Supporting Information

Lamellar Bilayer to Fibril Structure Transformation of Tough Photonic Hydrogel under Elongation

M. Anamul Haque†‡, Kunpeng Cui‡§, Muhammad Ilyas‡§, Takayuki Kurokawa‡#, Alba Marcellan#¶, Annie Brulet¶, Riku Takahashi¶, Tasuku Nakajima‡§#, and J. Ping Gong‡§#,*

†Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh

‡Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan

§Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan

#Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan

¶Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 7615, 10 Rue Vauquelin F-75005 Paris, France

Labeloarte Léon-Brillouin (LLB), UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France

#Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan

*Present address: Center for Micro-Biorobotics (CMBR), Italian Institute of Technology (IIT), Pontedera (PI), 56025, Italy
I. Analysis of experimental data

I-1: The change of volume of the gels with elongation

Figure S1: The variation of sample volume ratio $\lambda_x\lambda_y\lambda_z$ during elongation.
I-2: In situ small-angle X-ray scattering (SAXS) in low q-range (0.02~1.3 nm$^{-1}$) to observe any bending/wrinkling of lamellar bilayer.

Figure S2: In situ small-angle X-ray scattering (SAXS) experiments performed during tensile deformation in a low q-range (0.02~1.3 nm$^{-1}$). Set-up of the gel deformation and X-ray scattering are shown. Tensile deformation was applied vertically, in parallel to the PDGI lamellae, and the X-ray was imposed perpendicular to lamellar plane. 2D SAXS image was collected behind the sample. (a,b) 2D SAXS images of the PDGI/PAAm gel and PAAm gel as reference are shown for various elongation ratios. At $\lambda_x \sim 1$, SAXS patterns for both gels show a very weak and diffuse scattering, indicating the in-plane isotropic structure as expected for PDGI/PAAm gel when the X-ray beam was imposed perpendicular to the lamellar plane and isotropic PAAm gel. At $\lambda_x \sim 2.8$, two scattering streaks in the direction (y-axis) perpendicular to deformation direction (x-axis) were clearly observed for the
PDGI/PAAm gel. On the other hand, the isotropic PAAm gel does not show any significant change in the SAXS scattering pattern upon deformation at all, and no noticeable scattering streaks was observed even at higher deformation ($\lambda_x \sim 3$). (c,d) 1D SAXS intensity vs. scattering vector, q obtained from 2D SAXS images for both gels. The intensity is an integration of azimuth angle, ψ, over a narrow range ($\psi = \pm 5^\circ$) in the equatorial direction. No correlation peaks were observed which is in contrast for the X-ray scattering performed parallel to lamellar layer.

I-3: Analysis of SAXS data for estimation of structure size.

Figure S3: Analysis of structure change for PDGI/PAAm gel during tensile deformation from SAXS data. (a) Deformation dependence of azimuthal width ($\Delta \psi_{1/2}$) for several scattering vector, q. The values of $\Delta \psi_{1/2}$ were obtained from Lorentz fitting of the observations. (b) The Ruland plot, azimuthal width ($\Delta \psi_{1/2}$) vs. $1/q$, for $\lambda_x = 1.78$, as a typical example to shows no linear correlation below $\lambda_x = 2.4$. Therefore, no rod-like structure is formed below $\lambda_x = 2.4$.
II. Experimental details

II-1: Reflection spectrum

The reflection spectrum of various gel samples was measured by a combined set up of light source, variable angle measurement device, and an analyzer. A Xe lamp was used as a light source to obtain the reflection spectrum. Reflection measurement optics with variable angles (Hamamatsu Photonics KK, C10027A10687) were used to detect the reflected light. A photonic multichannel analyzer (Hamamatsu Photonics KK, C10027) was used for analyzing the detected signal. The entire reflection spectrum was obtained by keeping both the incident (Bragg’s angle) and reflection angles at 60°, and the wavelength at maximum, \(\lambda_{\text{max}} \), was obtained from the reflection spectrum. The distance between two lamellar layers, \(d \), was determined using Bragg’s law of diffraction, \(\lambda = 2nd \sin \theta \), where \(n = 1.33 \) (refractive index of water), \(\theta \) is Bragg’s angle or incident angle, and \(\lambda \) is the wavelength at the maximum of the reflection spectrum.

II-2: Measurement of transverse sample size at longitudinal elongation

The gel sample was cut into rectangular sheets of various sizes, ~ 50 × (1-8) × 1.2 mm³ for determining the width ratio (\(\lambda_y \)) and ~30 ×l × 1.2 mm³ for determining the thickness ratio (\(\lambda_z \)). Then the rectangular sheet was fixed at the jaws of a manually controlled deformation stage equipped with length scale. The deformation stage was placed in the sample stage of a polarizing optical microscope (POM). The gel was deformed to a pre-defined length and both the optical microscopic images and the conventional camera photographs were captured. The longitudinal deformation ratio (\(\lambda_x \)) was achieved from the distance between the marking spots on the sample using the photographic images. Changes in transverse dimensions (\(\lambda_y \)) were precisely measured from both the POM and photographic images using conventional image processing software. The thickness change (\(\lambda_z \)) for the sample of sizes of ~50 × ~l × 1.2 mm³ was measured using rheometer at various elongations. \(\lambda_z \) for the sample of sizes of ~50 ×
(2-8) × 1.2 mm³ was measured using rheometer at various elongations since it is difficult to get microscopic images for the cross-section of large width (>2 mm) sample.

II-3: Optical observation

The anisotropic structure of the gel sample was observed by the polarized optical microscope (POM, Nikon Eclipse LV100POL) under crossed nicol at room temperature. The observation was performed from the top surface (top view) and the cross section (side view) of the sheet-shape gels by placing on a glass plate. *Prior to* observation, the gel sample was cut into a rectangular sheet (~50 × 2 × 1.2 mm³ for top view and ~30 × 1 × 1.2 mm³ for side view) and fixed at the jaws of a computer controlled tensile deformation stage [Linkam, Model-10073A]. The sample setup was placed at the sample stage of POM and deformed at a velocity of ~60 mm/min. POM images were recorded by a camera at various elongations during the deformation.

II-4: Scanning Electron Microscope (SEM) observation

Water swollen PDGI/PAAm and PAAm gels were clumped in a tensile deformation stage and stretched up to an elongation ratio, \(\lambda_s \sim 5 \). The clumped sample was kept in deep freezer (-18°C) for 3 h. The solidified gel was then placed in the freeze-dryer at -60°C and allowed to dry using a temperature-time programming for 24 h. As prepared gel sample was put in an ion sputter for 180 s prior to SEM measurement for the surface morphology.