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Abstract To enrich the three-dimensional experimental details of vortex structures in rotating Rayleigh–
Bénard convection, we established a technique visualizing three-dimensional vortex structures using scan-
ning planar particle image velocimetry. Experiments were performed at fixed Rayleigh number, Ra =
1.0 × 107 and different Taylor numbers from Ta = 6.0 × 106 to 1.0 × 108, corresponding to convective
Rossby numbers from 0.1 ≤ Ro ≤ 0.5 at which gradual transition between vortical plumes and convective
Taylor columns regime are observed. Stream function distributions calculated from horizontal velocity vec-
tor fields visualize the vortex structure formed in the regimes. As quantitative information extracted from
the visualized structures, distances between vortices recognized on the distributions show a good agreement
with that evaluated by a theory. With the accumulated planar stream function distributions and vertical
velocity component calculated from the horizontal velocity vectors, the three-dimensional representations
of vortices indicate that quasi-two-dimensional columnar vortices straighten in the vertical direction with
increasing Ta.

Keywords Rotating convection · Vortex structure · Visualization

1 Introduction

Rayleigh–Bénard convection (RBC), a natural convection induced by a vertical temperature gradient in a
fluid layer, is one of the basic configurations arising in physics and engineering problems on heat transfer.
In addition, the confinement of the fluid motion by applying a background rotation in RBCs provides
significant opportunities to understand geophysical fluid motion, as for example, the motion in Earth’s
outer-core.

RBC is governed by the Rayleigh number—Ra = gβ∆TH3/(κν), Prandtl number—Pr = ν/κ, and
parameter values of the vessel’s shapes including its aspect ratio. Here g, H and ∆T are the acceleration of
gravity, height of the fluid layer and the vertical temperature difference, respectively; β, ν, and κ are the
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thermal expansion coefficient, the kinematic viscosity, and the thermal diffusivity of the fluids involved, re-
spectively. The influence of the background rotation is determined by the Taylor number, Ta = (2ΩH2/ν)2,
where Ω is the background rotation rate; in representing the relative influence from buoyancy, the (con-
vective) Rossby number, Ro = [Ra/(PrTa)]1/2 = (gβ∆T/H)1/2/(2Ω), has been used. Recent studies
have indicated that there are four regimes along decreasing Ro values in sufficiently large Ra conditions
with Pr > 0.2, namely, (rotation-affected) thermal turbulence, vortical plumes, convective Taylor columns
(CTCs) and cellular regimes identified by the Nusselt number (Nu) variations and visualization of vortical
structures (Liu and Ecke 2009; Weiss and Ahlers 2011; Julien et al 2012; Stevens et al 2013). Review of
these recent experimental works performed in the vessels with different aspect ratios by Cheng et al (2018)
provides summary of the regime transitions and limitations of parameter ranges which we can explore.

Most interests of the past experimental studies were for investigating power law of Nu variations through
the regimes especially for rapidly rotating RBC (Ro� 1). Some works however provided efforts on under-
standing vortex structures and its motions that dominate the Nu variations, and also local and instanta-
neous heat transfer characteristics. Cheng et al (2015) performed flow visualizations of the structures in
each regime using flake particles. Kunnen et al (2008) investigated the breakdown of the large-scale circu-
lation using stereoscopic particle image velocimetry (PIV) and its influence on heat transfer. Vorobieff and
Ecke (2002) represented development of structures with Ro as streamline patterns taken by PIV. Rajaei
et al (2017) represented the structures by spatial autocorrelation of vorticity measured by planar PIV.
Sakai (1997) visualized temperature field of quasi-two dimensional columnar vortices using encapsulated
thermochromic liquid crystals (TLCs) to confirm the theory for describing stable distance of neighboring
vortices. Our group also performed temperature field measurement using TLCs in a fluid layer with a rel-
atively large aspect ratio, and quantified motion of columnar vortices in different time scales (Noto et al
2018, 2019).

In the gradual transition from vortical plume to CTCs regimes, vortices increase two-dimensionality.
Noto et al (2019) quantified it as vertical deviation of vertical velocity component measured by PIV on
a vertical cross section of a fluid layer. Numerical simulations summarized in Stellmach et al (2014) also
explained that CTCs have “sheath” of different sign of vorticity and prevent interaction with neighboring
vortices. Rajaei et al (2017) represented three-dimensional (3D) shape of the vortices in the different regimes
by Q-criterion method with 3D particle tracking velocimetry (3D PTV). Visualized vortex structures,
however, are restricted in a small domain obeying the limitation of 3D PTV due to requirement for overlap
of focal range of multiple cameras. A classical planar PIV can visualize 2D slices of the vortex structures in
wider domains. In addition, a simple methodology based on the planar PIV to capture the 3D character of
the vortex structures is efficient to detail quasi-2D or 3D vortex structure in wider domain. For the 3D vortex
structures in the CTCs and vortical plume regimes, this study provides such details by developing a simple
visualization technique of the vortex structures based on velocity field data obtained using scanning planar
PIV, which is conventional technique with scanning illumination by movable laser sheet (e.g. Ushijima and
Tanaka 1996), considering sufficiently slow advection of the columnar vortices, and post processing.

The structure of this paper is as follows: Details of the experimental setup and scanning PIV system are
explained in § 2. The applicability of the scanning PIV and post processing are summarized in § 3. The 3D
vortex structure and its development with increasing Ta are analyzed from global and local perspectives
in § 4. Finally, concluding remarks of this study are presented in § 5.

2 Experimental setup and measurements

2.1 Experimental setup

Details of the setup for rotating RBC experiment were given in our previous papers Noto et al (2018, 2019).
Here we summarize important points from them.
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Fig. 1 Schematic over-view of the experimental systems on the rotating table; 1 High speed camera, 2 Laser sheet with
automated elevator (only for scanning PIV), 3 Glass plate, 4 Cooling water from thermostat bath, 5 Rectangular fluid layer
(200 × 200 × 40 mm3), 6 Acrylic wall, 7 Copper plate with a heater inside, 8 Turntable

The experiments were conducted on a turntable (Fig. 1), on which a rectangular fluid vessel with
dimensions 200 × 200 mm2 horizontally and height H = 40 mm (aspect ratio Γ = 5), an automatic
elevation system, and an optical measurement system are arranged as the main components of the setup.
The working fluid was distilled water containing porous resin particles of specific gravity 1.01 and diameter
63 – 75 µm. The vessel has side walls of 10-mm-thick transparent acrylic having sufficiently high thermal
insulation, a top plate of 3-mm-thick transparent glass for visualization, and a bottom plate of 10-mm-tick
copper sheeting. The vessel is centered on the rotation axis of the turntable. The top and bottom-plate
temperatures were maintained, respectively, by circulating cool water from a thermostatic bath and by a
silicone rubber heater embedded in the bottom plate. Temperature differences in the fluid layer for the
estimation of Ra value were given from the monitored values in the copper plate and a reference point
beneath the glass plate.

The turntable is a two-stage table with a round stainless plate of diameter 1 m, and is rotated by an
AC servo motor via a belt with a set constant speed within 0.01% of fluctuations. Base frames of the table
are fixed to the floor by anchor bolts for stable rotation, thus the levelness of the stages can be kept within
0.05◦. Using a rotary joint connected to the shaft of table allows cooling water and electricity supply to
the table from exterior. The upper table has a hole of diameter 0.2 m at the center through which a video
camera images the fluid layer near the center of the bottom table. To obtain the horizontal velocity field in
PIV, a horizontal plane was illuminated by a laser light sheet with around 1-mm-thickness created using a
2-W continuous laser source (wavelength 532 nm) and a cylindrical lens through the transparent side walls.
The laser sheet has to be moved in the vertical direction without manual operation to capture scanning
images on the turntable. The lens and the head of an optical fiber cable connected with the laser source was
mounted on an automated elevator installed on the turntable. The elevator includes an actuator, devices
for controlling the actuator, and the holder of the light source and so on. This elevator system is set on the
turntable and controlled by software (LabVIEW) installed on a PC. A high-speed video camera (Optronis,
GmbH, CR600x2, 1280× 1024 pixels in the full resolution) was used to capture sequential particle images
in the fluid layer with 50 f.p.s as the frame rate (1/50 sec as the shutter speed). The camera was rotated
together with the turntable and its optical axis coincides with the rotation axis of the turntable. Taking
images for scanning PIV using a fixed camera and moving laser sheet can be performed by setting the depth
of field of the camera at appropriate values for a wide range of focal lengths (45.07 mm in the estimated
depth of field with 2.8 in F-number of the lens).

Additionally, we conducted supplementary experiments to measure flow field on a vertical cross section
for checking the validity of the estimation of vertical stream noted in § 4.1 by a direct measurement of
the vertical flow using simple planar PIV with direct cross-correlation algorithm. The collected sets of
experimental parameters, non-dimensional numbers, and conditions are listed in Table 1.
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Table 1 Conditions and parameters for each run of the experiment: Condition No. 5 was conducted to analyze the
advection velocity of a vortex for a comparison with lift speed.

No. Ra Ta Ro Dimension
1 1.0 × 107 6.0 × 106 0.50 Volumetric
2 1.0 × 107 1.0 × 107 0.37 Volumetric
3 1.0 × 107 6.0 × 107 0.15 Volumetric
4 1.0 × 107 1.0 × 108 0.12 Volumetric
5 1.0 × 107 1.0 × 108 0.12 Cross-section (z = 10, 20, 30 mm)
6 1.0 × 107 6.0 × 107 0.15 Cross-section (y = 100 mm)

2.2 Scanning PIV system

We assume fully developed vortical structures for measurements in visualizing the typical vortex structures.
Zhong et al (1993) specified the time series of the flow fields from early stages of the rotating convection to
fully developed state. In this study, we had 30 min preparation time that is long enough for reaching the fully
developed state; Statistically settled structures were observed after that preparation time in our previous
study (Noto et al 2019). The parameter values used in PIV analysis of the field images are adjusted to
obtain a sufficient number of velocity vector grids to capture the vortex shape. Size of images corresponding
to the entire fluid layer, equivalent to 200× 200 mm2 changes depending on the height of horizontal layers
illuminated in the scanning system explained below. The number of the horizontal grid at the half height
is 188× 188; the grids are arranged over the 945× 945 pixels image. The side boundaries of the vector field
correspond to the side walls of fluid layer. Corresponding spatial resolution, interval of regular grid in PIV
analysis, is around 0.2 mm, and is small enough to resolve expected size of vortices, 10 mm in the smallest
case, at Ta = 1.0 × 108. Examples of a path line representing the actual flow field qualitatively and the
corresponding vector field are shown in Fig. 2. The path lines represent some vortices in the fluid layer,
and the velocity vector field obtained from PIV indicates the presence of vortices at the corresponding
positions.

Sequential images were taken by the video camera. As the laser sheet in the scanning system is moved
continuously, there is a difference in height in the fluid layer between two successive images for PIV analysis
with direct cross-correlation algorithm providing an instantaneous velocity vector field in the horizontal
plane. The difference in height will be negligibly small relative to the thickness of the laser sheet if the rate
of rise of the laser sheet is slow enough in comparison with the recording speed of the images. Also, low
rising rates relative to the advection speed of vortices cannot provide quasi-instantaneous vortex structure.
In contrast, high-speed recording provides insufficient particle displacements between two successive images
and causes measurement error. A trade-off is required in setting a value, which we determined 5 mm/s.
This is much faster than the advection speed of the quasi-columnar vortices, around 0.2 mm/s evaluated in
this experiment at the highest Ta numbers we examined by standard planar PIV measurements (No. 5 in
Table 1) and also from previous study detected from temperature fields (Noto et al 2019). The 40-mm fluid
layer is, therefore, divided into 80 scanning layers corresponding to a resolution of 0.5 mm. During scanning,
the sheet rises from the bottom to the top of fluid layer in 8 s and returns in 2 s. This cycle is repeated
six times to capture images. In the single scanning, vortices potentially move in 1.6 mm that is estimated
from the maximum advection speed of vortices mentioned above. This displacement is comparable to two-
PIV-grid spacing, and any difference within this scale should be disregarded in discussions. As references,
time scales calculated from Prandtl’s free fall velocity and the rotation rate of the turntable at the highest
Ta case are

√
H/(gβ∆T ) = 1.34 s and 2π/Ω = 2 s, respectively.

A set of the velocity vector fields obtained is given in Figs. 3(a–c); the sides of the square vector field
equal 1.1H. Panels (a) and (c) show similar patterns of vortices with opposite rotation direction because of
the symmetry with respect to the mid-plane. In contrast to this, the velocity field at the mid-plane of the
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Fig. 2 Examples of (a) flow field visualized by particle path line and (b) vector field calculated from two successive images;
five images were taken in 1 s to form the path line (Ra = 1.0 × 107, Ta = 1.0 × 108 and z ∼ 0.1H).

fluid layer [Fig. 3(b)] has a different flow pattern with a weak horizontal stream (see also supplemental movie
for sequential velocity vector fields along scanning: scan piv.avi). Experiments were performed at a fixed
Rayleigh number, Ra = 1.0× 107 with Taylor number varying from Ta = 6.0× 106 to 1.0× 108. Thermal
turbulence emerges at this Ra condition, while sufficiently fast background rotations, e.g. sufficiently large
Ta conditions, suppress the turbulence. Then, the flows are restricted into quasi-two dimensional (quasi-
2D) forms, where the vertical variation of the flow without the top and bottom Ekman layer is suppressed
according to Taylor–Proudman theorem; The convection reaches 2D state at sufficiently small Ro numbers
in ideal situations (e.g. Greenspan 1968). This parameter range examined here lies on vortical plume and
CTCs regimes distinguished as quasi-2D states (Noto et al 2019).

3 Visualization of vortices in the 3D domain

3.1 Visualization of vortices by stream function

Vorticity distributions are usually used to visualize vortical structures, and in rotating convections there
have been several demonstrations based on results of numerical simulations representing this structure using
vorticity (Vorobieff and Ecke 2002; Julien et al 1996). The vertical component of vorticity is calculated from
ωz = ∂v/∂x − ∂u/∂y. In experimental studies, however, there are difficulties in doing this because mea-
surement errors propagate when estimating differential quantities in numerical differentials. Examples of
the vorticity distribution are shown in Fig. 3(d)–(f), where ωz in each distribution was calculated from the
velocity vectors shown in Fig. 3(a)–(c) along the equation above. Color contours of the distributions fluc-
tuated discontinuously, and shape of vortices are hard to be imagined from the distributions. We therefore
consider to approximate the vortex structures using the stream function distribution, an integral quantity
that may avoid augmenting the measurement errors. The stream function is used in expressing analytically
the 2D flow of an incompressible fluid. The contours of the stream function represent stream lines, and
closed contours of positive and negative values identify cyclonic and anti-cyclonic vortices. The stream
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Fig. 3 Examples of horizontal velocity vector fields (a) – (c), z-component of vorticity (d) – (f), stream functions (g) – (i)
and vertical velocity components (j) – (l) in a section of size 1.1H × 1.1H extracted from the field obtained from scanning
PIV at Ra = 1.0×107, Ta = 1.0×108 (experimental condition No. 4 in Table 1). The corresponding height of the planes in
the fluid layer are (top) z = 0.75H, (middle) z = 0.5H and (bottom) 0.25H. White and black dots on the stream function
distribution mark vortex centers determined in template matching

function Ψ is defined as u = ∂Ψ/∂y, v = −∂Ψ/∂x. Our previous study on Taylor-Couette flow also adopted
stream function to visualize Taylor vortices which are toroidal vortices formed in a gap between co-axial
cylinders (Watamura et al 2013).

There are various methods to calculate the stream function from planar PIV data, u(x, y) and v(x, y),
and here we adopt the Poisson equation to obtain smooth distribution for the stream function despite the
presence of measurement noise in the PIV data. Substituting the equations for stream function into the
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equation of ωz mentioned above yields the Poisson equation for the stream function,

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= −ωz. (1)

The Gauss-Seidel method was used to solve this Poisson equation with following difference equation on
preliminary calculated vertical vorticity component ωz from PIV data:

Ψi,j =
Ψi+1,j + Ψi−1,j + Ψi,j+1 + Ψi,j−1

4
+

1

4
∆2ωz,i,j , (2)

where i and j denote grid index for the x and y axes, and ∆ is the common grid distance in x and y
directions of the PIV data. Here, we set Ψ = 0 as the initial condition, and Ψ = 0 on the side walls was also
given as boundary conditions in sequential calculations of Ψi,j on Eq. (2). Iterations of the Gauss-Seidel
method provide smooth stream lines describing 3D vortex field. The original velocity vector fields shown in
Fig. 2(b) as an example contain measurement errors and the numerical integration of Eq. (1) is accompanied
by the accumulation of errors. To detrend, we calculated the local average of the stream function for 10×10
grids and subtracted it from the original values of the stream function.

An example of the stream function after detrending is shown in Fig. 4, where the stream function is
normalized by an averaged absolute value of local maximums/minimums of the stream function in the
3D domain for better visibility (we will perform this normalization for all results hereafter). PIV data
for the calculation were obtained at Ra = 1.0 × 107 and Ta = 1.0 × 108. Here the left figure shows the
horizontal distribution obtained from the stream function at z = 0.25H over the entire fluid layer, where
the sides of the figure correspond to the side walls of fluid vessel. Positive and negative values of the
stream function indicate clockwise (cyclonic) and counter-clockwise (anti-cyclonic) vortices. Both vortices
seem to distribute uniformly over the entire horizontal fluid layer. The right figure shows a vertical stream
function field constructed with the accumulation of 80 horizontal distributions obtained by scanning. The
extracted horizontal position is indicated by a black broken line in the left figure. Vortices visualized by
the stream function in the horizontal plane seems to have qualitative agreement with Sakai’s visualized
temperature field (Sakai 1997). In contrast, in the vertical distribution, vortices represented by the stream
function distribution are tilted in the vertical direction unlike Sakai’s visualization, where the isothermal
column of each vortex appears straight in the vertical direction. This is because direction of rotation of the
vortices switches to the opposite one at the horizontal mid-plane. Details of vortex morphology visualized
by different physical values will be mentioned in § 4.2. Combining scanning PIV data and the visualization
from the stream function distribution allows us to reconstruct the 3D vortex structure over the entire fluid
layer. Figure 5 shows the isosurface of the stream function constructed from the same scanning field shown
in Fig. 4; red and blue indicate positive and negative fixed values of the stream function. The boundaries
of the fluid layer are marked by the black frame. Details of the 3D structure are discussed in § 4.2.

We return to Fig. 3 to compare the vortices visualized using the stream function distribution with those
from the original velocity vectors. The stream function distributions shown in panels (g)–(i) were calculated
from the velocity vectors shown panels (a)–(c) via the vorticity distributions shown in panels (d)–(f) at
different height of the fluid layer. For both cyclonic and anti-cyclonic vortices, the positions and rotational
directions of the vortices agree. In addition, the distributions of stream function provide much smooth
representation of the vortices than the distributions of vorticity. The relation between vorticity and stream
function distributions involves 2nd-order derivative, hence the shape of the vortices visualized by these two
different quantities will be different. Nevertheless, around the vortex centers, the stream function takes on
a Gaussian-like distribution (to be discussed in the next section). The outline and size of vortices therefore
do not change very much between the two expressions.
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Fig. 4 Example of stream function distributions calculated from the velocity vector field measured in scanning PIV at
Ra = 1.0 × 107 and Ta = 1.0 × 108; (Left) a horizontal distribution of stream function at z = 0.25H in the entire fluid
layer, where each side corresponds to the side walls of the fluid layer; (Right) a vertical stream function field constructed by
accumulation of 80 horizontal distributions of the stream function obtained by scanning. Black broken lines in each figure
indicate height and depth of the extracted horizontal and vertical cross-sections.

Fig. 5 Example of a 3D vortex distribution represented as isosurface of stream function: Red and blue isosurfaces indicate
positive and negative fixed values, associated with the cyclonic and anti-cyclonic vortices. Black frame marks the edges of
the fluid layer. Values for the isosurfaces were determined by considering the visibility of the vortices. Base PIV data for
the isosurface were obtained at Ra = 1.0 × 107 and Ta = 1.0 × 108.

3.2 Horizontal scale of vortices

For validation of the visualization methodology using stream function, the horizontal scale of the vortices,
which is one of the characteristic values in rotating RBCs, particularly those in the regime satisfying
the condition to form quasi-2D columnar vortices, is evaluated and compared with previous results. The
horizontal scale is measured through two steps: vortex center identification and the calculation of the
corresponding Voronoi polygons of the vortices. Vortex centers are identified from the stream function
distribution using the mask-correlation method, which is a standard method used in finding a certain
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1.25H

Fig. 6 Voronoi drawing of a stream function distribution with square area of 1.25H in sides and conceptual diagram of
a Voronoi polygon and equivalent circle, where dots on the stream function distribution mark the centers of the vortices
determined by template matching.

pattern in images (Takehara and Etoh 1999). A Gaussian distribution template

f(x, y) = exp

[
− (x− x0)2 + (y − y0)2

2σ2

]
, (3)

is used as a vortex pattern for the stream function. Here, σ is the fitted variance value of the distribution
and is a length having half the size of the characteristic mask diameter (Takehara and Etoh 1999). The
template size of the Gaussian distribution is chosen as the expected horizontal size of the vortices (to
be discussed later). The template, Eq. (3), is swept to the stream function distributions by changing the
center of the template pattern, (x0, y0), and taking cross-correlation with the stream function value, C(x, y).
Center positions are determined as positions having the larger value of the cross-correlation than the setting
threshold, |C| > 0.5. In cases when multiple center positions are detected those are shorter than σ, the
center positions having a smaller correlation value are eliminated. Negative cross-correlation values indicate
anti-cyclonic vortices. The results of the vortex center detection are shown in Fig. 3(g) – (i). These are
extracted stream function distribution for a 1.1H × 1.1H square cross-section at each height of the fluid
layer; white and black dots mark the centers of the cyclonic and anti-cyclonic vortices.

A Voronoi drawing is one method of partitioning an image plane with dispersed dots into regions
surrounding each dot. This method is adopted to evaluate the size of vortices. Here each boundary of a
region corresponds to a bisector of a pair of neighboring dots; the bisectors trace out a polygon. There
are examples of the application of the Voronoi drawing to identify boundaries of convection cells in RBCs
without background rotation and Bénard-Marangoni convection (Trouette et al 2011; Mazzoni et al 2008;
Cerisier et al 1987). An example of a Voronoi polygons obtained from a present setting is shown in Fig. 6.
Apices of the Voronoi polygons are arranged around the vortex centers indicated by black on white dots;
the Voronoi polygons appear to provide a reasonable approximation of the area of the individual vortices.
Assuming that each Voronoi polygon approximates the area of the corresponding vortex, S, the horizontal
scale of the vortices can be taken as the equivalent circle diameter, Lexp. The calculation takes an average
of all S, and thereby yields the averaged horizontal scale of the vortices, i.e., Lexp = 2(S/π)1/2, where the
over-line indicates the averaged value.
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Fig. 7 Horizontal scale of vortices obtained experimentally for different parameter settings versus the theoretical estimates
from Eq. (4), normalized by height of the fluid layer; crosses correspond to data from Sakai (1997)

In evaluating the estimated value of the horizontal scale of vortices, a theoretical formula proposed by
Sakai (1997) is used. The formula is

Lth = 4.6H
δ2t

2δ2t + 2δtδE + δ2E
Ra1/3Ta−3/8, (4)

where δt and δE are the thicknesses of the thermal boundary layer and the Ekman layer, respectively, with
estimates δt = 3.8HRa−1/3 and δE =

√
2HTa−1/4. A comparison of the estimated results of the horizontal

scale obtained experimentally and theoretically from Eq. (4) is given in Fig. 7. Here the experimental
results are from four different Ro (or Ta) values, namely Ro = 0.50, 0.37, 0.15 and 0.12 (corresponding
to Ta = 6.0 × 106, 1.0 × 107, 6.0 × 107 and 1.0 × 108) obtained at two different heights of the fluid layer,
z = 0.25H and 0.75H. The solid line in the figure represents the correspondence with theoretical estimates
from Eq. (4); proximity to the line indicates the degree of agreement. For all the set parameters and
heights, the present experimental results show good agreement with the theoretical estimates, R2 = 0.94 in
the determination coefficient. Further, the present results have a much smaller deviation from the theoretical
values than the experimental results from Sakai (1997) indicated by plus signs. We therefore conclude that
the representation of vortices using the stream function has sufficient applicability in rotating RBCs at
least for the parameter range investigated.

4 Details of the 3D structure of vortices

4.1 Estimation of vertical stream through the vortices

We have evaluated the visualization technique of vortical structure in a horizontal plane using stream
function calculated from the 2D velocity vector field measured from PIV. The 3D vortex structures are
represented by accumulating 80 layers of the stream function distribution captured by the scanning system
(Fig. 5). There are vertical stream caused by the Ekman pumping generated by a vertical pressure gradient
through the quasi-2D vortices in the Ekman layer in the top and bottom boundaries of the fluid layer:
These streams dominate heat transfer between these boundaries in this regime (Stevens et al 2013). Here
we evaluate the 3D vortex structure taking into account vertical stream.
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Fig. 8 Comparison of the vertical velocity distributions on a vertical cross section obtained by (a) horizontal velocity vector
fields from the equation of continuity and (b) direct measurement from PIV at Ta = 6.0 × 107 (experimental condition
No. 6 in Table 1), where the latter velocity field is time-averaged in 8 s corresponding to the duration of lift movement

Scanning PIV enables to obtain the 2D velocity vector fields at each height of the fluid layer. This series
of velocity vector fields forms quasi-instantaneous 3D vector field of two-component velocities over the
entire fluid layer. The out-of-plane component of velocity, that is, the vertical velocity w, is then calculated
via the equation of continuity for incompressible fluids with boundary conditions, specifically, the non-slip
condition at the top, the bottom and the side boundaries. That is,

w(x, y, z) = −
∫ z

0

(
∂u

∂x
+
∂v

∂y

)
dz. (5)

A simple numerical integration of the equation above over the multiple scanning layers was performed. The
thickness of the Ekman boundary layer is estimated as δE =

√
2HTa−1/4 = O(0.1 mm) in the present

cases, which is comparable to the thickness of the scanning layer of around 0.5 mm. The calculated vertical
velocity component, therefore, is potentially underestimated in comparison with the original value.

Examples of horizontal fields of the vertical velocity component calculated from the horizontal velocity
vector fields on the same sections [Fig. 3(a) – (c)] are shown in Fig. 3(j) – (l) at each height of the fluid layer
for parameter setting Ra = 1.0×107 and Ta = 1.0×108; red and blue areas indicate upward and downward
flows. The contour of w in the figure is less smooth, unlike the stream function distribution shown in Fig. 3(g)
– (i), because the calculation of w contains numerical derivations in u and v and augments the measurement
error in the 2D velocity vector field measured from planar PIV. There is a similarity between the vertical
velocity distributions and vortex flows indicating horizontal velocity fields and stream functions. In addition,
there are strong vertical flows—upward and downward flows—near vortex centers. Each vertical flow has
the same direction at each position of the vertical axis regardless of the rotational direction of the vortex.
The local maxima of the vertical stream around the vortex centers are about |w| = 2 mm/s, and this value
agrees well with results of PIV measurement on a vertical cross section performed in an independent series
of supplementary experiments with the same parameter settings. Figure 8 provides comparison of vertical
velocity distributions on a vertical cross section obtained using the present calculation method [Fig. 8(a)]
and the direct measurement using planar PIV [Fig. 8(b)] at Ta = 6.0× 107, where the color range for the
velocity contours is set narrower than the maximum values to see the vertical stream structures clearly. For
providing fair comparison, the velocity distribution in Fig. 8(b) is time average in 8 s corresponding to the
duration of lift movement for the scanning. As mentioned above, the velocities obtained from the different
measurements and the representation of the vertical stream structure look similar despite differences in the
fine structure resulting from the difference in measurements.



12 Kodai Fujita et al.

A

B

C

D

E

F

G

H

A

B

C

E

F

G

B

CD

E

F

G

A

z
y

x

0.5H
0.4H

(a) (b) (c)

A

B

C

E

F

G

H

D

A

B

E

F

H

D

A

B

E

F

H

z
y

x

H

Fig. 9 Vortex structure and vertical stream from two different view points depicted by (a) isosurfaces of the stream
function, (b) the distribution of vortex centers and (c) isosurfaces of the vertical velocity w; red and blue signify cyclonic
and anti-cyclonic vortices in (a) and (b), while upward and downward flows in (c); The domain of the display box (black
frame) is 0.4H × 0.5H ×H. Parameter settings for the measurement of the original velocity vector field are Ra = 1.0× 107

and Ta = 1.0 × 107. The structures observed from different viewpoints are available in supplemental movies (sf 3d 3.avi,
w 3d 3.avi).

4.2 3D structure of neighboring vortices

With the quasi-instantaneous, 3D velocity vector fields and the stream function fields for the entire fluid
layer, we next discuss the 3D vortex structures. It is especially for local flow structures, and its dependence
on Taylor number extracted from the isosurface of the quantities representing quasi-2D columnar vortices.

In Fig. 9, the flow field for a single pair of quasi-2D columnar vortices is represented as (a) isosurfaces of
the stream function, (b) a vortex center distribution and (c) isosurfaces of the vertical velocity component
in a domain of dimension 0.4H×0.5H×H from two different viewpoints. In panels (a) and (b), red indicate
data referring to cyclonic vortices; blue to anti-cyclonic vortices. In Fig. 9(c), red and blue signify upward
and downward flows, respectively. In the domain, the cyclonic and anti-cyclonic vortices extend from the top
and bottom boundaries of the fluid layer, skew at mid-plane, and thereafter follow a straight path towards
the opposite boundary. The vortices of the pair rush each other at mid-plane without disappearing. The
profile of the vortex center [Fig. 9(b)] supports this feature of the vortex deformation. In contrast, the
isosurface of each vertical velocity component stands vertically without skewing throughout the columnar
vortices. Despite the different rotation directions of the vortices and their vertical skewing around each
other, the vertical streams remain straight and consequently connect the Ekman boundary layers of the top
and bottom walls, where the vortices are generated. This structure features a spiral trajectory predicted
by Veronis (1959) for rotating convection with considering the motion of fluid particles.

The same representation of the 3D vortex structure is given for a wider domain, 0.9H × 0.9H ×H, in
Fig. 10 at two different Taylor numbers, (a) Ta = 6.0× 106 and (b) 1.0× 108, to investigate development
of the vortex structure with Ta. As mentioned in § 3.2, the horizontal scale of the vortices decreases with
increasing Ta, and the change in the vortex thickness in the figures seems reasonable based on this fact.
The 3D vortex structures seen from different view points in the figure contain entangled cyclonic and anti-
cyclonic vortices for both Ta values. However, the quasi-2D columnar vortices for higher Ta seem straighter
except at mid-plane of the fluid layer, where vortices twist around each other. This feature is also evident in
the vertical distributions of the stream function and the vertical velocity component (Fig. 11); the quasi-2D
columnar vortices become narrower and straighter at higher Ta than lower Ta. This transition on vortex
morphology is significant in comparison with pseude-distortion of vortices caused by advection of vortices
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during image scanning in the vertical direction. This represents gradual transition from vortical plume to
CTCs regimes, namely the vortices increase their two-dimensionality in the vertical direction. Such 2D
confinement may be related with enhancement of the heat transfer rate of the fluid layer with increasing
Ta (e.g. Liu and Ecke 2009; Stevens et al 2009, 2011, 2013; Stellmach et al 2014).
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Fig. 10 Development of the 3D vortex structure represented by the isosurface of the stream function obtained at different
Ta numbers, (a) Ta = 6.0 × 106 and (b) 1.0 × 108, from three different viewpoints (top to bottom); red and blue signify
cyclonic and anti-cyclonic vortices. The domain (black frame) is 0.9H × 0.9H × H. The structures observed from other
viewpoints are available in supplemental movies ([rep755.avi for (a) and rep3100.avi for (b)].
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Fig. 11 Development of a 3D vortex structure extracted at y = 30 mm and obtained at different Ta numbers (a)
Ta = 6.0× 106 and (b) 1.0× 108 as represented by vertical cross-sections of the stream function (top) and vertical velocity
component (bottom)
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5 Concluding remarks

We established a simple visualization technique for columnar vortex structures of rotating RBCs in 3D
domain based on velocity field information. The explored range of parameters of Ra and Ta corresponds
to the gradual transition between vortical plume and convective Taylor columns regime. Stream function
distributions calculated from 2D velocity vectors measured by simple scanning planar PIV provide repre-
sentation of the vortex structures, where using stream function instead of vorticity can avoid augment of
measurement noise by numerical derivative on the discrete velocity data. The distance between vortices
estimated from the distribution agreed well with theoretical estimations. The vertical velocity components
were calculated from the horizontal velocity vector field at sequential heights in the fluid layer through the
equation of continuity and showed good agreement with direct measurement of the vertical velocity compo-
nent achieved from PIV on a vertical plane. The 3D representations of the vortices by accumulating planar
information of the stream function show shape of columnar vortices in transition between the regimes,
and these with vertical velocity components suggested that quasi-2D columnar vortices are straightened by
increasing the Ta value toward 2D convection. The present methodology is applicable to represent tempo-
ral variation of the vortex structure thanks to the sufficiently faster scanning of the layers than advection
timescale of the vortices.
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