cross-correlation for a linear DAS system, it will be possible

to measure the phase speed of multi-mode Rayleigh waves at high frequency.

On the other hand, our hybrid approach of the multi-mode phase speed

mapping both using the single-station analysis and the eikonal tomography

can be used for many recent broad-band seismic networks because there are

almost no limitations on the array size required for the multi-mode disper-

sion measurements with the single-station, although we need high-density

broad-band network for high-resolution mapping with the eikonal tomogra-

phy. There are many possible candidates for further applying our approaches
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such as AlpArray in Europe and AusArray in Australia, and a combination

of F-net and NECESSArray in Japan and China.

Recently, Taira & Yoshizawa (2020) have developed the joint inversion

of P receiver functions and multi-mode surface wave dispersion based on

the transdimensional Bayesian approach. Through synthetic experiments,

they have revealed that the higher-modes are of great help to recover the

radial anisotropy in the whole depth range of the upper mantle. 3-D S wave

models derived from the joint inversion of multi-mode surface waves and P

receiver functions are expected to improve the accuracy of the retrieved upper

mantle structure with discontinuities such as the MLD (Mid-Lithosphere

Discontinuity) and LAB (Lithosphere-Asthenosphere Boundary) beneath the

continental lithosphere.



Appendix A

Methods for Linear Array Analysis

As explained in chapter 2, our array-based multi-mode phase speed mea-

surements are modeled in the frequency-wavenumber (f–k) analysis for a

linear array along a great-circle path originally developed by Nolet (1975,

1976). The subsequent analysis of modal waveform decompositions is based

on the linear Radon transform (e.g., Luo et al., 2008, 2009, 2015). In this

appendix, we briefly summarize procedures of these two methods. Note that

this appendix is based on the electronic supplementary material of our earlier

publication (Matsuzawa & Yoshizawa, 2019).

A.1 Multi-mode Phase Speed Measurements

Here we briefly summarize the data processing procedure for linear array

multi-mode dispersion measurements mainly following the descriptions by

Nolet (1976).

At first, we apply various group-speed windows to extract seismic signals

that propagate with a common group speed. For extracting signals whose

group speed is U [km/s] from a seismogram dj(t) at the j-th station (j =

1, 2, · · · , N ; where N is the number of stations in an array), we apply a

group-speed window whose average arrival time is xj/U [s] with a window

width w = xj/{(1 − r)U} − xj/{(1 + r)U} [s], where xj is the epicentral
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distance of the j-th station in kilometers. A real value r is determined by an

empirical relation r = (1.5U − 3.5)× 0.01. Usng a 10 % cosine taper applied

to both ends of the time window, the group speed window function gj(U, t)

can be expressed as follows,

gj(U, t) =


1

xj

U
− 40

100
w < t <

xj

U
+ 40

100
w,

0 t <
xj

U
− w

2
,
xj

U
+ w

2
< t,

1
2

[
1 + cos

{
π
(
1 +

t−xj/U

10w/100

)}]
otherwise.

(A.1)

Then, the windowed seismograms d̃j(U, t) are given as,

d̃j(U, t) = dj(t) · gj(U, t). (A.2)

Next, we generate a beam waveform by stacking windowed seismograms

d̃j(U, t), assuming a constant phase speed, c, across an array. Here, we slant-

stacked d̃j with respect to the centroid of an array (i.e., reference position)

by shifting time with a constant phase speed, which forms the beam b(c, U, t)

as follows,

b(c, U, t) =
1

N

N∑
j=1

d̃j

(
U, t+

xj − x̄

c

)
, (A.3)

where x̄ is the epicentral distance of the centroid of the array, where

x̄ =
1

N

N∑
j=1

xj. (A.4)

Through this stacking process, coherent signals are enhanced, while inco-

herent signals and noises are canceled out.

The Fourier spectrum of the beam B(c, U, ω) is represented as,

B(c, U, ω) =

∫
b(c, U, t)eiωt dt

=
1

N

N∑
j=1

Dj(U, ω) exp

(
−iω

xj − x̄

c

)
, (A.5)
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where ω is angular frequency and Dj(U, ω) is the Fourier spectrum of d̃j(U, t).

We can rewrite (A.5) by using a wavenumber k (= ω/c),

B(k, U, ω) =
1

N

N∑
j=1

Dj(U, ω) exp[−ik (xj − x̄)] . (A.6)

When d̃j(U, t) at U = U0 includes several different surface waves modes

(e.g., from nmin to nmax), Dj(U0, ω) can be expressed as the summation of

multiple modes,

Dj(U0, ω) =
nmax∑

n=nmin

Fnj(ω) exp [i {kn(ω)xj + ϕnj(ω)}], (A.7)

where the subscript n indicates the mode number, Fnj, kn(ω) and ϕn(ω) are

the Fourier spectrum, wavenumber and initial phase of the n-th mode for

the j-th station, respectively. Since the geometry of the array is linear, we

can ignore the difference in the radiation pattern of surface waves as long as

the azimuth of the ray path is sufficiently away from any nodal directions, so

that all the ϕnj become ϕn. With the correction for the effect of geometric

spreading, we can replace Fnj = Fn. Then, (A.7) can be represented as,

Dj(U0, ω) =
nmax∑

n=nmin

Fn(ω) exp [i {kn(ω)xj + ϕn(ω)}]. (A.8)

By substituting (A.8) into (A.6), we can get the following relation,

B(k, U0, ω)

=
1

N

N∑
j=1

[
∞∑
n=0

Fn(ω) exp [i {kn(ω)∆j + ϕn(ω)}]

]
exp

[
−ik

(
∆j − ∆̄

)]
=

nmax∑
n=nmin

Fn(ω) exp [i {kn(ω)x̄+ ϕn(ω)}]H(kn(ω)− k), (A.9)
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where H(k) represents the array response function controlled by the station

configuration in an array,

H(k) =
1

N

N∑
j=1

exp [ik (xj − x̄)]. (A.10)

An example of the array response function is shown in Fig. 2.3. The

central peak of the main lobe of the array response function is one at k = 0,

accompanied by wiggly sidelobes on both sides. In practice, it is desirable to

place seismometers so that the shape of the array response function becomes

closer to the delta function.

The beam spectrum is represented as functions of wavenumber k, group

speed U , and angular frequency ω. So, we can make a spectrogram in the k–U

domain for each ω. Since the beam spectrum obtained by (A.9) represents the

weighted average at the centroid location multiplied by the array response

function, there are many spurious spectral peaks in the k–U spectrogram

mainly attributed to the sidelobes of array response.

We can eliminate such spurious peaks and leave only true peaks by the

following cleaning process;

1. Define B1(k) as B(k, U0, ω0), where U0 and ω0 are target group speed

and angular frequency, respectively.

2. Find k = ki (i = 1, 2, · · · ) for which |Bi(k)| is its maximum, where

i denotes the iteration number. Calculate Bi(k) using a recurrence

formula, Bi+1(k) = Bi(k)−γBi(ki)H(ki−k), where γ is a real number

(0 < γ ≤ 1).

3. Find i0 as the maximum of i satisfying
∫
|Bi(k)| dk > ϵ

∫
|B1(k)| dk,

where ϵ is a real number (0 < ϵ ≪ 1). Calculate B̃(k, U0, ω0) =

Bi0+1(k) + γ
∑i0

i=1Bi(ki)M(ki − k), where M(k) corresponds to the

mainlobe of the array response applied by a narrow wavenumber filter.
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4. Calculate B̃(k, U, ω) for all the pair of (U0, ω0) to represent a spectro-

gram with suppressed spurious peaks.

The convergence of this iterative process depends on the selection of ar-

bitrary parameters γ and ϵ. We use 0.8 for γ and 0.1 for ϵ which are de-

termined empirically. For the narrow wavenumber filter applied to the array

response function to enhance the mainlobe, we employ the Gaussian func-

tion whose standard deviation σ is set to be 1.0 % of the wavenumber of the

fundamental-mode surface wave.

After this cleaning process, we project the k–U spectrogram into the

c–T domain. This procedure is schematically summarized in Fig A.1. In

this process, no matter whether a dominant spectral peak exists or not, the

maximum value of the cleaned power spectrum |B̃(k0, U, ω0)|2 at the target

wavenumber k0 and angular frequency ω0 in the k–U domain is projected

onto a new point (ω0/k0, 2π/ω0) in the c–T domain. The resultant continuous

peaks in the c-T spectrogram (e.g., Fig. 2.4c) derived from this projection

process represent the phase speed dispersion curves of multi-mode surface

waves.



A. Methods for Linear Array Analysis 116

10
−2

10
−1

10
0

10
1

10
2

10
3

0.
03

0.
04

0.
05

0.
06

3
4

5
6

7

3 4 5 6 7 83 4 5 6 7 8

10
−2

10
−1

10
0

10
1

10
2

10
3

0.
01
0

0.
01
5

0.
02
0

3
4

5
6

7

3 4 5 6 7 83 4 5 6 7 8

Pe
rio

d 
[s

]

10
−2

10
−1

10
0

10
1

10
2

10
3

3
4

5
6

7

10
−2

10
−1

10
0

10
1

10
2

10
3

3
4

5
6

7

10
−2

10
−1

10
0

10
1

10
2

10
3

3
4

5
6

7

10
−2

10
−1

10
0

10
1

10
2

10
3

3
4

5
6

7

10
−2

10
−1

10
0

10
1

10
2

10
3

3
4

5
6

7
10

−2

10
−1

10
0

10
1

10
2

10
3

3
4

5
6

7

10
−2

10
−1

10
0

10
1

10
2

10
3

0.
01
0

0.
01
5

0.
02
0

3
4

5
6

7

3 4 5 6 7 83 4 5 6 7 8

10
−2

10
−1

10
0

10
1

10
2

10
3

0.
01
0

0.
01
5

0.
02
0

3
4

5
6

7

3 4 5 6 7 83 4 5 6 7 8

10
−2

10
−1

10
0

345678

20
30

40
50

20
40

60
80

10
0

50
10
0

15
0

10
−2

10
−1

10
0

10
1

10
2

10
3

345678

20
30

40
50

20
40

60
80

10
0

50
10
0

15
0

10
−2

10
−1

10
0

10
1

10
2

10
3

345678

20
30

40
50

20
40

60
80

10
0

50
10
0

15
0

10
−2

10
−1

10
0

10
1

10
2

10
3

345678

20
30

40
50

20
40

60
80

10
0

50
10
0

15
0

30
.0

 s
 

98
.7

s 

(a
) k

-U
sp

ec
tro

gr
am

at
 3

0.
0 

s
(b

) k
-U

sp
ec

tro
gr

am
at

 9
8.

7 
s

Wavenumber k[rad/km]

G
ro

up
 s

pe
ed

 U
[k

m
/s

]

Phasespeed c[km/s]

Wavenumber k[rad/km]

G
ro

up
 s

pe
ed

 U
[k

m
/s

]

Phasespeed c[km/s]

(a
1)

(a
2)

(a
3)

(b
2)

(b
1)

(b
3)

Li
ne

(a
1)

: c
= 

3.
50

 k
m

/s

Li
ne

(a
2)

: c
= 

4.
24

 k
m

/s

Li
ne

(a
3)

: c
= 

4.
74

 k
m

/s

Cr
os

s 
se

ct
io

n
of

 th
e 

sp
ec

tro
gr

am
 (a

t 3
0.

0 
s)

G
ro

up
 s

pe
ed

 [k
m

/s
]

Spectrogram Spectrogram

G
ro

up
 s

pe
ed

 [k
m

/s
]

Spectrogram

G
ro

up
 s

pe
ed

 [k
m

/s
]

Li
ne

(b
1)

: c
= 

4.
00

 k
m

/s

Li
ne

(b
2)

: c
= 

4.
62

 k
m

/s

Li
ne

(b
3)

: c
= 

5.
80

 k
m

/s

Cr
os

s 
se

ct
io

n
of

 th
e 

sp
ec

tro
gr

am
 (a

t 9
8.

7 
s)

G
ro

up
 s

pe
ed

 [k
m

/s
]

Spectrogram

G
ro

up
 s

pe
ed

 [k
m

/s
]

Spectrogram

G
ro

up
 s

pe
ed

 [k
m

/s
]

Spectrogram

Phase speed [km/s]

F
ig
u
re

A
.1
:
S
ch
em

at
ic

d
ia
gr
am

of
th
e
p
ro
je
ct
io
n
p
ro
ce
ss

fr
om

th
e
se
t
of

sp
ec
tr
og
ra
m
s
in

th
e
k
–U

d
om

ai
n
(t
op

)
in
to

th
e
c–
T

sp
ec
tr
og
ra
m

(b
ot
to
m

ce
n
te
r)
.



A. Methods for Linear Array Analysis 117

A.2 Linear Radon Transform

In this study, we employ the method based on the linear Radon transform

(e.g., Luo et al., 2008, 2009, 2015) for the decomposition of an observed

seismogram into modal waveforms as described in chapter 2.2.2. Here we

briefly summarize this procedure.

The Fourier spectrum of the observed seismogram s(x, ω) in an array can

be expressed as,

s(x, ω) =

pmax∑
p=pmin

m(p, ω) exp(iωpx), (A.11)

where p is the slowness in [s/km] which is the inverse of phase speed c, and

m(p, ω) is the spectrum of the seismogram in the p-ω domain. We can rewrite

this in a matrix form,

d = Lm, (A.12)

where d and m are the vectors of s and m, respectively, and the matrix L

is the linear Radon transform operator. The matrix and vector elements of

(A.12) can be given explicitly as follows,


s(x1, ω)
s(x2, ω)

...
s(xN , ω)

 =


eiωp1(x1−x̄) eiωp2(x1−x̄) · · · eiωpmax(x1−x̄)

eiωp1(x2−x̄) eiωp2(x2−x̄) · · · eiωpmax(x2−x̄)

...
...

. . .
...

eiωp1(xN−x̄) eiωp2(xN−x̄) · · · eiωpmax(xN−x̄)




m(p1, ω)
m(p2, ω)

...
m(pmax, ω)

 .

(A.13)

This linear relationship between the spectrum in the “distance”–“frequency”

domain and that in the “slowness (or phase-speed)”–“frequency” domain cor-

responds to the linear Radon transform (LRT).

The vector m corresponds to multi-mode dispersion curves as shown in

Fig. 2.4. We can, therefore, reconstruct single-mode waveforms in the fre-

quency domain by applying the LRT operator L to a single-mode dispersion
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spectrogramm extracted from our array-based dispersion analysis. Then, the

inverse Fourier transform of s(x, ω) with respect to the angular frequency ω

will give us the single-mode waveform in the time domain.
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