

HOKKAIDO UNIVERSITY

Title	Preparation of Phosphatidyl-panthenol by phospholipase D-mediated transphosphatidylation and its anti-inflammatory activity on macrophage-like RAW264.7 cells
Author(s)	Yamamoto, Yukihiro; Suzuri, Kounosuke; Kunii, Tasuku; Kurihara, Hideyuki; Miyashita, Kazuo; Hosokawa, Masashi
Citation	Biocatalysis and agricultural biotechnology, 26, 101629 https://doi.org/10.1016/j.bcab.2020.101629
Issue Date	2020-07
Doc URL	http://hdl.handle.net/2115/82196
Rights	© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	manuscript received 2020-08-21-1.pdf

1	Title: Preparation of phosphatidyl-panthenol by phospholipase D-mediated
2	transphosphatidylation and its anti-inflammatory activity on macrophage-like
3	RAW264.7 cells.
4	
5	Authors: Yukihiro Yamamoto ^b , Kounosuke Suzuri ^a , Tasuku Kunii ^a , Hideyuki
6	Kurihara ^a , Kazuo Miyashita ^a , Masashi Hosokawa ^{a*}
7	
8	^a Faculty of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate,
9	Hokkaido 041-8611, Japan
10	
11	^b Faculty of Bioresorce Sciences, Prefectural University of Hiroshima, Nanatsuka-cho
12	5562, Shobara, Hiroshima, 727-0023, Japan
13	
14	
15	Corresponding author. Tel.: +81 138 40 5530; fax: +81 138 40 5530.
16	E-mail address: hoso@fish.hokudai.ac.jp (M. Hosokawa).
17	
18	
19	
20	
21	
22	
23	
24	

25 ABSTRACT

26 Panthenol is known to be pro-vitamin B₅ and show several functions such as wound-27 healing, anti-oxidative, and anti-inflammatory activities. In this study, panthenol was 28 phosphatidylated via phospholipase D (PLD)-mediated transphosphatidylation and its 29 anti-inflammatory effects were investigated on macrophage-like cell RAW264.7 cells. 30 By PLD-mediated transphosphatidylation from phosphatidylcholine (PC), hydroxy 31 group of p1 position in panthenol molecule was alternatively formed phosphate ester 32 bond even though panthenol has three of hydroxy groups in the molecule. The yield was 33 96 mol% under optimum reaction conditions: 50 µmol of PC, 1.6 U of PLD, 500 µmol 34 of panthenol, 1.6 mL/1.6 mL of ethyl acetate/0.2 M acetate buffer (pH 5.6) ratio, 10 35 mM of CaCl₂ in the buffer, 37°C for 24 h. Phosphatidyl-panthenol (P-panthenol) 36 suppressed mRNA expression level of pro-inflammatory mediators such as IL-6, IL-1β, 37 TNF- α and COX-2 more than precursor compounds, PC and panthenol, in activated 38 RAW264.7 cells. P-panthenol also suppressed protein secretion levels of IL-6 and IL-39 1ß in the culture medium of RAW264.7 cells. These results demonstrate that P-40 panthenol, which is easily synthesized in high yield, is potential compound for novel 41 anti-inflammatory phospholipid. 42 43 Key words: Phosphatidyl-panthenol, Phospholipid, Phospholipase D, Anti-inflammation 44 45 46 47 48

1. Introduction

51	D-Panthenol (panthenol, pro-vitamin B_5) is an essential compound in human body as		
52	a part of coenzyme A which supports a lot of biochemical reactions. Besides that, it also		
53	has several bio-functions such as wound-healing activity (Wolff and Kieser, 2007;		
54	Oztürk, et al., 2007), anti-oxidative activity in the cell (Li-Mei et al., 2016; Etense et al.,		
55	2007), and anti-inflammatory activity (Proksch and Nissen. 2002; Ebner et al., 2002).		
56	Therefore, panthenol is utilized as a component of a lot of formula for skin care		
57	purpose. In generally, topical use are solutions, aerosols, ointments, and creams.		
58	However, hydrophilic property of panthenol makes its application difficult, because		
59	hydrophilic compounds are often blended using some emulsifier to homogenize formula		
60	and to improve its penetration to skin. Wiesława and Ryszard (2004) have prepared		
61	panthenol-gel-formula with 2.5% hydroxyethylcellulose having good anti-inflammatory		
62	activity against ultra-violet induced irritation on guinea pigs.		
63	Phosphatidylation is very useful technique for utilization of biological active		
64	compounds because phospholipids, especially glycerophospholipids have excellent		
65	biocompatibility. In addition, phosphatidylated compounds have the ability to form		
66	liposome which can be used as a substrate of drug delivery system (Komizu et al., 2006;		
67	Yagi et al., 2007), depending on their amphiphilic properties.		
68	Phospholipase D (PLD), which hydrolyzes the distal phosphodiester bonds of		
69	phospholipids, is effective tool to synthesize phosphatidylated compounds through		
70	transphosphatidylation. Although chemical way to produce phospholipid derivatives		
71	requires several reaction steps, PLD requires only one step because it is able to transfer		
72	the phosphatidyl moiety of phospholipids to desired alcohol. Further, phosphatidylated		

73	compounds often exerts superior bio-functions compared to precursor compounds. For
74	example, genipin was phosphatidylated via PLD-catalyzed transphosphatidylation and
75	phosphatidyl-genipin exerted superior cytotoxity to precursor genipin against several
76	cancer cell lines (Takami and Suzuki., 1994). 5-Fluorouridine, a known anticancer drug,
77	was phosphatidylated and the synthesized phospholipid derivative exhibited higher
78	anticancer activity against Meth A fibrosarcoma in mice compared to precursor 5-
79	fluorouridine (Shuto et al., 1995). We also have previously reported on the synthesis of
80	phosphatidyl-perillyl alcohol and phosphatidyl-nerol by PLD (Yamamoto et al., 2008a;
81	Yamamoto et al., 2008b). The synthesized phosphatidyl-terpenes markedly reduced
82	viability of human prostate cancer cells and leukemia (Yamamoto et al., 2008a).
83	In this study, we focused on vitamin-binding phospholipids as novel compounds.
84	Phosphatidyl-panthenol (P-panthenol) was synthesized via PLD-mediated
85	transphosphatidylation and evaluated its anti-inflammatory effects in vitro.
86	
87	2. Materials and methods
88	
89	2.1. Materials
90	PLD from <i>Streptomyces</i> sp. and D-panthenol (panthenol) (> 98%) was purchased
91	from Sigma-Aldrich (St. Louis, USA). 1,2-Dioleoyl-sn-glycero-3- phosphocholine
92	(DOPC) and soybean phosphatidylcholine (SoyPC; $PC > 95\%$) were obtained from
93	Avanti Polar Lipids, Inc. (Alabaster, USA). Other chemicals and solvents were
94	analytical grade.
95	

96 2.2. Synthesis of P-panthenol

97	SoyPC (50 μ mol) and 500 μ mol panthenol were dissolved in 1.6 mL ethyl acetate.
98	The ethyl acetate solution was mixed to 1.6 mL of 0.2 M acetate buffer (pH 5.6)
99	dissolved PLD and 10 mM of $CaCl_2$ to start transphosphatidylation. The reaction was
100	conducted at 37°C and stirred with magnetic bar at 250 rpm and terminated by methanol
101	addition. Subsequently, chloroform and water were added to adjust a
102	chloroform/methanol/water (10:5:3, $v/v/v$) and lipid fraction was recovered from lower
103	layer. To separate the synthesized compound, lipid fraction was applied onto a silica gel
104	thin-layer chromatography (TLC) plate (Silica gel 60 F254, Merck, Darmstadt,
105	Germany) with a developing solvent, chloroform:methanol:water (65:25:4, v/v/v). The
106	synthesized compound was scraped off from TLC plate detecting by UV at 254 nm and
107	extracted from silica gel with chloroform/methanol (3:7, v/v). The synthesized
108	compound separated on TLC plate was also detected by I2 vapor.
109	
110	2.3. Identification of the structure of synthesized compound
111	The molecular mass of synthesized compound from DOPC was estimated by high-
112	resolution mass spectrometry (HR-MS) in the negative electrospray ionization (ESI)
113	mode with JEOL JMS-T100LP (Japan Electronic Optics Laboratory Co., Tokyo,
114	Japan). To identify the structure, ¹ H and ¹³ C nuclear magnetic resonance (NMR) spectra
115	of the synthesized compound, DOPC and panthenol were analyzed with a Varian
116	UNITY INOVA 500 spectrometer (Varian, Inc., Palo Alto, CA, USA) at 500 and 126
117	MHz, respectively, by using tetramethylsilane as an internal standard. The samples were
118	dissolved in CDCl ₃ or CDCl ₃ :CD ₃ OD (3:1, v/v).
119	
120	2.4 The yield of synthesized P-panthenol

121	The synthesized yield of P-panthenol was analyzed by a high-performance liquid
122	chromatography (HPLC) system equipped with a mobile phase delivery pump (L-7100,
123	Hitachi, Tokyo, Japan), diode array detector (L-7455, Hitachi) and Mightysil Si 60
124	column (250 x 4.6 mm (5 μ m), Kanto Chemical Co., Inc., Tokyo, Japan). The lipid
125	fraction separated from the reaction mixture was analyzed by HPLC. Mobile phase was
126	solvent A (acetonitrile/sulfuric acid (100:0.5, v/v)) and solvent B (methanol) (98:2, v/v)
127	at 1.0 mL/min at 30°C. The P-panthenol was detected at 210 nm. The yield of P-
128	panthenol was calculated from the HPLC peak area using a calibration curve by purified
129	P-panthenol standard.
130	
131	2.5 Anti-inflammatory activities of P-panthenol
132	2.5.1. Cell culture
133	Murine macrophage-like RAW264.7 cells (5 \times 10 ⁴ cells/well) were pre-incubated in
134	24-well plate with 1 mL RPMI 1640 supplemented with 10% fetal bovine serum, 100
135	$\mu g/mL$ streptomycin and 100 U/mL penicillin, in 5% CO2 at 37°C for 24 h. P-panthenol,
136	panthenol, and SoyPC were added into the culture medium, respectively, as an ethanol
137	solution. Final ethanol concentration was adjusted to 0.1% without cytotoxicity. After
138	incubation with each sample for 24 h, inflammation was induced by addition of
139	lipopolysaccharide (LPS, final concentration of 0.1 μ g/mL) for 6-24 h in the presence of
140	P-panthenol, panthenol or SoyPC.
141	
142	2.5.2. Quantitative real-time RT-PCR
143	The RAW264.7 cells were washed with phosphate-buffered saline three times after

144 stimulation with LPS for 6 h. Total RNA was extracted from the cells using RNeasy

145 Mini Kit (QIAGEN GmbH, Hilden, Germany) according to the user's manual. First-

146 strand cDNAs were synthesized from total RNA with the High-Capacity cDNA Archive

147 Kit (Applied Biosystems Japan Ltd, Tokyo, Japan) according to the manufacturer's

148 protocol. Quantitative real time PCR analysis was conducted as our previous paper

- 149 (Tian et al., 2017) with the ABI Prism 7500 (Applied Biosystems Japan Ltd, Tokyo,
- 150 Japan) and TaqMan® Gene Expression Assays (Applied Biosystems Japan Ltd, Tokyo,

151 Japan); IL-6: Mm00446190_ml, IL-1β: Mm00434228_ml, TFN-α: Mm00443258_ml,

152 COX-2: Mm00478374_ml. GAPDH: Mm99999915_gl.

153

154 *2.5.3. ELISA assay*

155 After incubation with P-panthenol for 24 h, RAW264.7 cells were stimulated with 0.1

156 μ g/mL LPS for additional 24 h in the presence of P-panthenol. IL-6 and IL-1 β

157 concentrations in the culture medium of RAW264.7 cells were measured by ELISA

using commercialized kits (Thermo Scientific, Frederick, MD, USA) according to the

159 manufacturer's protocol. Cell culture conditions are the same in 2.5.1. Cell culture.

160

161 *2.6 Statistical analysis*

162 All experimental values are expressed as the mean \pm the standard deviation.

163 Statistically significant differences are determined by *Scheffé's* method (Fig. 5) or

164 *Dunnett's* test (Table 3). A value of P < 0.01 was considered significant.

165

166 **3. Results and discussion**

167 *3.1. Synthesis of P-panthenol by PLD*

168	Phosphatidylation of panthenol was carried out using SoyPC or DOPC as substrate
169	via PLD-mediated transphosphatidylation (Fig. 1). A new product was detected upper
170	side of PC on TLC plate after a 24 h reaction (Fig. 2). The negative HR-MS data of the
171	new product from DOPC and panthenol by PLD was m/z 886.62025 and coincided with
172	the predicted molecular formula ($C_{48}H_{89}N_1O_{11}P_1$) of P-panthenol. In both ¹ H and ¹³ C
173	NMR analyses, panthenol signals were observed instead of the disappearance of choline
174	signals in the data of the synthesized compound (Table 1 and 2). The signal at δ_C 63.6
175	ppm and methylene signal at δ_H 3.91 ppm at p1 position were shifted to down-field
176	compared to δ_C 58.9 ppm and δ_H 3.63 ppm at p1 position of free panthenol (Fig.3, Table
177	1 and 2). On the other hand, other signals in panthenol moiety of the synthetic
178	compound showed similar δ_C and δ_H values of free panthenol. On the basis of HR-MS
179	and NMR analyses, the synthesized compound was identified as P-panthenol connected
180	with OH group at p1 position of panthenol moiety via phosphodiester linkage as shown
181	in Fig. 3.
182	It is well known that PLD recognizes hydroxy group with preference order at
183	primary, secondary, and tertiary alcohol (Ulbrich-Hofmann et al., 2005). Further, we
184	have reported that alcohols having bulky structure such as aromatic group near hydroxy
185	group is poor substrate for transphosphatidylation using PLD even though they are
186	primary alcohol group (Yamamoto et al., 2011). From these evidences, it was suggested
187	that secondary hydroxy group at p5 position and primary hydroxy group at p7 position
188	which has bulky structure near its position, respectively, were poorly recognized by
189	PLD.

190

3.2. Optimization of transphosphatidylation with SoyPC and panthenol 191

192	Using SoyPC (50 μ mol) as a substrate, optimization of the transphosphatidylation
193	reaction was carried out with fixing the reaction solvent/buffer ratio (1.6 mL/ 0.8 mL),
194	the concentration of $CaCl_2$ (10 mM), the amount of PLD (1.6 U), reaction temperature
195	(37°C), and reaction time (24 h). At first, the effect of the amount of panthenol (250-
196	5000 μ mol) on the P-panthenol synthesis was examined (Fig. 4A). The yield increased
197	with the amount of panthenol and decreased more than 500 μ mol of panthenol. It has
198	been reported that too much amount of substrate alcohol inhibits the PLD-mediated
199	transphosphatidylation (Yamamoto et al., 2008b; Yamamoto et al., 2011). The optimum
200	amount of panthenol was defined 500 µmol for our reaction system.
201	The effect of the reaction solvent/buffer ratio (v/v) was examined (Fig. 4B).
202	Reaction yield increased by changing the ratio from 1.6 mL/0.8 mL to 1.6 mL/1.6 mL.
203	However, the yield was almost the same at the ratio of solvent 3.2 mL and buffer 1.6
204	mL. Because the activity of transphosphatidylation by PLD is influenced with the
205	environment of water-solvent interphase such as particle size and interphase pressure
206	(Hirche and Ulbrich-Hofmann, 1999), the ratio of solvent and buffer will make adequate
207	interphase for the transphosphatidylation reaction in this study. From these results, the
208	solvent/buffer ratio of 1.6 mL/1.6 mL was defined as the optimum ratio.
209	Concentration of CaCl ₂ was also affected the reaction yield of P-panthenol (Fig.
210	4C). By adding 10 mM of CaCl ₂ in the buffer, reaction yield increased compare to the
211	reaction system without CaCl ₂ , although PLD form Streptomyces sp. doesn't require
212	Ca^{2+} for the activity (Juneja et al., 1987). The similar result was observed in our
213	previously study of the phosphatidyl-glycerol (PG) synthesis via PLD (Streptomyces
214	sp.)-mediated transphosphatidylation (Suzuri et al., 2009; Chen et al., 2020), although
215	it is unclear why Ca ²⁺ promotes PG and P-panthenol synthesis by PLD. As suggestion

by Yang and Roberts (2003), Ca²⁺ might reflect physical effects on the P-panthenol 216 217 production. The optimum CaCl₂ concentration was determined at 10 mM in the buffer. 218 We also measured time course of the P-panthenol synthesis (Fig. 4D). The yield of 219 P-panthenol increased in a time-dependent manner and reached a maximum yield 96% 220 after 24 h reaction. From these results, we determined the following optimum reaction 221 conditions: 50 µmol of SoyPC, 1.6 U of PLD, 500 µmol of panthenol, 1.6 mL/1.6 mL of 222 solvent/buffer ratio, 10 mM of CaCl₂ in the buffer, 37°C for 24 h. 223 224 3.3. Anti-inflammatory effect of P-panthenol on RAW264.7 cells. 225 P-panthenol suppressed IL-6 mRNA expression rather than SoyPC and Panthenol in 226 dose dependent manner in LPS-stimulated RAW264.7 cell line (Fig. 5). Even at 25 µM 227 of low concentration of P-panthenol, significant suppression of IL-6 mRNA expression 228 was observed compare to positive control (LPS+), although the same concentration of 229 panthenol and SoyPC did not suppress. At 50 µM, P-panthenol, but not panthenol, 230 down-regulated mRNA expressions of IL-6, IL-1 β , TNF- α and COX-2 in activated 231 RAW264.7 cells. In addition, P-panthenol suppressed secretion of IL-6 and IL-1 β in the 232 culture media of LPS-stimulated RAW264.7 cells (Table 3). The present results indicate 233 that anti-inflammatory effect by panthenol was significantly improved by 234 phosphatidylation of panthenol. 235 236 4. Conclusion

P-panthenol was successfully synthesized *via* PLD-mediated transphosphatidylation
of phosphatidylcholine and panthenol in one-pot. In the reaction system examined in
this study, hydroxy group of p1 position in panthenol molecule (Fig.3) was alternatively

240	formed phosphate ester bond. The reaction yield reached to quantitative (96%). Anti-		
241	inflammatory effect of P-panthenol was superior to precursor compounds, panthenol		
242	and SoyPC. It was suggested that P-panthenol has the potential as an alternative novel		
243	lipid for the treatment of inflammation.		
244			
245	Author statement		
246	Conceptualization, Y.Y. and M.H.; methodology, Y.Y., M.H, H.K; investigation,		
247	Y.Y., K.S., T.K.; original draft preparation and writing, Y.Y; review and editing, H.K.,		
248	and M.H.; supervision, K.M.		
249			
250	Declaration of competing interest		
251	Authors declare no conflict of interest.		
252			
253	Acknowledgements		
254	This study was partially supported by the grant from The Cosmetology Research		
255	Foundation (Tokyo, Japan).		
256			
257	References		
258 259 260	Chen, L., Beppu, F., Miyashita K., Hosokawa, M., 2020. Preparation of n-3 polyunsaturated phosphatidylglycerol from salmon roe lipids by phospholipase D and <i>in vitro</i> digestion. Eur. J. Lipid Sci. Technol. 122, 1900201.		
261 262	Ebner, F., Heller, A., Rippke, F., Tausch, I. 2002. Topical use of dexpanthenol in skin disorders. Am. J. Clin. Dermatol. 3, 427-433.		
263 264 265	Etense, B., Ozkisacik, S., Ozkara, E., Karul, A., Oztan, O., Yazici, M., Gürsoy, H. 2007. Dexpanthenol attenuates lipid peroxidation and testicular damage at experimental ischemia and reperfusion injury. Peditr. Surg. Int. 23, 177-181.		

- Hirche, F., Ulbrich-Hofmann, R., 1999. The interfacial pressure is an important parameter for
 the rate of phospholipase D catalyzed reactions in emulsion systems. Biochim. Biophys.
 Acta 1436, 383-389.
- Juneja, L.R., Hibi, N., Inagaki, N., Yamane, T., Shimizu, S., 1987. Comparative study on
 conversion of phosphatidylcholine to phosphatidylglycerol by cabbage phospholipase D in
 micelle and emulsion systems. Enzyme Microb. Technol. 9, 350-354.
- Komizu, Y., Matsumoto, Y., Ueoka, R., 2006. Membrane targeted chemotherapy with hybrid
 liposomes for colon tumor cells leading to apoptosis. Bioorg. Med. Chem. Lett., 16, 61316134.
- Li-Mei, W., Jie, T., Shan-He, W., Dong-Mei, M., Peng-Jiu, Y., 2016. Anti-inflammatory and
 anti-oxidative effects of dexpanthenol on lipopolysaccharide induced acute lung injury in
 mice. Inflammation. 39, 1757-1763.
- Oztürk, N., , Korkmaz, S., Oztürk, Y., 2007. Wound-healing activity of St. John's Wort
 (Hypericum perforatum L.) on chicken embryonic fibroblasts. J. Ethnopharmacol. 111, 3339.
- Proksch, E., Nissen, H.P., 2002. Dexpanthenol enhances skin barrier repair and reduces
 inflammation after sodium lauryl sulphate-induced irritation. J. Dermatolog. Treat. 13, 173178.
- Shuto, S., Itoh, H., Sakai, A., Nakagami, K., Imamura, S., Matsuda, A., 1995. Nucleosides and
 nucleotides--CXXXVII. Antitumor phospholipids with 5-fluorouridine as a cytotoxic
 polar-head: synthesis of 5'-phosphatidyl-5-fluorouridines by phospholipase D-catalyzed

transphosphatidylation. Bioorg. Med. Chem. 3, 235-43.

- Suzuri, K., Yamamoto, Y., Hosokawa, M., Miyashita, K., 2009. Effect of alpha-tocopherol on
 the synthesis of phosphatidylglycerol catalyzed by phospholipase D in an aqueous system
 Biotechnol. Lett. 31, 719-723.
- 291 Takami, M., Suzuki, Y., 1994. Enzymatic synthesis of novel phosphatidylgenipin, and its
 292 enhanced cytotoxity. Biosci. Biotechnol. Biochem. 58, 1897-1898.
- Tian, Y., Katsuki, A., Romanazzi, D., Miller, M.R., Adams, S.L., Miyashita, K., Hosokawa, M.,
 2017. Docosapentaenoic acid (22:5n-3) downregulates mRNA expression of proinflammatory factors in LPS-activated murine macrophage like RAW264.7 cells. J. Oleo
 Sci. 66,1149-1156.
- Ulbrich-Hofmann, R., Lerchner, A., Oblozinsky, M., Bezakova, L., 2005. Phospholipase D and
 its application in biocatalysis. Biotechnol. Lett. 27, 535-544.

299 300	Wiesława, S.; Ryszard, P. 2004. Investigation of some topical formulations containing dexpanthenol. Acta Poloniac. Pharmaceutica. 61, 433-437.
301 302	Wolff, H.H., Kieser, M., 2007. Hamamelis in children with skin disorders and skin injuries: results of an observational study. Eur. J. Pediatr. 166, 943-948.
303 304 305	Yagi, N., Yano, Y., Hatanaka, K., Yokoyama, Y., Okuno, H., 2007. Synthesis and evaluation of a novel lipid-peptide conjugate for functionalized liposome. Bioorg. Med. Chem. Lett. 17, 2590-2593.
306 307 308	Yamamoto. Y., Hosokawa, M., Kurihara, H., Maoka, T., Miyashita, K., 2008a. Synthesis of phosphatidylated-monoterpene alcohols catalyzed by phospholipase D and their antiproliferative effects on human cancer cells. Bioorg. Med. Chem. Lett. 18, 4044-4046.
309 310 311	Yamamoto, Y., Hosokawa, M., Kurihara, H., Miyashita, K., 2008b. Preparation of phosphatidylated terpenes via phospholipase D-mediated transphosphatidylation. J. Am. Oil Chem. Soc. 85, 313-320.
312 313 314	Yamamoto, Y., Kurihara, H., Miyashita, K., Hosokawa, M., 2011. Synthesis of novel phospholipids that bind phenylalkanols and hydroquinone via phospholipase D-catalyzed transphosphatidylation New Biotechnol. 28, 1-6.
315 316 317	Yang, H., Roberts, M.F., 2003. Phosphohydrolase and transphosphatidylation reactions of two Streptomyces phospholipase D enzymes: covalent versus noncovalent catalysis. Protein Sci. 12, 2087-2098.
318 319 320 321	
322 323	
324 325 326	
320 327 328	
329 330	
331 332	

333	Figure legends
334	
335	Fig. 1. Synthesis of phosphatisyl-panthenol by PLD-mediated transphosphatidylation of
336	PC and panthenol.
337	
338 339	Fig. 2. TLC analysis of reaction mixture after PLD-mediated transphosphatidylation of PC and panthenol (A): Substrate SovPC (B): Reaction mixture
340	Developing solvent for TLC analysis was chloroform/methanol/water (65:25:4, v/v)
2/1	and spots were detected by Is
342	and spots were detected by 12.
242	Fig. 3. Structure of diplocal phosphotidalpholing, parthenal and phosphotidal
243	rig. 5. Structure of dioleoyi-phosphatidylcholme, pantienol and phosphatidyl-
044	panmenoi.
340	Fig. 4. Optimum conditions on DLD mediated D northered synthesis
340	Fig. 4. Optimum conditions on PLD-mediated P-pantnenoi synthesis.
347	A: Amount of panthenol, B: Ratio of reaction solvent and buffer, C: $CaCl_2$
348	concentration in the buffer, D: Reaction time.
349	
350	Fig. 5: Down-regulation of pro-inflammatory factor mRNA expression by phosphatidyl-
351	panthenol. (A): IL-6 mRNA, (B): IL-1 β mRNA, (C): TNF- α mRNA, (D): COX-2
352	mRNA. * $P < 0.01$ vs. LPS (+), # P<0.01 vs. Panthenol.
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
368	

Position	Compounds		
	Panthenol	DOPC	Synthesized
			compound
g1		4.39 dd (12, 2.5)	4.38 dd (12, 2.5)
		4.12 dd (12, 7)	4.15 dd (12, 7)
g2		5.18 m	5.21 m
g3		3.94 and 3.89 m	3.93 m
a1			
a2		2.27 t (6.5)	2.29 t (6.5)
a3		1.58 m	1.58 m
a4-a7, a12-a17		~ 1.29	~1.29
a8, a11		2.00 m (x2)	2.00 m (x2)
a9, a10		5.33 (x2)	5.33 m (x2)
a18		0.88 t (6.5)	0.88 t (6.5)
b1		3.76 br	
b2		4.28 br	
NCH ₃		3.34 s	
p1	3.63 t (6.5)		3.91 br
p2	1.74 quintet (6.5)		1.80 m
p3	3.37 m		3.55 and 3.31 br
p4			
p5	3.95 s		4.06 s
рб			
p7	3.48 and 3.43 d (10.5)		3.44 and 3.40 d (11)
p8	0.93		0.97 s
p9	0.96		0.90 s
NH	7.66		7.48 br s

Table 1. ¹H NMR chemical shifts of dioleoyl-phosphatidylcholine (DOPC), panthenol,
and synthesized compound

Position	Compounds		
	Panthenol	DOPC	Synthesized
			compound
g1		62.9	62.8
g2		70.3	70.5
g3		63.2	63.6
a1		173.0	173.6
a2		34.0	34.1
a3		24.8	24.9
a4-a7, a12-a17		31~ 27	~ 29
a8, a11		27.1	27.1
a9, a10		130.0	130.0
a18		14.0	14.1
b1		66.1	
b2		59.2	
NCH ₃		54.2	
p1	58.9		63.6
p2	31.4		29.9
p3	35.5		35.7
p4	174.3		174.8
p5	76.3		76.5
рб	38.7		39.1
p7	69.8		69.8
p8	20.1		21.8
p9	19.9		20.7

Table 2. ¹³C NMR chemical shifts of dioleoyl-phosphatidylcholine (DOPC), panthenol,
and synthesized compound

Table 3. Effect of P-panthenol on secretion of IL-6 and IL-1β into the culture mediumof LPS-stimulated RAW264.7 cells.

	IL-6 (pg/mL)	IL-1 β (pg/mL)
LPS (0.1 µg/mL)	34.43 <u>+</u> 0.43	10.38 <u>+</u> 1.76
LPS + P-panthenol (25 μ M)	24.41 <u>+</u> 2.38*	8.22 <u>+</u> 0.94
LPS + P-panthenol (50 μ M)	26.85 <u>+</u> 0.91*	6.63 <u>+</u> 0.76*
LPS + P-panthenol (100 μ M)	22.26 <u>+</u> 0.36*	3.96 <u>+</u> 0.33*

391 P-panthenol: phosphatidyl-panthenol, **P*<0.01 vs LPS

Fig. 1. Synthesis of phosphatidyl-panthenol by PLD-mediated transphosphatidylation of PC and panthenol.

Fig. 2. TLC analysis of reaction mixture after PLD-mediated transphosphatidylation of PC and panthenol.
(A): Substrate SoyPC, (B): Reaction mixture
Developing solvent for TLC analysis was chloroform-methanol-water (65:25:4, v/v), and spots were detected by I₂.

Fig. 3. Structure of dioleoyl-phosphatidylcholine, panthenol and synthesized phosphatidylpanthenol.

Fig. 4. Optimum conditions on PLD-mediated P-panthenol synthesis. A: Amount of panthenol, B: Ratio of reaction solvent and buffer, C: $CaCl_2$ concentration in the buffer, D: Reaction time.

Fig. 5: Down-regulation of pro-inflammatory factor mRNA expression by phosphatidyl-panthenol. (A): IL-6 mRNA, (B): IL-1 β mRNA, (C): TNF- α mRNA, (D): COX-2 mRNA. * *P* < 0.01 vs. LPS (+), # P<0.01 vs. Panthenol.