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Highlights (for review) 

• In vivo matured oocytes have higher competence than in vitro matured oocytes. 

• A single FSH injection prior to OPU can improve oocyte competence. 

• In vitro pre- maturation enables to improve oocyte competence without FSH priming. 
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Abstract 20 

Nowadays there is strong demand to produce embryos from premium quality cattle, and we 21 

can produce embryos using oocytes collected from living premium animals by ovum-pick up (OPU) 22 

followed by in vitro fertilization (IVF). However, the developmental competence of IVF oocytes to 23 

form blastocysts is variable. The developmental competence of oocytes depends on the size and stages 24 

of follicles, and follicle-stimulating hormone priming (FSH-priming) prior to OPU can promote 25 

follicular growth and improve the developmental competence of oocytes. Furthermore, following the 26 

induction of ovulation using an injection of luteinizing hormone or gonadotropin-releasing hormone 27 

after FSH-priming, we can collect in vivo matured oocytes from ovulatory follicles, which show higher 28 

developmental competence than oocytes matured in vitro. However, the conventional protocols for 29 

FSH-priming consist of multiple FSH injection for 3 to 4 days, which is stressful for the animal and 30 

labor-intensive for the veterinarian. In addition, these techniques cannot be applied to IVF of oocytes 31 

collected from bovine ovaries derived from slaughterhouses, which are important sources of oocytes. 32 

Here, we review previous research focused on FSH-priming, especially for collecting in vivo matured 33 

oocytes and a simplified method for superstimulation using a single injection of FSH. We also 34 

introduce the previous achievements using in vitro pre-maturation culture, which can improve the 35 

developmental competence of oocytes derived from non-stimulated animals.  36 

Keywords: FSH; Ovum pick-up; In vivo maturation; Single injection; In vitro pre-maturation   37 
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1. Introduction 38 

In vitro fertilization (IVF) technology is now widely used commercially for producing 39 

embryos in cattle [1]. Ultrasound-guided ovum-pick up (OPU) combined with IVF is used to produce 40 

embryos in cattle for genetic improvement [1], and the efficiency of embryo production by OPU-IVF 41 

is higher than that by in vivo embryo production [2, 3]. Although there has been significant progress 42 

in the technology of IVF procedures, the rate of development to blastocysts from oocytes recovered 43 

from non-superstimulated donors is rarely consistently exceeds 40 to 50% [4, 5]. When donors are 44 

superstimulated, a significant increase in the rate of blastocyst is seen but can vary from 50 to 80% 45 

[6]. However, in vivo maturation will remain the gold standard resulting in the highest rate of 46 

blastocyst.  47 

In mono-ovulatory species including cattle, the emergence of follicular growth is induced 48 

by a surge-like secretion of follicle-stimulating hormone (FSH). Then, a dominant follicle is selected 49 

as the level of FSH decreases due to the inhibitory effect of estradiol-17β and inhibin secreted by 50 

follicles themselves. The dominant follicle continues to grow in response to stimulation with 51 

luteinizing hormone (LH), and this results in ovulation [7, 8]. In other words, most follicles degenerate 52 

at immature stages, and only a small proportion of follicles will develop fully and ovulate in the life 53 

time of a cow [7, 8]. During folliculogenesis, the diameter of the oocyte will increase during follicular 54 

growth phases. Developmental competence is defined as the ability of an oocyte to acquire nuclear, 55 

cytoplasmic and molecular maturation and thus the competence to produce a blastocyst following 56 
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fertilization that will result in a healthy offspring after embryo transfer [6]. Although most oocytes in 57 

immature antral follicles (≥ 2 mm, diameter of the oocyte: approximately 110 µm) acquire competence 58 

for nuclear maturation [9], most oocytes will not have acquired cytoplasmic and/or molecular 59 

competence when compared to larger oocytes (120 µm) from follicles grown sufficiently in vivo [10, 60 

11].  61 

To enhance follicular growth and the developmental competence of oocytes, administration 62 

of FSH before OPU (FSH-priming) has been conducted in many studies [12, 13]. However, 63 

conventional FSH treatments require multiple intramuscular (im) administrations, which are stressful 64 

for the animal and time-consuming for the veterinarian. In conventional in vivo embryo production by 65 

superovulation followed by uterine flushing, many researchers have tried to simplify FSH treatment 66 

[14]. Application of these methods for OPU should be evaluated. 67 

Although the quality of oocytes before IVM is considered the critical factor for the outcome 68 

of in vitro embryo production [15-17], there are some cases where exogenous FSH is not applicable 69 

to promote the developmental competence of oocytes, such as oocytes derived from slaughterhouses 70 

or low-responding animals [18]. Previous studies have suggested that the developmental competence 71 

of oocytes can be improved by adding a pre-maturation in vitro step (pre-IVM) prior to IVM. Pre-72 

IVM inhibits germinal vesicle breakdown and holds the oocytes at the germinal vesicle (GV) stage to 73 

acquire full developmental competence of oocytes in vitro during meiotic arrest [19]. 74 

In this review, we describe FSH-priming to improve developmental competence before 75 
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collection of oocytes. In particular, we focused on collecting in vivo matured oocytes and simplifying 76 

the priming protocol using a single injection of FSH. In addition, we also examine pre-IVM to improve 77 

the developmental competence of oocytes in vitro. 78 

 79 

2. FSH-priming 80 

2.1. Collecting in vivo matured oocytes by FSH-priming following induction of an LH surge 81 

Several studies have suggested that in vivo matured oocytes are more developmentally 82 

competent than in vitro matured oocytes (Table 1) [20-26]. Evidence of an increased developmental 83 

competence following in vivo maturation include differences in mRNA transcription in oocytes [27-84 

29], size of the meiotic spindle [30], cytoplasmic maturation (distribution of cortical granules [26], 85 

ATP content [30]), and developmental kinetics of embryos [26]. Bordignon et al. [20] reveal that 86 

heifers treated with gonadotropin-releasing hormone (GnRH) after superstimulation exhibited an LH 87 

surge within 3 h after treatment (34 h after prostaglandin F2α (PGF2α) injection). In the control group 88 

subjected to superstimulation and PGF2α injection without a GnRH injection, 40% of heifers also 89 

exhibited an LH surge within 47 h (between 41 and 45 h) after PGF2α treatment. Most of the oocytes 90 

recovered from control heifers were in metaphase I (MI) stage regardless of the state of expansion of 91 

the cumulus, whereas most oocytes (97%) with expanded cumulus cells in the GnRH-treated group 92 

were at the metaphase II (MII) stage. As a result, the developmental competence of oocytes with 93 

expanded cumulus cells was higher in the GnRH-treated group than the control when oocytes were 94 
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directly subjected to IVF without IVM after OPU (control: 40%, GnRH: 60%, Table 1) [20]. Rizos et 95 

al. [22] showed that in vivo matured oocytes had higher developmental competence than oocytes from 96 

follicles just before LH surge. These results indicate that a post-LH follicular environment induced by 97 

a GnRH injection is essential to improve the developmental competence of bovine oocytes. 98 

The maturation of bovine oocytes is known to initiate 6 h after the LH surge in vivo [31]; 99 

therefore, some researchers collected oocytes 6 h after an injection of LH or human chorionic 100 

gonadotropin [32-34]. Although they suggested promotive effects of exogenous LH injections on 101 

developmental competence [33, 34], waiting 6 h after LH was not long enough to permit oocytes to 102 

complete maturation in vivo as expressed by non-expanded cumulus cells surrounding the oocytes. 103 

Matoba et al. [24] reported that ovulation occurred at 29 to 32 h after a GnRH injection (average 30.0 104 

h), and in vivo matured oocytes could be successfully collected 25 to 26 h after a GnRH injection. 105 

Other researchers collected oocytes after 20 to 26 h after GnRH injection, and succeed in collecting in 106 

vivo matured oocytes with higher developmental competence [20-22, 25, 26], whereas Sprícigo et al. 107 

[25] reported that they could collect more MII oocytes 24 h after GnRH injection (85%) than at 20 h 108 

after GnRH injection (31%). These results indicated that the suitable duration between GnRH injection 109 

and OPU for collecting in vivo matured oocytes should be 24 to 26 h. Although in vivo matured oocytes 110 

show higher developmental competence, handling of them will be difficult due to stickiness of 111 

expanded cumulus investments. Matoba et al. [24] changed conical tubes for collecting oocytes after 112 

5 to 6 follicle aspirations, making it easier to collect individual oocytes instead of clumps. 113 
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In vivo matured oocytes with expanded cumulus cells were directly subjected to IVF after 114 

OPU in some studies [20, 22, 25], while oocytes in other studies were cultured in IVM medium for 3 115 

to 24 h [20, 21, 23, 24, 26] (Table 1). Bordignon et al. [20] reported that when oocytes with expanded 116 

cumulus cells were subjected to IVM for 24 h, 29.2% of them underwent spontaneous activation, and 117 

caused lower developmental competence than in vivo matured oocytes directly subjected to IVF after 118 

OPU (Table 1). The total maturation period initiated from LH surge in Bordignon et al.’s study was 119 

48 h (in vivo maturation for 24 h and in vitro maturation for 24 h). Previously, we suggested that IVM 120 

for longer than 30 h caused aging of oocytes, and these oocytes showed lower developmental 121 

competence than oocytes matured in vitro properly for 22 h [35]. Taken together, 22 to 24 h of IVM 122 

was too long for in vivo matured oocytes. In cattle, OPU for collecting oocytes with FSH treatment 123 

was conducted at 25 to 26 h after GnRH injection because ovulation occurred at 29 to 32 h after GnRH 124 

injection (average 30.0 h) [24]. Some researchers matured in vitro the oocytes for another 3 h after 125 

OPU to synchronize the total maturation period in vivo and in vitro with the time after GnRH injection 126 

and ovulation [24, 26]. Further studies are needed to optimize the duration for IVM for in vivo matured 127 

oocytes. 128 

 129 

2.2. Simplification of the regimen for FSH-priming 130 

Superovulation after a single injection of FSH has been developed in conventional in vivo 131 

embryo production by superovulation followed by uterine flushing [14]. This approach can be done in 132 
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one of two ways; (1) using a solvent that enabled FSH to be released slowly, such as 133 

polyvinylpyrrolidone (PVP) [36, 37], aluminum hydroxide gel mixes [38], or hyaluronan-based slow 134 

release formulation [39, 40], or (2) a single subcutaneous administration of high-dose FSH dissolved 135 

in saline [36, 41, 42]. In both treatments, blood FSH is slowly absorbed into the general circulation 136 

and induces the growth of multiple ovulatory follicles (PVP [36], aluminum hydroxide gel [38], 137 

hyaluronan [43], and FSH dissolved in saline by subcutaneous (sc) injection [42]). The injection 138 

methods tested for FSH-priming before OPU to simplify the regimen of FSH injection included PVP 139 

[44], aluminum hydroxide gel [26], hyaluronan [43], FSH dissolved in saline by sc injection [33, 45, 140 

46], im injection [33, 47, 48], or epidural injection [49] (Table 2). There is very limited information 141 

about the efficiency of a single injection of FSH prior to OPU, but Vieira et al. [43] reported that a 142 

single im injection of FSH dissolved in 0.5% hyaluronan resulted in similar plasma FSH profiles as 143 

twice-daily FSH treatments, and a single injection increased the number of embryos per OPU-IVF. In 144 

some studies, researchers conducted a single FSH injection prior to OPU using saline as a solvent of 145 

FSH (sc [45], im [47], or a simultaneous injection of im and sc [33, 50]). The efficiency of these 146 

treatments on the acquisition of oocyte developmental competence was not reported to be different 147 

with that of non-stimulated animals [45, 47] or lower than that of conventional multiple FSH injection 148 

[33]. 149 

It is known that the interval between the last FSH injection of multiple FSH injections and 150 

OPU (“coasting period”) critically affects the developmental competence of oocytes [34, 51]. Nivet et 151 
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al. [51] suggested that a coasting period between 44 and 68 h showed better developmental 152 

competence of blastocysts than a shorter period (20 h), although a longer coasting period (92 h) 153 

decreased the developmental competence [51]. During the coasting period, a progressive hypoxia 154 

occurs in follicles, which is related to the increase in apoptosis and inflammation of follicles [52]. This 155 

follicular environment is similar to several preovulatory changes in the dominant follicle and 156 

associated with improvement in the developmental competence of oocytes [19]. Reduction of the FSH 157 

level during the coasting period was similar to the growth of a dominant follicle [53], because FSH 158 

levels decrease for several days before ovulation in the natural estrous cycle [54]. After the reduction 159 

in FSH level, the basal level of LH is supposed to maintain growth and prevent atresia of follicles 160 

during the coasting period [13]. Although the coasting period is important to improve developmental 161 

competence, there is little information about the suitable interval between a single FSH injection and 162 

the OPU. Blondin et al. [48] conducted a study where a single bolus FSH injection was administered 163 

to beef heifers, and oocytes were collected from animals soon after slaughter at 24, 48, and 72 h after 164 

the FSH injection (Table 2). In that case, the developmental competence of oocytes was higher in 165 

animals slaughtered 48 h after the FSH injection than those after 24 or 72 h. Furthermore, the 166 

developmental competence of oocytes was higher when oocytes were collected 4 to 5 h after slaughter 167 

than oocytes collected soon after slaughter (Table 2). This result cannot be applied directly to other 168 

single-injection regimens, because the plasma circulation of FSH after a single FSH injection was 169 

different between im and sc injections [55], and the type of animal and solvent can affect the transition 170 
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of FSH to general circulation from the injection site. For example, some researchers successfully 171 

induced superstimulation using a single sc injection of FSH in beef cows [41, 42], but Takedomi et al. 172 

[36] failed to induce superstimulation using a single sc injection in Holstein heifers. When FSH 173 

dissolved in saline was subcutaneously administered into Holstein heifers, the plasma concentration 174 

of FSH markedly increased within 3 h and was maintained until 9 h after administration [36]. Plasma 175 

concentration of FSH decreased to the basal level after 36 h, and superovulation was not induced [36]. 176 

However, a FSH solution dissolved in PVP [36] results in a gradual increase in FSH plasma 177 

concentrations that peak 12 h after administration. Then, FSH plasma concentrations decreased 178 

gradually but were maintained at a higher level than the basal level for more than 48 h, and 179 

superstimulation can be induced in Holstein heifers [36]. For the optimization of OPU followed by a 180 

single FSH injection, further studies are needed to find out the appropriate coasting periods based on 181 

the plasma dynamics of circulating FSH after the injection. 182 

 183 

2.3. Epidural area as an injection site of FSH to induce superstimulation 184 

Although there are some effective methods for superstimulation, the effectiveness of these 185 

different treatments varies considerably, probably because of differences in the amount of 186 

subcutaneous fat tissue in the animals [36, 41, 42]. To develop a more efficient method to simplify the 187 

regimen of FSH injection, we took an idea from a study of human pharmacokinetics, which suggested 188 

that alfentanil (an opioid analgesic drug) was slowly absorbed into the general circulation after 189 
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epidural administration in humans [56]. Therefore, we firstly compared the outcome of in vivo embryo 190 

production by superovulation followed by uterine flushing between a conventional multiple FSH 191 

injection and a single epidural FSH injection. We collected embryos from five Japanese black cows 192 

given twice-daily im FSH administration (totally 20 armour units of Antrin R-10, approximately 200 193 

international units, Kyoritsu Seiyaku, Tokyo, Japan) for 3 d (control) or a single epidural FSH injection 194 

(30 armour units, approximately 300 international units). The number of transferable blastocysts after 195 

epidural treatment (9.0 ± 6.0) was similar to that in the control group (4.7 ± 3.5, P = 0.10). Furthermore, 196 

we confirmed the efficiency of a single epidural FSH injection for OPU-IVF of cattle with low 197 

productivity by in vivo embryo production. We conducted OPU for three Japanese black cows with 198 

low embryo productivity given twice daily im FSH administration (total 30 armour units) or a single 199 

epidural FSH injection (30 armour units). Although most follicles were less than 6 mm in diameter, 200 

and the numbers of follicles and collected oocytes were similar between treatments, the rate of 201 

transferable blastocysts in the epidural group was higher than that of the control (Table 3, P < 0.0001). 202 

Further study is needed to reveal the mechanism of improved developmental competence of oocytes 203 

after a single epidural FSH injection, and plasma FSH dynamics after epidural injection to optimize 204 

the protocol such as the coasting period. 205 

 206 

3. Pre-maturation 207 

3.1. Application of cyclic adenosine monophosphate (cAMP) modulators for pre-maturation 208 
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In conventional in vitro embryo production including ultrasound-guided OPU-IVF, oocytes 209 

derived from antral follicles lager than 2 mm in diameter are used [6, 57], in which the oocytes acquire 210 

competence for meiotic resumption [9]. One of the reasons for the lower competence of oocytes is 211 

precocious meiotic resumption. If meiotically competent oocytes are isolated from follicles, they can 212 

resume meiosis spontaneously without ovulatory stimulation such as an LH surge [58]. However, 213 

oocytes collected from living cattle without FSH-priming or from slaughterhouse-derived ovaries 214 

originate from follicles of varied developmental stages [6, 9, 59]. This means that all oocytes are not 215 

growing enough to acquire developmental competence, resulting in lower developmental competence 216 

to the blastocyst stage. Meiotic arrest is caused by an increase in cAMP in oocytes, which is produced 217 

by oocytes themselves [60, 61] or supplied from cumulus cells via gap junctions [62, 63]. To improve 218 

the acquisition of developmental competence of oocytes, many researchers have cultured oocytes from 219 

non-stimulated slaughterhouse-derived ovaries in conditions that prevent meiotic resumption by 220 

controlling cAMP concentration before IVM (pre-IVM; Table 3) [64-71]. Reduction of cAMP 221 

concentration can be achieved through the addition of phosphodiesterase (PDE), the enzyme that 222 

degrades cAMP to 5’-AMP. Thus, inhibition of PDE activity has been applied in pre-IVM culture. 3-223 

isobutyl-1-methylxanthine (IBMX) is a non-specific PDE inhibitor that prevents a reduction in cAMP 224 

levels and inhibits meiotic resumption in bovine oocytes [72-75]. Forskolin (FSK) is an activator of 225 

adenylate cyclase, which promotes the synthesis of cAMP. Culture conditions with IBMX and 226 

forskolin increase cAMP levels in bovine oocytes [76]. A culture system called the “simulated 227 
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physiological oocyte maturation” (SPOM) system consists of pre-IVM culture with 500 µM IBMX 228 

and 100 µM FSK for 2 h before IVM, which promoted the blastocyst rate [64, 71] and cell numbers 229 

in blastocysts [64]. More recently, extending pre-IVM culture from 2 to 6 h was reported to increase 230 

the proportion of hatched blastocysts on day 8 and yielded a highest ratio of inner cell mass to total 231 

cells on day 8 after IVF by increasing intra-oocyte reduced glutathione, which has important roles as 232 

an antioxidant agent in oocyte maturation, fertilization, and embryonic development [66].  233 

 234 

3.2. Effect of the diameter of oocytes on the outcome of pre-IVM culture 235 

Otoi et al. [11] collected oocytes from follicles 1 to 7 mm in diameter in slaughterhouse-236 

derived ovaries, and morphologically healthy oocytes (three or more dense layers of cumulus cells, 237 

evenly granulated cytoplasm) were divided into groups based on their diameters and subjected to in 238 

vitro embryo production. They showed that the developmental competence of oocytes became higher 239 

as the diameter of oocytes became larger [11]. Based on Otoi et al.’s studies [11], we speculated that 240 

the most suitable duration of pre-IVM culture is dependent on the diameter of oocytes. We collected 241 

bovine oocytes from slaughterhouse-derived ovaries and divided them into small-sized (110 to < 115 242 

μm) and large-sized (≥ 115 μm) oocytes and subjected them to pre-IVM culture for 0, 5, or 10 h in 243 

medium containing IBMX (500 µM) and a low dose of FSH (2 × 10−6 units/mL, from porcine pituitary) 244 

[69]. Before pre-IVM culture, all oocytes were at GV stage in both groups. Although approximately 245 

90% of oocytes were still GV stage after pre-IVM for 5 h in both groups, half of the oocytes reached 246 
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metaphase I after pre-IVM for 10 h, indicating the spontaneous meiotic resumption of oocytes during 247 

an extending pre-IVM culture in both groups. In large oocytes (≥ 115 μm), the percentage of 248 

blastocysts after IVF was not different between the different duration of pre-IVM culture (31%). 249 

However, pre-IVM culture for 5 h showed a higher blastocyst rate (16%) than for 0 h (9%) or 10 h 250 

(8%) (Table 3). Although the mechanism underlying improved developmental competence in pre-IVM 251 

for 5 h is unclear, we previously reported that the mitochondrial activity of in vitro grown oocytes 252 

(105.9 to 122.7 µm) increased at 10 h of pre-IVM, then decreased after 20 h of pre-IVM [77]. Changes 253 

in mitochondrial activity during pre-IVM were accompanied by developmental competence to form 254 

blastocysts [77]. Similarly, mitochondrial activity may increase during the first 5 h of pre-IVM, then 255 

decrease after 10 h of pre-IVM in in vivo grown small-sized oocytes (110 to < 115 μm). Further studies 256 

are needed to define the appropriate duration of pre-IVM treatment in more detail. 257 

 258 

3.3. Culturing oocyte with natriuretic peptide precursor type C 259 

During follicular development, natriuretic peptide precursor type C (NPPC or CNP) derived 260 

from mural granulosa cells, and its receptor derived from cumulus cells (natriuretic peptide receptor 261 

2; NPR2), play important roles for inhibiting meiotic resumption [78]. In mice, NPPC derived from 262 

granulosa cells promotes production of cyclic guanosine monophosphate (cGMP) by NPR2 in 263 

cumulus cells [78]. Cumulus cell-derived cGMP inhibits the reduction of cAMP concentration by the 264 

inhibition of PDE3A, an oocyte-specific phosphodiesterase, which is a trigger for meiotic resumption 265 
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[78]. As with mice, bovine cumulus cells express NPR2 mRNA [65, 68, 79] and protein [68], and 266 

meiotic resumption of oocytes can be arrested during culture of cumulus-oocyte complexes (COCs) 267 

with NPPC [65, 67, 68, 70, 80]. Although NPR2 was not expressed in oocytes in mice [68], some 268 

studies reported the expression of NPR2 mRNA [68, 79] and protein [68] in bovine oocyte membranes, 269 

and meiotic resumption of denuded oocytes was arrested by NPPC [68]. Some studies suggested that 270 

pre-IVM with NPPC (100 nM or 200 nM) for 6 h improved the blastocyst rate [67, 68], the blastocysts 271 

cell number [65, 67], and the blastocyst hatching rate [65] (Table 3). The combination of NPPC (100 272 

nM) and IBMX (500 µM) in pre-IVM culture followed by 20 h IVM also showed a higher blastocyst 273 

rate [70] (Table 3). 274 

 275 

4. Conclusion 276 

In vivo matured oocytes have higher developmental competence than in vitro matured 277 

oocytes, but there is still a need for further research to optimize IVM conditions that will result in the 278 

acquisition of developmental competence for immature bovine oocytes. Although a single injection of 279 

FSH prior to OPU can improve the developmental competence of oocytes similar to conventional 280 

multiple FSH injection, further study, such as of the coasting period, is needed to maximize the 281 

potential of oocytes. For oocytes collected from cattle without FSH-priming, pre-IVM is a candidate 282 

method to improve the developmental competence of oocytes. In addition, the diameter of oocytes is 283 

an important criterion to affect the optimal duration of pre-IVM culture and the developmental 284 
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competence of oocytes. 285 
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Table 1. Summary of data published on the developmental competence of in vivo matured bovine oocytes. 

Authors Injection manner of FSH or  
equine chorionic gonadotropin (eCG) 

Time between GnRH or 
LH treatment and OPU 

IVM duration for in vivo 
matured oocytes Developmental competence (%) * 

Bordignon et al. 1997  
[20] ** 

FSH injection in eight decreasing 
doses 12 hours apart for 4 d 26 h  0 h or 24 h   

Blastocysts on Day 7 
FSH-only-IVM 0 h: 40a 
FSH-GnRH-IVM 0 h: 60b 
FSH-only-IVM 24 h: 20 
FSH-GnRH-IVM 24 h: 13 

van de Leemput et al. 1999 
[21] 

A single injection of eCG followed by 
an injection of eCG antibody  
(112 h later) 

24 h  Maximally  
2 h 54 min 

Blastocysts on Day 11 
Slaughterhouse: 26.4a 
eCG-GnRH: 49.3b 

Rizos et al. 2002  
[22] *** 

FSH injection in eight decreasing 
doses twice daily for 4 d 20 h  0 h 

Blastocysts on Day 7 
Slaughterhouse (2 to 6 mm): 31.7a 
 (> 6 mm): 38.4ab 
FSH-only: 35.3a 
FSH-GnRH: 48.5b 

Dias et al. 2013  
[23] **** 

FSH injection in eight or 14 consistent 
doses twice daily for 4 or 7 d (Short 
FSH or Long FSH) 

24 h  6 h 

Morulae and blastocysts on Day 9  
Short FSH: 24.7ab 
FSH starvation: 18.1b 
Long FSH: 36.6a 

Matoba et al. 2014  
[24] ***** 

FSH injection in eight decreasing 
doses twice daily for 4 d 25 to 26 h  3 h  

Good-quality blastocyst until Day 9  
Non-stimulated: 36.1  
Dominant follicle ablation: 54.9a 
GnRH: 21.5b 

Sprícigo et al. 2015  
[25] 

FSH injection in eight decreasing 
doses twice daily for 4 d 24 h  0 h 

Blastocysts on Day 7 
Slaughterhouse: 37.9a 
Non-stimulated: 50.6a 
FSH only: 58.8b 
FSH-GnRH: 62.4b 

Egashira et al. 2019  
[26] 

A single sc FSH injection using 
aluminum hydroxide gel  25 to 26 h  3 h 

Good-quality blastocyst on Day 8 
Non-stimulated: 29.5a 
FSH-GnRH: 45.6b 

*: The definitions of each experimental group are described below (Day 0 = Day of IVF). 

FSH-only: Groups of animals subjected to FSH-priming, but without GnRH injection later. 

FSH (or eCG)-GnRH: Groups of animals given GnRH after FSH (or eCG)-priming for collecting in vivo matured oocytes. 

Slaughterhouse: Oocytes were collected from slaughterhouse-derived ovaries to serve as a control. 

Non-stimulated: Groups of animals with collected oocytes without FSH-priming and GnRH injection.  
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**: Collected oocytes were subjected to IVM for 0 or 24 h. 

***: Collected oocytes from slaughterhouse-derived ovaries were classified by the diameter of follicles (2 to 6 mm or > 6 mm)  

****: Cows were treated with three different FSH treatments as described below.  

Short FSH: FSH was administered (im) in eight consistent doses twice daily for 4 d.  

FSH starvation: FSH was administered (im) in eight doses twice daily for 4 d, and OPU was conducted 4.5 d after the final FSH injection. 

Long FSH: FSH was administered (im) in eight consistent doses twice daily for 4 d.  

*****: Developmental competence was compared between two methods (Dominant follicle ablation or GnRH injection) for the follicular wave control 1.5 d 

prior to FSH-priming. 
a, b: P < 0.05 
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Table 2. Summary of data published on the developmental competence of bovine oocytes after a single FSH injection. 
Authors Breeds Injection site for single FSH Solvent for single FSH Coasting period  Developmental competence (%) * 

Bungartz et al. 1994  
[47] 

Lactating 
Holstein cow  im Saline 4 d 

Morulas and blastocysts on Day 7  
Non-stimulated: 2.9 
Single FSH: 3.8 

Ooe et al. 1996  
[44] ** 

Cyclic 
lactating 
Holstein cows 

im 30% PVP  
(10 mL)  48 h 

Blastocysts on Day 8 
Single FSH on Day 1: 25 
Single FSH on Day 7: 28 
Single FSH in pregnant cows: 33 
Single FSH on Day 8 to 14: 29 

Blondin et al. 1997  
[48] *** Beef heifers im Saline  

Experiment 1: 
24, 48, or 72 h 
Experiment 2: 
48 h + 1 to 2 h  
or 4 to 5 h 
after slaughter 

Embryos (≥ 64 cells) on Day 6 
Experiment 1: 

Non-stimulated: 15a 

FSH + 24 h: 5b 

FSH + 48 h: 25a  
FSH + 72 h: 7b 

Experiment 2: 
Non-stimulated: 18a 

FSH 48 h + 1 to 2 h: 24ab 

FSH 48 h + 4 to 5 h: 41b  

Goodhand et al. 2000  
[45] 

Cyclic beef × 
Friesian cows  sc Saline Multiple: 1 d 

Single: 3 d 

Transferable embryos on Day 7 
Non-stimulated: 43 
Single FSH: 33 
Multiple FSH: 35  

Chaubal et al. 2007 
[33] **** 

Angus cross 
cows im and sc Saline 54 h 

Blastocysts on Day 7 
Multiple FSH-LH: 21.7 
Multiple FSH: 18.7 
Single FSH-LH: 18.8 
Single FSH: 17.2 

Vieira et al. 2016  
[43] 

Non-lactating 
Holstein cows im 0.5% hyaluronan Multiple FSH: 1.5 d 

Single FSH: 3 d 

Blastocysts on Day 6 
Non-stimulated: 25.9 
Multiple FSH: 30.3 
Single FSH: 30.3 

Sakaguchi et al. 2018  
[49] 

Japanese 
black cows Epidural Saline (5 mL) Multiple FSH: 21 to 23 h 

Single FSH: 75 to 78 h  

Blastocysts on Day 7 
Multiple FSH: 10.5a 
Single FSH: 26.2b 

Egashira et al. 2019  
[26] ***** 

Japanese 
black cows sc Aluminum 

hydroxide gel 4.5 d 
Good-quality blastocyst on Day 8 

Non-stimulated: 29.5a 

Single FSH-GnRH: 45.6b 

Sakagami et al. 2019  
[46] ****** 

Japanese 
black cows  sc Saline (50 mL) 72 h 

Blastocysts on Day 8 
Single FSH: 22.1a 
Single FSH-pre-IVM: 39.1b  
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*: The definition of each experimental group is described below (Day 0 = Day of IVF). 

Non-stimulated: Groups of animals with collected oocytes without FSH-priming and GnRH injection.  

Single FSH: Groups of animals subjected to a single FSH injection. 

Multiple FSH: Groups of animals subjected to multiple FSH injections for few days. 

**: There were four experimental groups as described below.  

Single FSH on Day 1: FSH was administered (im) on Day 1 (Day 0 = ovulation), and OPU was conducted on Day 3. 

Single FSH on Day 7: DFA was conducted on Day 6, FSH was administered (im) on Day 7, and OPU was conducted on Day 9 

Single FSH in pregnant cows: FSH was administered (im) on 70, 75, 80, 85, and 90 d of pregnancy and OPU was conducted 48 h later (5 times at 5 d intervals).  

Single FSH on d 8 to 14: FSH was administered (im) on Days 8 to 14 and OPU was conducted 48 h later 

***: Oocytes were collected from ovaries after slaughter. In experiment 1, animals were slaughtered at 24, 48, or 72 h after a single FSH injection then 

oocytes were collected soon after (FSH + 24, 48, or 72 h groups). In experiment 2, animals were slaughter at 48 h after a single im FSH injection, and 

oocytes were collected 1 to 2 h or 4 to 5 h after slaughter (FSH 48 h + 1 to 2 h or 4 to 5 h groups).  

****: In the single FSH group, FSH was given simultaneously by two routes (im and sc). In Multiple FSH-LH and Single FSH-LH groups, LH was injected 

6 h prior to OPU (48 h after the end of FSH treatment). 

*****: In single FSH-GnRH group, GnRH was administered (sc) 25 to 26 h prior to OPU (2 d after a single FSH injection). 

******: In single FSH-pre-IVM group, collected oocytes were subjected to pre-IVM for 2 h before IVM.  
a, b: P < 0.05 
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Table 3. Summary of data published on the developmental competence of bovine oocytes subjected to pre-IVM culture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors cAMP modulator, NPPC, or FSH in pre-IVM medium Duration of pre-IVM Duration of IVM Developmental competence (%) * 

Albuz et al. 2010  
[64] FSK (100 µM), IBMX (500 µM)  0 (control) or 2 h 24 h or 30 h 

Blastocysts/cleaved on Day 8 
Control IVM 24 h: 22a 
Pre-IVM IVM 24 h: 48b 
Control IVM 30 h: 27a 
Pre-IVM IVM 30 h: pre-IVM: 69c 

Franciosi et al. 2014  
[65] 

Recombinant human FSH (10-4 unit/mL) + 
NPPC (100 nM) or cilostamide (10 µM) or  
without NPPC and cilostamide (control) 

8 h 22 h 

Expanded and hatched blastocysts on Day 9 
Control: 78a 
Cilostamide**: 94b 
NPPC: 93b 

Li et al. 2016  
[66] FSK (100 µM), IBMX (500 µM)  0 (control), 2, 4, or 6 h 

Control: 24 h 
Pre-IVM 2 h: 24 h 
Pre-IVM 4 h: 22 h 
Pre-IVM 4 h: 20 h 

Blastocysts/cleaved on Day 8 
Control: 26.3a 
Pre-IVM  2 h: 39.2b 
 4 h: 35.2b 
 6 h: 34.2b 

Zhang et al. 2017 
[67] NPPC (200 nM) 0 (control) or 6 h 24, 28, or 32 h 

Blastocysts on Day 7  
Control  IVM 24 h: 32.2b 
 IVM 28 h: 15.0a  

 IVM 32 h: 0 
Pre-IVM  IVM 28 h: 51.6c 

Xi et al. 2018  
[68] NPPC (200 nM) 0 (control) or 6 h 24, 26, or 28 h 

Blastocysts on Day 7 
Control IVM  24 h: 23.5a 
  26 h: 24.1a 
  28 h: 21.7a 
Pre-IVM IVM  24 h: 26.9a 
  26 h: 45.2b 
  28 h: 41.6b 

Abdel-Ghani et al. 2018  
[69] 

Porcine pituitary FSH (2 × 10−6 units/mL),  
IBMX (500 µM)  0, 5, or 10 h 22 h 

Blastocysts on Day 7 (110 to < 115 μm) *** 
Control: 9a 
Pre-IVM 5 h: 16b  
       10 h: 8ab 

Soto-Heras et al. 2019  
[70] NPPC (200 nM), IBMX (500 µM) 0 (control) or 6 h 24 (control) or 20 h 

Blastocysts on Day 8 
Control: 34.5 
Pre-IVM: 45.1 

Hashimoto et al. 2019  
[71] FSK (100 µM), IBMX (500 µM)  0 (control) or 2 h 24 h  

Blastocysts on Day 7 
Control: 16.7a 
Pre-IVM: 27.5b 

Blastocysts on day 8 
Control: 25.0a 
Pre-IVM: 33.3b 
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*: Day 0 = Day of IVF 

**: Specific inhibitor of PDE3 (specific PDE of oocytes). 

***: Collected oocytes from slaughterhouse-derived ovaries were classified by their diameter (110 to < 115 μm or ≥ 115 μm) 
a, b, c: P < 0.05 
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