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EQUIVARIANT O2-ABSORPTION THEOREM FOR EXACT
GROUPS

YUHEI SUZUKI

Abstract. We show that, up to strong cocycle conjugacy, every countable ex-
act group admits a unique equivariantly O2-absorbing, pointwise outer action on
the Cuntz algebra O2 with the quasi-central approximation property (QAP). In
particular, we establish the equivariant analogue of the Kirchberg O2-absorption
theorem for these groups.

1. Introduction

The Kirchberg O2-absorption theorem ([14], [15]) states that the Cuntz algebra O2

tensorially absorbs all unital simple separable nuclear C∗-algebras A; A⊗O2
∼= O2.

This is one of the fundamental ingredients of Phillips’s proof of the classification
theorem of Kirchberg algebras [22] (see [14] for Kirchberg’s original approach). Here
recall that a C∗-algebra is said to be a Kirchberg algebra if it is purely infinite
simple, separable, nuclear. We refer the reader to the book [23] for basic facts and
background on the Kirchberg algebras.

Considering the special roles of this beautiful, deep, surprising theorem of Kirch-
berg, and also observing the recent developments on the classification of C∗-dynamical
systems (see e.g., [12], [13], [30]), it is a natural and important attempt to establish
an equivariant analogue of the O2-absorption theorem. (For history and background
of the study of group actions on operator algebras, we refer the reader to [11] or the
introduction of [30] and references therein.) Indeed, among other things, recently
Szabó [30] established the theorem for countable amenable groups. Here we extend
the theorem to countable exact groups. The precise statement is as follows.

Main Theorem. Let G be a countable exact group. Let δ : G y O2 be an equiv-
ariantly O2-absorbing, pointwise outer action with the quasi-central approximation
property (QAP) [5]. Then for any action α : G y A on a unital simple separable
nuclear C∗-algebra, the diagonal action α⊗ δ is strongly cocycle conjugate to δ.

For the definition of the QAP, see Sections 2.1 and 2.2. Note that such a δ always
exists (see Example B below or [24]), and (therefore) all the assumptions cannot be
removed (cf. Remark 3.10). Thus one can regard this theorem as the equivariant
O2-absorption theorem.

As a rephrasing of the Main Theorem, we obtain the following uniqueness theorem.
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2 YUHEI SUZUKI

Theorem A. Let G be a countable exact group. Then, up to strong cocycle con-
jugacy, there is a unique equivariantly O2-absorbing, pointwise outer, QAP action
G y O2.

It is notable that, as all the three conditions are stable under cocycle conjugacy,
the above theorem gives the first abstract characterization of a (strong) cocycle
conjugacy class of pointwise outer actions of a non-amenable group on a simple
operator algebra.

We emphasize that all the previously known classification results of simple equi-
variant operator algebras (in both C∗- and W∗-cases) use amenability of the acting
group in substantial ways. Theorem A is the first positive evidence that a fruit-
ful classification theory of C∗-dynamical systems could be developed even beyond
amenable groups.

Example B. Here we give motivating examples of actions which satisfy the as-
sumptions of the Main Theorem; cf. [24]. Let G be a countable exact group. For
each n ∈ N, choose a (topologically) amenable action ηn : G y Xn on a compact
metrizable space Xn ([4], Theorem 5.1.7). For each n ∈ N, choose a unital embed-
ding ιn : C(Xn)or,ηn G → O2 [15], [14]. Each ιn defines a unitary representation
un : G → U(O2) by the restriction. Then the diagonal action⊗

n∈N

Ad(un) : G y
⊗
n∈N

O2

defines an action
δ : G y O2

via an isomorphism
⊗

n∈N O2
∼= O2 ([23]). It is clear from the construction that δ

satisfies the assumptions of the Main Theorem. Thus, as a particular consequence
of the Main Theorem, the strong cocycle conjugacy class of δ is independent on the
choices of ηn and ιn. This already implies the following non-trivial consequence: For
any amenable action η : G y X on a compact metrizable space and for any choices
of ηn and ιn, there is a unital G-equivariant embedding

(C(X), η) → ((O2)ω, δω).

Our proof of the Main Theorem mostly follows that of Szabó’s theorem ([30],
Theorem C). However at a few crucial steps, amenability of the acting group is used
in essential ways. In particular, this includes the most important step Lemma 2.3 of
[30]. This lemma is used to carry out Connes’s two-by-two matrix trick [6] (see [30],
Lemmas 2.4 and 5.1). Unfortunately the statement of the lemma no longer holds
true for non-amenable groups; see Remark 3.9. However, we will see in Lemma 3.1
that, under appropriate assumptions, the statement is still valid. This is the main
contribution of the present article toward the Main Theorem.

As an intermediate result in the proof of the Main Theorem, we also obtain the
following useful characterizations of the QAP in an important case. We use this
result together with Lemma 3.1 to deduce the key result Corollary 3.7.

Theorem C. Let α : G y A be an action of a countable exact group on a unital
simple separable nuclear C∗-algebra. Let ω be a free ultrafilter on N. Then the
following conditions are pairwise equivalent.
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(1) The α has the QAP.
(2) There is a sequence (ξn)

∞
n=1 in ℓ2(G,Aω) satisfying limn→∞〈ξn, α̃g(ξn)〉 = 1 for

all g ∈ G.
(3) There is a sequence (kn : G → Aω)

∞
n=1 of finitely supported positive definite func-

tions satisfying limn→∞ kn(g) = 1 for all g ∈ G.
(4) The induced action αω : G y Aω on the ultrapower Aω has the QAP.
(5) The induced action αω : G y Aω on the central sequence algebra Aω has the

QAP.
(6) For any separable G-C∗-subalgebra B ⊂ Aω, the restriction of αω to Aω ∩B′ has

the QAP.

We stress that even for some actions in Example B (see also [24], [25]), validity
of conditions (2) to (6) are not obvious. The crucial implication used in the present
article is (1) ⇒ (4); cf. Lemma 3.1 and Corollary 3.7.

We also discuss an equivariant analogue of the Kirchberg O∞-absorption theorem
[14], [15]. Recall that the theorem states that the Cuntz algebra O∞ is tensorially
absorbed by any Kirchberg algebra A; A⊗O∞ ∼= A. This is another main ingredient
of the proof of the Kirchberg–Phillips classification theorem in [22]. Therefore, sim-
ilar to the O2-absorption theorem, it is desirable to obtain an equivariant analogue
of the O∞-absorption theorem. Indeed Szabó obtains such results for countable
amenable groups (see Theorems B and 3.5 in [30]). In this article, we prove the
following result for QAP actions on unital Kirchberg algebras.

We first give model (absorbed) actions on O∞.

Definition D. Let u : G → U(O∞) be a unitary representation of a group G. We
say that u factors through O2 if there is a unitary representation v : G → U(O2)
and a (non-unital) embedding ι : O2 → O∞ satisfying

ug = ι(vg) + (1O∞ − ι(1O2)) for all g ∈ G.

Note that by the Kirchberg O2-embedding theorem (applied to the reduced group
C∗-algebra), every countable exact group admits such a faithful representation. Note
that unlike Example 3.6 in [30], here we do not assume the injectivity of the induced
∗-homomorphism on C∗(G).

Example E (cf. Example 3.6 in [30]). Let G be a countable group. Let (un)
∞
n=1 be

a sequence of unitary representations of G on O∞ which factor through O2. Then
the diagonal action ⊗

n∈N

Ad(un) : G y
⊗
N

O∞

defines an action
γ : G y O∞

via an isomorphism
⊗

N O∞ ∼= O∞ ([23]). We remark that γ admits an invariant
state. Thus, when G is non-amenable, γ cannot have the QAP.

Theorem F. Let G be a countable exact group. Let α : G y A be a pointwise outer,
QAP action on a unital Kirchberg algebra. Then for any action γ in Example E, α
is strongly cocycle conjugate to α⊗γ. In particular α is equivariantly O∞-absorbing.
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2. Preliminaries

Here we recall some definitions and facts, and fix notations.

2.1. Hilbert C∗-bimodule ℓ2(G,A). Let G be a discrete group. Let A be a C∗-
algebra. Define the linear space

ℓ2(G,A) :=

{
(ξg)g∈G ∈

∏
G

A :
∑
g∈G

ξ∗gξg converges in norm

}
.

For a ∈ A and ξ ∈ ℓ2(G,A), define aξ, ξa ∈ ℓ2(G,A) to be

(aξ)g := aξg, (ξa)g := ξga for g ∈ G.

For ξ, η ∈ ℓ2(G,A), set

〈ξ, η〉 :=
∑
g∈G

ξ∗gηg ∈ A.

Note that these operations make ℓ2(G,A) a Hilbert C∗-bimodule over A. For ξ ∈
ℓ2(G,A), set

‖ξ‖ := ‖〈ξ, ξ〉‖1/2.
This defines a complete norm on ℓ2(G,A).

Let α : G y A be an action. Then define the norm-preserving action α̃ : G y
ℓ2(G,A) to be

α̃g(ξ)h := αg(ξg−1h) for g, h ∈ G, ξ ∈ ℓ2(G,A).

This action is used to formulate amenability-type conditions for C∗-dynamical sys-
tems; see [2], [3], [4], [5] for instance.

2.2. Amenable actions on C∗-algebras. Recently, in [24], we discovered actions
of non-amenable groups on simple C∗-algebras with properties which should be re-
garded as amenability of C∗-dynamical systems. A few applications of such actions
are already found in C∗-algebra theory; see [25], [26], [27]. We believe that this
novel phenomenon provides a new rich field in C∗-algebra theory. One of the moti-
vations behind the present article is to examine a new evidence supporting this my
expectation from a different angle.

While the definitive definition of amenability is still not known for (non-commutative)
C∗-dynamical systems, in [5], motivated by examples constructed in [24], a new
amenability-type condition, called the quasi-central approximation property (QAP),
is introduced for C∗-dynamical systems. (We remark that the situation is totally
different in the von Neumann algebra setting. In the realm of von Neumann alge-
bras, the definitive definition is already known, and non-amenable discrete groups
cannot act amenably on a factor [1].) For simplicity, here we recall the definition
of the QAP only in the unital and discrete case. See [5] for the general case. Re-
call that a discrete group action α : G y A on a unital C∗-algebra is said to have
the quasi-central approximation property (QAP) if there is a net (ξi)i∈I in ℓ2(G,A)
satisfying

(1) limi∈I〈ξi, α̃g(ξi)〉 = 1A for all g ∈ G,
(2) limi∈I ‖aξi − ξia‖ = 0 for all a ∈ A.
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For actions on commutative C∗-algebras, it is not hard to see that the QAP is
equivalent to the (topological) amenability (cf. [4], Lemma 4.3.7). It is also clear
that the QAP is stable under taking equivariant inductive limits. In particular, the
actions constructed in Example B have the QAP.

In Theorem C, for some important cases, we obtain useful characterizations of the
QAP in terms of the (relative) central sequence algebra. This is another important
step to prove the Main Theorem; cf. Corollary 3.7.

Here we record the following basic observation on the QAP. The proof is easy and
straightforward and we leave details to the reader.

Proposition 2.1. Let α and β be an action of a discrete group G on a unital C∗-
algebra A such that αg ◦ β−1

g is inner for all g ∈ G. Then α has the QAP if and
only if so does β. In particular, the QAP is stable under cocycle conjugacy.

Another object used to formulate amenability-type conditions of actions is pos-
itive definite functions; see e.g., [2], [3], [4], [5]. Recall that for a C∗-dynamical
system α : G y A, a function f : G → A is said to be positive definite [2] if it
satisfies the following condition: For any finite sequence g1, . . . , gn ∈ G, the matrix
(αgi(f(g

−1
i gj)))1≤i,j≤n ∈ Mn(A) is positive.

2.3. Ultrapowers and central sequence algebras. Throughout this article, we
fix a free ultrafilter ω on N. For a C∗-algebra A, the ultrapower Aω of A with respect
to ω is defined to be

Aω := ℓ∞(N, A)/
{
(xn)

∞
n=1 ∈ ℓ∞(N, A) : lim

n→ω
‖xn‖ = 0

}
.

[We alert that some authors (including [30]) use the symbol Aω for the C∗-algebraic
ultrapower. In this article, following e.g., [12], [13], we employ the notation Aω

which is standard at least in von Neumann algebra theory.] For (xn)
∞
n=1 ∈ ℓ∞(N, A),

denote by [xn]
ω
n its image in Aω.

We regard A as a C∗-subalgebra of Aω via the embedding a 7→ [(a, a, a, . . .)]ωn.
The relative commutant C∗-algebra

Aω := Aω ∩ A′

is said to be the central sequence algebra of A (with respect to ω).
For any discrete group action α : G y A, we have the actions αω : G y Aω,

αω : G y Aω inherited from the pointwise application of α to ℓ∞(N, A). When the
underlying C∗-algebra is obvious from the context, we simply denote αω, αω, and
their restrictions to G-C∗-subalgebras (typically relative commutant C∗-subalgebras)
by α for short.

2.4. Exact groups. Recall that a discrete group G is said to be exact [16] if the
reduced group C∗-algebra C∗

r (G) is exact. We refer the reader to [4] and [21] for
introduction and applications of this rich property. Here we recall only a few things.
First, it should be stressed that, comparing to amenable groups, the class of exact
groups is fairly huge. For instance the class includes all hyperbolic groups and linear
groups. Moreover the class is stable under taking extensions, subgroups, increasing
unions, amalgamated free products. All the currently known non-exact groups are
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constructed by a probabilistic method [9], [19]. By Ozawa’s theorem [20], exactness
of a countable group is equivalent to the existence of a (topologically) amenable
action on a compact metrizable space (see also [4], Theorem 5.1.7).

2.5. (Strong) cocycle conjugacy. Let α : G y A be a discrete group action on
a unital C∗-algebra. A map u : G → U(A) is said to be an α-cocycle if it satisfies
ugh = ugαg(uh) for all g, h ∈ G. Each α-cocycle u defines a new action αu : G y A,
called the cocycle perturbation of α by u, by the formula αu

g := Ad(ug) ◦ αg for
g ∈ G. Two actions α : G y A and β : G y B are said to be cocycle conjugate if α
is conjugate to a cocycle perturbation of β, that is, if there is a β-cocycle w and an
isomorphism φ : B → A satisfying αg = φ ◦ βw

g ◦ φ−1 for all g ∈ G. Clearly, if two
actions α and β are cocycle conjugate, then αω and βω are conjugate.

Two actions α and β are said to be strongly cocycle conjugate if there is an
isomorphism φ : B → A, a β-cocycle w, and a sequence (un)

∞
n=1 in U(B) satisfying

αg = φ ◦ βw
g ◦ φ−1 and wg = lim

n→∞
unβg(un)

∗ for all g ∈ G.

For an advantage of strong cocycle conjugacy rather than just cocycle conjugacy,
see Lemma 4.2 of [28] for instance. Note that these two relations are reflexive,
symmetric, and transitive.

2.6. Saturated C∗-dynamical systems. The definition of saturated C∗-dynamical
systems is introduced by Szabó [30] as an equivariant analogue of [8]. Roughly
speaking, this is an abstract formulation of some important properties shared by
ultraproduct actions and their restrictions to (relative) central sequence algebras.
These actions are thus typical examples of saturated actions. This concept allows
us to considerably reduce the number of times to repeat standard reindexation ar-
guments. We thus employ this concept in the article. We refer the reader to Section
1 of [30] for the definition and basic facts of saturated actions.

2.7. D-absorbing actions. Let D be a strongly self-absorbing C∗-algebra [32]. (In
this article we only consider the Cuntz algebra cases D = O2,O∞.) Let α be an
action of a discrete group G on a unital C∗-algebra A. Recall that α is said to
be equivariantly D-absorbing if α is cocycle conjugate to idD ⊗ α : G y D ⊗ A.
An equivariant McDuff-type theorem (see [12], Theorem 4.11 or [28], Corollary 3.8)
shows that α is equivariantly D-absorbing if and only if there is a unital embedding
D → (Aω)

α. Moreover, if this is the case, the theorem shows that α is in fact
strongly cocycle conjugate to idD ⊗ α.

2.8. Notations. Here we fix basic notations used in this article.
Throughout the article, all C∗-algebras are assumed to be nonzero. Let A, B be

unital C∗-algebras. Let X be a normed space. Throughout the article, G denotes a
countable discrete exact group.

• For x, y ∈ X and ϵ > 0, denote by x ≈ϵ y if ‖x− y‖ < ϵ.
• For x, y ∈ A, set [x, y] := xy − yx.
• Denote by U(A) the unitary group of A.
• Denote by 1A the unit of A. When the considered C∗-algebra A is clear from
the context, denote 1A by 1 for short.
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• For u ∈ U(A), Ad(u) denotes the inner automorphism of A defined by u;
Ad(u)(x) = uxu∗ for x ∈ A.

• For a unitary representation u : G → U(A), Ad(u) denotes the inner action
G y A given by g 7→ Ad(ug).

• The symbols ‘⊗’, ‘or’ denote the minimal tensor product (of C∗-algebras and
completely positive maps) and the reduced crossed product respectively.

• For an action α : G y A, Aα denotes the fixed point algebra of α;

Aα := {a ∈ A : αg(a) = a for all g ∈ G}.

• For two actions α : G y A and β : G y B, denote by α ⊗ β : G y A ⊗ B
the diagonal action; (α⊗ β)g := αg ⊗ βg for g ∈ G.

• For a subset S ⊂ A, set A ∩ S ′ := {a ∈ A : [a, s] = 0 for all s ∈ S}.
• For n ∈ N, denote byMn(A) the C

∗-algebra of n-by-nmatrices over A. When
A = C, we denote it by Mn for short. We identify Mn(A) with Mn ⊗ A via
the canonical isomorphism.

• For n ∈ N and 1 ≤ i, j ≤ n, denote by ei,j ∈ Mn(A) the matrix whose
(i, j)-entry is 1A and the other entries are 0.

• Let α : G y A. Let B ⊂ A be a G-C∗-subalgebra. When there is no
confusion, we denote the restriction action G y B by the same symbol α.

• Denote by 1G the identity element of G.

3. Proof of the Main Theorem

The following key result is a generalization of [30], Lemma 2.3. Because Følner sets
no longer exist in our case, the statement involves technical assumptions (which may
be regarded as a relative (weaker) version of the QAP). In fact, the full statement
of Lemma 2.3 fails for non-amenable groups; see Remark 3.9. We will however see
that the following statement is strong enough to obtain the Main Theorem.

Recall that G denotes a countable exact group.

Lemma 3.1. Let D be a unital C∗-algebra. Let α : G y D be a saturated action.
Let A ⊂ D be a separable G-C∗-subalgebra satisfying the following conditions.

(1) The relative commutant D ∩ A′ is purely infinite simple.
(2) The restriction action G y D ∩ A′ is pointwise outer.
(3) For any finite subsets S ⊂ A, F ⊂ G and any positive number ϵ > 0, there is

ξ ∈ ℓ2(G,D) satisfying
• 〈ξ, α̃g(ξ)〉 ≈ϵ 1 for all g ∈ F ,
• aξ ≈ϵ ξa for all a ∈ S.

Then the fixed point algebra (D ∩ A′)α is purely infinite simple.

Proof. Let a ∈ (D ∩A′)α be a positive element of norm one. We will find, following
Lemma 2.3 of [30], a proper isometry v ∈ (D ∩ A′)α satisfying v∗av = 1.

By Proposition 2.2 of [30], we have a nonzero projection p ∈ D ∩ A′ satisfying

• αg(p)p = 0 for all g ∈ G \ {1G},
• aαg(p) = αg(p) for all g ∈ G.
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By replacing p by its proper subprojection (which exists by (1)) if necessary, we may
assume in addition that there is a nonzero projection q ∈ D ∩ A′ with qαg(p) = 0
for all g ∈ G. Take an isometry t ∈ D ∩ A′ with t∗pt = 1.

Let finite subsets S ⊂ A, F ⊂ G and ϵ > 0 be given. Choose ξ ∈ ℓ2(G,D) as
in (3) for the S, F , ϵ. By standard perturbation arguments, we may assume in
addition that ξ is finitely supported and satisfies 〈ξ, ξ〉 = 1. Set

vS,F :=
∑
g∈G

αg(pt)ξg ∈ D.

Then direct computations imply

v∗S,FvS,F =
∑
g∈G

ξ∗gξg = 1.

Observe also that qvS,F = 0. Hence vS,F is a proper isometry. It is clear from the
choice of p that avS,F = vS,F . Thus v

∗
S,FavS,F = 1.

We show that vS,F almost commutes with S and is almost invariant under F (the
precise meanings are self-explaining below). For x ∈ S, as pt ∈ D ∩ A′, we have

[x, vS,F ] =
∑
g∈G

αg(pt)(xξg − ξgx).

Hence

‖[x, vS,F ]‖2 = ‖[x, vS,F ]∗[x, vS,F ]‖ = ‖
∑
g∈G

(xξg − ξgx)
∗(xξg − ξgx)‖ = ‖xξ− ξx‖2 < ϵ2.

For s ∈ F , we have

αs(vS,F ) =
∑
g∈G

αsg(pt)αs(ξg) =
∑
g∈G

αg(pt)αs(ξs−1g) =
∑
g∈G

αg(pt)α̃s(ξ)g.

Therefore computations similar to the previous one yield

‖vS,F − αs(vS,F )‖ = ‖ξ − α̃s(ξ)‖ <
√
2ϵ.

Now, since α is saturated, G is countable, and A is separable, this guarantees the
existence of a proper isometry v ∈ (D ∩ A′)α with v∗av = 1. □

Remark 3.2. We remark that the proof of Lemma 2.1 in [30], which Proposition
2.2 of [30] (thus Lemma 3.1) depends on, needs a slight correction. To explain
this, let us use the same notations as in [30], Lemma 2.1. The problem is that,
in the proof, the condition qa = q is not confirmed. (This does not follow from
q ∈ aAa.) However this is easily fixed as follows. Since D is saturated, by standard
applications of functional calculus, one can find a positive element a0 in D with
a0a = a0, ‖a0‖ = 1. Applying the proof of [30], Lemma 2.1 to a0 instead of a, we
obtain the desired q (for the original a).

We next show a variant of Lemmas 2.4 and 2.9 in [30]. Because of the restrictions
in Lemma 3.1, we need to choose all objects more carefully.
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Lemma 3.3. Let u : G → U(O2) be a unitary representation. Let α : G y O2 be an
equivariantly O2-absorbing, pointwise outer, QAP action. Then there exist a unital
∗-homomorphism ν : O2 → ((O2)ω)

α and w ∈ U((O2)ω) satisfying ν(ug) = wαg(w
∗)

for all g ∈ G.

Proof. Since a cocycle conjugation induces the conjugation of the actions on the
central sequence algebras, we may assume that α is of the form

idO2 ⊗ α0 : G y O2 ⊗O2

for some QAP action α0. Put A := O2 ⊗ 1O2 , B := 1O2 ⊗ O2, C := O2 ⊗ O2.
Take two unital ∗-homomorphisms ν, µ : O2 → Aω satisfying [ν(x), µ(y)] = 0 for all
x, y ∈ O2 ([23]). Regarding ν as a map into (Cω)

α, we will show that this ν satisfies
the desired condition.

Define β : G y M2(C
ω) to be

βg := Ad

(
1 0
0 ν(ug)

)
◦ (idM2 ⊗ αg) for g ∈ G.

Note that β is saturated by Corollary 1.10 and Proposition 1.12 in [30]. Set

D := M2(Cω) ⊂ M2(C
ω).

Since µ(O2) ⊂ (Cω)
α ∩ ν(O2)

′, we have a unital inclusion

1M2 ⊗ µ(O2) ⊂ Dβ ∩ {e1,1, e2,2}′.

This shows

[e1,1]0 = [e2,2]0 = 0 in K0(D
β).

We next show that, with respect to β, the inclusion 1M2 ⊗ C ⊂ M2(C
ω) fulfills

the assumptions of Lemma 3.1. Since D = M2(C
ω)∩ (1M2 ⊗C)′, this claim together

with Lemma 3.1 shows that Dβ is purely infinite simple. Condition (1) follows from
Proposition 3.4 of [15]. Condition (2) follows from Theorem 3.1 of [30] (cf. [18]). To
show condition (3), fix finite subsets T ⊂ 1M2 ⊗ B, F ⊂ G and a positive number
ϵ > 0. Then, as α0 has the QAP, one can take ξ ∈ ℓ2(G, 1M2 ⊗B) ⊂ ℓ2(G,M2(C

ω))
satisfying

• 〈ξ, ( ˜idM2 ⊗ α)g(ξ)〉 ≈ϵ 1 for all g ∈ F ,
• bξ ≈ϵ ξb for all b ∈ T .

Observe that, for any g ∈ G, as the values of ξ commute with

(
1 0
0 ν(ug)

)
∈

M2(Aω), we have ( ˜idM2 ⊗ α)g(ξ) = β̃g(ξ). Hence 〈ξ, β̃g(ξ)〉 ≈ϵ 1 for all g ∈ F . We
also note that aξ = ξa for all a ∈ 1M2 ⊗ A. As (1M2 ⊗ A) ∪ (1M2 ⊗ B) generates
1M2 ⊗ C as a C∗-algebra, this proves condition (3) of the inclusion.

Hence, by Lemma 3.1, Dβ is purely infinite simple. Therefore, by [7], one can take
a partial isometry v ∈ Dβ satisfying vv∗ = e1,1, v

∗v = e2,2. Certainly this element
is of the form v = e1,2 ⊗ w for some w ∈ U(Cω). Since v is β-invariant, direct
computations (cf. [30], Lemma 2.4) show that ν(ug) = wαg(w)

∗ for all g ∈ G. We
thus obtain the desired element w. □
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Corollary 3.4. Let α : G y O2 be an equivariantly O2-absorbing, pointwise outer,
QAP action. Then for any unitary representation u : G → U(O2), there is a unital
G-equivariant embedding (O2,Ad(u)) → ((O2)ω, αω).

Proof. By Lemma 3.3, we have a unital ∗-homomorphism ν : O2 → ((O2)ω)
α and w ∈

U((O2)ω) satisfying wαg(w)
∗ = ν(ug) for all g ∈ G. Set µ := Ad(w∗)◦ν. Then direct

computations (cf. [30], Lemma 2.9) show that µ gives the desired embedding. □
We now prove Theorem C. Before the proof, we record the following universality-

like property of QAP actions, which is of independent interest.

Proposition 3.5. Let α : G y A be a QAP action on a unital simple separable
nuclear C∗-algebra. Then for any action β : G y B on a unital separable exact
C∗-algebra, there is a G-equivariant unital completely positive map from B into Aω.
Moreover, when we additionally assume that α is pointwise outer and equivariantly
O2-absorbing, the stated maps can be taken to be an embedding.

Proof. By the observation in the first paragraph of the proof of Proposition 5.3 in
[30], we only need to consider the case (B, β) = (O2,Ad(u)) for unitary representa-
tions u : G → U(O2). (In [30] the statement is restricted to amenable groups, but
the same proof works for exact groups after employing the reduced C∗-completion
instead of the full one; see [4], Theorem 10.2.9.)

The last statement follows from this observation and Corollary 3.4
Let u : G → U(O2) be a unitary representation. Take an equivariantly O2-

absorbing, pointwise outer action σ : G y O2 which admits an invariant state φ.
(For instance, take the diagonal action of the trivial action on O2 and the Bernoulli
shift action G y

⊗
G O2.) Then, since A ⊗ O2

∼= O2, the diagonal action α ⊗ σ
satisfies the assumptions of Corollary 3.4. Therefore we have a unital G-equivariant
embedding

ι : (O2,Ad(u)) → ((A⊗O2)ω, α⊗ σ).

As φ is σ-invariant, the map idA ⊗ φ : A ⊗O2 → A induces a G-equivariant unital
completely positive map

Φ: ((A⊗O2)ω, α⊗ σ) → (Aω, α); [xn]
ω
n 7→ [(idA ⊗ φ)(xn)]

ω
n.

The composite Φ ◦ ι gives the desired map. □
Proof of Theorem C. Clearly (6) implies (4) and (5). By Proposition 2.5 of [2], (3)
implies (2). We show that (1) implies (3), (2) implies (6), (4) implies (1), and (5)
implies (1), which complete the proof.

(1)⇒ (3): Assume that α has the QAP. Take an amenable action η : G y X
on a compact metrizable space ([20], [4], Theorem 5.1.7). By Proposition 3.5, we
have a G-equivariant unital completely positive map Φ: C(X) → Aω. Since η is
amenable, by [4], Theorem 4.4.3, there is a sequence (fn : G → C(X)) of finitely
supported positive definite functions with limn→∞ fn(g) = 1 for all g ∈ G. Since Φ
is completely positive and G-equivariant, the functions Φ ◦ fn : G → Aω are positive
definite. As Φ is unital and continuous, we have

lim
n→∞

(Φ ◦ fn)(g) = 1 for all g ∈ G.
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This confirms condition (3) of α.
(2)⇒ (6): Assume that α satisfies condition (2). Let B ⊂ Aω be a separable G-C∗-

subalgebra. Take any finite subset F ⊂ G and finite sequence a(1), . . . , a(k) ∈ Aω.
Fix a positive number ϵ > 0. Choose a dense sequence (b(n))∞n=1 of B.

For each i = 1, . . . , k, take a representing sequence (a(i)n)n∈N of a(i). We also
fix a representing sequence (b(i)n)n∈N of b(i) for each i ∈ N. Choose ξ ∈ ℓ2(G,Aω)
satisfying 〈ξ, α̃g(ξ)〉 ≈ϵ 1 for all g ∈ F . By a standard perturbation argument, we
may assume in addition that ξ is finitely supported. Choose a bounded sequence
(ξn)

∞
n=1 in ℓ2(G,A) satisfying

• for any n ∈ N, supp(ξn) ⊂ supp(ξ),
• for each g ∈ G, [ξn,g]

ω
n = ξg.

Then limn→ω ‖〈ξn, α̃g(ξn)〉 − 1‖ < ϵ for all g ∈ F , limn→ω ‖aξn − ξna‖ = 0 for
all a ∈ A. By these two conditions, for each n ∈ N, one can choose k(n) ∈ N
satisfying 〈ξk(n), α̃g(ξk(n))〉 ≈ϵ 1 for all g ∈ F and ‖xξk(n) − ξk(n)x‖ < 1/n for all
x = a(1)n, . . . , a(k)n, b(1)n, . . . , b(n)n. Define η ∈ ℓ2(G,Aω) to be ηg := [ξk(n),g]

ω
n for

g ∈ G. Then by the choice of k(n)’s, we obtain

• 〈η, α̃g(η)〉 ≈ϵ 1 for all g ∈ F ,
• aiη = ηai for all i = 1, . . . , k,
• η ∈ ℓ2(G,Aω ∩ B′).

This proves condition (6).
(4)⇒ (1): Assume that αω has the QAP. Then for any finite subsets F ⊂ G,

S ⊂ A, and any ϵ > 0, one can find an element ξ ∈ ℓ2(G,Aω) with

• 〈ξ, α̃g(ξ)〉 ≈ϵ 1 for all g ∈ F ,
• ξ is finitely supported,
• ‖xξ − ξx‖ < ϵ for all x ∈ S.

Choose a bounded sequence (ξn)
∞
n=1 in ℓ2(G,A) with

• supp(ξn) ⊂ supp(ξ) for all n ∈ N,
• [ξn,g]

ω
n = ξg for all g ∈ G.

Then by the choice of ξ, one can find n ∈ N satisfying

• 〈ξn, α̃g(ξn)〉 ≈ϵ 1 for all g ∈ F ,
• ‖xξn − ξnx‖ < ϵ for all x ∈ S.

This shows that α has the QAP.
(5)⇒ (1): The proof of this implication is similar to that of (4) ⇒ (1). We

therefore omit details. □

Remark 3.6. By the proof of Theorem C and obvious implications, for any count-
able group action on a unital separable C∗-algebra, conditions (2) to (6) are pairwise
equivalent, and these conditions imply condition (1).

Now by Lemma 3.1 and Theorem C, we conclude the following useful result.

Corollary 3.7. Let α : G y A be a pointwise outer, QAP action on a unital Kirch-
berg algebra. Then for any unital simple separable nuclear G-C∗-subalgebra B ⊂ Aω,
the fixed point algebra (Aω ∩ B′)α is purely infinite simple.
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Proof. By Lemma 3.1, it suffices to show that the inclusion B ⊂ Aω satisfies the
assumptions of Lemma 3.1.

Condition (1) follows from Theorem 1.17 of [30] (cf. Proposition 3.4 of [15]).
Condition (2) follows from Theorem 3.1 of [30] (cf. [18]) and standard reindexation
arguments (cf. [30], Lemmas 5.1 and 5.2). By Theorem C, αω has the QAP. In
particular, the inclusion satisfies condition (3). □

The rest of the proof of the Main Theorem is mostly identical to that of Theorem
C in [30] modulo using Lemma 3.1, Theorem C, and Corollary 3.7 in place of [30],
Lemma 2.3.

Lemma 3.8 (cf. [30], Lemma 5.1). Let D be a unital purely infinite simple C∗-
algebra. Let α : G y D be a saturated, QAP action. Assume that any separable
G-C∗-subalgebra A ⊂ D satisfies the following conditions.

• There is a unital embedding O2 → (D ∩ A′)α.
• The restriction action G y D ∩ A′ is faithful.

Let β : G y B be an action on a unital simple separable nuclear C∗-algebra B. Then
any two unital G-equivariant ∗-homomorphisms (B, β) → (D,α) are G-unitarily
equivalent.

Proof. The proof is the same as the original proof of [30], Lemma 5.1, after using
Lemma 3.1 in place of [30], Lemma 2.3. □

Proof of the Main Theorem. We first observe that the statement in the first para-
graph of Lemma 5.2 in [30] holds true without amenability of the acting group. (This
is an easy consequence of Theorem 3.1 in [30] (cf. [18]) and standard reindexation
arguments.) Now the Main Theorem follows by the same proof as that of Theorem
5.5 of [30] (cf. [28], Lemma 2.1), after using Lemma 3.8 and the second statement
of Proposition 3.5 instead of Lemma 5.1 and Corollary 5.4 in [30] respectively. □

Remark 3.9. Here we remark that, for countable non-amenable exact groups G,
there is a pointwise outer, saturated action of G on a unital purely infinite simple
C∗-algebra whose fixed point algebra fails to be simple.

To see this, choose an equivariantly O2-absorbing, pointwise outer action α : G y
O2 which admits an invariant state. (For instance, take the diagonal action of the
trivial action on O2 and the Bernoullli shift action G y

⊗
G O2.) Then notice that

αω also admits an invariant state. Take a unitary representation u : G → U(O2)
whose adjoint action Ad(u) does not have an invariant state; for instance choose
one of any un from Example B.

Then the statement of Corollary 3.4, hence that of Lemma 3.3, fails for these α and
u. Reviewing the proof of Lemma 3.3, notice that the QAP of the considered action
is used only to show the simplicity of the fixed point algebra Dβ of a pointwise
outer, saturated action β : G y D on a unital purely infinite simple C∗-algebra
(cf. Lemma 3.1). Indeed, starting the argument in the proof to these α and u, (using
the notations in the proof of Lemma 3.3,) one can still show that the (nonzero)
projections e1,1 and e2,2 are properly infinite in Dβ and satisfy [e1,1]0 = [e2,2]0 in
K0(D

β). Therefore, by [7], just from the simplicity of Dβ, one can conclude that
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these two projections are Murray–von Neumann equivalent in Dβ. As we have seen
in the proof of Lemma 3.3, this proves the statement of Lemma 3.3 for α and u.
This is a contradiction. Thus Dβ is not simple.

Remark 3.10. On the one hand, similar to amenable groups ([10], [30], Remark
5.8), a pointwise outer, QAP action of a non-amenable group on O2 is not necessary
equivariantly O2-absorbing. To see this, recall from the proof of Theorem 5.1 in [25]
that the free group F∞ admits a pointwise outer, QAP action α on a unital Kirchberg
algebra A whose reduced crossed product is stably isomorphic to O∞. As observed in
[10], there is a pointwise outer action β : Z2 y O2 whose reduced crossed product has
nonzero K-theory. Then the product action ζ : F∞×Z2 y A⊗O2

∼= O2 is pointwise
outer, QAP, but its reduced crossed product has nonzero K-theory. Thus ζ is not
equivariantly O2-absorbing. On the other hand, this phenomenon is expected to
be related to torsions of the acting groups. Works on amenable group actions (see
e.g., [13], [17], [31]) suggest that the equivariant O2-absorbing assumption could be
removed from the Main Theorem for certain torsion free groups.

4. Some equivariant O∞-absorption results for exact groups

In this section we prove Theorem F, an equivariant variant of the Kirchberg O∞-
absorption theorem for QAP actions. This is an extension of another main result in
[30] (Theorems B, 3.4, and Corollary 3.7) obtained for amenable groups. However
we remark that Theorem F is not as satisfactory as the Main Theorem for non-
amenable groups because the absorbed model actions themselves do not have the
QAP. That said, we also expect that this result gives a new insight of amenable
actions on Kirchberg algebras.

Proof of Theorem F. We first observe that it suffices to show the following state-
ment: For any unitary representation u : G → U(O∞) which factors through O2

(see Definition D), there is a unital G-equivariant ∗-homomorphism (O∞,Ad(u)) →
(Aω, α). Indeed once we have confirmed the claim, standard reindexation arguments
guarantee the existence of a unital G-equivariant ∗-homomorphism

⊗
N(O∞, γ) →

(Aω, α). By Proposition 5.3 of [29],
⊗

N γ is strongly self-absorbing. Therefore
Theorem 3.7 of [28] or Theorem 4.11 of [12] completes the proof.

Let u : G → U(O∞) be a unitary representation factoring through O2. Take a
unitary representation v : G → U(O2) and an embedding ι : O2 → O∞ satisfying
ug = ι(vg) + (1O∞ − ι(1O2)) for all g ∈ G.

By Corollary 3.7, (Aω)
α is purely infinite simple. In particular one can find a unital

∗-homomorphism µ0 : O∞ → (Aω)
α. Set p := µ0(ι(1O2)) ∈ (Aω)

α. Set D := pAωp.
Note that Aω, thus D, is purely infinite simple ([15], Proposition 3.4). Denote by
ζ : G y D the restriction action of αω. Then, as D

ζ = p(Aω)
αp, Dζ is purely infinite

simple. Note that µ0(ι(O2)) ⊂ Dζ . By Theorem C, αω, therefore ζ, has the QAP.
Define β : G y M2(D) to be

βg := Ad

(
p 0
0 µ0(ug)p

)
◦ (idM2 ⊗ ζg) for g ∈ G.
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Observe that, as ζ has the QAP, so does β. By Corollary 1.10 and Proposition 1.12
in [30], β is saturated. Since µ0(ug)p = µ0(ι(vg)), one can find a sequence (νn : O2 →
µ0(ι(O2)))

∞
n=1 of unital ∗-homomorphisms with limn→∞[νn(x), µ0(ug)p] = 0 for all

g ∈ G. Since β is saturated, one can take a unital embedding

O2 → M2(D)β ∩ {e1,1, e2,2}′.
Hence

[e1,1]0 = [e2,2]0 = 0 in K0(M2(D)β).

Since β is saturated and satisfies the QAP, Lemma 3.1 yields that M2(D)β is purely
infinite simple. Thus, by [7], one can find a unitary w0 ∈ U(D) satisfying e1,2⊗w0 ∈
M2(D)β. Direct computations (cf. [30], Lemma 2.9) show that µ0(ι(vg)) = w0αg(w

∗
0)

for all g ∈ G. Set w := w0 + (1− p) ∈ U(Aω). Then µ0(ug) = wαg(w
∗).

Now define µ := Ad(w∗) ◦ µ0 : O∞ → Aω. Then direct computations show that

µ ◦ Ad(ug) = αg ◦ µ for all g ∈ G.

As explained in the first paragraph of the proof, this completes the proof. □

Concluding remarks. The Main Theorem concludes the existence of the largest
action on Kirchberg algebras for exact groups (with respect to the tensor products,
up to strong cocycle conjugacy). For O∞, certainly it is more desirable to obtain an
equivariant O∞-absorption theorem for some model action with the QAP instead
of our present γ. More precisely, to understand (pointwise outer) QAP actions (on
Kirchberg algebras) more deeply, it is desirable to find the smallest QAP actions on
Kirchberg algebras in the same sense. However we remark that even the existence
of a QAP action on O∞ is not clear. At the moment we know such actions only for
free groups (and therefore for some groups constructed from free groups); see the
proof of Theorem 5.1 in [25].
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[2] C. Anantharaman-Delaroche, Systèmes dynamiques non commutatifs et moyennabilité, Math.
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