

HOKKAIDO UNIVERSITY

Title	Follicle priming by FSH and pre-maturation culture to improve oocyte quality in vivo and in vitro
Author(s)	Sakaguchi, Kenichiro; Nagano, Masashi
Citation	Theriogenology, 150, 122-129 https://doi.org/10.1016/j.theriogenology.2020.01.023
Issue Date	2020-07-01
Doc URL	http://hdl.handle.net/2115/82133
Rights	© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	Sakaguchi and Nagano ICAR2020.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Highlights (for review)

- *In vivo* matured oocytes have higher competence than *in vitro* matured oocytes.
- A single FSH injection prior to OPU can improve oocyte competence.
- In vitro pre- maturation enables to improve oocyte competence without FSH priming.

- 1 Review Article
- 2
- 3 Title: Follicle priming by FSH and pre-maturation culture to improve oocyte quality in vivo and in
- 4 vitro
- 5
- 6 Authors: Kenichiro Sakaguchi^{1,2*} and Masashi Nagano³
- 7 Author details
- 8 ¹ Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine,
- 9 Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- ² Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building,
- 11 University of Edinburgh, Edinburgh EH8 9XD, UK
- ¹² ³ Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine,
- 13 Kitasato University, Aomori 034-8628, Japan
- 14
- 15 E-mail addresses
- 16 Kenichiro Sakaguchi (ksaka@vetmed.hokudai.ac.jp);
- 17 Masashi Nagano (mnaga@vmas.kitasato-u.ac.jp)
- 18 *Corresponding author: Kenichiro Sakaguchi
- 19

20 Abstract

21	Nowadays there is strong demand to produce embryos from premium quality cattle, and we
22	can produce embryos using oocytes collected from living premium animals by ovum-pick up (OPU)
23	followed by in vitro fertilization (IVF). However, the developmental competence of IVF oocytes to
24	form blastocysts is variable. The developmental competence of oocytes depends on the size and stages
25	of follicles, and follicle-stimulating hormone priming (FSH-priming) prior to OPU can promote
26	follicular growth and improve the developmental competence of oocytes. Furthermore, following the
27	induction of ovulation using an injection of luteinizing hormone or gonadotropin-releasing hormone
28	after FSH-priming, we can collect in vivo matured oocytes from ovulatory follicles, which show higher
29	developmental competence than oocytes matured in vitro. However, the conventional protocols for
30	FSH-priming consist of multiple FSH injection for 3 to 4 days, which is stressful for the animal and
31	labor-intensive for the veterinarian. In addition, these techniques cannot be applied to IVF of oocytes
32	collected from bovine ovaries derived from slaughterhouses, which are important sources of oocytes.
33	Here, we review previous research focused on FSH-priming, especially for collecting in vivo matured
34	oocytes and a simplified method for superstimulation using a single injection of FSH. We also
35	introduce the previous achievements using in vitro pre-maturation culture, which can improve the
36	developmental competence of oocytes derived from non-stimulated animals.

37 Keywords: FSH; Ovum pick-up; *In vivo* maturation; Single injection; *In vitro* pre-maturation

1. Introduction

39	In vitro fertilization (IVF) technology is now widely used commercially for producing
40	embryos in cattle [1]. Ultrasound-guided ovum-pick up (OPU) combined with IVF is used to produce
41	embryos in cattle for genetic improvement [1], and the efficiency of embryo production by OPU-IVF
42	is higher than that by <i>in vivo</i> embryo production [2, 3]. Although there has been significant progress
43	in the technology of IVF procedures, the rate of development to blastocysts from oocytes recovered
44	from non-superstimulated donors is rarely consistently exceeds 40 to 50% [4, 5]. When donors are
45	superstimulated, a significant increase in the rate of blastocyst is seen but can vary from 50 to 80%
46	[6]. However, in vivo maturation will remain the gold standard resulting in the highest rate of
47	blastocyst.
48	In mono-ovulatory species including cattle, the emergence of follicular growth is induced
49	by a surge-like secretion of follicle-stimulating hormone (FSH). Then, a dominant follicle is selected
50	as the level of FSH decreases due to the inhibitory effect of estradiol-17 β and inhibin secreted by
51	follicles themselves. The dominant follicle continues to grow in response to stimulation with
52	luteinizing hormone (LH), and this results in ovulation [7, 8]. In other words, most follicles degenerate
53	at immature stages, and only a small proportion of follicles will develop fully and ovulate in the life
54	time of a cow [7, 8]. During folliculogenesis, the diameter of the oocyte will increase during follicular
55	growth phases. Developmental competence is defined as the ability of an oocyte to acquire nuclear,

57	fertilization that will result in a healthy offspring after embryo transfer [6]. Although most oocytes in
58	immature antral follicles (≥ 2 mm, diameter of the oocyte: approximately 110 μ m) acquire competence
59	for nuclear maturation [9], most oocytes will not have acquired cytoplasmic and/or molecular
60	competence when compared to larger oocytes (120 µm) from follicles grown sufficiently in vivo [10,
61	11].
62	To enhance follicular growth and the developmental competence of oocytes, administration
63	of FSH before OPU (FSH-priming) has been conducted in many studies [12, 13]. However,
64	conventional FSH treatments require multiple intramuscular (im) administrations, which are stressful
65	for the animal and time-consuming for the veterinarian. In conventional in vivo embryo production by
66	superovulation followed by uterine flushing, many researchers have tried to simplify FSH treatment
67	[14]. Application of these methods for OPU should be evaluated.
68	Although the quality of oocytes before IVM is considered the critical factor for the outcome
69	of <i>in vitro</i> embryo production [15-17], there are some cases where exogenous FSH is not applicable
70	to promote the developmental competence of oocytes, such as oocytes derived from slaughterhouses
71	or low-responding animals [18]. Previous studies have suggested that the developmental competence
72	of oocytes can be improved by adding a pre-maturation in vitro step (pre-IVM) prior to IVM. Pre-
73	IVM inhibits germinal vesicle breakdown and holds the oocytes at the germinal vesicle (GV) stage to
74	acquire full developmental competence of oocytes in vitro during meiotic arrest [19].
75	In this review, we describe FSH-priming to improve developmental competence before

collection of oocytes. In particular, we focused on collecting *in vivo* matured oocytes and simplifying
the priming protocol using a single injection of FSH. In addition, we also examine pre-IVM to improve
the developmental competence of oocytes *in vitro*.

79

80 2. FSH-priming

81 2.1. Collecting *in vivo* matured oocytes by FSH-priming following induction of an LH surge

82 Several studies have suggested that in vivo matured oocytes are more developmentally 83 competent than in vitro matured oocytes (Table 1) [20-26]. Evidence of an increased developmental competence following in vivo maturation include differences in mRNA transcription in oocytes [27-84 85 29], size of the meiotic spindle [30], cytoplasmic maturation (distribution of cortical granules [26], 86 ATP content [30]), and developmental kinetics of embryos [26]. Bordignon et al. [20] reveal that 87 heifers treated with gonadotropin-releasing hormone (GnRH) after superstimulation exhibited an LH 88 surge within 3 h after treatment (34 h after prostaglandin $F_{2\alpha}$ (PGF_{2 α}) injection). In the control group subjected to superstimulation and PGF_{2 α} injection without a GnRH injection, 40% of heifers also 89 90 exhibited an LH surge within 47 h (between 41 and 45 h) after PGF_{2 α} treatment. Most of the oocytes 91 recovered from control heifers were in metaphase I (MI) stage regardless of the state of expansion of 92 the cumulus, whereas most oocytes (97%) with expanded cumulus cells in the GnRH-treated group 93 were at the metaphase II (MII) stage. As a result, the developmental competence of oocytes with 94 expanded cumulus cells was higher in the GnRH-treated group than the control when oocytes were

95	directly subjected to IVF without IVM after OPU (control: 40%, GnRH: 60%, Table 1) [20]. Rizos et
96	al. [22] showed that in vivo matured oocytes had higher developmental competence than oocytes from
97	follicles just before LH surge. These results indicate that a post-LH follicular environment induced by
98	a GnRH injection is essential to improve the developmental competence of bovine oocytes.
99	The maturation of bovine oocytes is known to initiate 6 h after the LH surge in vivo [31];
100	therefore, some researchers collected oocytes 6 h after an injection of LH or human chorionic
101	gonadotropin [32-34]. Although they suggested promotive effects of exogenous LH injections on
102	developmental competence [33, 34], waiting 6 h after LH was not long enough to permit oocytes to
103	complete maturation in vivo as expressed by non-expanded cumulus cells surrounding the oocytes.
104	Matoba et al. [24] reported that ovulation occurred at 29 to 32 h after a GnRH injection (average 30.0
105	h), and in vivo matured oocytes could be successfully collected 25 to 26 h after a GnRH injection.
106	Other researchers collected oocytes after 20 to 26 h after GnRH injection, and succeed in collecting in
107	vivo matured oocytes with higher developmental competence [20-22, 25, 26], whereas Sprícigo et al.
108	[25] reported that they could collect more MII oocytes 24 h after GnRH injection (85%) than at 20 h
109	after GnRH injection (31%). These results indicated that the suitable duration between GnRH injection
110	and OPU for collecting in vivo matured oocytes should be 24 to 26 h. Although in vivo matured oocytes
111	show higher developmental competence, handling of them will be difficult due to stickiness of
112	expanded cumulus investments. Matoba et al. [24] changed conical tubes for collecting oocytes after
113	5 to 6 follicle aspirations, making it easier to collect individual oocytes instead of clumps.

114	In vivo matured oocytes with expanded cumulus cells were directly subjected to IVF after
115	OPU in some studies [20, 22, 25], while oocytes in other studies were cultured in IVM medium for 3
116	to 24 h [20, 21, 23, 24, 26] (Table 1). Bordignon et al. [20] reported that when oocytes with expanded
117	cumulus cells were subjected to IVM for 24 h, 29.2% of them underwent spontaneous activation, and
118	caused lower developmental competence than in vivo matured oocytes directly subjected to IVF after
119	OPU (Table 1). The total maturation period initiated from LH surge in Bordignon et al.'s study was
120	48 h (in vivo maturation for 24 h and in vitro maturation for 24 h). Previously, we suggested that IVM
121	for longer than 30 h caused aging of oocytes, and these oocytes showed lower developmental
122	competence than oocytes matured <i>in vitro</i> properly for 22 h [35]. Taken together, 22 to 24 h of IVM
123	was too long for in vivo matured oocytes. In cattle, OPU for collecting oocytes with FSH treatment
124	was conducted at 25 to 26 h after GnRH injection because ovulation occurred at 29 to 32 h after GnRH
125	injection (average 30.0 h) [24]. Some researchers matured in vitro the oocytes for another 3 h after
126	OPU to synchronize the total maturation period in vivo and in vitro with the time after GnRH injection
127	and ovulation [24, 26]. Further studies are needed to optimize the duration for IVM for <i>in vivo</i> matured
128	oocytes.

2.2. Simplification of the regimen for FSH-priming

Superovulation after a single injection of FSH has been developed in conventional *in vivo*embryo production by superovulation followed by uterine flushing [14]. This approach can be done in

133	one of two ways; (1) using a solvent that enabled FSH to be released slowly, such as
134	polyvinylpyrrolidone (PVP) [36, 37], aluminum hydroxide gel mixes [38], or hyaluronan-based slow
135	release formulation [39, 40], or (2) a single subcutaneous administration of high-dose FSH dissolved
136	in saline [36, 41, 42]. In both treatments, blood FSH is slowly absorbed into the general circulation
137	and induces the growth of multiple ovulatory follicles (PVP [36], aluminum hydroxide gel [38],
138	hyaluronan [43], and FSH dissolved in saline by subcutaneous (sc) injection [42]). The injection
139	methods tested for FSH-priming before OPU to simplify the regimen of FSH injection included PVP
140	[44], aluminum hydroxide gel [26], hyaluronan [43], FSH dissolved in saline by sc injection [33, 45,
141	46], im injection [33, 47, 48], or epidural injection [49] (Table 2). There is very limited information
142	about the efficiency of a single injection of FSH prior to OPU, but Vieira et al. [43] reported that a
143	single im injection of FSH dissolved in 0.5% hyaluronan resulted in similar plasma FSH profiles as
144	twice-daily FSH treatments, and a single injection increased the number of embryos per OPU-IVF. In
145	some studies, researchers conducted a single FSH injection prior to OPU using saline as a solvent of
146	FSH (sc [45], im [47], or a simultaneous injection of im and sc [33, 50]). The efficiency of these
147	treatments on the acquisition of oocyte developmental competence was not reported to be different
148	with that of non-stimulated animals [45, 47] or lower than that of conventional multiple FSH injection
149	[33].

It is known that the interval between the last FSH injection of multiple FSH injections and OPU ("coasting period") critically affects the developmental competence of oocytes [34, 51]. Nivet et

152	al. [51] suggested that a coasting period between 44 and 68 h showed better developmental
153	competence of blastocysts than a shorter period (20 h), although a longer coasting period (92 h)
154	decreased the developmental competence [51]. During the coasting period, a progressive hypoxia
155	occurs in follicles, which is related to the increase in apoptosis and inflammation of follicles [52]. This
156	follicular environment is similar to several preovulatory changes in the dominant follicle and
157	associated with improvement in the developmental competence of oocytes [19]. Reduction of the FSH
158	level during the coasting period was similar to the growth of a dominant follicle [53], because FSH
159	levels decrease for several days before ovulation in the natural estrous cycle [54]. After the reduction
160	in FSH level, the basal level of LH is supposed to maintain growth and prevent atresia of follicles
161	during the coasting period [13]. Although the coasting period is important to improve developmental
162	competence, there is little information about the suitable interval between a single FSH injection and
163	the OPU. Blondin et al. [48] conducted a study where a single bolus FSH injection was administered
164	to beef heifers, and oocytes were collected from animals soon after slaughter at 24, 48, and 72 h after
165	the FSH injection (Table 2). In that case, the developmental competence of oocytes was higher in
166	animals slaughtered 48 h after the FSH injection than those after 24 or 72 h. Furthermore, the
167	developmental competence of oocytes was higher when oocytes were collected 4 to 5 h after slaughter
168	than oocytes collected soon after slaughter (Table 2). This result cannot be applied directly to other
169	single-injection regimens, because the plasma circulation of FSH after a single FSH injection was
170	different between im and sc injections [55], and the type of animal and solvent can affect the transition

171	of FSH to general circulation from the injection site. For example, some researchers successfully
172	induced superstimulation using a single sc injection of FSH in beef cows [41, 42], but Takedomi et al.
173	[36] failed to induce superstimulation using a single sc injection in Holstein heifers. When FSH
174	dissolved in saline was subcutaneously administered into Holstein heifers, the plasma concentration
175	of FSH markedly increased within 3 h and was maintained until 9 h after administration [36]. Plasma
176	concentration of FSH decreased to the basal level after 36 h, and superovulation was not induced [36].
177	However, a FSH solution dissolved in PVP [36] results in a gradual increase in FSH plasma
178	concentrations that peak 12 h after administration. Then, FSH plasma concentrations decreased
179	gradually but were maintained at a higher level than the basal level for more than 48 h, and
180	superstimulation can be induced in Holstein heifers [36]. For the optimization of OPU followed by a
181	single FSH injection, further studies are needed to find out the appropriate coasting periods based on
182	the plasma dynamics of circulating FSH after the injection.
183	
184	2.3. Epidural area as an injection site of FSH to induce superstimulation
185	Although there are some effective methods for superstimulation, the effectiveness of these
186	different treatments varies considerably, probably because of differences in the amount of
187	subcutaneous fat tissue in the animals [36, 41, 42]. To develop a more efficient method to simplify the
188	regimen of FSH injection, we took an idea from a study of human pharmacokinetics, which suggested
189	that alfentanil (an opioid analgesic drug) was slowly absorbed into the general circulation after

190	epidural administration in humans [56]. Therefore, we firstly compared the outcome of <i>in vivo</i> embryo
191	production by superovulation followed by uterine flushing between a conventional multiple FSH
192	injection and a single epidural FSH injection. We collected embryos from five Japanese black cows
193	given twice-daily im FSH administration (totally 20 armour units of Antrin R-10, approximately 200
194	international units, Kyoritsu Seiyaku, Tokyo, Japan) for 3 d (control) or a single epidural FSH injection
195	(30 armour units, approximately 300 international units). The number of transferable blastocysts after
196	epidural treatment (9.0 \pm 6.0) was similar to that in the control group (4.7 \pm 3.5, P = 0.10). Furthermore,
197	we confirmed the efficiency of a single epidural FSH injection for OPU-IVF of cattle with low
198	productivity by in vivo embryo production. We conducted OPU for three Japanese black cows with
199	low embryo productivity given twice daily im FSH administration (total 30 armour units) or a single
200	epidural FSH injection (30 armour units). Although most follicles were less than 6 mm in diameter,
201	and the numbers of follicles and collected oocytes were similar between treatments, the rate of
202	transferable blastocysts in the epidural group was higher than that of the control (Table 3, $P < 0.0001$).
203	Further study is needed to reveal the mechanism of improved developmental competence of oocytes
204	after a single epidural FSH injection, and plasma FSH dynamics after epidural injection to optimize
205	the protocol such as the coasting period.
206	

3. Pre-maturation

3.1. Application of cyclic adenosine monophosphate (cAMP) modulators for pre-maturation

209	In conventional in vitro embryo production including ultrasound-guided OPU-IVF, oocytes
210	derived from antral follicles lager than 2 mm in diameter are used [6, 57], in which the oocytes acquire
211	competence for meiotic resumption [9]. One of the reasons for the lower competence of oocytes is
212	precocious meiotic resumption. If meiotically competent oocytes are isolated from follicles, they can
213	resume meiosis spontaneously without ovulatory stimulation such as an LH surge [58]. However,
214	oocytes collected from living cattle without FSH-priming or from slaughterhouse-derived ovaries
215	originate from follicles of varied developmental stages [6, 9, 59]. This means that all oocytes are not
216	growing enough to acquire developmental competence, resulting in lower developmental competence
217	to the blastocyst stage. Meiotic arrest is caused by an increase in cAMP in oocytes, which is produced
218	by oocytes themselves [60, 61] or supplied from cumulus cells via gap junctions [62, 63]. To improve
219	the acquisition of developmental competence of oocytes, many researchers have cultured oocytes from
220	non-stimulated slaughterhouse-derived ovaries in conditions that prevent meiotic resumption by
221	controlling cAMP concentration before IVM (pre-IVM; Table 3) [64-71]. Reduction of cAMP
222	concentration can be achieved through the addition of phosphodiesterase (PDE), the enzyme that
223	degrades cAMP to 5'-AMP. Thus, inhibition of PDE activity has been applied in pre-IVM culture. 3-
224	isobutyl-1-methylxanthine (IBMX) is a non-specific PDE inhibitor that prevents a reduction in cAMP
225	levels and inhibits meiotic resumption in bovine oocytes [72-75]. Forskolin (FSK) is an activator of
226	adenylate cyclase, which promotes the synthesis of cAMP. Culture conditions with IBMX and
227	forskolin increase cAMP levels in bovine oocytes [76]. A culture system called the "simulated

228	physiological oocyte maturation" (SPOM) system consists of pre-IVM culture with 500 μ M IBMX
229	and 100 μ M FSK for 2 h before IVM, which promoted the blastocyst rate [64, 71] and cell numbers
230	in blastocysts [64]. More recently, extending pre-IVM culture from 2 to 6 h was reported to increase
231	the proportion of hatched blastocysts on day 8 and yielded a highest ratio of inner cell mass to total
232	cells on day 8 after IVF by increasing intra-oocyte reduced glutathione, which has important roles as
233	an antioxidant agent in oocyte maturation, fertilization, and embryonic development [66].
234	
235	3.2. Effect of the diameter of oocytes on the outcome of pre-IVM culture
236	Otoi et al. [11] collected oocytes from follicles 1 to 7 mm in diameter in slaughterhouse-
237	derived ovaries, and morphologically healthy oocytes (three or more dense layers of cumulus cells,
238	evenly granulated cytoplasm) were divided into groups based on their diameters and subjected to in
239	vitro embryo production. They showed that the developmental competence of oocytes became higher
240	as the diameter of oocytes became larger [11]. Based on Otoi et al.'s studies [11], we speculated that
241	the most suitable duration of pre-IVM culture is dependent on the diameter of oocytes. We collected
242	bovine oocytes from slaughterhouse-derived ovaries and divided them into small-sized (110 to < 115
243	μ m) and large-sized (\geq 115 μ m) oocytes and subjected them to pre-IVM culture for 0, 5, or 10 h in
244	medium containing IBMX (500 μ M) and a low dose of FSH (2 × 10 ⁻⁶ units/mL, from porcine pituitary)
245	[69]. Before pre-IVM culture, all oocytes were at GV stage in both groups. Although approximately
246	90% of oocytes were still GV stage after pre-IVM for 5 h in both groups, half of the oocytes reached

247	metaphase I after pre-IVM for 10 h, indicating the spontaneous meiotic resumption of oocytes during
248	an extending pre-IVM culture in both groups. In large oocytes (\geq 115 µm), the percentage of
249	blastocysts after IVF was not different between the different duration of pre-IVM culture (31%).
250	However, pre-IVM culture for 5 h showed a higher blastocyst rate (16%) than for 0 h (9%) or 10 h
251	(8%) (Table 3). Although the mechanism underlying improved developmental competence in pre-IVM
252	for 5 h is unclear, we previously reported that the mitochondrial activity of <i>in vitro</i> grown oocytes
253	$(105.9 \text{ to } 122.7 \mu\text{m})$ increased at 10 h of pre-IVM, then decreased after 20 h of pre-IVM [77]. Changes
254	in mitochondrial activity during pre-IVM were accompanied by developmental competence to form
255	blastocysts [77]. Similarly, mitochondrial activity may increase during the first 5 h of pre-IVM, then
256	decrease after 10 h of pre-IVM in <i>in vivo</i> grown small-sized oocytes (110 to $<$ 115 μ m). Further studies
257	are needed to define the appropriate duration of pre-IVM treatment in more detail.
258	
259	3.3. Culturing oocyte with natriuretic peptide precursor type C
260	During follicular development, natriuretic peptide precursor type C (NPPC or CNP) derived
261	from mural granulosa cells, and its receptor derived from cumulus cells (natriuretic peptide receptor
262	2; NPR2), play important roles for inhibiting meiotic resumption [78]. In mice, NPPC derived from
263	granulosa cells promotes production of cyclic guanosine monophosphate (cGMP) by NPR2 in
264	cumulus cells [78]. Cumulus cell-derived cGMP inhibits the reduction of cAMP concentration by the
265	inhibition of PDE3A, an oocyte-specific phosphodiesterase, which is a trigger for meiotic resumption

266	[78]. As with mice, bovine cumulus cells express NPR2 mRNA [65, 68, 79] and protein [68], and
267	meiotic resumption of oocytes can be arrested during culture of cumulus-oocyte complexes (COCs)
268	with NPPC [65, 67, 68, 70, 80]. Although NPR2 was not expressed in oocytes in mice [68], some
269	studies reported the expression of NPR2 mRNA [68, 79] and protein [68] in bovine oocyte membranes,
270	and meiotic resumption of denuded oocytes was arrested by NPPC [68]. Some studies suggested that
271	pre-IVM with NPPC (100 nM or 200 nM) for 6 h improved the blastocyst rate [67, 68], the blastocysts
272	cell number [65, 67], and the blastocyst hatching rate [65] (Table 3). The combination of NPPC (100
273	nM) and IBMX (500 μ M) in pre-IVM culture followed by 20 h IVM also showed a higher blastocyst
274	rate [70] (Table 3).
275	
276	4. Conclusion
277	In vivo matured oocytes have higher developmental competence than in vitro matured
278	oocytes, but there is still a need for further research to optimize IVM conditions that will result in the
279	acquisition of developmental competence for immature bovine oocytes. Although a single injection of
280	FSH prior to OPU can improve the developmental competence of oocytes similar to conventional
281	multiple FSH injection, further study, such as of the coasting period, is needed to maximize the
282	potential of oocytes. For oocytes collected from cattle without FSH-priming, pre-IVM is a candidate
283	method to improve the developmental competence of oocytes. In addition, the diameter of oocytes is
284	an important criterion to affect the optimal duration of pre-IVM culture and the developmental

285 competence of oocytes.

286

287 Competing interests

288 The authors have no competing interest in publishing findings of this research.

289

290 Acknowledgments

- 291 We thank Dr. Masato Konishi, Dr. Atsushi Ideta, Dr. Yojiro Yanagawa, and Dr. Seiji Katagiri
- for providing valuable suggestions for the conduct of our research. We also express our gratitude for
- 293 kind support from members of the Zen-noh Embryo Transfer Center and students in The Laboratory
- 294 of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University. This study was supported
- 295 by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science awarded
- 296 JSPS KAKENHI Grant Numbers JP18J13899 to Kenichiro Sakaguchi. Kenichiro Sakaguchi was
- 297 supported by JSPS Research Fellowships for Young Scientists.
- 298

299 References

- 300 [1] Moore SG, Hasler JF. A 100-Year Review: Reproductive technologies in dairy science. J Dairy
- 301 Sci. 2017;100:10314-31.
- 302 [2] Pontes JH, Nonato-Junior I, Sanches BV, Ereno-Junior JC, Uvo S, Barreiros TR, et al.
- 303 Comparison of embryo yield and pregnancy rate between *in vivo* and *in vitro* methods in the same
- 304 Nelore (Bos indicus) donor cows. Theriogenology. 2009;71:690-7.
- 305 [3] Blondin P. Logistics of large scale commercial IVF embryo production. Reprod Fertil Dev.
- 306 2016;29:32-6.

- 307 [4] Lonergan P, Fair T. Maturation of oocytes *in vitro*. Annu Rev Anim Biosci. 2016;4:255-68.
- 308 [5] Landry DA, Bellefleur AM, Labrecque R, Grand FX, Vigneault C, Blondin P, et al
- 309 . Effect of cow age on the *in vitro* developmental competence of oocytes obtained after FSH
- 310 stimulation and coasting treatments. Theriogenology. 2016;86:1240-6.
- 311 [6] Luciano AM, Sirard MA. Successful in vitro maturation of oocytes: a matter of follicular
- 312 differentiation. Biol Reprod. 2018;98:162-9.
- 313 [7] Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human
- 314 menstrual cycle: a review. Hum Reprod Update. 2012;18:73-91.
- [8] Ginther OJ. The theory of follicle selection in cattle. Domest Anim Endocrinol. 2016;57:85-99.
- 316 [9] Fair T, Hyttel P, Greve T. Bovine oocyte diameter in relation to maturational competence and
- 317 transcriptional activity. Mol Reprod Dev. 1995;42:437-42.
- 318 [10] Hagemann LJ, Beaumont SE, Berg M, Donnison MJ, Ledgard A, Peterson AJ, et al.
- 319 Development during single IVP of bovine oocytes from dissected follicles: interactive effects of
- 320 estrous cycle stage, follicle size and atresia. Mol Reprod Dev. 1999;53:451-8.
- 321 [11] Otoi T, Yamamoto K, Koyama N, Tachikawa S, Suzuki T. Bovine oocyte diameter in relation to
- developmental competence. Theriogenology. 1997;48:769-74.
- 323 [12] Sugimura S, Kobayashi N, Okae H, Yamanouchi T, Matsuda H, Kojima T, et al. Transcriptomic
- signature of the follicular somatic compartment surrounding an oocyte with high developmentalcompetence. Sci Rep. 2017;7:6815.
- 326 [13] Sirard MA. Somatic environment and germinal differentiation in antral follicle: The effect of
- 327 FSH withdrawal and basal LH on oocyte competence acquisition in cattle. Theriogenology.
- 328 2016;86:54-61.
- 329 [14] Bó GA, Rogan DR, Mapletoft RJ. Pursuit of a method for single administration of pFSH for
- superstimulation in cattle: What we have learned. Theriogenology. 2018;112:26-33.
- 331 [15] Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland MP. Oocyte and embryo quality: effect
- of origin, culture conditions and gene expression patterns. Reprod Domest Anim. 2003;38:259-67.
- [16] Merton JS, de Roos AP, Mullaart E, de Ruigh L, Kaal L, Vos PL, et al. Factors affecting oocyte
- quality and quantity in commercial application of embryo technologies in the cattle breeding
- industry. Theriogenology. 2003;59:651-74.
- 336 [17] Nagano M, Katagiri S, Takahashi Y. Relationship between bovine oocyte morphology and in
- *vitro* developmental potential. Zygote. 2006;14:53-61.
- 338 [18] De Roover R, Bols PE, Genicot G, Hanzen C. Characterisation of low, medium and high
- responders following FSH stimulation prior to ultrasound-guided transvaginal oocyte retrieval in
 cows. Theriogenology. 2005;63:1902-13.
- 341 [19] Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, et al. Oocyte maturation
- and quality: role of cyclic nucleotides. Reproduction. 2016;152:R143-57.
- 343 [20] Bordignon V, Morin N, Durocher J, Bousquet D, Smith LC. GnRH improves the recovery rate

- 344 and the *in vitro* developmental competence of oocytes obtained by transvaginal follicular aspiration
- 345 from superstimulated heifers. Theriogenology. 1997;48:291-8.
- 346 [21] van de Leemput EE, Vos PL, Zeinstra EC, Bevers MM, van der Weijden GC, Dieleman SJ.
- 347 Improved *in vitro* embryo development using *in vivo* matured oocytes from heifers superovulated
- 348 with a controlled preovulatory LH surge. Theriogenology. 1999;52:335-49.
- 349 [22] Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation,
- 350 fertilization or early embryo development *in vitro* versus *in vivo*: implications for blastocyst yield
- and blastocyst quality. Mol Reprod Dev. 2002;61:234-48.
- 352 [23] Dias FC, Dadarwal D, Adams GP, Mrigank H, Mapletoft RJ, Singh J. Length of the follicular
- growing phase and oocyte competence in beef heifers. Theriogenology. 2013;79:1177-83.e1.
- [24] Matoba S, Yoshioka H, Matsuda H, Sugimura S, Aikawa Y, Ohtake M, et al. Optimizing
- 355 production of *in vivo*-matured oocytes from superstimulated Holstein cows for *in vitro* production of
- embryos using X-sorted sperm. J Dairy Sci. 2014;97:743-53.
- 357 [25] Sprícigo JF, Diógenes MN, Leme LO, Guimarães AL, Muterlle CV, Silva BD, et al. Effects of
- 358 Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid
- Composition and Resistance to Vitrification and Warming. PLoS One. 2015;10:e0130164.
- 360 [26] Egashira J, Ihara Y, Khatun H, Wada Y, Konno T, Tatemoto H, et al. Efficient in vitro embryo
- production using *in vivo*-matured oocytes from superstimulated Japanese Black cows. J Reprod Dev.
 2019:65:183-90.
- 363 [27] Thelie A, Papillier P, Pennetier S, Perreau C, Traverso JM, Uzbekova S, et al. Differential
- 364 regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation
- 365 *in vitro* and *in vivo*. BMC Dev Biol. 2007;7:125.
- 366 [28] Katz-Jaffe MG, McCallie BR, Preis KA, Filipovits J, Gardner DK. Transcriptome analysis of in
- 367 *vivo* and *in vitro* matured bovine MII oocytes. Theriogenology. 2009;71:939-46.
- 368 [29] Lonergan P, Gutierrez-Adan A, Rizos D, Pintado B, de la Fuente J, Boland MP. Relative
- 369 messenger RNA abundance in bovine oocytes collected *in vitro* or *in vivo* before and 20 hr after the
- preovulatory luteinizing hormone surge. Mol Reprod Dev. 2003;66:297-305.
- 371 [30] Somfai T, Matoba S, Inaba Y, Nakai M, Imai K, Nagai T, et al. Cytoskeletal and mitochondrial
- 372 properties of bovine oocytes obtained by Ovum Pick-Up: the effects of follicle stimulation and *in*
- 373 *vitro* maturation. Anim Sci J. 2015;86:970-80.
- 374 [31] Hendriksen PJ, Vos PL, Steenweg WN, Bevers MM, Dieleman SJ. Bovine follicular
- development and its effect on the *in vitro* competence of oocytes. Theriogenology. 2000;53:11-20.
- 376 [32] Monteiro FM, Ferreira MM, Potiens JR, Eberhardt BG, Trinca LA, Barros CM. Influence of
- 377 superovulatory protocols on *in vitro* production of Nellore (Bos indicus) embryos. Reprod Domest
- Anim. 2010;45:860-4.
- [33] Chaubal SA, Ferre LB, Molina JA, Faber DC, Bols PE, Rezamand P, et al. Hormonal treatments
- 380 for increasing the oocyte and embryo production in an OPU-IVP system. Theriogenology.

- 381 2007;67:719-28.
- 382 [34] Blondin P, Bousquet D, Twagiramungu H, Barnes F, Sirard MA. Manipulation of follicular
- development to produce developmentally competent bovine oocytes. Biol Reprod. 2002;66:38-43.
- 384 [35] Koyama K, Kang SS, Huang W, Yanagawa Y, Takahashi Y, Nagano M. Aging-related changes
- 385 in *in vitro*-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after
- nuclear maturation. J Reprod Dev. 2014;60:136-42.
- 387 [36] Takedomi T, Aoyagi Y, Konishi M, Kishi H, Taya K, Watanabe G, et al. Superovulation of
- 388 Holstein heifers by a single subcutaneous injection of FSH dissolved in polyvinylpyrrolidone.
- 389 Theriogenology. 1995;43:1259-68.
- 390 [37] Yamamoto M, Ooe M, Kawaguchi M, Suzuki T. Superovulation in the cow with a single
- intramuscular injection of FSH dissolved in polyvinylpyrrolidone. Theriogenology. 1994;41:747-55.
- 392 [38] Kimura K, Hirako M, Iwata H, Aoki M, Kawaguchi M, Seki M. Successful superovulation of
- cattle by a single administration of FSH in aluminum hydroxide gel. Theriogenology. 2007;68:633-9.
- [39] Tribulo A, Rogan D, Tribulo H, Tribulo R, Alasino RV, Beltramo D, et al. Superstimulation of
- 395 ovarian follicular development in beef cattle with a single intramuscular injection of Folltropin-V.
- 396 Anim Reprod Sci. 2011;129:7-13.
- [40] Tribulo A, Rogan D, Tribulo H, Tribulo R, Mapletoft RJ, Bo GA. Superovulation of beef cattle
- 398 with a split-single intramuscular administration of Folltropin-V in two concentrations of hyaluronan.
- 399 Theriogenology. 2012;77:1679-85.
- 400 [41] Bo GA, Hockley DK, Nasser LF, Mapletoft RJ. Superovulatory response to a single
- 401 subcutaneous injection of Folltropin-V in beef cattle. Theriogenology. 1994;42:963-75.
- 402 [42] Hiraizumi S, Nishinomiya H, Oikawa T, Sakagami N, Sano F, Nishino O, et al. Superovulatory
- 403 response in Japanese Black cows receiving a single subcutaneous porcine follicle-stimulating
- 404 hormone treatment or six intramuscular treatments over three days. Theriogenology. 2015;83:466-
- 405 73.
- 406 [43] Vieira LM, Rodrigues CA, Castro Netto A, Guerreiro BM, Silveira CRA, Freitas BG, et al.
- Efficacy of a single intramuscular injection of porcine FSH in hyaluronan prior to ovum pick-up in
 Holstein cattle. Theriogenology. 2016;85:877-86.
- 409 [44] Ooe M, Rajamahendran R, Boediono A, Suzuki T. Ultrasound-guided follicle aspiration and
- 410 IVF in dairy cows treated with FSH after removal of the dominant follicle at different stages of the
- 411 estrous cycle [corrected]. J Vet Med Sci. 1997;59:371-6.
- 412 [45] Goodhand KL, Staines ME, Hutchinson JS, Broadbent PJ. In vivo oocyte recovery and in vitro
- 413 embryo production from bovine oocyte donors treated with progestagen, oestradiol and FSH. Anim
- 414 Reprod Sci. 2000;63:145-58.
- 415 [46] Sakagami N, Konda K, Hashimura S, Kawate N, Inaba T, Tamada H. Production of Japanese
- 416 Black calves by the transfer of embryos developed from in vitro-fertilized oocytes derived by ovum
- 417 pick up and matured in culture with the mitogen-activated protein kinase kinase inhibitor U0126. J

- 418 Vet Med Sci. 2019;81:379-82.
- 419 [47] Bungartz L, Lucas-Hahn A, Rath D, Niemann H. Collection of oocytes from cattle via follicular
- 420 aspiration aided by ultrasound with or without gonadotropin pretreatment and in different

421 reproductive stages. Theriogenology. 1995;43:667-75.

- 422 [48] Blondin P, Guilbault LA, Sirard MA. The time interval between FSH-P administration and
- 423 slaughter can influence the developmental competence of beef heifer oocytes. Theriogenology.

424 1997;48:803-13.

- 425 [49] Sakaguchi K, Ideta A, Yanagawa Y, Nagano M, Katagiri S, Konishi M. Effect of a single
- 426 epidural administration of follicle-stimulating hormone via caudal vertebrae on superstimulation for
- 427 *in vivo* and *in vitro* embryo production in Japanese black cows. J Reprod Dev. 2018;64:451-5.
- 428 [50] Chaubal SA, Molina JA, Ohlrichs CL, Ferre LB, Faber DC, Bols PE, et al. Comparison of
- 429 different transvaginal ovum pick-up protocols to optimise oocyte retrieval and embryo production
- 430 over a 10-week period in cows. Theriogenology. 2006;65:1631-48.
- 431 [51] Nivet AL, Bunel A, Labrecque R, Belanger J, Vigneault C, Blondin P, et al. FSH withdrawal
- improves developmental competence of oocytes in the bovine model. Reproduction. 2012;143:165-71.
- 434 [52] Nivet AL, Vigneault C, Blondin P, Sirard MA. Changes in granulosa cells' gene expression
- 435 associated with increased oocyte competence in bovine. Reproduction. 2013;145:555-65.
- 436 [53] Sirard MA, Grand FX, Labrecque R, Vigneault C, Blondin P. ASAS-SSR Triennial
- 437 Reproduction Symposium: The use of natural cycle's follicular dynamic to improve oocyte quality in

438 dairy cows and heifers. J Anim Sci. 2018;96:2971-6.

- 439 [54] Cooke DJ, Crowe MA, Roche JF. Circulating FSH isoform patterns during recurrent increases
- 440 in FSH throughout the oestrous cycle of heifers. J Reprod Fertil. 1997;110:339-45.
- 441 [55] Bo GA, Rogan DR, Mapletoft RJ. Pursuit of a method for single administration of pFSH for
- 442 superstimulation in cattle: What we have learned. Theriogenology. 2018;112:26-33.
- [56] Burm AG, Haak-van der Lely F, van Kleef JW, Jacobs CJ, Bovill JG, Vletter AA, et al.
- 444 Pharmacokinetics of alfentanil after epidural administration. Investigation of systemic absorption
- kinetics with a stable isotope method. Anesthesiology. 1994;81:308-15.
- 446 [57] Oliveira LH, Sanches CP, Seddon AS, Veras MB, Lima FA, Monteiro PLJ, Jr., et al. Short
- 447 communication: Follicle superstimulation before ovum pick-up for *in vitro* embryo production in
- 448 Holstein cows. J Dairy Sci. 2016;99:9307-12.
- [58] Pincus G, Enzmann EV. The comparative behavior of mammalian eggs *in vivo* and *in vitro*: I.
- 450 The activation of ovarian eggs. J Exp Med. 1935;62:665-75.
- 451 [59] Lodde V, Modina S, Galbusera C, Franciosi F, Luciano AM. Large-scale chromatin remodeling
- in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental
- 453 competence. Mol Reprod Dev. 2007;74:740-9.
- 454 [60] Hinckley M, Vaccari S, Horner K, Chen R, Conti M. The G-protein-coupled receptors GPR3

- 455 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes.
- 456 Dev Biol. 2005;287:249-61.
- 457 [61] Mehlmann LM, Jones TL, Jaffe LA. Meiotic arrest in the mouse follicle maintained by a Gs
- 458 protein in the oocyte. Science. 2002;297:1343-5.
- 459 [62] Webb RJ, Marshall F, Swann K, Carroll J. Follicle-stimulating hormone induces a gap junction-
- dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes. Dev Biol.
- 461 2002;246:441-54.
- 462 [63] Dekel N. Regulation of oocyte maturation. The role of cAMP. Ann N Y Acad Sci.
- 463 1988;541:211-6.
- 464 [64] Albuz FK, Sasseville M, Lane M, Armstrong DT, Thompson JG, Gilchrist RB. Simulated
- 465 physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially
- 466 improves embryo yield and pregnancy outcomes. Hum Reprod. 2010;25:2999-3011.
- 467 [65] Franciosi F, Coticchio G, Lodde V, Tessaro I, Modina SC, Fadini R, et al. Natriuretic peptide
- 468 precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine
- 469 cumulus-enclosed oocytes. Biol Reprod. 2014;91:61.
- 470 [66] Li HJ, Sutton-McDowall ML, Wang X, Sugimura S, Thompson JG, Gilchrist RB. Extending
- 471 prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant
- defence and oocyte quality via gap junctions. Hum Reprod. 2016;31:810-21.
- 473 [67] Zhang T, Zhang C, Fan X, Li R, Zhang J. Effect of C-type natriuretic peptide pretreatment on in
- 474 *vitro* bovine oocyte maturation. In Vitro Cell Dev Biol Anim. 2017;53:199-206.
- 475 [68] Xi G, An L, Jia Z, Tan K, Zhang J, Wang Z, et al. Natriuretic peptide receptor 2 (NPR2)
- 476 localized in bovine oocyte underlies a unique mechanism for C-type natriuretic peptide (CNP)-
- 477 induced meiotic arrest. Theriogenology. 2018;106:198-209.
- 478 [69] Abdel-Ghani MA, Sakaguchi K, Kanno C, Yanagawa Y, Katagiri S, Nagano M. Effects of pre-
- 479 maturational culture duration on developmental competence of bovine small-sized oocytes. J Reprod480 Dev. 2018;64:365-9.
- 481 [70] Soto-Heras S, Paramio MT, Thompson JG. Effect of pre-maturation with C-type natriuretic
- 482 peptide and 3-isobutyl-1-methylxanthine on cumulus-oocyte communication and oocyte
- 483 developmental competence in cattle. Anim Reprod Sci. 2019;202:49-57.
- 484 [71] Hashimoto S, Yamanaka M, Yamochi T, Iwata H, Kawahara-Miki R, Inoue M, et al.
- 485 Mitochondrial function in immature bovine oocytes is improved by an increase of cellular cyclic
- 486 AMP. Sci Rep. 2019;9:5167.
- 487 [72] Homa ST, Webster SD, Russell RK. Phospholipid turnover and ultrastructural correlates during
- 488 spontaneous germinal vesicle breakdown of the bovine oocyte: effects of a cyclic AMP
- 489 phosphodiesterase inhibitor. Dev Biol. 1991;146:461-72.
- 490 [73] Sirard MA, First NL. *In vitro* inhibition of oocyte nuclear maturation in the bovine. Biol
- 491 Reprod. 1988;39:229-34.

- 492 [74] Luciano AM, Pocar P, Milanesi E, Modina S, Rieger D, Lauria A, et al. Effect of different levels
- 493 of intracellular cAMP on the *in vitro* maturation of cattle oocytes and their subsequent development

494 following *in vitro* fertilization. Mol Reprod Dev. 1999;54:86-91.

- 495 [75] Bilodeau S, Fortier MA, Sirard MA. Effect of adenylate cyclase stimulation on meiotic
- 496 resumption and cyclic AMP content of zona-free and cumulus-enclosed bovine oocytes in vitro. J
- 497 Reprod Fertil. 1993;97:5-11.
- 498 [76] Thomas RE, Armstrong DT, Gilchrist RB. Differential effects of specific phosphodiesterase
- 499 isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev Biol. 2002;244:215-25.
- 500 [77] Huang W, Kang SS, Nagai K, Yanagawa Y, Takahashi Y, Nagano M. Mitochondrial activity
- 501 during pre-maturational culture in *in vitro*-grown bovine oocytes is related to maturational and
- 502 developmental competences. Reprod Fertil Dev. 2016;28:349-56.
- 503 [78] Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor
- 504 NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330:366-9.
- 505 [79] De Cesaro MP, Macedo MP, Santos JT, Rosa PR, Ludke CA, Rissi VB, et al. Natriuretic
- 506 peptides stimulate oocyte meiotic resumption in bovine. Anim Reprod Sci. 2015;159:52-9.
- 507 [80] Soares ACS, Lodde V, Barros RG, Price CA, Luciano AM, Buratini J. Steroid hormones interact
- 508 with natriuretic peptide C to delay nuclear maturation, to maintain oocyte-cumulus communication
- and to improve the quality of *in vitro*-produced embryos in cattle. Reprod Fertil Dev. 2017;29:2217-
- 510 24.

Authors	Injection manner of FSH or equine chorionic gonadotropin (eCG)	Time between GnRH or LH treatment and OPU	IVM duration for <i>in vivo</i> matured oocytes	Developmental competence (%)*
Bordignon <i>et al.</i> 1997 [20] **	FSH injection in eight decreasing doses 12 hours apart for 4 d	26 h	0 h or 24 h	Blastocysts on Day 7 FSH-only-IVM 0 h: 40 ^a FSH-GnRH-IVM 0 h: 60 ^b FSH-only-IVM 24 h: 20 FSH-GnRH-IVM 24 h: 13
van de Leemput <i>et al.</i> 1999 [21]	A single injection of eCG followed by an injection of eCG antibody (112 h later)	24 h	Maximally 2 h 54 min	Blastocysts on Day 11 Slaughterhouse: 26.4 ^a eCG-GnRH: 49.3 ^b
Rizos <i>et al.</i> 2002 [22] ***	FSH injection in eight decreasing doses twice daily for 4 d	20 h	0 h	Blastocysts on Day 7 Slaughterhouse (2 to 6 mm) [:] 31.7 ^a (> 6 mm): 38.4 ^{ab} FSH-only: 35.3 ^a FSH-GnRH: 48.5 ^b
Dias <i>et al.</i> 2013 [23] ****	FSH injection in eight or 14 consistent doses twice daily for 4 or 7 d (Short FSH or Long FSH)	24 h	6 h	Morulae and blastocysts on Day 9 Short FSH: 24.7 ^{ab} FSH starvation: 18.1 ^b Long FSH: 36.6 ^a
Matoba <i>et al.</i> 2014 [24] *****	FSH injection in eight decreasing doses twice daily for 4 d	25 to 26 h	3 h	Good-quality blastocyst until Day 9 Non-stimulated: 36.1 Dominant follicle ablation: 54.9 ^a GnRH: 21.5 ^b
Sprícigo <i>et al.</i> 2015 [25]	FSH injection in eight decreasing doses twice daily for 4 d	24 h	0 h	Blastocysts on Day 7 Slaughterhouse: 37.9 ^a Non-stimulated: 50.6 ^a FSH only: 58.8 ^b FSH-GnRH: 62.4 ^b
Egashira <i>et al.</i> 2019 [26]	A single sc FSH injection using aluminum hydroxide gel	25 to 26 h	3 h	Good-quality blastocyst on Day 8 Non-stimulated: 29.5 ^a FSH-GnRH: 45.6 ^b

Table 1. Summary of data published on the developmental competence of *in vivo* matured bovine oocytes.

*: The definitions of each experimental group are described below (Day 0 = Day of IVF).

FSH-only: Groups of animals subjected to FSH-priming, but without GnRH injection later.

FSH (or eCG)-GnRH: Groups of animals given GnRH after FSH (or eCG)-priming for collecting in vivo matured oocytes.

Slaughterhouse: Oocytes were collected from slaughterhouse-derived ovaries to serve as a control.

Non-stimulated: Groups of animals with collected oocytes without FSH-priming and GnRH injection.

**: Collected oocytes were subjected to IVM for 0 or 24 h.

***: Collected oocytes from slaughterhouse-derived ovaries were classified by the diameter of follicles (2 to 6 mm or > 6 mm)

****: Cows were treated with three different FSH treatments as described below.

Short FSH: FSH was administered (im) in eight consistent doses twice daily for 4 d.

FSH starvation: FSH was administered (im) in eight doses twice daily for 4 d, and OPU was conducted 4.5 d after the final FSH injection.

Long FSH: FSH was administered (im) in eight consistent doses twice daily for 4 d.

*****: Developmental competence was compared between two methods (Dominant follicle ablation or GnRH injection) for the follicular wave control 1.5 d prior to FSH-priming.

^{a, b}: P < 0.05

Authors	Breeds	Injection site for single FSH	Solvent for single FSH	Coasting period	Developmental competence (%) *
Bungartz <i>et al</i> . 1994 [47]	Lactating Holstein cow	im	Saline	4 d	Morulas and blastocysts on Day 7 Non-stimulated: 2.9 Single FSH: 3.8
Ooe <i>et al</i> . 1996 [44] **	Cyclic lactating Holstein cows	im	30% PVP (10 mL)	48 h	Blastocysts on Day 8 Single FSH on Day 1: 25 Single FSH on Day 7: 28 Single FSH in pregnant cows: 33 Single FSH on Day 8 to 14: 29
Blondin <i>et al.</i> 1997 [48] ***	Beef heifers	im	Saline	Experiment 1: 24, 48, or 72 h Experiment 2: 48 h + 1 to 2 h or 4 to 5 h after slaughter	Experiment 1: Non-stimulated: 15^{a} FSH + 24 h: 5^{b} FSH + 48 h: 25^{a} FSH + 72 h: 7^{b} Experiment 2: Non-stimulated: 18^{a} FSH 48 h + 1 to 2 h: 24^{ab} FSH 48 h + 4 to 5 h: 41^{b}
Goodhand <i>et al</i> . 2000 [45]	Cyclic beef × Friesian cows	sc	Saline	Multiple: 1 d Single: 3 d	Transferable embryos on Day 7 Non-stimulated: 43 Single FSH: 33 Multiple FSH: 35
Chaubal <i>et al.</i> 2007 [33] ****	Angus cross cows	im and sc	Saline	54 h	Blastocysts on Day 7 Multiple FSH-LH: 21.7 Multiple FSH: 18.7 Single FSH-LH: 18.8 Single FSH: 17.2
Vieira <i>et al.</i> 2016 [43]	Non-lactating Holstein cows	im	0.5% hyaluronan	Multiple FSH: 1.5 d Single FSH: 3 d	Blastocysts on Day 6 Non-stimulated: 25.9 Multiple FSH: 30.3 Single FSH: 30.3
Sakaguchi <i>et al.</i> 2018 [49]	Japanese black cows	Epidural	Saline (5 mL)	Multiple FSH: 21 to 23 h Single FSH: 75 to 78 h	Blastocysts on Day 7 Multiple FSH: 10.5 ^a Single FSH: 26.2 ^b
Egashira <i>et al</i> . 2019 [26] *****	Japanese black cows	sc	Aluminum hydroxide gel	4.5 d	Good-quality blastocyst on Day 8 Non-stimulated: 29.5 ^a Single FSH-GnRH: 45.6 ^b
Sakagami <i>et al.</i> 2019 [46] *****	Japanese black cows	sc	Saline (50 mL)	72 h	Blastocysts on Day 8 Single FSH: 22.1 ^a Single FSH-pre-IVM: 39.1 ^b

Table 2. Summary of data published on the developmental competence of bovine oocytes after a single FSH injection.

*: The definition of each experimental group is described below (Day 0 = Day of IVF).

Non-stimulated: Groups of animals with collected oocytes without FSH-priming and GnRH injection.

Single FSH: Groups of animals subjected to a single FSH injection.

Multiple FSH: Groups of animals subjected to multiple FSH injections for few days.

**: There were four experimental groups as described below.

Single FSH on Day 1: FSH was administered (im) on Day 1 (Day 0 = ovulation), and OPU was conducted on Day 3.

Single FSH on Day 7: DFA was conducted on Day 6, FSH was administered (im) on Day 7, and OPU was conducted on Day 9

Single FSH in pregnant cows: FSH was administered (im) on 70, 75, 80, 85, and 90 d of pregnancy and OPU was conducted 48 h later (5 times at 5 d intervals).

Single FSH on d 8 to 14: FSH was administered (im) on Days 8 to 14 and OPU was conducted 48 h later

***: Oocytes were collected from ovaries after slaughter. In experiment 1, animals were slaughtered at 24, 48, or 72 h after a single FSH injection then

oocytes were collected soon after (FSH + 24, 48, or 72 h groups). In experiment 2, animals were slaughter at 48 h after a single im FSH injection, and

oocytes were collected 1 to 2 h or 4 to 5 h after slaughter (FSH 48 h + 1 to 2 h or 4 to 5 h groups).

****: In the single FSH group, FSH was given simultaneously by two routes (im and sc). In Multiple FSH-LH and Single FSH-LH groups, LH was injected 6 h prior to OPU (48 h after the end of FSH treatment).

*****: In single FSH-GnRH group, GnRH was administered (sc) 25 to 26 h prior to OPU (2 d after a single FSH injection).

******: In single FSH-pre-IVM group, collected oocytes were subjected to pre-IVM for 2 h before IVM.

^{a, b}: P < 0.05

Authors	cAMP modulator, NPPC, or FSH in pre-IVM medium	Duration of pre-IVM	Duration of IVM	Developmental competence (%) *
Albuz <i>et al.</i> 2010 [64]	FSK (100 μM), IBMX (500 μM)	0 (control) or 2 h	24 h or 30 h	Blastocysts/cleaved on Day 8 Control IVM 24 h: 22 ^a Pre-IVM IVM 24 h: 48 ^b Control IVM 30 h: 27 ^a Pre-IVM IVM 30 h: pre-IVM: 69 ^c
Franciosi <i>et al.</i> 2014 [65]	Recombinant human FSH (10^{-4} unit/mL) + NPPC (100 nM) or cilostamide (10μ M) or without NPPC and cilostamide (control)	8 h	22 h	Expanded and hatched blastocysts on Day 9 Control: 78 ^a Cilostamide**: 94 ^b NPPC: 93 ^b
Li <i>et al.</i> 2016 [66]	FSK (100 µM), IBMX (500 µM)	0 (control), 2, 4, or 6 h	Control: 24 h Pre-IVM 2 h: 24 h Pre-IVM 4 h: 22 h Pre-IVM 4 h: 20 h	Blastocysts/cleaved on Day 8 Control: 26.3^{a} Pre-IVM 2 h: 39.2^{b} 4 h: 35.2^{b} 6 h: 34.2^{b}
Zhang <i>et al</i> . 2017 [67]	NPPC (200 nM)	0 (control) or 6 h	24, 28, or 32 h	Blastocysts on Day 7 Control IVM 24 h: 32.2 ^b IVM 28 h: 15.0 ^a IVM 32 h: 0 Pre-IVM IVM 28 h: 51.6 ^c
Xi <i>et al.</i> 2018 [68]	NPPC (200 nM)	0 (control) or 6 h	24, 26, or 28 h	Blastocysts on Day 7 Control IVM 24 h: 23.5^{a} 26 h: 24.1^{a} 28 h: 21.7^{a} Pre-IVM IVM 24 h: 26.9^{a} 26 h: 45.2^{b} 28 h: 41.6^{b}
Abdel-Ghani <i>et al</i> . 2018 [69]	Porcine pituitary FSH (2 \times 10 ⁻⁶ units/mL), IBMX (500 μ M)	0, 5, or 10 h	22 h	Blastocysts on Day 7 (110 to < 115 μm) *** Control: 9 ^a Pre-IVM 5 h: 16 ^b 10 h: 8 ^{ab}
Soto-Heras <i>et al</i> . 2019 [70]	NPPC (200 nM), IBMX (500 µM)	0 (control) or 6 h	24 (control) or 20 h	Blastocysts on Day 8 Control: 34.5 Pre-IVM: 45.1 Blastocyste on Day 7
Hashimoto <i>et al.</i> 2019 [71]	FSK (100 µM), IBMX (500 µM)	0 (control) or 2 h	24 h	Control: 16.7 ^a Pre-IVM: 27.5 ^b Blastocysts on day 8 Control: 25.0 ^a Pre-IVM: 33.3 ^b

Table 3. Summary of data published on the developmental competence of bovine oocytes subjected to pre-IVM culture.

*: Day 0 = Day of IVF

- **: Specific inhibitor of PDE3 (specific PDE of oocytes).
- ***: Collected oocytes from slaughterhouse-derived ovaries were classified by their diameter (110 to < 115 μ m or \geq 115 μ m)

^{a, b, c}: P < 0.05