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1. Introduction 

Motivated by biological studies on the mechanisms of neuronal differentiation, we studied a 

mathematical model of neuronal differentiation by mimicking evolutionary dynamics. In 

evolutionary dynamics, the fundamental dynamical systems evolve through changes in parameter 

values of the systems. We consider a network of individual dynamical systems that interact with 

each other. Hence, an overall system, which is constructed here as coupled dynamical systems, is 

self-organized in evolvable conditions. 

Studies on self-organization have been conducted since the cybernetics movement started, and 

accelerated in the 1970s and 1980s. Prigogine et al. developed a theory of nonlinear and 

nonequilibrium thermodynamics and proposed the concept of dissipative structure as a 

spatiotemporal ordered pattern in macroscopic states (Nicolis and Prigogine, 1977). In far-from-

equilibrium systems, Haken founded Synergetics, inspired by the nonequilibrium phase 

transitions of laser theory. He introduced the slaving principle in which only a few degrees of 

freedom enslave the other degrees of freedom, and slaving modes represent macroscopic ordered 

motion (Haken, 1977, 1983). In these studies, self-organization occurred via interactions between 

microscopic elements, i.e., atoms and/or molecules, which resulted in the appearance of 

macroscopic ordered motion represented by order parameters. Order parameters can be described 

by dynamical systems with a few variables.  

On the other hand, there are significant organizational processes that cannot be explained 

within the framework of fixed dynamical systems or even fixed coupled dynamical systems. Among 

others, functional differentiation of the brain and cell differentiation of embryos are particularly 

valuable to study for the following reason. Neuro stem cells have been found in the third ventricle, 

whereby neurogenesis is known to occur in, at least, dentate gyrus and side subventricular zone. 

Two kinds of medical treatment models for brain injury are now highlighted: one can be performed 

via the acceleration of differentiation by stimulation in the growth factor of progenitor cells, and 

the other via nerve grafts with neuro stem cells stemming from fetus brains, stem cells, and even 

induced pluripotent stem (iPS) cells (H. Okano and S. Yamanaka 2014).  
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However, few studies on the underlying mechanisms of the neuronal differentiation have been 

conducted. Motivated by these biological developmental processes, in this study, we focus on the 

mathematical structure, which is supposed to be embedded in these differentiation processes. 

Because mathematical modeling of neuronal differentiation should focus on the developing 

process of the system, conventional self-organization theories are not suitable, and an adequate 

model should include the changing processes of dynamical system. In this respect, it is plausible 

to think that an appropriate approach is not based on conventional self-organization theories but 

on a constrained self-organization theory derived from a variational principle that is a type of 

optimization formalism.  

Considering the biological survival values, the information transmission in multicellular 

organisms is one of the important functions for survival, and thus it must have been optimized 

during the evolutionary process. It is known that some chaotic dynamical systems have information 

transmission capability (Matsumoto and Tsuda, 1985, 1987, 1988; Tsuda and Shimizu, 1985). Then, a 

question arises: what kind of dynamical systems transmit information more efficiently?  

In the present study, each individual dynamical system in a network of dynamical systems develops 

according to a genetic algorithm under a constraint concerning the transmission of information. In 

this study, the fitness function for the information transmission was given by the time-dependent 

mutual information, which was first proposed by Matsumoto and Tsuda (Matsumoto and Tsuda, 

1987, 1988). 

 

 Concerning the network structure, we adopted a unidirectionally coupled one-dimensional maps 

such as feed-forward connection networks, random networks, small-world networks, and fully-

connected networks. Here, a small-world network is a type of mathematical graph. This network is 

characterized by a situation in which even when the network has no tight connections, any two 

nodes are connected via only a few intermediate nodes. Thus, the network represents a “small world.” 

In each simulation, we fixed the type of network structure. In the small-world networks, the 

coupling strengths were fixed during the development of each element. In both random and fully-

connected networks, the connection strength was also changed according to genetic algorithms, in 

addition to the change of the individual dynamical systems.  
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In § 2, we present the details of the mathematical structure of the model. In § 2.1, we describe 

the one-dimensional map that we used as an individual dynamical system. In § 2.2, we introduce 

the fitness function. In §2.3, we describe the genetic algorithm that we used for finding the optimal 

dynamical system. In §3, we show the results in the case of unidirectionally coupled one-

dimensional maps, which create feed-forward connection networks. In §4, we treat other typical 

networks: random networks in §4.1, small-world networks in §4.2, and fully-connected networks 

in §4.3. In §4.4, we show the network response to completely randomized inputs. Section 5 

devoted to summary and discussion. 

 

  



4 
 

2. Neuronal model developed by genetic algorithm 

2.1. Function form used for dynamical system 

In this study, we treated networks of dynamical systems in terms of coupled maps. We used a 

one-dimensional continuous map to represent an individual dynamical system, which is defined on 

𝑅. The map of the k-th element of the network, 𝑓!(𝑥), was represented by the sum of two continuous 

functions represented by tanh(x) with six parameters and one shift parameter, as expressed by the 

following Eq. (1). 

 

 𝑓!(𝑥) = 𝑎" 𝑡𝑎𝑛ℎ *𝑎#(𝑥 − 𝑎$), − 𝑎%𝑡𝑎𝑛ℎ	*𝑎&(𝑥 − 𝑎'), + 𝑏!		 (1)	

 

In neural systems, the values of these functions may represent membrane potentials of 

neurons or amplitudes of other variables measuring neural fields such as the Local Field Potential 

(LFP), Electroencephalogram (EEG), Electrocorticogram (ECoG), Magnetoencephalogram 

(MEG), and bold signals by functional Magnetic Resonance Imaging (fMRI).  

Parameters (𝑎!, ⋯ , 𝑎") were common to all elements of the network. This map was constructed 

by a combination of two sigmoid functions, where a sigmoid function indicated a bounded and 

strictly monotone function. Such a sigmoid function has been used as a model  for biological 

neuron in artificial neural network studies. The combination of these functions can represent 

many functions. The current functionʼs form can represent typical dynamical systems because 

the form given by Eq. (1) can represent monotonically increasing and decreasing functions, 

unimodal and bimodal functions, and constant functions, by changing the parameters. For a 

network with N maps, there were N + 6 parameters 𝐴 = (𝑎!, ⋯ , 𝑎", 𝑏!, ⋯ , 𝑏#) in the entire 

system. See Eqs. (4) and (5) for a dynamical system used in this paper. 

2.2. Fitness function 

To calculate the quantity of information transmitted over the entire system, we used the following 

fitness function. The amount of information that is shared between the external input and the k-th  
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map of the network at n time steps can be calculated using the time-dependent mutual information 

described by Eq. (2). 

We calculated the range of the k-th individual map from the recorded time-series data and divided 

it into M equal parts, where 𝑝(𝑖)  is the probability that the state of the input is i,  𝑝%𝑗(")' is the 

probability that the state of the k-th individual map is j, and 𝑝$%𝑗(")(𝑖' is the conditional probability 

that the state of the k-th individual map is j at n time steps after the state of the input was i. 

Here, an overall dynamical system is determined by the parameters 𝐴 = (𝑎!, ⋯ , 𝑎", 𝑏!, ⋯ , 𝑏#) and 

a matrix consisting of coupling strength 𝑊 = (𝑤$%). A set of parameters A can be viewed as a gene, 

which is an object for change. 

We defined the capability of information transmission of the present system by the following Eq. 

(3).  

 
𝐽(𝐴,𝑊) =5max

(
{𝐼((𝐴,𝑊, 𝑘)}

)

!*"

 (3) 

 

𝐼&(𝐴,𝑊, 𝑘) indicates the time-dependent mutual information between the external input and the 

state of each individual dynamical system denoted by k with time steps n. For each individual map, 

we took the maximum value of this quantity over all time steps. Next, we summed these maximum 

values over all individual maps, which was regarded as the fitness function.  

 

 

 

 
𝐼$(𝑘) = + 𝑝%𝑗(")' log 𝑝%𝑗(")'

%&
𝑀

𝑗(𝑘)=1

−+ + 𝑝(𝑖)𝑝$%𝑗(")(𝑖' log 𝑝$%𝑗(")(𝑖'
%&

'

𝑗(𝑘)=1

𝑀

𝑖=1

		 (2) 
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Fig. 1. Fitness function (schematic drawing). We calculated the sum of the maximum value (red 

circle) of each time-dependent mutual information to evaluate the entire system. The evaluation 

value is higher at right.  

𝐽(𝐴,𝑊)  takes 0 as a minimum value when the external input and each individual map are 

independent, and 𝐽(𝐴,𝑊) takes 𝑁𝐻'( as a maximum value when information is completely shared 

between the external input and all individual maps. Here, N is the number of elements, and 𝐻'( is 

the Shannon entropy of the external input. The red circle in Fig. 1 indicates the discrete time step 

at which each individual map has the maximum value of mutual information. The sum of such 

maximum values in all individual maps can be an evaluation value of the overall system. In Fig. 1, 

the evaluation value is higher at right, which indicates the result of evolutionary dynamics. 

 This fitness function J(A,W) has several important properties. It takes time to transmit information. 

By taking the maximum value over the time period 1~ n, the system that transmit more information 

is evaluated regardless of time. The fitness function J(A,W) is based on the amount of information 

shared between the external input and each individual map. Why did we focus on how efficiently 

external information is transmitted to the overall system, instead of local information transmission? 

Had the coupled map network been evaluated solely by local information transmission, it would 

have evolved to share internal information. In such a case, the system would evolve to be 

independent of the external information. This provides the different stage from the present purpose. 
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2.3. Genetic algorithm 

Based on the above fitness function, a more efficient dynamical system regarding the information 

transmission can be found. In the present study, we used the following genetic algorithm as a 

method of finding better parameters of individual dynamical systems. The genetic algorithm is one 

of the metaheuristic algorithms that mimics biological evolution (Goldberg, 1989; Holland, 1992). 

Many genetic algorithms have been proposed with various improvements. Here, we adopted the 

genetic algorithm called CHC proposed by L. Eshelman (Eshelman, 1991). This algorithm has the 

following three features: Cross-generational elitist selection, Heterogeneous recombination, and 

Cataclysmic mutation. Fig. 2 shows the flowchart of the CHC algorithm. 

 

Fig. 2. Flowchart of CHC algorithm from top blue-colored oval, ending with bottom blue-colored 

oval. Characteristic CHC algorithm appears at upper right (cross-generational elitist selection), 

center (heterogeneous recombination), and lower left (cataclysmic mutation), indicated by green-

colored rounded squares. 

Yes

No

Generate P individuals of the initial 
parent generation at random.

Evaluate fitness of P individuals in the 
initial parent generation.

Take P/2 pairs of individuals from 
parent generation at random.

If two individuals are genetically 
different enough in a pair, create two 
new individuals by crossing a half of 

different bites of genes.

Select best P individuals as 
next generation from a 

collection of the parents and 
new individuals.

Evaluate fitness of new 
individuals.

‘’Cataclysmic mutation’’ ran 
! times?

Generate the new parent  
generation from the most 
adapted individual and its 

mutants.

Select the most adapted 
individual as an optimal solution.

New individuals created?

Evaluate fitness of P  
individuals in the new 

parent generation.

Yes

No

Cross generational elitist selection 

Heterogeneous recombination 

Cataclysmic mutation 

P: Population size
!: Exit conditions
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3. Unidirectionally coupled one-dimensional maps of feed-

forward connections 

3.1. Coupled map networks 

In the present study, we consider coupled map networks with a discrete time and a continuous 

state.  

In all simulations, the state of the k-th individual map at time 𝑛 + 1 is expressed by the following 

Eqs. (4) and (5).  

 
𝑥0(𝑛 + 1) = 𝑓0*𝑥0(𝑛), +5𝑤01𝑥1(𝑛)

)

1*"

+𝐷𝐺*𝑦(𝑛), + 𝜎	 (4)	

 
𝑥!(𝑛 + 1) = 𝑓!*𝑥!(𝑛), +5𝑤!1𝑥1(𝑛)

)

1*"

+ 𝜎	 (5)	

where 𝐺3𝑦(𝑛)6 is the external input at time n, 𝑤$% is the coupling strength from the l-th to the k-th 

individual map, D is the coupling strength from the external input to the 0-th individual map, and 

σ is an additive noise that was provided by a Gaussian distribution with an average of 0 and variance 

of 0.0001. The network structure is represented by 𝑤$%. 

 

In the present study, we used the following chaotic map as an external input 𝐺3𝑦(𝑛)6: 

 

 

where b is a shift parameter. Here, b = 0.023285279.  This chaotic map 𝐺3𝑦(𝑛)6 was originally 

introduced to reproduce the state transitions according to bifurcations in the Belousov-Zhabotinsky 

(BZ) reaction system (Tomita and Tsuda, 1980). 

 𝑦(𝑛 + 1) = 𝐺*𝑦(𝑛), 

(6) 

 

𝐺(𝑦) =

⎩
⎪
⎨

⎪
⎧K−(0.125 − 𝑦)

"
$ + 0.50607357O ∙ 𝑒23 + 𝑏														(𝑦 < 0.125)

K(𝑦 − 0.125)
"
$ + 0.50607357O ∙ 𝑒23 + 𝑏						(0.125 ≤ 𝑦 < 0.3)

0.121205692 ∙ K10𝑦𝑒2
"04
$ O

"5
+ 𝑏																																				(0.3 ≤ 𝑦)
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In the case of simple inputs, for example periodic inputs, dynamical systems with the same period 

as input period are selected, regardless of the functional form. This is trivial. Therefore, we 

investigate the case of non-periodic sequences as an external input. We conducted numerical 

experiments in another various non-periodic inputs such as random sequences consisting of quasi-

random number, logistic chaos, and BZ chaos, which represent typical dynamical systems. The 

present result of evolution, that is, a type of eventually selected map does not change by the choice 

of the source of non-periodic sequences for feed-forward connections. 

 

3.2. Unidirectionally coupled one-dimensional maps of feed-

forward connections 

First, we considered unidirectionally coupled one-dimensional maps of feed-forward connections, 

as shown in Fig. 3. The external input was given only to the first individual map. The network 

structure was fixed. The individual maps and coupling strengths were optimally changed to 

maximize the information transmission of the external signal. 

 

Fig. 3. Unidirectionally coupled one-dimensional maps of feed-forward connections. D is the 

coupling strength from the external input to the 0-th individual map, and C and Cʼ are the feed-

forward connection strength and self-connection strength, respectively. Furthermore, C and Cʼ 

are the parameters of optimization and are common to all individual maps. 

 

α is defined by the upper limit of the coupling strength. In other words, the coupling strength is 

optimized in the range of (0, α). The genetic algorithm yielded the three types of optimized maps 

depending onα. 

C CC CC C C

C’ C’C’ C’C’ C’ C’ C’

D

! " #
External Input
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We performed numerical calculations using 10 different seeds of standard random number 

generators to investigate the effect of α. Changing the seeds of random numbers affects the 

generation of the initial individuals in the first generation. We used additive Gaussian noise on each 

individual map, which plays a role in the mutations. Fig. 4 shows a histogram of the evolved 

individual maps by the optimization algorithm.  

  

 

 

Fig. 4. Histogram of eventually evolved individual maps via optimization algorithm. The number 

of sites is 10. The additive noise is 𝝈	 ∼ 	𝑵	(𝟎, 𝟎. 𝟎𝟎𝟎𝟏) 

 

1. Passive transmission type: the case of a large αsuch that  𝛼 = 	0.9 [N = 10, 	𝜎	 ∼ 	𝑁	(0, 0.0001)]   

When 𝛼	 is significantly large , the individual dynamical systems evolved to simple constant maps. 

Especially when α = 1, which is realized, for instance, via 𝐶 = 1 and 𝐶6 = 0, the individual maps evolved 

to 𝑓(𝑥) = 0. From Eqs. (4) and (5), 

 𝑥0(𝑛 + 1) = 𝐺*𝑦(𝑛),  𝑥!7"(𝑛 + 1) = 𝑥!(𝑛) (7) 
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This result indicates that the state of the k th individual map at time n was simply copied to the k+1th 

individual map at time n + 1 which is shown in Fig. 5(a). In this case, the external input information can 

be completely transmitted. This is the trivial case where the solution has obtained maximum information 

transmission, which we also confirmed via computer simulation.  

 

2. Excitable type: the case of an intermediate α such that 0.4	 ≥ 	𝛼	 ≥ 		0.3  (N = 10, 	𝜎	 ∼

	𝑁	(0, 0.0001)) 

When α takes intermediate values, the individual maps evolved to excitable maps, as shown in Fig. 

5(b). 

The map possesses three fixed points. The leftmost fixed point is stable that indicates an equilibrium 

state, and the other two fixed points are unstable. The middle-fixed point plays a role in the threshold, 

and the other unstable fixed point plays a role in producing cyclic trajectories. If initial conditions are 

provided below the threshold, then the dynamical trajectories converge to the equilibrium state, whereas 

if initial conditions are provided above the threshold, then the dynamical trajectories converge to the 

equilibrium state after a succession of a large excursions and an undershoot. If there is no external input, 

all individual maps are attracted to a stable fixed point. Even if there is a small input, each individual map 

stays around such a fixed point.  

However, when the input is sufficiently large to exceed the threshold, the overall dynamics of the 

network tends to produce chaotic motion, thereby preserving the information quantity of the external 

signals. This kind of preservation of input information is guaranteed by a large fluctuation of information 

flow in weakly chaotic systems, where input information can be transmitted before a drastic decay of 

information owing to the orbital instability of chaos (see also Matsumoto and Tsuda, 1988). This 

characteristic of the information transmission is not restricted to the unidirectionally coupled maps but 

is extended to other network architectures as well. 

 

３．Oscillatory type: the case of 0.2	 ≥ 	𝛼	 ≥ 		0.1 and 0.8	 ≥ 	𝛼	 ≥ 		0.5  (N = 10, 	𝜎	 ∼ 	𝑁	(0, 0.0001))   

When α is 0.2	 ≥ 	𝛼	 ≥ 		0.1 and 0.8	 ≥ 	𝛼	 ≥ 		0.5 , the individual maps evolved to a map producing 

periodic orbits, as shown in Fig. 5(c). The map shown here possesses a stable period two-periodic orbit. 
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In the presence of an input, the overall network dynamics shows weakly chaotic states, while maintaining 

the characteristics of period-two  periodic motion. 

 

Taking these computation results into account from the aspect of biological evolution, we 

naturally ask a question of how the neurons evolved, and what is the purpose of such an evolution. 

Regarding these matters of biological evolution, we propose the following hypothesis. 

 

Hypothesis 1 

In biological evolution, neuronal differentiations occurred to achieve a maximum transmission of 

information of external signals.  

 

As an experimental fact, glial cells produce periodic behaviors of electricity, based on calcium 

oscillations. Furthermore, glial cells may contribute to DC variations of neuronal activity (A. Ikeda 

et al., 1999). These observations suggest that one can assign an excitable map and a specific periodic 

map to a neuron, and both periodic and identity map to glial cells. 
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Fig. 5. Three types of optimized maps. From top to bottom: passive transmission type, excitable 

type, and oscillatory type. Left column shows eventually evolved individual maps via optimization 

algorithm. Middle column shows temporal change of transmission of input information through 

network, where network elements are indicated by “site”. Right column indicates changes of time-

series of amplitudes of individual maps. In neural systems, amplitudes may represent membrane 

potentials of neurons or amplitudes of other variables measuring neural fields such as LFP, EEG, 

ECoG, EMG, and fMRI.  
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4. Further complex networks 

We further studied neuronal differentiations owing to evolution dynamics in more complex 

network architectures.  

4.1. Random networks 

Erdős and Rényi proposed the Erdős-Rényi model, which generates a random graph by 

probabilistically combining nodes states (Erdős and Rényi, 1959).In this model, the graph is 

generated by two nodes in a set of n nodes that are edged with probability p. Fig. 6 shows  

examples generated with 10 nodes with coupling probability p =0.1, 0.3, and 0.6. 

The graphs generated by this model have features such as mean degree 〈𝑘〉=p(n-1), degree 

distribution P(deg(v) = k) =3&)!$ 6𝑝$(1 − 𝑝)&)!)$, and cluster coefficients that converge to zero as 

n increases. 

 

 

Fig.	6.	Examples	of	construction	of	random	networks	(coupling	probability	=	0.1,	0.3	and	0.6)	
 

We adopted the following networks as directed random networks (see, for example, Fig. 7). In Fig. 

7, the number 𝑖 in the circle indicates the number of sites. Here, the coupling probabilities in 10 

individual maps were 0.3 under the constraint of the total number of couplings, which were 30 

couplings in the present simulation. In each simulation, we optimized the coupling strengths and 

individual maps with a fixed network architecture. 
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Fig. 7. Example of construction of random networks expressed as weighted directed graph 

(coupling probability = 0.3). 

 

In the range of coupling strength (-0.1, 0.1), we obtained the optimized network as shown in Fig. 

8. 

 

 

Fig. 8. Optimized random networks in the range of coupling strength (-0.1, 0.1). Red-colored and 

blue-colored lines and curves indicate excitatory and inhibitory couplings, respectively. 
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The individual maps eventually developed into the maps shown in Fig. 9. The functional form is 

common for all sites, but the shift parameter is slightly different: some maps possess a stable fixed 

point, and others produce period-two periodic orbits.  

 

 

Fig. 9. Optimized map as each individual dynamical system in random networks. 

 

 

Let site 0 be the zero-th order of the site, which receives input signals directly from the external 

time-series. Furthermore, let the individual map that directly receives inputs from site 0 be the 1st 

order of the site. Similarly, the n-th order of the site can be defined by the shortest distance from 

site 0. The order of each site is listed in Table 1. 

Couplings to higher- and lower-ordered sites are called feed-forward connections and feed-back 

connections, respectively. A coupling to itself is called a self-connection. Coupling to the same order 

of maps except self-connections is called a homogeneous connection. When couplings are classified 

as above, the statistical features of the eventually evolved networks are as listed in Table 2. We 

performed a Wilcoxon-Mann-Whitney test. The absolute values of the strength of the feed-forward 

and homogeneous connections were significantly larger than those of the feed-back connections (p 
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< 0.01). The absolute values of  the strength of the feed-forward connections were also 

significantly larger than those of the self-connection strength (p < 0.01).  

The product of the number of couplings and the mean of the absolute values of the coupling 

strength suggests a substantial contribution of each coupling type to the overall network 

architecture.  

 connections evolved as the greatest contributor for the maximum transmission of the information 

of input signals. It is interesting to note that the effect of a small number of homogeneous 

connections was greater than that of a large number of feed-back connections. Furthermore, we 

classified all couplings into excitatory and inhibitory ones, and further categorized each group into 

the above four coupling types (see Tables 2 and 3). However, there was no statistically significant 

difference between the two groups. 

The mutual information between the external input and each individual map is shown in Fig. 10. 

It is observed that the information of the external input is shared with all individual maps with a 

time delay. Subsequently, we obtained the following proposition. 

 

Proposition 1 

Random networks evolved to have a specific character of architecture. Under the constraint of the 

maximum transmission of input information, the random networks evolved to feed-forward 

networks including a small number of feed-back connections. 

 

The product of the number of couplings and mean of absolute values of coupling strength defines 

the effective coupling strength of the network. In this respect, the ratio of feed-forward and feed-

back connections is approximately 10 to 2, listed in Table 4. Limited to excitatory and inhibitory 

connections separately, this ratio was approximately 10 to 3 and 9 to 1, respectively (see Tables 2 

and 3). The ratio between the feed-forward and feed-back connections is highly consistent with 

recent observations of such a ratio in rat and mouse (20:1), and human (10:1) cortical local 

networks (Seeman et al., 2018). 
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Fig. 10. Mutual information between input signal and each individual map in optimized random 

networks. 

Table 1. Summary of order of the sites, defined by shortest distance between site 0 and each other 

site. 

Order Site 

0 0 

1 2, 3, 5 

2 6, 7, 8, 9 

3 1, 4 

 

 

Table 2. Summary of the number and strength of excitatory couplings. The numbers in parenthesis 

in the middle and right most column indicates the standard deviation and proportion, respectively. 
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Type of couplings 
Number of 

couplings 

Mean of absolute 

value of coupling 

strength* 

Number of couplings 

× 

Mean of absolute value of 

coupling strength** 

Feed-forward connections 5 0.098 (0.014) 0.490 (0.51) 

Feed-back connections 6 0.024 (0.036) 0.144 (0.15) 

Self-connections 1 0.049 (-) 0.049 (0.05) 

Homogeneous connections 3 0.094 (0.008) 0.283 (0.29) 

Total 15  0.966 (1.00) 

 

 

Table 3. Summary of the number and strength of inhibitory couplings. The numbers in parenthesis 

in the middle and the right most column indicates the standard deviation and proportion, 

respectively. 

Type of coupling 
Number of 

couplings 

Mean of absolute 

value of coupling 

strength* 

Number of couplings 

× 

Mean of absolute value of 

coupling strength** 

Feed-forward connections 7 0.093 (0.016) 0.649(0.63) 

Feed-back connections 3 0.024 (0.016) 0.072(0.07) 

Self-connections 2 0.044 (2.75E-05) 0.089(0.09) 

Homogeneous connections 3 0.070 (0.033) 0.212(0.21) 

Total 15  1.023(1.00) 
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Table 4. Summary of the number of couplings and absolute values of coupling strength. The number 

in parenthesis in the middle and the right most column indicates the standard deviation and 

proportion, respectively. 

Type of couplings 
Number of 

Couplings 

Mean of absolute 

value of coupling 

strength* 

Number of couplings 

× 

Mean of absolute value of 

coupling strength** 

Feed-forward connection 12 0.095 (0.013) 1.139 (0.57) 

Feed-back connection 9 0.024 (0.031) 0.217 (0.11) 

Self-connection 3 0.046 (0.0023) 0.138 (0.07) 

Homogeneous connection 6 0.082 (0.027) 0.495 (0.25) 

Total 30  1.989 (1.00) 

*Mean (SD),  

**Number of couplings × mean of absolute value of coupling strength (proportion). 
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4.2. Small-world networks 

In sociology, Milgram demonstrated through social experiments the small world phenomenon 

where any two people are socially connected through a small number of people (Milgram, 1967). 

In the Small World model study, Watts and Strogatz proposed the Watts-Strogatz model (Watts 

and Strogatz, 1998). In this model, we first place the nodes in a circle and connect their k 

neighborhoods (Fig. 11(a)). In this circular network the clustering coefficient is 1. We select an 

edge from this network with probability p and randomly cut one of the ends (Fig. 11(b)).  We select 

a new node at random and connect the disconnected side (Fig. 11(c)) If probability p=0, 

reconnecting does not occur (Fig. 12(a)). When probability p=0.1, the graph is both small-world 

and clustered, with an average shortest path length of L∝log n and a clustering coefficient close to 

1 (Fig. 12(b)). If probability p = 1, the graph is random (Fig. 12(c)). 

 

 

Fig.	11.	Example	of	a	small-world	network	with	Watts-Strogatz	model	(10	nodes,	k	=	2,	
reconnection	probability	p=0.1).	

 

Fig.	12.	Effect	of	reconnection	probability	p	in	the	Watts-	Strogatz	model	(from	left	to	right,	p	=	
0.0,	0.1,	1.0).	
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We adopted the following networks as directed small-world networks. The method for the 

network configuration was based on the Watts-Strogatz model in the following way: 

 (1) Locate each individual map in a circle to connect with each nearest and next-nearest neighbors. 

 (2) Reconnect with other maps with a certain probability. 

The coupling strength and the network structure were fixed throughout the development of the 

evolutionary dynamics, and only individual maps were optimized. An external input was fed only to 

site 0. If the coupling strengths are not fixed, it may become zero via optimization. Here, a zero-

coupling strength indicates a disconnection. In a small-world network, disconnections between 

some sites can significantly change the distance between individual maps. Therefore, the coupling 

strengths were fixed to maintain the small-world network. 

 

 

Fig. 13. Example of construction of small-world networks expressed as a weighted directed graph 

(reconnection probability = 0.1).  

 

We show typical evolved dynamics with some coupling strengths. For the first time, we treat the 

case in which the coupling strength is fixed to 0.1. 

The eventually evolved individual map is shown in Fig. 14. The evolved map possesses one stable 

fixed point. However, as every map has a similar functional form to the excitable map, which was 
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obtained in the evolution of unidirectionally coupled maps, the overall dynamics is not restricted to 

the equilibrium states but produce more dynamic ones such as periodic behaviors, thereby realizing 

a propagation of pulses (Fig. 15). It can be seen in Fig. 16 that the input information is transmitted 

in the circular network.  

 

 

Fig. 14. Optimized individual map in small-world networks (coupling strength = 0.1). 
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Fig. 15. Time-series of some individual maps in optimized small-world networks (coupling 

strength = 0.1). The top three figures show intermittent transitions between chaotic states and 

periodic states with two and four periods. The bottom shows that the oscillations of small 

amplitudes and the generation of the pulse are repeated. 

 

Fig. 16. Mutual information between input and each individual map in optimized small-world 

networks (coupling strength = 0.1). 
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We also conducted computer simulations for other coupling strengths and obtained similar results. 

The varieties of obtained map are the same as in other networks but depending on both the coupling 

strength and shift parameter, a type of map selected were changed. We obtained the following 

proposition. 

 

Proposition 2 

A small-world network can transmit input information over the entire network. The eventually 

evolved individual map is modified from the excitable “neuronal” map and tends to produce an 

equilibrium state directly. The overall network dynamics becomes the intermittent transitions 

between chaotic and periodic states. 
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4.3. Fully-connected networks 

We used the optimization algorithm for not only individual maps but also the coupling strength in 

fully-connected networks. These networks include self-connections as shown in Fig. 17.  

We simulated two different ranges of coupling strengths whose ranges were (-0.1, 0.1) and (-0.5, 

0.5). It should be noted that all simulations included the zero-coupling strength. This implies that 

computed networks included any network structures. 

 

 

Fig. 17. Fully-connected networks. Each individual map connects to all other nodes including 

itself.  

When the range of coupling strengths was (-0.1, 0.1), we obtained the evolved network as shown 

in Fig. 18. Furthermore, Fig. 19 and Fig. 20 show individual maps and mutual information with  

external inputs, respectively. Most individual maps became excitable maps. Because the evolved 

networks represented any type of network, this computational result implies that the generation of 

spiking neurons is universal.  
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Fig. 18. Optimized fully-connected network under coupling strengths taken over (-0.1, 0.1). Red- 

and blue-colored curves indicate excitatory and inhibitory coupling, respectively. 

 

 

Fig. 19. Optimized individual maps in fully-connected network. 
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Fig. 20. Mutual information between input signal and each individual map in fully-connected 

network. 

 

 

Fig. 21. Time-series of some individual maps in optimized fully-connected network. 
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Interesting phenomena occurred when the range of coupling strength was (-0.5, 0.5). Fig. 22 

shows the eventually evolved network. The evolved individual maps and mutual information 

between the external input and each individual map are shown in Fig. 23 and 24, respectively. In 

this case, the mutual information shared between the external input and individual maps except for 

the “receptor” was larger than the mutual information shared between the external input and the 

“receptor” that received external input directly. In the network with simple feed-forward 

connections (Fig. 3), the mutual information with the external input always monotonically 

decreased in space. Therefore, the mechanism for information transmission must be different. This 

is discussed in the following subsection.  

 

 

Fig. 22. Optimized fully-connected networks under coupling strength (-0.5, 0.5). Red and blue 

curves indicate excitatory and inhibitory connections, respectively. 
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Fig. 23. Optimized map of each element in fully-connected networks. 

 

Fig. 24. Mutual information between input and each element in fully-connected networks. 
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4.4. Randomly shuffled external input data for fully-connected 

networks 

In a fully-connected network developed by the optimization algorithm, the “receptor” did not 

completely share information with the external input; however, the input information was 

propagated to other individual maps (Fig. 24). Moreover, much more information from the external 

input was shared with other internal individual maps than the “receptor.” 

We hypothesized that this system did not only transfer the information of the external input but 

also used the temporal structure of the external input to share more mutual information. We 

generated the following two-input data that differ only in the time structure to confirm this 

hypothesis. 

As original external input data, we generated time-series data according to Eq. (6). As randomly 

shuffled external input data, we randomly shuffled the original external input data.  

We applied these inputs to the evolved network shown in Section 4.3 and measured the mutual 

information (see Fig. 25). Note that the network structure, coupling strength, and individual maps 

were fixed. 

Furthermore, we have optimized the fully-connected network via a genetic algorithm in a way 

similar to the previous cases, however, the present case is a noiseless case. In our model, a 

passive transmission type is always selected when optimized without noise. We applied two 

types of external inputs (original and randomly shuffled external input data) to the evolved 

network, and calculated the mutual information between the external input and each individual 

map (see Fig. 26). 

 Fig. 25 and Fig. 26 show the change of the information transfer ability in the original input and the 

randomly shuffled external input data, respectively. It should be noted that the effect is different 

between the “receptor” and other internal sites. Fig. 26 shows that the evolved network reveals the 

maximum information transmission ability regardless of the type of time-series data. On the other 

hand, Fig. 25 shows that the information transmission ability of the evolved network depends on 

the type of inputs. In Fig. 25., the overall mutual information shared with external inputs in the 

shuffled data is lower than that of the original data. For the original data, the “receptor” shows the 



32 
 

lowest information transmission, while for the shuffled data, the “receptor” shows the highest 

information transmission. Destruction of the temporal structure of the external inputs affected the 

ability of the information transmission of internal elements more significantly than the “receptor”. 

This suggests that for information transmission, the internal elements can use the temporal 

structure of external input more efficiently than the “receptor”. Subsequently, we obtained the 

following proposition. 

Proposition 3  

For fully-connected networks, with a selection mechanism, such as satisfying the constraint of the 

maximum transmission of input information, excitable maps or constant-function maps evolved, 

depending on the coupling strength. In these networks, information from the external input shared 

with internal individual maps was much higher than the information shared with the “receptor”. In 

this respect, the fully-connected network transmits external information using the temporal 

structure of external signals. 

 

 

Fig. 25. Mutual information of optimized noisy fully-connected networks. Left figure is the case of 

original data. The peak of mutual information between external input and “receptor”(site 0) is 

lower than others. Right figure the case of randomly shuffled external input data. Compared to 

the left figure, the overall mutual information shared with external inputs is low. 
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Fig. 26. Mutual information of optimized noiseless fully-connected network. Left figure is the 

case of original data. Right figure the case of randomly shuffled external input data. All curves are 

overlapped except for the mutual information between external input and site 0. 
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5. Summary and Discussion 

In the present study, we observed that individual maps of various types of networks evolved to 

satisfy the constraints: the maximum transmission of external information over the networks. From 

this observation, we proposed a hypothesis for a mechanism of neuronal differentiations. The 

computation results were summarized in three propositions. The present computation results 

suggested that the selective pressure of the efficient transmission of information promoted the 

functional differentiation of neuronal cells. 

We adopted the genetic algorithms to maximize the information transmission capability of coupled 

networks. In biological evolution, individuals that can use environmental information must have 

been mostly selected. 

We conducted the computer experiments on the evolution of the networks consisting of 

individual maps, where an individual map is viewed as a biological element. Furthermore, the 

connections between individual maps can be viewed as the connectivity between subsystems, 

such as the organs or cells of an individual. 

Present network systems have limitations on the number of individual maps, a choice of 

changeable parameters, and network architectures. However, the computation results seem to show 

rather universal characters. The results suggest the significance of the selection mechanism of 

individual units composing the overall network in the process of biological evolution. 
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