Deprotection of a benzyl unit induces a 22 π aromatic macrocycle of 3-oxopyripentaphyrin(0.1.1.1.0) with strong NIR absorption.
COMMUNICATION

Deprotection of benzyl unit induces 22π aromatic macrocycle of 3-oxopyripentaphyrin(0.1.1.1.0) with strong NIR absorption.

Daiki Mori, Tomoki Yoneda, Masaaki Suzuki, Tyuji Hoshino, and Saburo Neya

We report aromaticity switching from a 6π pyridine ring to 22π macrocyclic ring of 3-oxopyripentaphyrin(0.1.1.1.0). This system has potential applications in photodynamic therapy owing to macrocyclic aromaticity being selectively induced by protecting group removal and strong absorption bands produced in the NIR region especially in methanol.

Porphyrins and their analogs are employed for photodynamic therapy (PDT), which is a treatment used to eliminate cancer or abnormal tissue lesions. Conventional porphyrin photosensitizers have their longest absorption maxima in the visible-light range. However, regarding penetration depth, photosensitizer with absorbance of NIR region (700–1100 nm) is desired. Expanded porphyrins with large π-conjugation circuits which absorb light reaching NIR region are expected for application of photodynamic therapy. However, a known undesirable side effect of existing photosensitizers is phototoxicity toward healthy tissue. This problem can be more serious when expanded porphyrins with strong absorption in the visible and NIR regions are adopted as photosensitizers.

If the aromaticity of macrocycle is induced by deprotection, this system can be a candidate of photosensitizer. This system prevents photosensitivity toward ambient light until metabolism occurs in tumors or tissue lesions. The removal of protecting group is theoretically applicable to new reagents for NIR photodynamic therapy by employing appropriate protecting groups metabolised in tumour. If the aromaticity of expanded porphyrins could also be triggered by metabolism, the molecule will be a theoretically crucial candidates for photodynamic therapy would be obtained (Fig. 1).

As the example of such expanded porphyrin systems, we herein report an expanded porphyrin with macrocyclic aromaticity which is triggered by simple benzyl group deprotection. We designed deprotection of 3-benzylxopyripentaphyrin-(0.1.1.1.0) 1 to produce 3-oxopyripentaphyrin(0.1.1.1.0) 2 as an expanded porphyrin system with 3-oxopyridine ring (Scheme 1). Reported pentaphyrin(1.1.1.0.0)s with five pyrrole rings are known to have aromatic character derived from their 22π conjugation circuits. To improve the stability of such electron-rich pentaphyrins, we suggested installing a pyridine ring instead of pyrrole. Compared with pyrrole, in which 6n-electrons are delocalised on five atoms, the pyridine ring is more electron-deficient because of delocalisation of same number of electrons on six atoms. As pyridine-containing porphyrins, macrocycles bearing pyridine or 3-oxopyridine rings have been reported. Among them, pyridine rings without substituents at 8- or γ-positions favour aromaticity of 6π pyridine rings, with their macrocyclic aromaticity connected in...
a cross-conjugated manner. In contrast, in molecules with 3-oxopyridine (pyridone) rings, macrocyclic 18π aromaticity takes priority over aromaticity of 6π pyridine ring. The similar system of 3-hydroxybenzoporphyins and the induction of aromaticity by deprotection of methyl group was also reported. From these previous researches, the usage of 3-oxopyridine ring can be effectively induce aromaticity in expanded porphyrin macrocycles. Previously, Setsune et al. reported expanded porphyrins containing pyridine moieties in their structure, although these molecules did not show macrocyclic aromaticity.9 Sessler et al. also reported the synthesis of cyclo[m]pyridine[n]pyrroles, which showed aromaticity only under acidic conditions. In addition, pyrrole and pyridine moieties of 1 have been designed to prevent meso-carbon oxygenation.11

The synthetic procedure for 1 is shown in Scheme 2. To synthesise the desired 3-oxopyripentaphyrin(0.1.1.1.0), we designed the synthesis of directly connected pyrrole-pyridine-pyrrole (dipyrropyridine) moiety known in the synthesis of expanded pyrroporphyrins.9,12 Using Miyaura-Ishiyama borylation, 2-ethoxycarbonyl-5-iodo-3,4-dimethylpyrrole 3 was transformed into a borylated analog 4 in 72% yield. Compound 4 (2 equiv.) was coupled with 2,6-diodopyridin-3-ol to afford a new directly bonded pyrrole-pyridine-pyrrole trimmer 5 in 61% yield. The hydroxyl group of 5 was protected with benzyl bromide to give benzyl ether 6 quantitatively. The terminal ethoxycarbonyl groups of 6 were completely hydrolysed by saponification affording 7 quantitatively. Without the protection of hydroxyl group, the saponification of 5 produced a complex mixture and corresponding carboxylic acid was not obtained at all. Through decarboxylation using NaOH and glyoxal at 180 °C, 3-oxopyripentaphyrin 8 was obtained in 42% yield. Trimer 8 was condensed with pentafluorophenyl-substituted dipyrromethane dicarbinol 9', which was prepared from the reduction of acyl precursor 9. Similarly to our reported procedure of the synthesis of pyrripentaphyrin,11 acid-catalysed condensation using p-toluenesulfonic acid (1.3 equiv.) followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) 3.0 equiv afforded pyrripentaphyrin(0.1.1.1.0) 1 in 19% yield. The benzyl group of 1 was intact under the oxidative conditions.

High-resolution electrospray ionization mass spectroscopy (HR-ESI-TOF-MS) provided the parent ion peak of 1 at m/z = 1036.2133 (calcd for 1036.2128). The 1H NMR chemical shifts of 1 indicated its nonaromatic conjugation character, including the peaks of β protons at 6.41, 6.51, 6.75, and 6.80 ppm. In contrast, peaks for pyrrole protons were observed at downfield-shifted range (7.75 and 8.31 ppm), reflecting its electron-deficient aromatic 6π conjugation circuit of the pyridine ring. Inner NH protons were observed at 5.06 ppm, which seems to be derived from fast tautomeric exchange with protons of water in CDCl3.

Scheme 2. Synthetic procedure of 3-oxopyripentaphyrins 1 and 2.

Fig. 2. X-ray crystal structure of 3-benzoxypyripentaphyrin 1•HCl. a) Top view and b) selected bond lengths of the pyridine unit shown in Å. Solvent molecules and meso-aryl groups in side view were omitted. The thermal ellipsoids are shown at the 50% probability level.
The structure of 1 was unambiguously determined by X-ray crystallographic analysis.14 The X-ray crystal structure was obtained in the protonated form with the counter chloride anion, as generated by 1,2-dichloroethane employed as the crystallisation solvent. In the X-ray crystal structure of pyrirdinering of 1, the pyridine ring showed C–C bond lengths in the range of 1.386(6)–1.417(6) Å, which were typical of aromatic C–C bonds. The C–N bond lengths of the pyridine ring were 1.334(5) and 1.345(7) Å, indicating its aromatic character. (Fig. 2b).

We conducted deprotection of benzyl group of 1 using hydrogenation under Pd/C catalysis, which proceeded almost quantitatively (Scheme 2). Simple chromatographic separation followed by recrystallisation furnished 2 in 78% yield. HR-ESI-TOF-MS analysis of 2 showed a peak at m/z = 946.1691 (calcd for C46H22N5F15O1: 946.1663), which indicated the expected benzyl group removal. The NMR spectrum of 2 in CDCl3 clearly showed downfield-shifted β-protons in the range of 7.8–8.2 ppm, although complete characterisation of them was not easy because of its broadened peaks (Fig. S13). This broad NMR spectrum might be attributed to fast equilibrium of keto and enol forms of 2 (Scheme 3).8d The NMR peaks did not sharpen even at lower or higher temperature. However, in CD3OD, highly downfield-shifted peaks belonging to pyrrole-β protons were clearly observed at 7.87–8.23 ppm, indicating the aromatic character. The peak for the β-proton of 3-pyridone unit was highly downfield-shifted to 9.67 ppm owing to the diatropic ring current of the 22π conjugation circuit and electron-withdrawing effect of the conjugated carbonyl group (Fig. S14). These data support the increased contribution of keto-form in protic solvents, as known in the tautomiserism between the 4- and 2- pyridone derivatives.15 In X-ray crystal structure of 216 grown from the slow diffusion of hexane into chloroform solution was determined to be keto-form with four amine-type pyrrolic nitrogen atoms (Fig. 3). All pyrrole and pyridine units were inward-pointing. The detailed X-ray crystallographic structure showed a 1.278(6) Å of C–O bond, indicating strong double-bond character of 2. In the 3-oxopyridine ring, C–N bond lengths were 1.345(6) and 1.352(6) Å, indicating retained aromatic bond character, while the bond-length alternation of C–C bonds was larger than those of 1, at three 1.448(7), 1.439(8), 1.428(7) Å of single C–C bonds and 1.360(7) Å for one double C–C bond, suggesting the keto-form of 2 in the solid state. Furthermore, the pyrrole–pyrrole C–C bond lengths were 1.434(7) and 1.433(7) Å, which is shortened to the aromatic bond length region compared with those in 1 (1.462(6) and 1.457(6) Å). The harmonic oscillator model of aromaticity (HOMA)16 value for the overall 22π macroyclic structure of 2 was 0.71, which was larger than that of the cross-conjugated macroyclic pathway of 1 calculated as 0.56 (Fig. S16). The mean plane deviation (MPD) of the pentapyrpin skeleton of 2 was calculated as 0.33 Å suggesting relatively planar structure of 2 than that of 1 with 0.46 Å of MPD. (Fig. 4).

The aromaticity and strong NIR absorption of 2 was confirmed by its UV/Vis absorption spectra (Fig. 5). The absorption spectrum of 1 showed a relatively broad Soret-like band at 435 nm and almost no Q-like bands, suggesting its nonaromatic characteristics. However, 2 in dichloromethane, showed a similar the overall absorption spectrum shape, except for weak absorption bands at 437, 497, 519, 716 and 842 nm, which can be assigned as 22π conjugation circuit. Furthermore, in methanol, all these peaks showed increased intensity, with a high molar coefficient observed. In particular, the strong Q-like absorption band at 852 nm with absorption coefficient of 4.2×10^4 M⁻¹cm⁻¹ suggested the suitability of this compound as an NIR photosensitiser.
To investigate the aromaticity of 2, we conducted DFT calculation\(^\text{18}\) (B3LYP/6-31G level) on the keto- and enol forms of 2. The aromaticity of the keto-form of 2 was supported by the calculated nucleus-independent chemical shifts (NICS(0)) value\(^\text{19}\) of −10.91 ppm at the gravity point of the macrocycle. In contrast, those of 1 and the enol-form of 2 were calculated to be −0.66 and −0.73 ppm, respectively, indicating nonaromatic characters. Meanwhile, the NICS(0) values of the six-membered ring in 1 and the enol-form of 2 were −9.73 and −9.98 ppm, respectively, owing to their 6π-electron aromaticity, while that of the keto-form of 2 was +4.08 ppm because the point was not the centre of a 6π ring but the outside periphery of a 22π macrocycle. The keto-form of 2 was slightly (16.7 kJ/mol) more stable than that of enol-form though the HOMO-LUMO gaps of 1 and keto-and enol forms of 2 were very similar (1.97-2.00 eV). As observed in cyclic voltammograms with similar HOMO-LUMO gaps of 1 and 2 (1.45-1.40 eV, see ES)).

In conclusion, we have synthesised benzylic-group-protected pyrropentaphyrin 1 and demonstrated its deprotection using hydrogenation to produce 3-oxopyrropentaphyrin 2. The transformation from nonaromatic 1 to aromatic 2 drastically induced aromaticity in the 22π conjugation system, preserving its stability. The aromaticity of 2 was enhanced in methanol, with strong NIR absorption observed. Therefore, we have demonstrated the potential of expanded pyroporphyrins as theoretically promising candidates for photosensitizer.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The work at Chiba was supported by JSPS KAKENHI. This work was supported by a JSPS KAKENHI grant for young scientists No. 17K14445(8) from MEXT of Japan and The Inohana Foundation.

Notes and references

14. X-ray data for 1·HCl: (C\text{17}H\text{37}O\text{4}N\text{2}O\text{2})·HCl·2·(1,2-dichloroethane) (Mr = 1171.22), triclinic, space group P\text{1} (No. 2), \(a = 13.2433(3)\), \(b = 13.7134(3)\), \(c = 15.7312(4)\), \(\AA\), \(\alpha = 70.848(1)\), \(\beta = 80.596(1)\), \(\gamma = 66.090(1)\), \(V = 2465.69(10)\) \(\AA^3\), \(Z = 2\), \(P_{	ext{calc}} = 1.577 \text{ gcm}^{-3}\), \(T = 93(2)\), \(R_1 = 0.0841\) (((x2l))), \(wR_2 = 0.2495\) (all data), GOF = 1.120. CCDC 1996098 contains
the supplementary crystallographic data for this paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.

16 X-ray data for 2: (C_{46}H_{22}F_{15}N_{5}O_{1})\textcircled{2}(\text{chloroform}) (Mr = 1184.42), monoclinic, space group P-1 (No. 2), a = 12.2776(3), b = 13.0559(3), c = 16.5083(4) Å, α = 105.241(1)\textdegree, β = 110.613(1)\textdegree, γ = 98.939(2)\textdegree, V = 2297.85(10) Å³, Z = 2, ρ_{calc} = 1.712 gcm⁻³, T = 93(2) K, R₁ = 0.0965 (I > 2σ(I)), wR₂ = 0.2705 (all data), GOV = 0.1049. CCDC 1996099 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.

18 Gaussian 09, Revision A.02, M. J. Frisch. et al., Gaussian, Inc., Wallingford, CT, 2009 (Full citation in SI).