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Abstract

An ecosystem is a complex assembly of an uncountable number of living organ-
isms, physical components of the environment and all interrelationships in a par-
ticular unit of space. Healthy ecosystems are “balanced” systems in which interac-
tions among components contribute to a certain stable state of ecosystems, ensuring
steady requisite ecological services for living organisms. Nevertheless, ecosystems
are always exposed to variable disturbances such as the fluctuations of environ-
mental factors, alien species invasion and internal diseases and disorders, that may
influence the structure and function of ecosystems and result in ecosystem degrada-
tion and biodiversity loss. Ecosystems are highly dynamical and nonlinear complex
systems, making it challenging to monitor, understand and regulate adequately. In
recent decades, data-driven network approaches and mathematical analyses have
been increasingly used in ecosystems research thanks to their visualization, sim-
plicity and analyzability. Complex ecosystems are therefore abstracted as a set of
nodes representing individual species and environmental factors and a set of links
characterizing biotic and abiotic interactions among these living and nonliving com-
ponents, forming the formalism of graph with particular structure and function.
Therefore, methodological frameworks in graph theory can be well exploited to in-
vestigate the dynamics and stability of ecosystems, and recognize species-specific
features and collective behavior.

In this research, complex network models are used to disentangle the complex-
ity of ecosystems, and study the information dynamics and dissemination among
components. Information-theoretic variables including transfer entropy, mutual in-
formation and Shannon entropy are incorporated into complex networks, formulat-
ing an integrated Optimal Information Flow (OIF) model. When inferring complex
networks for ecosystems, the detection of interrelationships between components is
one of the fundamental work for ecosystem modeling and graphical representation.
The proposed information-theoretic OIF model quantifies these interrelationships
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by measuring causal interactions that can be perceived as information fluxes. The
performance of OIF in inferring causal interactions is validated on a mathematically
simulated predator-prey model, a real-world sardine-anchovy-temperature system
and a multispecies fish community by comparing to the well-documented Conver-
gent Cross Mapping (CCM) model. Results from the validation work demonstrate
that OIF outperforms CCM since it provides a larger gradient defining causal in-
teractions at higher resolution, smaller fluctuations, more accurate prediction for
ecological indicators and no requirement for convergence. Thus, the proposed OIF
can be used as a robust model to infer causal interactions and networks in ecosys-
tems. The information-theoretic causal interactions should be considered here as
nonlinear predictability of ecological information about species communities.

This research also explores OIF’s applications in two real-world ecosystems:
gut microbes and a marine fish community. The gut-associated microbiome is an
extremely complex ecosystem considering the large number of bacteria and their
interactions. In this case study, to untangle the complexity of human microbiome
for the Irritable Bowel Syndrome (IBS), OIF is used to infer species interaction net-
works for healthy, transitory and unhealthy groups. It is observed that healthy net-
works are characterized by a neutral patterns of species interactions and scale-free
topology versus random unhealthy networks. The top ten interacting species are
the least relatively abundant for the healthy micriobiome and the most detrimental.
These results are useful for public health and disease diagnosis and etiognosis, as
well as the personalized design treatments and microbiome engineering. In the case
study of the marine fish community, to study the biological responses of the ecosys-
tem to global ocean warming caused by climate change, OIF with Kernel estimator
is employed to infer species interaction networks for the fish ecosystem considering
five temperature ranges: ≤10◦C, 10-15◦C, 15-20◦C, 20-25◦C,≥25◦C. OIF-inferred
networks present different patterns in structure and function for each temperature
range that indicate the evolution of system dynamics with the change of sea temper-
ature. Network-based species-specific analysis is also performed to identify critical
species that have more impacts on the fish community, and species more sensitive
to the fluctuations of sea temperature. This work provides a data-driven tool for
analyzing and monitoring fish ecosystems under the pressure of ocean warming and
is valuable to formulate accurate fishery policy to maintain fish ecosystems stable
and sustainable.
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Chapter 1

Introduction

An ecosystem is a prototypical complex system that is comprised of millions of
living organisms and physical components of the environment (temperature, pre-
cipitation, the climate, for instance), interacting with each other. Ecosystem com-
plexity can be defined on multiple dimensions: spatial heterogeneity, organizational
connectivity and historical contingency [1], and develops from the vast number of
species or communities and their interrelationships [2, 3]. Understanding the dy-
namical complexity and non-linear dynamics of ecosystems is the matter of increas-
ing importance [4], while it has turned out to be a challenging task. Conventional
ecological knowledge and approaches to study and understand ecosystems are to
use data sets from experimental observations and census to track species-specific
changes individually and identify possible causes for the changes considering envi-
ronmental data. Although this type of analysis is able to monitor the fluctuations of
species abundance, biodiversity and populations over time, it is hard to further un-
derstand internal mechanisms that drive the dynamical evolution of ecosystems [5].
In fact, biological or ecological analyses only on temporal scale are far from ad-
equate to describe ecosystems completely. Therefore, to study the stability and
sustainability of ecosystems at a system level, and to identify critical species that
are most responsible for the system stability and sustainability, and dominant en-
vironmental factors having the greatest impacts on the ecosystem, it is essential
to carry out both system-level and species-specific analyses considering multiple
scales, and to apply interdisciplinary approaches including but not limited to math-
ematical models and modern information technologies to ecosystem issues.

Studies on ecological networks and community ecology emphasize the impor-
tance to study individual species and their interactions simultaneously [6–9]. For
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this purpose, complex network models are a set of potent tools and algorithms
that intuitively fit for ecosystem modeling. Basically, network is composed of a
set of nodes, describing species or coarser functional communities, and a set of
edges (links) characterizing interactions between components in ecosystems [10].
These interactions can be biotic (interactions among species themselves) and abi-
otic (interactions between species and external environment) [11]. In fact, ecosys-
tem complexity is an interdisciplinary research field that borrows tools and concepts
from complex network science (self-organization, criticality, and phase transition,
for instance) [12]. Complex network models offer new perspectives for ecosys-
tem research [10, 13]. First, network modeling provides a mathematical way of
simplifying complex ecosystems, making it possible to visualize and observe ma-
jor components and their connections. Second, network-based measures and al-
gorithms in graph theory [14, 15] can be well used to analyze ecosystems. Third,
complex network models treat ecosystems as organized systems. The principle of
system stability and dynamics can be incorporated into ecosystem investigation.
Fourth, network approaches allow to analyze the asymptotic collective behavior of
species or coarser communities and predict the taxonomic diversity and stability
of ecosystems. Additionally, the exploration of large-scale networks consisting of
overwhelming numbers of nodes and interactions is now feasible thanks to the ad-
vances of graph theory and the availability of massive amount of computational
power, even though the scale of network-based computation is exponentially pro-
portional to the number of nodes.

The detection of species causal interactions (causal inference) is of critical im-
portance for network reconstruction and representation. The first conceptualization
of causality that can be computed was introduced by Wiener in 1956 [16], while
for quite a long time, correlation measuring linear similarity between two variables
had been considered as a quantification for causal relationships even though George
Berkeley and Pearson suggested that correlation did not necessarily and sufficiently
imply causation [17, 18]. Especially for ubiquitous nonlinear processes, applying
linear correlation to infer causal interactions is cursory and risky. Intuitively, there
are three main aspects of thinking about the phenomenon of which one variable
causes another: (1) the source variable (cause) is able to predict the target variable
(effect); (2) the target variable to a certain extent helps to estimate the states of
source variable with time lags, given that the source variable is encoded in the tar-
get variable; (3) the source variable passes certain types of information to the target
variable, leading to three main computational approaches frequently used to infer
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causal interactions: Granger Causality (GC), Convergent Cross Mapping (CCM)
and Transfer Entropy (TE).

Granger Causality was formalized by Granger based on Wiener’s idea in terms
of autoregression and predictability [16, 19]. According to the concept of GC
model, a variable is said to ”GC cause” another variable if the historical states of the
first variable helps in predicting those of the second variable. This notion of causal-
ity was substantially based on the predictability of time series, although strictly
speaking, Granger causality is about conditional independence of variables rather
than predictability. The key requirement of GC model is separability that is a fea-
ture of purely linear and stochastic systems [20], and provides a way to understand
the system as the sum of its parts rather than as a whole non-linear entity difficult
to separate. Separability means that the second variable can be independently and
uniquely forecasted by the first variable. This is an assumption that reflects how
systems are interpreted as linear systems, and that is certainly not the case of real
complex systems. Additionally, states in the past of some variables in dynamical
systems can be inherited through time, which means that the behavior of dynamical
systems has memory. Yet, both cause and effect are embedded in a non-separable
higher dimension trajectory. Space-time separability therefore becomes extremely
hard to satisfy in systems, which can be described as complex networks where each
node (variable) influences several nodes or even all nodes in the entire system si-
multaneously, resulting in a non-random propagation of information through the
network. In this sense, ecosystems can be thought as information machines where
separability is only possible by fixing thresholds of significance for the patterns
to investigate. As a consequence, GC model might be problematic while using in
nonlinear dynamical systems with deterministic settings and weak to moderate in-
teractions.

To solve causal inference problem in complex ecosystems, Sugihara et al. (2012)
developed the Convergent Cross Mapping (CCM) based on empirical dynamic mod-
eling [20], and applied this model to a coupled non-linear mathematical predator-
prey model and a real-world sardine-anchovy-temperature ecosystem. Later on,
Ushio et al. (2018) [21] applied CCM to a fish ecosystem involving 15 species.
The seasonality of abundance data was removed to assess “true” or biological inter-
actions. In a dynamical system, two variables (X and Y for instance) are causally
linked if they are generated by one system and share a common attractor manifold.
It implies that each variable can be used to recover (predict) the other one. CCM is
the method capable of quantifying this kind of relationship between two variables.
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CCM does so by measuring the extent to which the states of one variable (consid-
ering values rather than probability distributions) can be reliably estimated by the
other one with time lags. In practice, CCM takes the time series of variables X
and Y and their lagged coordinate embedding to measure the ability to estimate the
states of variable X from the time lag embedding that quantifies how much signature
of X is encoded in the time series of Y. This principle was termed as ”Cross Map-
ping”, and it was suggested that the causal effect of X on Y is determined by how
well Y ”cross maps” X. Sugihara et al. (2012) [20] noted that CCM had drawbacks,
although some of these are disputable. For instance, the phenomenon of ”gener-
alized synchrony” as a result of exceptionally strong unidirectional causation (X
strongly ”cross maps” Y, but Y does not causes X), both directions (X ”cross maps”
Y, Y ”cross maps” X) of the causal relationship can be observed from CCM’s re-
sults, resulting in a “misleading” bidirectional causality [22]. This was perceived
as a limitation of CCM in distinguishing between bidirectional causality and strong
unidirectional causality because of the synchrony. Misunderstanding is however not
a correct definition since we believe any variable has always non-zero interdepen-
dencies due to unaccounted factors and chance that interactions may appear at least
once in the ecosystem considered. Yet, asymmetrical interdependence is a norm
rather than a numerical artifact. Another key property, and potentially a drawback,
of CCM is convergence which means that the estimation skill can improve with the
increase of the length of time series. However, datasets are not always long enough
especially for real-world applications. Yet, convergence might be limited by the
finite size of time series data. Lastly, CCM suffers from the high computational
complexity in terms of model parameters and computation speed. Despite these
drawbacks, CCM is used in this study as a benchmark for evaluating our proposed
model.

Information-theoretic variables have been increasingly used in complex net-
works research. TE coined by Thomas Schreiber [23] is an information-theoretic
variable measuring the asymmetrical bidirectional information transfer (vs. infor-
mation flow as in Lizier et al. (2010) [24] when conditional entropies are used to
exclude indirect pairs of species whose interactions are of second order importance)
between two variables [25]. In a conceptual and practical view, besides GC and
CCM, TE can be an appropriate candidate to infer the causality between interact-
ing elements in complex ecosystems. Given that GC model may be problematic in
complex systems due to highly nonlinear dynamics, and CCM may not be suitable
for distinguishing well bidirectional or strong unidirectional interactions and re-
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quire convergence and high computational power, TE, as a non-parametric, model-
free information-theoretic variable defined from the nonlinear dynamics of Markov
chain processes (mappable as stochastic pdf propagation equivalently), provides a
directed measure to detect asymmetrical dynamical information transfer between
two time-varying variables. TE is particularly convenient because of no assumption
of any particular functional process or numerical model to identify interactions in
complex systems [26]. TE has been widely used for causal inference, general prin-
ciples, unified frameworks, and models, while systematic developments for causal
inference based on TE are still lacking. More importantly, no work has been done
to give validations for TE-based causal inference models with mathematically syn-
thetic data, as well as real-world ecosystems, to elucidate how TE behaves depen-
dent on dynamics and complexity. Razak et al. (2014) [27] made progress on this
issue by using classical and amended Ising models which are mathematical mod-
els of ferromagnetism in statistical mechanics; Duan et al., (2013) [28] provided
a theoretical and experimental systemic validation of a TE-based model; and fi-
nally Runge et al. (2018) [29] explored TE and other models with synthetic data.
However, these studies were applied to complex systems with a limited number of
variables or whose dynamics is well defined; yet, they did not validate the model
for realistic ecosystems in its full complexity, driven also by data fallacies, as seen
in the nature. Therefore, the rigorous performance assessment of TE-based mod-
els in specific applications remains elusive. On one side, well-known ecosystems
with low complexity can validate the inferred pairwise interactions, while highly
complex ecosystems can validate the predictability of whole systemic interaction
network on some patterns’ metrics such as biodiversity. The former problem deals
more with accurate causality between pairs, while the latter deals more with ecosys-
tem predictability.

In this study, to formalize the “causality” from the perspective of predictability
and information dynamics, an Optimal Information Flow (OIF) model based on TE
is developed by our group [30, 31]. In particular, OIF was improved with respect
to Li and Convertino (2019) [31] by considering its extension over time to recon-
struct dynamical information networks, the varied Markov order of each variable
and a more refined pattern-oriented criteria to select optimal threshold based on the
maximization of Mutual Information. OIF overcomes the limited TE for the uncer-
tainty reduction scheme (see Li and Convertino (2019) [31]), for the consideration
of maximum information/entropy via considering the full network entropy pattern
(as in Servadio and Convertino (2018) [30]), and the MI-based maximization cri-
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teria to define the interaction threshold to accurately predict system patterns (e.g.
biodiversity). It should be noted that the optimal threshold on interactions is not
necessarily within the scale-free or maximum entropy range of inferred collective
behavior. In this way, processes (interactions) are clearly linked to ecological pat-
terns (e.g. α diversity) which provides relevance to the inference problem. OIF is
dependent on the (automated) choice of appropriate time delays among variables.
Furthermore, the performance of the proposed OIF model is tested on a data set
mathematically generated by a predator-prey model, as well as real-world data sets
of sardine-anchovy-temperature system, gut-associated microbial ecosystems and
a fish community involving multiple species as an exploration of OIF’s practical
applications. Even though information-theoretic quantifiers have been widely used
in the research of complexity science, only a small number of works have been re-
ported on the real-world applications of information-based complex network mod-
els, especially complex multivariate systems (multispecies ecosystems, for exam-
ple).

Chapter 2 introduces the Optimal Information Flow (OIF) model based on infor-
mation theoretic variables including Shannon entropy, mutual information (MI) and
transfer entropy (TE). The efficiency of OIF model in inferring causal interactions
is validated by using synthetic data generated by a mathematical model, as well as
real-world data sets of a sardine-anchovy-temperature system and a multispecies
fish community in Maizuru Bay, and by comparing the results from these data sets
to the well-documented CCM model that is used here as benchmarks. The results of
this study show that the proposed OIF model not only presents a good performance
in casual inference especially for highly nonlinear and weak coupling, but provides
a broad ecological information by extracting predictive species interaction networks
from time-series data.

Chapter 3 uses the OIF model with an improvement to tackle the complexity of
gut-associated microbial ecosystems for the Irritable Bowel Syndrome (IBS) that
is one of the most prevalent functional gasintrointestinal disorders in human pop-
ulations. An optimal threshold for TE-based interactions that maximizes the in-
formation content is used to reconstruct species interaction networks. This novel
complex network model is able to identify the difference in structure and function
between healthy and unhealthy networks. Macroecological analyses are also per-
formed for species abundance and diversity indicators (α, β, γ-diversity). Through
linking these results to the OIF-inferred species interaction networks, it is observed
that the magnitude of species interactions is related to species abundance. These
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species-specific results are useful for public health and disease diagnosis.
Chapter 4 explores the application of OIF model in a multi-species marine fish

ecosystem. Considering a multi-model comparison, Kernel estimator is selected as
the estimator for TE computation in this study. The objective of this work is to
investigate how the fluctuations of sea temperature affect the system dynamics and
collective behavior of the fish community, and to recognize the critical species that
are most responsible for the system stability and sustainability by analyzing the fish
ecosystem at the level of both system and species on temporal and temperature-
dependent scales. To this end, the time series recording the observations of fish
species are categorized into five temperature ranges: ≤10◦C, 10-15◦C, 15-20◦C, 20-
25◦C, ≥25◦C. Macroecological analysis and OIF network modeling are conducted
for each temperature range and the whole time series. Differences in macroecolog-
ical indicators and functional networks among temperature ranges show particular
features of biomass and taxonomic diversity, and system dynamics and stability, im-
plying the impacts of sea temperature on the fish community. In addition, species-
specific analyses also allow to recognize the species that are most affected by the
change of sea temperature.

The combined results of these three studies show both methodological and application-
specific insights related to information dynamics of ecosystems. In fact, ecosystems
themselves are highly complex and dynamical systems that demand to be studied
not only at individual level, but at system level by characterizing information dy-
namics among all individual components and treating them as integrated systems
on multiple scales. The proposed OIF model and OIF-inferred dynamical networks
in conjunction with macroecological analysis allow to study these issues simultane-
ously and investigate the dynamical evolution of ecosystems under the pressure of
external stressors. The results of this research would help to improve the resilience
of ecosystems to various disturbances, making ecosystems healthier and more sus-
tainable.
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Chapter 2

Inferring Ecosystem Networks as
Information Flows

2.1 Introduction

2.1.1 Ecosystem Complexity and Predictability

The flourishing development of complexity science [32, 33] has shed light on re-
search questions and applications in many interdisciplinary fields, for instance, cli-
mate change [34–36], epidemiology [37, 38] and ecosystem sciences at multiple
scales [39, 40]. In this burgeoning science, complex network models play a central
role in the quantitative analysis and design of ecosystems and their representation.
This is because functional and structural networks – such as species interactions
and habitat corridors – are the core elements of ecosystems defining species orga-
nization. When inferring networks, causal inference [41] is one of the fundamental
steps for ecosystem reconstruction and graphical representation by assessing inter-
actions or interdependencies – between biota, environment, and among those – that
can be thought as information fluxes in more general terms [42].

In a quantitative sense, network inference can be performed via causal inference
based on time-series data defining the dynamics of ecosystem components. Causal
inference also attracts much attention in some emerging disciplines such as big data
science via machine learning since it brings a new set of tools and perspectives for
some problems in these areas. However, this issue of causal inference is still an ex-
tremely challenging problem due to the intrinsic lack of knowledge or observability
of the ”true” reality of a system especially for highly complex non-linear systems
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driven by non-linear environmental forcing. Certainly the objective of causal infer-
ence is defining unknowns; however robust model validation must be performed.
In order to make causal inference practical and achievable, causality is often re-
placed with predictability as it is articulated in this paper. A plethora of conceptual
approaches, frameworks and algorithmic tools including but not limited to Pear-
son’s Correlation Coefficient (PCC) [43, 44], Bayesian Networks (BNs) and Dy-
namic Bayesian Networks (DBNs) [45–49], Neural Networks, Graphical Gaussian
Models (GGMs) [50, 51], Wiener-Granger causality (GC) model [19], Structural
Equation Modeling (SEM) [52–57], Convergent Cross Mapping (CCM) [20] and
information-theoretic models [58–61] for instance, to tackle causal interactions and
infer complex networks in terms of correlation, predictability and probability have
been well established; however, most tools are solely tested on low-dimensional
systems and some are even untested on ecosystems at different levels of complexity
or simulated ones. The vast majority of these models in ecosystem science (with the
exception of CCM and few others such as PCMCI [62]) consider only the inferred
causality between species pairs one at at time without the simultaneous considera-
tion of all species pairs for each species that is shaping ecosystem collective behav-
ior mediated by environmental dynamics. The ensemble of all species causations
is representable as nonlinear dynamical network over the space-time-environmental
domain considered. It is therefore valuable for science to seek for robust models
and explore novel methods to identify and quantify the pattern-oriented causality
between variables (such as species) and how this causality is predictive of target
complex system patterns.

2.1.2 Optimal Information Flow Model

Causal inference models and their pros and cons are reviewed in Chapter 1. In this
study, considering the limitations of CCM, information-theoretic TE is used to in-
fer causal interactions in a predictive sense and improved considering its extension
over time to reconstruct dynamical information networks, the varied Markov order
of each variable and a more refined pattern-oriented criteria to select optimal thresh-
old based on maximization of Mutual Information, forming the integrated Optimal
Information Flow (OIF) model. The proposed OIF overcomes the limited TE for
the directed uncertainty reduction scheme (already present in Li and Convertino
(2019) [31]), for the consideration of maximum information/entropy via consider-
ing the full network entropy pattern (as in Servadio and Convertino (2018) [30]),

9



2.2. Methods
Chapter 2. Inferring Ecosystem Networks

as Information Flows

and the MI-based maximization criteria to define the interaction threshold to accu-
rately predict system’s patterns (e.g. biodiversity).

The performance of OIF is assessed by applying it to three prototypical case
studies including mathematical deterministic and real-world ecosystems. One is a
biologically inspired mathematical model that can generate synthetic two-coupled
time-series variables describing dynamics similar to predator-prey dynamics [20].
Two parameters (βxy and βyx) in the equations underlying the model are describing
the strength of true interdependence between two simulated variables and they can
be free varied. Other two case studies are real-world ecosystems: the case of exter-
nally forced poorly coupled species (sardine-anchovy-temperature system) [20] and
the one of highly complex interacting species (fish community in Maizuru bay) [21]
(Figure 1). The well-documented CCM method is also used for these three cases
and the results from CCM, despite its known drawbacks of convergence, possible
asymmetrical causality miscalculation, and computational complexity, are some-
what considered as benchmark interactions due to the lack of other estimates.

OIF is not perceived as a competitor with other already published models, in-
cluding GC and CCM, but rather it aims at providing an alternative and hopefully
more precise assessment to predictive inference in cases not completely covered
by previous models. Theoretically, leaving aside systematic data issues, OIF is
expected to give a better performance than other models in interdependence as-
sessment owing to the aforementioned fine properties of TE for nonlinear dynam-
ics. Besides, given the relationship between entropy and diversity [63] (specifically
Shannon and Transfer entropy and α- and β-diversity), OIF provides a potential
advantage to predict the information about macroecological indicators of ecosys-
tems. In consideration of these features, TE causality is proposed as non-linear
predictability of both population abundance of species and community macroeco-
logical indicators, simultaneously.

2.2 Methods

2.2.1 Ecosystems Models

Bio-inspired Two Species Mathematical Model

In [20], a mathematical model was introduced to generate coupled nonlinear se-
quences for testing the CCM presented in that study. The model consists of two
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diffusively coupled logistic maps describing a simple bio-inspired dynamics with-
out any external environmental effects on both species. It is analytically formulated
as:

X(t+ 1) = X(t)[rx − rxX(t)− βxyY (t)]

Y (t+ 1) = Y (t)[ry − ryY (t)− βyxX(t)]
(2.1)

where X and Y are two random variables linked by factors βxy and βyx that es-
tablish the strength of their interactions. It gives possibility to estimate the ”true”
causality in an absolutely numerical sense and this model can be therefore indicated
as S(βxy, βyx). If βxy is fixed as 0 and βyx is fixed as non-zero or varied free, that
is, X causes Y, but not vice versa. If βxy and βyx are both non-zero, X causes Y
and vice versa. These conditions generate two different kinds of coupling variables
that respectively represent unidirectionally and bidirectionally interactive species-
species systems described as the case 1 in Figure 2.1. rx and ry are the intrinsic
growth rates for each variable.

In this study, we focus on both unidirectionally and bidirectionally interactive
species-species systems. For unidirectional coupling, βxy is fixed as 0, but βyx is
free varied within the range of [0,1], leading to a simplified model as S(0, βyx).
This unidirectional model S(0, βyx) is exploited to generate coupled sequences of
two random variables X and Y where X affects Y, but not vice versa. For bidi-
rectional coupling, we study two different conditions. On the one hand, we con-
sider a system S(βxy, βyx) in which βxy is fixed as 0.2, 0.5 and 0.8, βxy is free
varied within the range of [0,1]. This model can be indicated as a univariate model
S(0.2/0.5/0.8, βyx) and is used to generate interdependent coupled time-series vari-
ables where the effect of X on Y changes over βyx, while the effect of Y on X is
stablized due to the fixed non-zero βxys. On the other hand, we consider a bi-
variate system S(βxy, βyx) in which both βxy and βyx are free varied. This model
indicated as S(βxy, βyx) generates coupled time series of variables X and Y where
X and Y randomly interact with each other. For all these conditions mentioned
here, S(0, βyx), S(0.2/0.5/0.8, βyx) and S(βxy, βyx) are run under the conditions
of which initial x(1) = 0.4, y(1) = 0.2 and intrinsic growth rates of variables rX
and rY respectively are 3.8, 3.5 as used in [20]. These time series of variables X
and Y generated by the models for example can be time-series data of species abun-
dance.
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Sardine-Anchovy-Temperature Ecosystem

As a real-world ecosystem case study, yearly time-series data of Pacific sardine
landings, northern anchovy landings and sea surface temperature (SST) obtained at
Scripps Pier and Newport Pier, California are used here. Sardines and anchovies
seldom interact with each other because of geographical distribution. External en-
vironmental factors including SST affect sardines and anchovies, but not vice versa.
It is a typical example of unidirectional causal relationship in real-world ecosystems
and such tripartite relationship can be described as the case 2 in Figure 2.1. Sugi-
hara et al. (2012) [20] also studied this fishery ecosystem and successfully inferred
the weak causal interactions between between sardines, anchovies and SST with
the CCM method. We remake the experiments Sugihara et. al did, and apply our
proposed OIF model to do the same work as well, thereby validate the OIF model
by comparing results to those from CCM.

Fish Community in the Maizuru Bay Ecosystem

Long-term time-series data counting the observations of the fish community col-
lected along the coast of the Maizuru Fishery Research Station of Kyoto Univer-
sity [21] are used in the multispecies case study described as the case 3 in Figure
2.1 for OIF model validation. Underwater direct visual censuses were conducted
approximately once every two weeks from January 1, 2002 to April 2, 2014, to-
tally generating 285 time points sequences during about 12 years long census. The
total number of species observed here was greater than 1000, while most species
were rare and were not observed during most census time points. If so, the dataset
may include a lot of zero values making it difficult to process. Therefore, only 14
dominant fish species and 1 jellyfish species were selected in this dataset.1 Jellyfish
species was selected in the dataset because this species was abundant in this area
and was thought to have considerable influences on the community and ecosystem
dynamics. Accordingly, both OIF and CCM model are exploited to measure causal
interactions among 14 dominant fish species and 1 Jellyfish setting up the dynamical
complex multispecies system.
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2.2.2 Interactions Inference Models

Linear Correlation Model

The linear correlation between non-lagged random variables X and Y is given by:

corr(X, Y ) =

∑L
t=1(xt − X̄)(yt − Ȳ )√∑L

t=1(xt − X̄)2
∑L

t=1(yt − Ȳ )2

(2.2)

where X̄ = 1
L

∑L
t=1 xt and Ȳ = 1

L

∑L
t=1 yt. L is the length of time-series of X

and Y.

Convergent Cross Mapping Model

The principle of CCM model involves state space reconstruction from two variables
and quantifies the potentially causal (asymmetrical) relationship between these vari-
ables using the method of nearest neighbor forecasting. Nearest neighbor fore-
casting method is an application of Takens’ Theorem called simplex projection.
States of a system are reconstructed by applying successive time lags of time-series
variable underlying the method of time lag embedding [20, 22]. Interestingly, this
method has been originally applied to describe the transition to turbulence of flu-
ids [64, 65].

In the case where X causes Y, Takens’ theorem indicates that there should exist
a “causal” relationship between states of X and the contemporaneous states of Y.
CCM quantifies this relationship using the simplex projection to predict time-series
X from reconstructed Y. Specifically, a manifold MX (“reconstructed”, “shadow”
or predictor manifold) is constructed from lags of variable X (i.e., X(t − τ) with
the time lag τ ) and used to estimate contemporaneous values of Y (t). MX is an
approximation that will display convergence up to the level set by observational
error and process noise. At convergence the approximated Ŷ (t)|MX will be close
to Y (t). The relationship between Y (t) and Y (t − τ) is on the target manifold.
To explore the opposite “causality” CCM explores the convergence of X̂(t)|MY to
X(t) where MY is the predictor manifold. Thus, CCM determines how well local
neighborhoods (defined by E + 1 points, that is the minimum number of points
needed for a bounding simplex in an E-dimensional space) on the manifold MX

correspond to local neighborhoods on MY . The R package ”rEDM” is available
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online https://rdrr.io/cran/rEDM/ through the Comprehensive R Archive Network
(CRAN).

Pearson’s correlation coefficients ρ (originally defined as Eq. 2.2 considering
non-time lagged variables) between predicted time series and observations of X
(or Y) are calculated. The non-linear correlation coefficient is considered as the
indicator of cross-mapping skill, that is the “causality” between species X and Y.
The non-linear ρ is defined as:

ρ(X → Y ) =
cov(Y (t), Ŷ (t)|MX)

σY σŶ (t)|MX

ρ(Y → X) =
cov(X(t), X̂(t)|MY )

σX σX̂(t)|MY

(2.3)

where cov and σ are the covariance and standard deviation. X̂(t)|MY and Ŷ (t)|MX

are the predicted values of X(t) and Y (t) considering the attractor manifolds of
lagged Y and X. Considering the relationship between the calculated cross-mapping
skill and the length of time series L, ρ increases with L until a convergent stable
value. ρ is alway larger the longer L and that indicates causality according to [20].
Typically, no less than 30 points in the time-series data should be used for CCM
analyses [66]. Further details about the use of CCM for this study are provided in
Supplementary Information.

Optimal Information Flow Model

Transfer entropy (TE) [23] is a non-parametric statistic in information theory that
estimates the amount of information that a source variable contains about a desti-
nation variable considering destination’s current and historical states. It measures
how much directed (time-asymmetric) information transfers between two variables,
giving an incentive to quantify the causal relationship between two variables with
TE. Here it can be calculated as:

TE
(k,l,u)
Y→X =

∑
x,y

p(Xt+1, X
(k)
t , Y

(l)
t−u+1)log

p(Xt+1|X(k)
t , Y

(l)
t−u+1)

p(Xt+1|X(k)
t )

, (2.4)

Where, X and Y denote two random variables, k and l refer to the Markov
orders of variables X and Y , implying that we need to at least consider k (l) time
points of variableX (Y ) in the past for the estimation in order to capture all relevant
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information in the past of X (Y ). Here we assume that the time-series analysis here
obeys a memoryless Markov process. Hence, parameters k and l are fixed as 1,
meaning that the next states of X and Y are only dependent on the current states
and not on states in the past. u is the source-target time delay establishing lagged
influence and is freely varied. Servadio and Convertino (2018) [30] proposed a
framework of optimal information networks (OIN) to select TEs that maximize the
total entropy for inferred networks. Probability distribution functions predicted by
the network with maximum entropy are considered as the most general distributions
fitting the observations.

In this study we also investigate the optimal TE that provides a clearer detection
and more accurate quantification for causal relationships between two variables by
choosing an appropriate time delay u in a specified range. The choice of the opti-
mal u within a range leads to the optimal TE model and resultant network inference
while considering the minimum computational complexity. As shown in our previ-
ous work about microbiome [31], time delay u used to calculate TE between species
is the one who minimizes the distance from one species to another in the inferred
network.

The distance can be calculated by [59]:

d(X, Y ) = e−MI(X(t±u);Y (t)) (2.5)

where MI is the mutual information of variables X and Y. MI of two random vari-
ables X and Y, is given by:

MI(X(t± u);Y ) =
∑∑

p(x(t± u), y) log
p(x(t± u), y)

p(x)p(y)
, (2.6)

where p(x) and p(y) are the marginal distributions of random X and Y, and
p(x(t ± u), y) is the joint probability distribution that is the pdf affected by the
time-delay. The time delay u that is chosen is exactly the one that maximizes the
MI of the two variables, because that is the one that minimizes the uncertainty. MIs
is calculated using a range of time delays u (defining temporal entropy reduction
parameters) and then the time delay corresponding to the maximum MI is selected
before the calculation of TE. The choice of using the time delay u that maximizes
MI is focusing on the highest predictability rather than the investigation of true
causality. For example, two species may have a relatively low interaction except for
a limited time period when the interaction is very high. Thus, by considering the
maximum MI the focus is on the highest predictability vs. the average most likely
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mutual dynamics, or more precisely it is focused on the magnitude of potential
interaction rather than the frequency. Yet, extreme accidental interactions are also
captured by the choice of MI(u = umax), although very small or non-existent
interactions exist.

In addition, we also compare the results of the linear cross-correlation estimates
and the non-linear MI estimates for species interactions. Mutual information is a
distance between two probability distributions while correlation is a linear distance
between two random variables. This is done to detect the causal relationships be-
tween variables in the non-linear mathematical predator-prey model (where the two
variable X and Y can be also belong to the same species) also to detect the per-
formance of linear vs. non-linear interaction inference models. On the contrary of
the asymmetric TE (that measures directed interdependencies between variables),
MI, as well as cross-correlation, provides a symmetric measure for inferring mutual
interdependencies unable to identify the direction of potential causal interactions.

2.2.3 Predicted Ecosystem Biodiversity Patterns

Taxonomic and Effective α-diversity

We consider the macroecological indicator α-diversity (or taxonomic diversity) for
the fish community in the Mairuzu Bay (Kyoto, Japan) to investigate whether the
OIF model infers a “causal” network able to predict α-diversity over time with
high accuracy. Results are compared to the α-diversity calculated from the CCM
inferred network. The OIF and CCF α-diversity are introduced as “effective” α-
diversity to consider the estimated interacting species rather than counting species
independently of the interaction. Specifically, we base our analysis on taxonomic
α-diversity that is the most elementary definition of local biodiversity of a commu-
nity. However, taxonomic α captures only one aspect of diversity that may not be
sufficient especially for very uneven communities where species have very different
abundance. Nonetheless, this does not affect our model intercomparison, since any
model discussed here can be used for any diversity metric such as Shannon index
and Simpson diversity.

α-diversity is a concept in ecology that counts the number of species (biodiver-
sity) observed at a local scale in space and time. In this multispecies case study, the
local scale is a time-dependent measure for the whole community. The resolution at
which α is assessed (i.e., the sampling interval of the time-series data) is two weeks.

16



Chapter 2. Inferring Ecosystem Networks
as Information Flows 2.2. Methods

For a set of species S = {S1, S2, ..., Sn} whose abundance X = {X1, X2, ..., Xn}
changes over time, α(t) can be calculated as:

α(t) =
n∑
k=1

xk(t)
0 , (2.7)

where xk(t) is the abundance of species k at time point t.
An effective α-diversity is also derived from the inferred species interaction

networks using CCM and OIF models. The estimated effective α-diversity (indi-
cated as αE(t), hereafter) is the number of nodes (species) in the inferred networks
considering the minimum data length l required for the inference. The estimated
α-diversity from CCM and OIF can be obtained as:

αE(g) =
n∑
i=1

ki(g) (2.8)

where,

ki(g) =

{
0, for

∑n
j=1(|Mi,j(g)|+ |Mj,i(g)|) = 0

1, for
∑n

j=1(|Mi,j(g)|+ |Mj,i(g)|) 6= 0
, (2.9)

denotes the structural degree of all nodes (species) involved in the inferred net-
works for a time period g = t − l. M(t) is the n × n interaction matrix from OIF
or CCM model for each time period g.

The total number of time periods on which the inference of networks is per-
formed (and αE(g) is calculated) by both OIF and CCM is G = bL−l

∆t
c + 1. L is

the total number of observations of abundance obtained every two weeks for each
species, l is the minimum number of observations set up to perform the inference of
interactions (i.e., l=30 in this study supported by the evidence about the minimum
length required to perform a robust inference of ρ with CCM) for the whole time
series L, and ∆t is the numerical inter-observation time (or time step) that corre-
sponds to two weeks. b•c (where • = L−l

∆t
) rounds G to the smaller integer. Note

that l is the maximum embedding dimension E for CCM. In this multispecies case
study, the length of raw time series is 285 and the time step is chosen as 1. Thus,
G is equal to 256. CCM and OIF models leverage 256 shortened time series to esti-
mate the potential causality between all possible pairs of fish species, leading to 256
dynamical networks. Note that the number of α(t) values is higher than the num-
ber of αE(g) because of the need of a minimum data length of network inference
models to infer species diversity.
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Simpson’s Diversity and Shannon Indices

The Simpson’s Diversity Index (SDI) has been calculated for comparison with α-
diversity. SDI is a macroecological indicator that gauges diversity differences in
communities considering also species population abundance. The calculation of
SDI is given by:

SDI(t) = 1−
∑n

k=1[xk(t)(xk(t)− 1)]∑n
k=1 xk(t) (

∑n
k=1 xk(t)− 1)

; . (2.10)

The range of SDI is from 0 to 1 (1 is the total normalized diversity) in which
high scores indicate high diversity and low scores indicate low diversity.

In light of the relationship between entropy and diversity introduced by [63],
we also investigated the Shannon index that is defined as the sum of entropies of
all species based on time-series abundance. This is the first component of the in-
formation balance equation as introduced in [31]. The Shannon index is formulated
as:

Hα(t) =
∑
k

H(xk(t)) = −
∑
k

pk(t) log pk(t) (2.11)

where pk(t) is the probability to observe species k at time point t; more specif-
ically this probability is based on the abundance of each species at each time step.
Probabilities are obtained from probability density function estimates via kernel
density estimation (KDE). Hα(t) gives the uncertainty as diversity information in-
dex rather than the taxonomic diversity and describes how species are assembled
together via their probabilistic nature. Distributions reflect dynamics of species in-
stead of considering simple occurrence as a binary variable. We compare Hα(t) to
taxonomic α(t) and SDI to recognize similarities and differences in biodiversity in-
dicators (or patterns more generally). This emphasizes the differential sensitivity of
interactions’ importance for different indicators, whether one considers α(t) or SDI
for instance. Different indicators, or patterns, reveal different information about the
ecosystem analyzed.

2.3 Results

2.3.1 Two Species Unidirectional Coupling Ecosystem

This bio-inspired ecosystem S(βxy = 0, βyx) describing the unidirectional cou-
pling is run for 1000 time steps for reaching stationarity, generating a set of 1000
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Figure 2.1: Studied ecosystem complexity. Epitomes of increasing ecosystem
complexity are shown from left to right where nodes are representing variables
(e.g. species or other socio-environmental features). Case 1 shows two basic
cases: unidirectional and bidirectional interactions where true interaction strength is
known because embedded into a mathematical model. Case 2 is about environment-
mediated interactions with no knowledge of ”true” interactions. Case 3 is a mul-
tispecies ecosystem with multiple bidirectional interactions with no knowledge of
”true” interactions.

points long time-series dependent on βyx. This means that species X has an in-
creasing effect on Y with the increase of βyx, but Y has no effect on X. Both CCM
and the proposed OIF model are separately used to quantify the potential causality
between species X and Y. The inferred causality dependent on βyx (as physical in-
teraction) only is shown in Figure 2.2A. Figure 2.2A shows that under the condition
of βxy=0, results of ”Y to X” (i.e. the estimated effect on Y on X) is close to 0 for
the OIF model (TEY→X(βyx)) that precisely describe the no-effect of Y on X. ”X
to Y” (TEX→Y (βyx)) well tracks the increasing strength of the effect of X on Y for
increasing values of the physical interaction βyx embedded into the mathematical
model. However, considering results of the CCM model, ”Y to X” (ρY→X(βyx))
presents non obvious (and likely wrong) non-zero values with higher fluctuations
compared to TEY→X(βyx) especially for lower values of βyx. This erroneous es-
timates of CCM is likely related to the need of CCM for convergence. For CCM,
”X to Y” ((ρX→Y (βyx))) shows an increasing trend for increasing values of βyx and
decreasing when βyx is greater than ∼0.5 non-trivially. In consideration of these
results for the unidirectional coupling ecosystem, the OIF model performs better
over CCM in terms of unidirectional causality inference.
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2.3.2 Two Species Bidirectional Coupling Ecosystem

In this case, the effect between two species is bidirectional. Species X has an ef-
fect on species Y and vice versa. The univariate dynamical systems S(0.2/0.5/0.8,
βyx) are run for 1000 time steps under the same conditions determined by βxy.
Certainly this situation is fictional since in real ecosystems the interaction strength
is changing when other interacting species change their interactions.Thus, keeping
one interaction fixed around one value is a strong unrealistic simplification (analo-
gous of one-factor at-a-time sensitivity analyses) but it is a toy model that allows to
verify the power of network inference models. These models generate three sets of
1000 points long time-series dependent of βyx for each fixed βxy. OIF and CCM are
used to infer “causality” between X and Y – in the form of ρ and TE – and compare
that against the real embedded interaction βyx and βxy shown in Figure 2.2BCD.
Considering all results of Figure 2.2 corresponding to fixed βxys, the correlation co-
efficient ρ yielded from CCM and TE from OIF are both able to track the strength
of causal trajectories. However, TE seems to perform better in term of ability to in-
fer fine-scale changes in interactions. In particular, considering Figure 2.2D (right
plot), higher TEyx higher for low βyx makes sense because βxy > βyx that means Y
has a larger influence on X than vice versa and then Y is able to predict X. Addition-
ally, TE does not suffer of convergence problems; specifically, considering Figure
2.2A (left plot), higher ρ for small βyx is not sensical and that is likely related to
convergence problems of CCM.

Additionally, ρY→X(βyx) shows higher fluctuations on average especially for
the condition of lower βyxs compared to TEY→X(βyx). When considering the ef-
fect of X on Y that is a function of βyx for CCM, ρX→Y reaches an extreme value
at around βyx = 0.5 and then declines for larger values of βyx. This is not consistent
with the expected effect of X on Y that should be proportional to βyx embedded
into the mathematical model. The ability of ρ to reflect the proportional relation-
ship between the effect of X on Y (manifested by βyx) vanishes for high βxys due to
unexpected and somewhat inconspicuous changes in ρX→Y for larger βyx. In simple
words, the expected increasing trend of ρ is lost for larger βxy that is counterintu-
itive. On the other side, TEX→Y (βyx) invariably maintains an increasing trend for
increasing values of βxy. OIF is also performing better than CCM when predicting
higher average values of TEY→X for increasing values of βxy (red curves in Figure
2.2ABCD, right plots) as expected by the fixed effect in the mathematical model of
Y on X. These results suggest that when compared to ρ of CCM, TE can track well
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the causal interactions over βyx with higher performance and without considering
the convergence requirement of CCM. CCM needs to consider the length of time
series that makes ρX→Y (βyx) convergent to a stable value, but uncertain for large
differences in time-series length of (X,Y) and sensitive to short time series.

In more realistic settings for real ecosystems (and in analogy to global sensi-
tivity analyses) when βxy and βyx are both considered as arguments of the two-
variable (X,Y) bio-inspired model, the simulated ecosystem becomes a truly bi-
variate system, yet yielding complexity but more interest into the causality in-
ference (Figure 2.3). The dynamical system S(βxy, βyx) was generated for 800
time steps under the same conditions mentioned above. We generated the datasets
that allowed us to study linear and non-linear predictability indicators for infer-
ring the embedded physical interactions. Specifically, we measure undirected linear
correlation coefficient corrX;Y (βxy, βyx), non-linear undirected mutual information
MIX;Y (βxy, βyx), directed non-linear correlation coefficient ρX→Y (βxy, βyx) and
ρY→X(βxy, βyx), and non-linear directed transfer entropy TEX→Y (βxy, βyx) and
TEY→X(βxy, βyx) as shown in Figure 2.3.

These 2D phase-space maps in Figure 2.3 show strikingly similar patterns for
classical linear correlation coefficients, MI, ρ of CCM and TE of OIF which un-
derline the fact that all methods are able to infer the interdependence patterns of
interacting variables explicitly defined by βxy and βyx. The color of phase-space
maps is proportional to the inferred interaction between X and Y when the mutual
physical interactions are varying according to the mathematical model in Eq. 2.1.

In Figure 2.3, even though phase-space maps of undirected corrX;Y (βxy, βyx)

and MIX;Y (βxy, βyx) present similar patterns (in value organization and not value
range) to those of directed ρ and TE, neither corrX;Y ((βxy, βyx) andMIX;Y ((βxy, βyx)

provide information about the direction of causality. As expected MI shows the op-
posite pattern of the average TE due to the fact that MI is the amount of shared
information (or similarity) versus the amount of divergent information (divergence
and asynchronicity) between X and Y. In a biological sense TE should be inter-
preted as the probability of likely uncooperative dynamics (leading to or driven by
heterogeneity) while MI as the probability of cooperative dynamics (leading to or
driven by homogeneity). Certainly, cooperation in a biological sense should be
interpreted on a case by case basis. In a broader uncertainty propagation perspec-
tive [30], “cooperation” between variables means that variables contribute similarly
to the uncertainty propagation, while “competition” means that one variable is pre-
dominant over the other in terms of magnitude of effects since TE is proportional
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to the magnitude rather than the frequency of effects. For the former case the to-
tal entropy of the system is higher than the latter case. Interestingly, correlation
corr(β), ρ and TE show similar patterns in both organization and value range (but
not in singular values of course), which sheds some important conclusions about the
similarity and divergence of these methods as well as their capacity and limitations
in characterizing non-linear systems.

When comparing the phase-space patterns from CCM and OIF (displaying ρ

and TE) a more colorful and informative pattern is revealed by OIF. This means
that TE gives a better gradient when tracking the increasing strength of causality
for increasing values of βxy and βyx. When comparing the phase-space patterns for
the two causal directions of ”X → Y ” and ”Y → X”, phase-space maps from
CCM are almost similar, while those from TE present apparent differences in the
strength of effects for these two opposite directions. Therefore, TE model is much
more sensitive to the direction compared to CCM when detecting the directional
causality. These results imply that TE performs better to distinguish different em-
bedded physical interactions (dependent on direct interactions β-s, but also growth
rate rx and ry, and contingent values X(t) and Y (t) determining the total interac-
tion as seen in the model of Eq. 2.1) in the causal relationship between species. It
should be emphasized how all linear and non-linear interaction indicators are infer-
ring the total interaction and not only those exerted by β-s. In a broad uncertainty
purview [30] the importance of these three factors depends on their values that de-
fine the dynamics of the system; dynamics such as defined by the regions identified
by patterns in Figure 2.3 for the predator-prey system in Eq. 2.1. Figure 2.4 high-
lights three different dynamics corresponding to the TE blue, green and red regions
in Figure 2.3.

In all dynamical states represented by Figure 2.3, species are interacting with
different magnitude and this defines distinct network topologies. Three prototyp-
ical dynamics are show in Figure 2.4 with colors representative of ρ and TE in
Figure 2.3. The “blue” deterministic dynamics has very high synchronicity and no
divergence considering variable fluctuation range (the gap is deterministic and re-
lated to the numerically imposed u = 1), as well as no linear correlation between
non-lagged variables. In perfect synchrony one would have one point in the phase-
space. Thus, absence of correlation does not imply complete decoupling of species
but it can be a sign of small interactions. The “green” dynamics shows a relatively
high synchronicity and medium divergence. In the phase-space of synchronous val-
ues of X and Y a correlation is observed with relatively small fluctuations because
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the divergence is small. Lastly, the “red” dynamics shows a relatively high asyn-
chronicity and divergence. The stochasticity is higher than previous dynamics and
the “mirage correlation” in the phase space has higher variance. Mirage correlations
means that correlation does not imply similarity in dynamics for the two species.
Non-linearity is higher from blue to red dynamics as well as predictability but lower
absolute information entropy. Then, it is safe to say that linear dynamics (or small
stochasticity) does not imply higher predictability.

2.3.3 Real-world Sardine-Anchovy-Temperature Ecosystem

CCM and proposed OIF model are also used for a real-world fishery ecosystem to
infer potential causal interactions between Pacific sardines (Sardinops sagax) land-
ings, Northern anchovies (Engraulis mordax) and Sea-Surface Temperature (SST)
recorded at Scripps Pier and Newport Pier, California. Sardines and anchovies do
not interact physically (or the interaction is low in number), while both of them are
influenced by the external environmental SST that is the external forcing. To quan-
tify the likely causal interactions between species and SST based on real data, we
use CCM considering the length of time series for convergence of ρ, as well as OIF
considering a set of time delays for acquiring stable values of inferred interactions
TEs.

Results from CCM in Figure 2.5A (plots from top to bottom) show that no sig-
nificant interaction can be claimed between sardines and anchovies, as well as from
sardines or anchovies in the SST manifold which expectedly indicates that nei-
ther sardines nor anchovies affect SST. This latter results, considering its biological
plausibility should be taken as one validation criteria of predictive models, or com-
plimentary as a test for anomaly detection of spurious interactions. The reverse
effect of SST on sardines and anchovies can be quantitatively detected with the
correlation coefficient ρ as well as TE. Although the calculated causations between
SST and sardines or anchovies are moderate, CCM is able to provide a good per-
formance in causality inference when the length of time series used is long enough
due to convergence requirement.

Figure 5B shows OIF’s results of inferred causal interactions between sardines,
anchovies and SST dependent on the time delay u. For sardines and anchovies, OIF
exposes the elusive bidirectional interactions that is actually biologically plausible
versus the results of CCM that infer ρ = 0. For the effect of external SST on
sardines and anchovies, OIF model gives unstable causal interactions with bias for

23



2.3. Results
Chapter 2. Inferring Ecosystem Networks

as Information Flows

lower time delays due to known dependencies of TE on u (such as cross-correlation
for instance) that establishes the temporal lag on which the dependency between
X and Y is evaluated. In a sense, plots in Figure 5B are like cross-variograms
for the pairs of variables considered. TE becomes stable when the time delay is
located in an appropriate range. It means that OIF requires an optimal time delay
that makes results of the causality inference robust and that is related to the optimal
transfer entropy model (as highlighted in [31] and [30]) that defines the most likely
interdependency between variables. As much as ρsensitivity of TE is also observed
for small time series that do not allow to infer probability distribution functions
sufficiently well. However, the length of data L is a factor affecting ρ more than
TE. The finding from OIF and CCM that SST unidirectionally affects the size of the
population of sardine and anchovy corroborate earlier findings of [67] who detected
the correlation between 3-year running average recruitment and spawning stock
size, as well as the previous results from CCM [21].

Figure A.1 shows the relationships between normalized ρ and TE estimated for
all selected values of L and u of pairs in Figure 2.5 (sardine-anchovy, sardine and
SST, anchovy and SST). These plots show opposite results than the proportional-
ity between ρ and TE in Figure 2.3 because non-optimal values are used, that is
non-convergent ρ-s and suboptimal TE during the interaction inference procedure
(Figure A.1). TE for too small u-s determines overestimation of interactions due to
the implicit assumptions that variables have an immediate effect on each other and
that is not alway the case as highlighted by the vast time-lagged determined non-
linear regions in Figure 2.3. If “transitory” values of ρ for small L are disregarded,
as well as TEs for small u-s, the relationship between ρ and TE shows a correct
linear proportionality.

2.3.4 Real-world Multispecies Ecosystem

Interactions between fish species living in the Maizuru bay are intimately related
to external environmental factors of the ecosystem where they live, the number of
species living in this region considering also the unreported ones) and biological
species interactions, which leads to a complex dynamical nonlinear system. In Fig-
ure 2.6 the network of observed fish species (Table A.1) is reported where only the
interactions considered in [21] for the CCM are reported. This is because the goal
is to compare the CCM inferred network to the TE-based one based on abundance.
Figure 2.7 shows the temporal fluctuations of abundance and the functional interac-
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tion matrices of ρ and TE. In this paper we study and compare average ecosystem
networks for the whole time period considered but dynamical networks can also
be extracted via time-fluctuating ρ and TE as show in Figure A.3. These dynam-
ical networks can be useful for studying how diversity is changing over time and
ecosystem stability (Figs. S4, S6-S7) as well as understanding the relationship be-
tween ρ and TE (Figure A.5). In the network of Figure 2.6 the color and width of
links is proportional to the magnitude of TE (Table A.2); for the former a red-blue
scale is adopted where the red/blue is for the highest/lowest TEs. The diameter is
proportional to the Shannon entropy of the species abundance pdf (Table A.3). The
color of nodes is proportional to the structural node degree, i.e. how many species
are interconnected to others after. Therefore, the network in Figure 2.6 is focusing
on uncooperative species whose divergence and/or asynchronicity (that is a pre-
dominant factor in determining TE over divergence) is large. Yet, the connected
species are rarely but strongly interacting in magnitude rather than frequently and
weakly (i.e., cooperative or similar dynamics). Additionally, the species with the
smallest variance in abundance are characterized by the smallest Shannon entropy
(smallest nodes) and more power-law distribution although the latter is not a strin-
gent requirement since both pdf shape and abundance range (in particular maximum
abundance) play a role in the magnitude of entropy. Average entropy such as av-
erage abundance are quantities with limited utility in understanding the dynamics
of an ecosystem as well as ecological function. Nonetheless, species with high av-
erage abundance (e.g. species 5) have a very regular seasonal oscillations and the
largest number of interactions with divergent species. A result that is expected con-
sidering the size of the population and the ability of the species to follow regular
environmental fluctuations.

Figure S2 shows that the strongest linear correlation is for the most divergent
and asynchronous species (from species 4 to 9) for which both ρ and TE are the
highest (Figure 2.7 B and C). This confirms the results of Figure 2.3 and the fact
that competition (or dynamical diversity more generally) increases predictability.
This also highlights the fact that linear correlation among state variables does not
imply synchronicity or dynamic similarity as commonly assumed. The interaction
matrices in Figure 2.7B and C confirm that TE has the ability to infer a larger gra-
dient of interactions than ρ and the total entropy of the TE matrix is lower than ρ.
Pairwise the inferred interaction values by CCM and OIF are different but ρ and TE
patterns appear clearly similar and yet proportional to each other.

CCM and OIF models are applied to calculate the potential interactions between
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all pairs of species. Figure 2.7B and C show interaction matrices describing the nor-
malized ρ from CCM and TE from OIF model of all pairwise species, respectively.
The greater the strength of likely interaction, the warmer the color. These results
demonstrate that CCM and OIF model present similar patterns for the interaction
matrices in terms of interaction distribution, gradient and magnitude in order of
similarity. This indicates that both CCM and OIF are able to infer the potentially
causal relationships between species. Precisely, the most interacting species (4-9)
are the most divergent and asynchronous species as well as diverse in terms of val-
ues of abundance; these species form the ”collective core” that is likely determining
the stability of the ecosystem. When considering their abundance values at the same
time steps (Figure A.2) these species are linearly related and this increases their mu-
tual predictability by either using linear or non-linear models based on correlation
coefficient and TE. The choice of the optimal u that maximizes MI leads to the opti-
mal TE model and resultant interaction network. The observed u over time is really
small (Figure A.9) and this signifies how likely the ecosystem has small memory
and responds quickly to rapid changes. The chosen time delay u = 1 corresponds
to the species sampling of two weeks. Note that values of u are also dependent on
the data resolution and they are strongly related to fluctuations rather than absolute
biodiversity value. Thus, while biodiversity may fluctuate rapidly in time, value of
diversity for seasons or longer time periods can have longer memory.

We also study temporally dynamical networks for the fish ecosystem commu-
nity (see Section 2.3). CCM and OIF model are applied to quantify the causality
between all possible pairs of species at each time period by calculating ρ and TE,
respectively. Estimated effective α-diversity (Eq. 2.8) from CCM- and TE-based
inferred networks at each time point can be obtained and then compared to the tax-
onomic (or ”real”) α-diversity. Results are shown in Figure 2.8 and Figure A.6. In
the whole time period, the estimated α-diversity from CCM is constant, whereas
the global trend of the estimated α-diversity from OIF model slightly decreases
over time that is consistent with the global trend of real α-diversity. CCM always
predicts a non-zero interaction for all species (including negative values) whereas
OIF predicts zero interactions for some species that are then not making part of the
estimated effective α-diversity.

Figure 8 shows the effective α diversity from CCM and OIF for an optimal
threshold of ρ and TE (i.e., 0.2 and 0.3) that maximizes the correlation coefficient
and Mutual Information (MI) between αCCM or αTE and the taxonomic α, respec-
tively. The maximization of the correlation coefficient and MI guarantees that the
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estimated effective α are the closest to the taxonomic α. Figure S6 shows effective
α for unthresholded interactions and other thresholds. Note that the threshold on
TE does not coincide with the value of TE that maximizes the total network entropy
(Figure 2.8) and then some of the reported species may not be part of the ecosystem
strongly. Thus, this threshold method is also useful to identify species that are truly
forming local diversity vs. transient species. Considering the pattern of fluctuations
of effective α-diversity from CCM they are poorly unrelated to the real α-diversity,
while those from OIF are much more synchronous with seasonal fluctuations of real
α-diversity. However, αTE is a bit higher than the average taxonomic α. Both CCM
and TE predicts a decrease in α in time that corresponds to an increase in SST. As
shown in Fig S6, OIF is attributing higher sensitivity to SST for small interaction
species because α fluctuations show seasonality that happens when species follow
environmental dynamics closely. Vice versa, CCM is predicting a broader sensitiv-
ity for all positively interacting species. These results reveal that OIF gives an ef-
fective tool to measure meaningful interdependence relationships between species
for constructing temporally dynamical networks where the number of nodes over
time (estimated α(t)) can reflect closely the taxonomic α-diversity. This allow us
to find more reliably how changes of environmental factors (e.g. SST) affect biodi-
versity in ecosystems. The establishment of thresholds on interactions is also useful
for exploring ranges of interdependencies and associated effective α-diversity with
respect to the average taxonomic diversity. Supplementary Information contains
further elaborations on results.

2.4 Discussion

In the paper the proposed Optimal Information Flow (OIF) model was validated by
considering the problem of causality inference of species interactions for ecosys-
tems with different level of complexity and systemic uncertainty: a deterministic
mathematical model of predator-prey dynamics, the real Sardine-Anchovy-Temperature
triplet ecosystem in the Pacific, and a real multispecies fish ecosystem in Japan.
These three case studies are epitomic example of deterministic, low and high com-
plexity dynamics. The mathematical model can be generalized as a model for inter-
action dynamics between individual or communities of the same species or between
two generic variables X and Y. The quantification of interactions was compared to
the well-documented CCM model.
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Early method of correlation were proved to be neither necessary nor sufficient
to estimate the causal relationship between time series variables (mostly due to the
fact that any association does not prove causality because models are not surro-
gate of reality and scale-dependent data are just a sample of ecosystem dynamics),
even though it remains a common and heuristic notion [17] [20]. Despite these
views we prove the power and limitations of correlation methods with respect to
non-linear methods (such as OIF and CCM), dynamics of the complex ecosystem
considered, and target patterns to predict that define whether correlation is able to
measure interactions. As for the latter, for instance we show how even highly non-
linear systems show linearity when non-linear ”causal” variables are considered at
the same time step (as a virtue of non-linear asynchronicity). Therefore, the scale of
analysis considering also the space-time domain with the explicit consideration of
lag effects, determines the dynamics that is visible and the model that can be used
for predictions.

Granger causality is the primary framework that uses predictability especially
for identifying causation, however it is problematic in highly nonlinear systems
even with some deterministic states or components. Sugihara et al. (2012) [20]
managed to deal with the problem and introduced the CCM model. CCM was well
documented and successfully applied to bio-inspired mathematical models, as well
as real-world ecosystems [20]. Despite interactions among species or variables, or
interdependencies more generally defined, are rarely completely zero and related to
patterns of different processes to capture, Sugihara et al. (2012) [20] maintains the
view of a deterministic single-value causality. In our opinion calculating causality
in an absolute sense between variables is always not only very hard, but also mean-
ingless because the resulting values are dependent on data and models used as well
as the predicted patterns for which interactions are calculated for. The very first
question should be causality about what? After that the evaluation of the dynamics
of the ecosystem coupled to the target patterns to map should drive model selection.
Causality is actually predictability of patterns of interest and predictability can be
close to true causality for systems with low complexity and noise. The basic prin-
ciples to interpret predictability are uncertainty reduction and accuracy that can be
quantified as the probability of an event to occur given another one (as predictands
and predictors, respectively).

From the perspective of information theory that has attracted attention in com-
plex networks research, entropy is the information theoretic description for uncer-
tainty or more precisely lack of organization rather than absolute uncertainty. Un-
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certainty is in fact also information about the diversity of values of a complex system
(see e.g. [63] that demonstrated how entropies are reasonable indices of diversity)
and the distribution of these values determines entropy. The fundamental work of
studying complex networks is to untangle complex interdependencies comprising
a large number of potential causations between all pairwise nodes (variables), that
allows one to predict the collective behavior of complex systems. The intuitive
and heuristic notion for this problem in information theory is transfer entropy that
measures the uncertainty reduction (or information flow) between nodes (variable).
From this conceptual perspective we name the OIF model for inferring potential
causality seen as sets of uncertainty reduction networked fluxes. Multiple transfer
entropies for one single variable as a function of all others determine non-linearity
that cannot be overlooked even when variable interaction is deterministic. Con-
sidering entropy as diversity also implies that OIF provides reflections of temporal
changes in diversity (e.g. biodiversity) determined by changes in information fluxes.

The bio-inspired mathematical model generates a clean inter-species interaction
ecosystem without any noise, that allow us to estimate “true” causality between
synthetic species X and Y. The so-called “true” causality means the causation em-
bedded numerically in the parameters in the dynamical equations 2.1 (βxy and βyx).
When βxy is fixed as zero only the unidirectional causality (X → Y ) exists between
species X and Y. Then, any estimator of predictive causality closer to the physical
causality β defines the accuracy of the model. Results from Figure 2.2 shows how
OIF model outperforms CCM.

Depending on the values of the parameters the model may capture some biolog-
ical dynamics such as amensalism and commensalism (when βxy or βyx are zero),
or predation, competition and mutualism (when both βxy and βyx are different than
zero). Biologists define amensalism (i.e. a strong asymmetrical competition) is a
type of biological relationship between species in which one species (e.g. X) has a
potential negative effect on another (Y), but the second species Y has no detectable
effect on the first species X. Biologically speaking, commensalism is another type
of biological relationship in which one species (Y) gets benefits while the other one
(X) is neither helped or harmed. In a broader complex dynamics perspective it is
easier to talk about “cooperation” or “competition” between variables meaning that
variables contribute similarly to the uncertainty propagation, or that one variable is
predominant over the other in terms of magnitude of effects vs. the frequency.

The generic dynamical characterization allows to avoid pitfalls of the categori-
cal classification of interactions in biology that suffers from the lack of knowledge
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about true and meaningful values of interactions that distinguish one biological dy-
namics from another. We also caution to use numerical estimates of interactions
to replace empirical biological knowledge because data-inferred interactions are al-
ways much more complex than ”lab settings” values and these values are certainly
highly affected by the environmental context and measurement technology poten-
tially. The similar pattern of inferred interactions of the predator-prey system shows
that all methods (correlation, MI, CCM and OIF) can work for inferring causality
between two variables with different level of granularity. However, considering our
definition of predictive causality, as non-linear predictability of diverse events from
others predictors, OIF outperforms all other models due to the explicit consideration
of synchronization, divergence and diversity of events that define model sensitivity,
uncertainty and complexity.

To analyze OIF performance for ”low complexity” ecosystems we considered
the ambiguous dynamics of sardines and anchovies in oceans. On multidecadal time
scales, sardines and anchovies present alternating dominance across global fish-
eries. Although in in appearance a ecological competition seems to exist between
these two species (due to the inversely proportional and synchronized abundance
changes), the simultaneous fluctuations of sardine and anchovy stocks suggest that
they are also influenced by the ocean temperature.

Incompatible hypotheses have been advanced to try to give explanations for this
pattern of alternating dominance, unfortunately leaving aside many other species
that clearly exist in the ocean and interacting with sardines and anchovies. Some
supposed that these two species act in direct and clear competition [68], while oth-
ers argued that this pattern is just a result of different or opposite fish dynamics
in response to common global environmental forces [69]. Results in [70] revealed
that in longer time series not only the negative cross-correlation observed in the
20th century disappears, but the correlation with global environmental forces also
has been ambiguous. This lack of correlation is however only related to the fact
that species are synchronous and environment→species effects are characterized by
relatively small lags. Yet, lack of evident correlation exist but that does exclude cau-
sation. Jacobson and MacCall [67] applied two models to this issue and proposed
a relationship that SST influences the behavior and population of sardines and an-
chovies; however, this relationship vanished when applying the analysis to stock
assessments from 1992 to 2009. Although all these possible explanations from dif-
ferent points of view are competing, or even unstable, such results can illustrate that
causal interactions among sardines, anchovies and SST present features of nonlinear
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dynamics. Nonetheless, and more importantly, the conclusion is that both species
are weakly interacting and majorly affected by the environment. All interdependen-
cies exist and they just change in terms of normalized magnitude without neglecting
the fact that intrinsic interspecies interaction is also modulated by the environment.
As shown by the predator-prey mathematical model (Figure 2.3) and real data (Fig-
ure 2.5 and 2.7), synchronized species are certainly affected by a third variable (e.g.
the environment and other species) that is forcing both in fluctuating at the same
time. Heuristically, it is also very unlikely that two species (or variable more gen-
erally) are perfectly synchronized unless they are identical. What Figure 2.4 shows
is somewhat very affine to the Heisenberg’s uncertainty principle that marks a clear
break from the classical deterministic view of the universe. We cannot know the
present state of the world in full detail (such as for the “red” dynamics), let alone
predict the future with absolute precision. Determinism driven by synchrony allows
us to know the current state of the system if unaltered but no future states. Vice
versa, uncertainty driven asynchronicity and divergence allow us to predict likely
future more than actual present and that appears to be in contradiction to determin-
istic views but not to realistic probabilistic (or relativistic) view of system dynam-
ics. For this sardines-anchovies “problem” unfortunately the whole complexity of
ecosystems has never been considered despite other species may have a dominant
effect on their abundance. This underlines as well the importance of scale (bio-
logical or otherwise) in framing the problem and bounding conclusions of model
results: any “causation” is in reality an interdependence between species bounded
by the chosen scales.

In addition to testing OIF on the simplified sardine-anchovy ecosystem, we ap-
ply OIF and CCM to a multispecies ecosystem in which 14 dominant fish and 1
jellyfish species were monitored in an abundance census in the Maizuru Bay, Japan.
In this ecosystem, all species can be interconnected, leading to an intricate causal-
ity system that is extremely hard to estimate considering intrinsic biological species
interactions, interactions related to environmental influence, and biological interac-
tion mediated by the environment. “True causality” assessment is also extremely
hard because there is no knowledge of which ecological or biological marker can
capture all these interaction types. However, when causality is shifted to predictabil-
ity of patterns of interest, the issue of inferring causality becomes practical and
meaningful. Predictive causality between species X and Y, for instance, depends
on whether X can assist in predicting the future of Y beyond the extent to which Y
itself predicts its own future, and complementarily whether the model can predict
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the collective behavior of the system which can be reflected by macroecological
indicators dependent on all predictive causality. In this case study, both CCM and
OIF models are effective for causality detection from different points of view and
they majorly differ considering interaction gradient and computational complexity.
As for the latter OIF and CCM have 3 and 20 parameters to populate and the speed
of inference assessment for the Maizuru 15 species ecosystem is 2 and 15 minutes,
respectively. An already published work used the same time-series data to study
how to infer the network and forecast the system stability for the fish community
using CCM [21]. Ushio et al. (2018) [21] used a “S-map” model after before using
CCM to reconstruct abundance data by stripping the hypothesized seasonality effect
modeled as a sine function simplistically. Here we believe that any environmental
forcing is important to be captured and affect non-linearly and in an unpredictable
way the interactions among species; pure biological interactions are utopianly im-
possible to measure and they are always context dependent. While it is true that
synchronization driven by seasonality can lead to misidentification of “biological”
or “true” causality (false negative without the consideration of time lags, or false
positive as in [21] is lags are considered in the phase-space) as stated in [21], we
believe that the environment is precisely the identifiable cause of synchronization of
species in a predictive causality purview. Additionally this is also a more realistic
analysis of ecosystems where the environment is central in shaping interconnected
populations and then community patterns via complex non-linear function vs. sim-
ple sinusoidal seasonality. Lastly, in our opinion another pitfall of the S-map of [21]
is even the fact that seasonality importance is weighted for each species in isolation
whereas seasonality is also affected interactions in ecosystems; interactions that are
suppose to be inferred from data as they are since data already contained non-linear
affect of environment and other species dependencies plus single species adaptation.

OIF, through the inference of a better gradient of systemic interaction “causal-
ity”, predicts how biodiversity changes over time with average value, fluctuations
and trend that is closer to the taxonomic α-diversity. This is for effective α diversity
with the optimal threshold on interactions maximizing the similarity with observed
α (via maximization of Mutual Information). The concept of effective α is very
useful because it allows to see which set of interactions is determining levels of α
diversity that is potentially more or less sensitive to environmental forcing. For ex-
ample, S6 shows that high interaction species form a small portion of community
diversity that is increasing over time vs. the systemic decrease in diversity (ob-
served in Fig, 8). More importantly, the increasing fluctuations of estimated α from
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OIF show the potential way in which climate and/or other anthropogenic changes
negatively affects biodiversity in the region considered in relation to intensified in-
terspecies interactions as suggested also in other studies [71–73]. These results are
certainly beneficial for fishery resources management and habitat protection aim-
ing to preservation of the fish community with ecological, economic and social
outcomes. Thus, models like OIF should be evaluated in this bigger perspective
of ecosystem utility or ecological engineering with multiple utilities rather than just
seeing these models for the hard inference of pure “biological” interaction causality.
Supplementary Information contains further discussions about CCM, TE causality
inference, predictability, ecosystem organization and stability.

2.5 Conclusions

Causality detection is a fundamental step in the inference of complex networks with
the aim of understanding processes of observed complex systems. This is incred-
ibly important for poorly observable large scale ecosystems whose structural and
functional networks are their backbone. However, quantifying the “truly causal”
interactions in complex systems is illusory and perhaps impossible to achieve due
to data and model limitations (e.g. sampling over space and time), partial ignorance
about underlying processes, the strong unmeasurable influence of environmental
dynamics, and more importantly their relativity dependent on the scale of analysis
and the patterns for which interactions are relevant for. Nonetheless, when causal-
ity is shifted to predictability, this issue becomes practical and useful because it
links causal predictable interactions to some patterns to predict. Patterns that are
defining the socio-ecological outcomes of interest for which interactions are signa-
tures of the underlying processes. In this paper we propose the Optimal Information
Flow (OIF) model and assess its validity and performance in causality inference by
comparing OIF inference to well-documented CCM and correlation model. This is
done for a deterministic predator-prey mathematical model, a data-driven sardine-
anchovy species dynamics, and an observed multiple fish species ecosystem. We
show that OIF, like CCM, is able to effectively identify asymmetric causal inter-
actions between any pair of species. Moreover, OIF performs better than CCM
because it provides: (i) a larger gradient of interaction values, yet defining interac-
tions at higher resolution with better definition of asymmetrical interdependencies;
(ii) smaller fluctuations around the estimated interaction values for any time delay u,
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yet a less uncertain inference; (iii) the estimated memory of one and pairs of species
in terms of time delay (without considering future modifications of CCM [74]); (iv)
independence on the length of historical data and no requirement for convergence,
as well as lower computational complexity (leading to lower sensitivity and uncer-
tainty in state estimates); and, (v) more accurate predictions of temporal changes in
macroecological indicators of ecosystems such as for the effective α-diversity af-
ter optimal MI-based threshold selection. However, OIF requires the identification
of the optimal u value as shown in [31] but this is easily automated by exploring
the delay that maximizes MI. Even though a time delay can be defined for any
pair of species, we show the average time delay, derived from analyzing all species
pairs, can be a global optimum providing accurate macroecological predictions for
the ecosystem considered. Thus, the assumption-free information-theoretic OIF
is a strong candidate model for the inference of predictable causality in complex
ecosystems. A model that is itself an ecosystem mimicking the information flow
constituting the backbone of real ecosystems of any nature, from environmental
to socio-technological systems. The complexity of real world systems might be
higher than the ones studied in this paper, considering the velocity of transitions in
rapidly changing systems. Nonetheless, we believe that the dynamics encompassed
in our study reflects the fundamental stochastic processes observable in the real
world, particularly at stationarity but changes in network topology can be mapped
by inferring dynamical networks over time. In a broader uncertainty propagation
perspective interactions should be considered as “cooperation” and “competition”
between species (or variables more generally) meaning that they contribute in a sim-
ilar or opposite way to the uncertainty (or information) propagation. Competition
means that one variable is predominant (or very diverse) over the other in terms
of magnitude of interactions since TE is proportional to the magnitude rather than
the frequency of interactions. Interactions that are specifically proportional to the
divergence and asynchrony of variables/species which leads to higher predictabil-
ity. In conclusion, our model can find useful applications in research and applied
work for ecosystems at multiple biological scales. A myriad of other models have
been proposed in literature, and these can be used simultaneously in real-life ap-
plications, to provide the full range of possible states of interactions and average
systems’ patterns trajectories. As causality is considered as non-linear predictabil-
ity of diverse events of populations or communities, we believe OIF is the optimal
model able to predict the largest divergence of trajectories due to the full consider-
ation of ecosystem states via species probability distribution functions. Predictive
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causality is a convenient definition for any ecosystem, or data science problem more
generally. However, for investigations of causality aiming to learn underlying phys-
ical processes of observed patterns, or for solving pressing issues of real complex
ecosystems, a more in depth inquiry of complexity and dynamics (in relation to the
target objectives), system learning and stakeholder collaboration are of paramount
importance since data and models alone cannot reveal the full picture nor identify
realistic and optimal solutions.
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Figure 2.2: Inferred predictable causality via CCM and TE for embedded true
causality. CCM correlation coefficient (ρ, left plots) and Transfer Entropy (TE,
right plots) are shown for the bio-inspired mathematical model in Eq. 2.1 represent-
ing bidirectional interactions. The mathematical model indicated as S(βxy,βyx) is
simplified as a univariate function because βxy is fixed while βyx is free and varying
within the range [0, 1]. βxy and βyx are establishing true causality while ρ and TE
are indicators of predictable causality. Y’s causal effects on X is theoretically fixed
as a stable value corresponding to each βxy. The greater βxy the stronger Y affects
X (estimated by ρyx and TEyx in red lines). (A) βxy = 0 means that Y does not
affect X and then X dynamics is only related to stochastic dynamics due to birth-
death process as in the model (Eq. 2.1). X’s effects on Y depends on the value of
βyx, theoretically leading to increasing functions ρxy and TExy (blue lines) when
βyx increases; (B) βxy = 0.2; (C) βxy = 0.5; and (D) βxy = 0.8.
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Figure 2.3: Phase-space maps of normalized coupling predictive causation via
correlation, mutual information, CCM and OIF for varying true causal inter-
actions. Both true causal interactions βxy and βyx are free varying within the range
[0, 1], indicating a bivariate model S(βxy,βyx) where both species (or variables more
generally) are interacting with each other with different strength. (A) normalized
correlation coefficient; (B) normalized mutual information; (C) and (E) normalized
CCM correlation coefficient (ρ) for interaction directions of X → Y and Y → X;
(D) and (F) normalized transfer entropy (TE) from OIF model for interaction di-
rections of X → Y and Y → X .

37



2.5. Conclusions
Chapter 2. Inferring Ecosystem Networks

as Information Flows

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

x
y

10 20 30 40 500 0 10 20 30 40 500

0 0.2 0.4 0.6 0.8 1

X(t)

0

0.2

0.4

0.6

0.8

1

Y
(t

)

0 0.2 0.4 0.6 0.8 1

X(t)

0 0.2 0.4 0.6 0.8 1

X(t)

Blue Green Red

X
(t

),
 Y

(t
)

t t t

A

B

Figure 2.4: Dynamics of abundance and predictability for the bidirectional two
species ecosystem model. (A) plots refer to the species abundance in time for the
mathematical model in Eq. 2.1 for different predictability regimes associated to
different interaction dynamics from low to high complexity ecosystem associated
to low and high predictability. Blue, green and red refer to a range of predictable
interactions as in Figure 2.3: specifically, Blue is for (βyx, βxy)=(0.18, 0.39) (small
mutual interaction, and predominant effect of Y on X), Green is for (0.64, 0.57)
(high mutual interactions, and slightly predominant effect of X on Y), and Red
for (0.94, 0.34) (high mutual interactions, and predominant effect of X on Y). (B)
phase-space plots showing the non-time delayed associations between X and Y cor-
responding to synchronous and homogeneous, mildly asynchronous and divergent,
and asynchronous and divergent dynamics. The transition from synchronous/small
interactions to asynchronous/high interaction lead to a transition from modular to
nested ecosystem interactions when more than one species exist (Figure 2.6).
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Figure 2.5: Inferred predictive causality for the sardine-anchovy-Sea Surface
Temperature ecosystem. CCM correlation coefficient (ρ) and OIF predictor (TE)
are shown in the left and middle plots for different pairs considered (sardine-
anchovy, sardine and SST, anchovy and SST from top to bottom).
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Figure 2.6: Part of the estimated species interaction network for the Maizuru
Bay ecosystem. Species properties are reported in Table A.1. The color and width
of links is proportional to the magnitude of TE (Table A.2); for the former a red-
blue scale is adopted where the red/blue is for the highest/lowest TEs. The diameter
is proportional to the Shannon entropy of the species abundance (Table A.3) that is
directly proportional to the degree of uniformity of the abundance pdf and the di-
versity of abundance values (e.g., the higher the zero abundance instances the lower
the entropy). The color of nodes is proportional to the structural node degree, i.e.
how many species are interconnected to others after considering only the CCM de-
rived largest interactions (see Figure 2.7). Other interactions exist between species
as reported in Figure 2.7. TE is on average proportional to ρ (Figure A.4 and A.5).
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Figure 2.7: Normalized species interactions matrices inferred by CCM and OIF
models for Maizuru Bay ecosystem. In the census of the aquatic community, 15
fish species were counted in total. Interaction inferential models use time lagged
abundance magnitude (CCM) or pdfs of abundance (OIF) shown in A. (B) normal-
ized CCM correlation coefficients (ρ) between all possible pairs of species. (C) nor-
malized transfer entropies (TEs) between all pairs of species from the OIF model.
Both CCM and OIF predict that the most interacting species (in terms of magnitude
rather than frequency) are 7, 8 and 9 on average. Thus, interaction matrices are more
proportional to the asynchronicity than the divergence of species in terms of abun-
dance pdf, although abundance value range defines the uncertainty (and diversity)
for each species that ultimately affects entropy and interactions (e.g., if one species
have many zero abundance instances or many equivalent values, such as species
2, TEs of that species are expected to be low due to lower uncertainty despite the
asynchrony and divergence).
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Figure 2.8: Predicted α-diversity via optimal interaction threshold for CCM’s
ρ and OIF’s TE versus taxonomic diversity. Effective α diversity from CCM
and OIF are shown (blue and red) for an optimal threshold of ρ and TE (i.e., 0.2
and 0.3) that maximizes the correlation coefficient and Mutual Information (MI)
between αCCM or αTE and the taxonomic α, respectively. The maximization of
the correlation coefficient and MI guarantees that the estimated effective α are the
closest to the taxonomic α diversity.
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Chapter 3

Optimal Microbiome Networks:
Macroecology and Criticality

3.1 Introduction

3.1.1 Microbiome Dynamics and Health

Microbial ecology has become an important topic for health sciences and other basic
and applied sciences such as biology, ecology, forensics and agriculture. In particu-
lar, the microbiome seems particularly important for ecosystem health in a broader
sense, being the primary connector among multiple species, ecosystem structure,
functions and services [75]. Recent work has shown how each person maintains
a fairly unique microbial fingerprint, and that microbial dysbioses are often asso-
ciated with shifts in health-status. These shifts are typically associated with the
gut that is the most diverse part of the human body considering the bacteria holo-
biont [76, 77]. We recognize that our microbiota is highly dynamic, and that this
dynamics is linked to environmental and individual states [77]. The field of mi-
crobiome science is still in its infancy and it is not yet settled upon whether gut
microbial community structure varies continuously or if it jumps between “dis-
crete” community states, and whether these states are in common across individ-
uals. In particular, some researchers suggest that gut communities can be binned
into discrete enterotypes [78], while others argue that gut communities vary along
multidimensional continua without any universality [79]. If the ultimate goal of
microbiome research is to improve human health by engineering the ecology of the
gut, and other applications are also of interest, we must first understand how and

43



3.1. Introduction
Chapter 3. Optimal Microbiome Networks:

Macroecology and Criticality

why our microbiota varies in time and space, whether these dynamics are consistent
across humans, whether we can define stable or healthy dynamics, and how these
states are associated to the environment. This line of research is primarily missing
how microbial diversity is organized considering all its facets and how this diversity
changes when species interaction networks change. For instance, the same level of
diversity can be achieved via different network topologies that may lead to different
health states [80].

3.1.2 Microbiome Diversity and Functional Network Organiza-
tion

To determine the network organization of the microbiome and associate that to
healthy or unhealthy states, we consider Irritable Bowel Syndrome (IBS) as the
template syndrome to characterize microbiome dynamics [81]. IBS shows common
symptoms of cramping, abdominal pain and diarrhea related to altered gut flora.
Previous research has found that the microbiome in people with IBS differs from
that in healthy people [81]; however, nobody has demonstrated how the micro-
biome network is different for these healthy and unhealthy individual groups (i.e.,
“states” generally speaking when not focused on a particular subpopulation) and
how the transition from one to another occurs. By exploring this topic, we propose
novel network inferential models for gathering microbiome networks from species
big data; these models are based on the principle of maximum entropy that tries
to gather the most informative set of variables about stable state patterns with the
least amount (but most diverse set) of information [30, 82]. An example can be
about sets of species abundance for predicting a diverse set of potential species in-
teraction networks. “Big data” is not only related to the size of the data used but
also to the number of calculations required to infer the underlying networks. These
computations increase exponentially with the number of species/nodes n consid-
ered beyond the geometrical criteria, where the number of connections is n(n− 1)

in the case of an undirected topology of the network. A directed topology is for in-
stance found when species interaction networks are non-symmetrical which means
that the direct influence of two species does not have the same magnitude for differ-
ent directions of interaction [83]. A variety of different models have been proposed
to infer network structures from small and large datasets. For biological systems
in particular, the inference of causal interactions among systems’ components is
a daunting task because not all interactions are known, nor the “true” magnitude
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of interactions, considering the data used to assess these interactions and the mod-
els [84, 85]. For instance, microbiome networks are in principle different if the used
input data are species occurrence, relative species abundance (RSA), geographic
range or other features. In addition, for this motivation, we employed assumption
free inference models that consider the whole probability distribution of species
dynamics and these models were validated considering their ability to predict pop-
ulation biodiversity patterns over time. We extracted optimal microbiome networks
as optimal information networks (OINs) [30] for healthy, transitory and unhealthy
groups to investigate general patterns and drivers underlying microbiome stability
and the interactions among different species in terms of network topology, mag-
nitude and preferential direction. Additionally, we characterized macroecological
functions α-, β- and γ-diversity, which describe the temporal organization of mi-
crobiome biodiversity considering point time, intertemporal and total diversity. We
show how these functions are related to microbiome network features and differ-
ent topologies emerge for different diversity/health states. The linkage between
microbiome networks and macroecology (in particular information theoretic and
biodiversity functions) is unique and offers additional insights into the ecology and
the evolution of the microbiome with relevance to ecosystem health.

3.1.3 Microbiome Inference, Neutrality and Criticality

Speculations about the underlying processes of ecosystems’ organization have been
made in the past considering diversity patterns and models able to predict these pat-
terns such as neutral models [86–89], niche models [90–92], and other models such
as Lotka–Volterra models based on non-linear ordinary differential equations [93].
Neutral models posit that biological diversity is driven solely by ecological drift
without a strong interference of environmental biases that lead to preferential dy-
namics (“niche”) for some species versus others. Neutral patterns exhibit species
indicators (e.g., RSA) of all sizes simultaneously without a preferential size. From
neutral to niche states, a critical transition is typically observed where species net-
work organization exhibits scale-free behavior [90, 94–97]. This scale-free behavior
was thought to occur only at the critical transition point but recent evidence shows
that criticality (defined by the scale invariance of ecosystem function reflected by
a Pareto distribution) [98] also exists for stable states where system’s component
organization is optimal due to optimal information sharing among components and
the environment [89, 99]. Transitions in network functions are also observed for
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neural systems where subcritical and supercritical regimes are defined as the ones
corresponding to weakly connected random networks and hyperconnected scale-
free networks [100, 101] that can associate to pathologies. These transitions were
previously found for geophysical networks and coupled ecological networks [102]
for instance, where energy dissipation tends to a global minimum.

Some indications that microorganism cooccurrence patterns are shaped by species
interactions that are altered from niche to neutral is available [90]. This also has
conceptual and numerical confirmation when thinking and simulating species that
are just responding to local resources and species that are somehow “equal” and
responding to fundamental speciation-dispersal processes. The former are interact-
ing more randomly with limited dispersal ranges while the latter are interacting with
much larger dispersal ranges. The corresponding probability distributions of species
diversity for the former and latter cases are exponential and power-law, respectively,
corresponding to random and scale-free species networks. Without introducing any
model (but with the knowledge of the underlying potential macroprocesses) these
changes in network topologies have been observed for large scale ecosystems and
other single population systems where topologies correspond to system’s patholo-
gies.

However, these models of microbiome characterization are typically driven by
some “hard” assumptions about the species interaction network, which may lead to
erroneous conclusions about the predicted patterns: in other words, predictability
(under some assumptions) of biological patterns does not imply causality consid-
ering the hypothesized and implemented processes [20]. Leaving aside the causal-
ity investigation, models of microbiome network inference exist [103] and [93])
but they simply infer species co-occurrence networks without assessing the magni-
tude and directionality of potential species interdependence. A different approach
is achieved by pattern-oriented models charactering systems’ dynamics [104–106]
such as the one here proposed, which do not assume any preferential mechanism
a priori but consider the whole information content in data (via probability distri-
butions and their relevance to predict patterns via entropic functions [82]) to claim
underlying processes. In this sense we move our discussion of the problem of un-
derstanding microbiome dynamics toward one that identifies which information is
critical, and how that model criticality [82] is associated to biological criticality [98]
also considering the neutrality of biodiversity dynamics. Therefore, rather than try-
ing to untangle biological complexity via fitting some biologically inspired models,
we use all data available to check their information content to define all possible
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microbiome states and associated diversity patterns. In this information theoretic
framework, in particular we show how criticality coincides with neutrality and opti-
mal microbial network organization that leads to healthy states. We also show how
criticality corresponds to a scale-free functional networks relating RSA interdepen-
dencies even when the functional co-occurrence network of species is not scale-free
(this place some warning about inferring networks just based on occurrence data).

As a caveat, it should be noted that neutral patterns does not necessarily im-
ply neutral processes [107] despite many papers try to define one from the other
[90, 91]. Furthermore neutral models can predict non-neutral processes (therefore
care must be placed when considering predictability vs. causality) and neutrality
might not be present at all scales of biological organization [91]. The focus here is
on microbiome pattern detection and its predictability, which we believe to be ex-
tremely important and the starting point for a top-down investigation of the underly-
ing processes and causality. Different patterns are evident for different health states
when RSA interdependence networks are considered, and these networks seem to
shape microbiome diversity in many ways considering local, intertemporal and to-
tal diversity.

3.2 Methods

3.2.1 Microbiome Data

We considered microbiome data originally published by [108] and later used by [81]
for which species data of six individuals are available over time (30 days). Fine
scale species Operational Taxonomic Unit (OTU) RSA data were derived by pub-
lished 16S rRNA and shotgun metagenomic sequencing (SMS) data pertaining to
the gut microbiotas. In [108], species-level phylotypes were defined at 97% of se-
quence identity, which is the lowest taxonomic rank used to identify differences in
biological states of interest (e.g., healthy and unhealthy). Two individuals suffered
from IBS, two were healthy, one was treated with antibiotics and one was on the
verge of being unhealthy. Thus, these two individuals are representative of a tran-
sitory state with different directions, from unhealthy to healthy and from healthy to
unhealthy, respectively. Durbn et al. (2013) [108] considered the healthy subjects
as those individuals who did not suffer from lab-confirmed IBS, and took the pa-
tients who had this disease as individuals with perturbations from the healthy state
without a priori categorization. In the dataset [108], the healthy period is from time
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points before the IBS triggering event altering the microbiome. More specifically,
the datasets are composed by two healthy individuals (Individuals A and B in the
original datasets [81, 108]), two transitory individuals (C and C1), and two patients
with IBS (P1 and P2). The length of RSA data for these individuals are 30 days for
A, 15 days for B, 15 days for C, 9 days for C1, 9 days P1, and 14 days for P2.

3.2.2 Time Series Reconstruction

The raw data available present the challenge of individuals whose species abun-
dance is sampled for different time lengths. Computationally, to have datasets with
the same length and merge them into one group, we used the method of Least Com-
mon Multiple (LCM) for time series reconstruction. LCM extends time series at
their maximum feasible length by preserving their probability distribution func-
tions (pdfs); in our case, the pdfs are associated to each RSA and are the inputs
for the network inference model that requires time series with the same length [59].
The extended length is the smallest number that is a multiple of the length of origi-
nal time series of each individual. In this way, LCM guarantees to have the largest
dataset representative of the stochastic dynamics analyzed. We calculated LCM
considering the number of data for each individual health group. This implies ex-
tending the time series at the length of LCM or to maintain the data length if the
length of the raw data is equal to LCM. In our study, LCM between Individuals A
and B was 30; thus, the length of the abundance time series for A was unchanged
while B became 30 (B was repeated twice). This was done by copying the data in B
until the 30th day. LCM for C and C1 was 45; thus, both C and C1 time series were
extended to 45. LCM for P1 and P2 was 126; thus, both time series were expanded
to the 126th day. These examples show that data rich sample are preserved as they
are while data poor samples are extended. To create pdfs of RSA representative of
each group, we considered the average values of RSA for common species. If for
individuals belonging to the same group different species were found, the pdf of
RSA was based on the time series as they were. This choice was dictated by the
desire to emphasize common dynamics for each group when possible.

3.2.3 Probabilistic Characterization of the Microbiome

We characterized probabilistically the distribution of microbiome macroecological
and species interaction network variables (generally indicated as Y as for a generic
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random variable) considering the following general exceedance probability distri-
bution function [109]:

P (Y ≥ y) ∼
{

e−λ1 y for y < Y ∗

y−ε+1 f
(
y
m

)
e−λ2 y for y ≥ Y ∗

, (3.1)

where Y ∗ is the truncation point (“hard truncation”) for which the transition in
the regime of the probability distribution is observed from exponential to power-
law. We refer to “hard truncation” when the pdf clearly exhibits two regimes (for
y < Y ∗ and y > Y ∗) in which two diverse pdfs can be identified. λ factors are scale
factors for the exponential distribution (related to random networks), either above
or below the lower/upper cutoff defining the scale-free regime with power-law dis-
tribution (associated to scale free networks). m is the upper cutoff after which finite
size effects occur faster than exponential decays. We introduce the function f(y/m)

to give more generality to the cutoff (or homogeneity) function [109]. y−ε+1 is the
scaling function where ε is the scaling exponent of the power-law distribution; this
exponent is a critical exponent associated to the fractal dimension of the process
analyzed, yet it is representative of the process dynamics [109]. Note that the prob-
ability distribution function p(y) y−ε scales with ε only. ε dictates how the mean and
the variance behave, in fact it is related to the Taylor’s law scaling exponent [81].
For ε = 2, the pdf is the classical Zipf’s law that is found for many socio-ecological
systems [109, 110].

3.2.4 Network Inference and Dynamical Species Characteriza-
tion

Information Balance and Exchange

To infer species interaction networks based on microbial RSA data, we based our
approach on the model developed in [30] as well as on previous computational
efforts [59, 111]. We considered the microbiome as a dynamic network of species
interactions (sensu RSA interdependence vs. true causality) where the total free
energy and corresponding entropy change over time. The pdf of each RSA for each
group was derived by putting together the RSA time series for all individuals; in this
network, the RSA was treated as a random variable meaningful of the group and
each individual was offering one realization of the same random variable. The RSA
matrix was created with compositions in mind and therefore the sum of each sample

49



3.2. Methods
Chapter 3. Optimal Microbiome Networks:

Macroecology and Criticality

was constrained. Considering information entropy as the total dissipated energy’s
counterpart, the total network entropy can be written as:

H(N) ≈
∑
i

H(xi) +
∑
i

∑
j 6=i

TEi(xi, xj) + σ(N) (3.2)

where xi denotes the i − s variables that contribute to the total information of the
network N . In our case, x is the RSA of species. In this equation, H(xi) denotes
Shannon entropy, and TE(xi, xj) denotes Transfer Entropy from the first variable to
the second variable [30, 111]; in our case, both variables are the RSA of two differ-
ent species. Equation (3.2) represents a fundamental principle of information bal-
ance independently of the chosen entropy analytics and forms the general basis of
sensitivity analyses. Equation (3.2) states that the total network entropy can be de-
composed into the entropy of each individual node plus the entropy of interactions.
The sum of absolute TEs is a proxy of the Mutual Information (MI) of a variable,
thus it considers the whole set of variable interdependencies; in Equation (3.2), we
consider the sign of TE because H(N) should consider the typology of interactions
with their sign. σ(N) is a noise term that captures the unexplained variability of N
related to variables not considered and other discretization factors related to the nu-
merical methods employed in solving the model. Shannon entropy is representative
of the species information content (attached to the pdf of RSA) for the whole net-
work and it allows comparing all species in a common framework. Equation (3.2)
can also be extended in space if spatially explicit calculations are needed, as in
[30]. Note that H(N) is inversely proportional to the free energy of the system so
the lower H(N) the higher the free energy and the higher the total dissipated energy.
Evolution self-organizes systems toward states where H(N) is minimized.

The computation of TE was based on the distributions of the two variables of
interest (i.e., RSA) conditioned on their histories. Comparing the conditional prob-
ability of the variable on its own history with the conditional probability of the
variable on both its own history and the history of a predictor variable provides
asymmetry in determining predictive abilities of one variable onto another. Thus,
a directed network can be inferred. According to equation 2.4, directed TE of two
time series variables, denoted as Xi and Xj , was calculated as TEXi →Xj

(τ), where
Xi,τ and Xj,τ denote the respective histories of Xi and Xj at time t as well as con-
sidering all past values for the period t − τ . Here, we consider the same memory
lag for Xi and Xj but in principle historical dependencies can be different when
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considering other variables and the variable itself. In our microbiome study, Xi

and Xj are RSA of species i and j. This definition is the most general definition
of TE and neither conflates dyadic and polyadic relationships between species nor
assumes any causality.

The definition of TE can assume that the processes analyzed obeys a Markov
model, which is suitable for memoryless stochastic process. This implies that future
states depend only on the current state and not on events that occurred before it.
Thus, in a Markov process, it is assumed that τ = 1. This is usually true, especially
for rapidly varying processes (such as for microbial RSA); however, this constraint
can be relaxed by choosing temporal lags that are small enough to focus on short-
term interdependencies which are not related to long dependencies in the underlying
processes. In our case, study RSA values of two randomly selected species did
not correlate with RSA values for τ = 1; thus, memory processes are relevant
and, as in [59], we selected the τ that maximizes the interdependency between
two species assessed by the functional distance (see Equation (3.11)). Note that
TE, as calculated in Equation (2.4), should be interpreted as information flow vs.
information transfer [84] because conditional entropies are used to exclude indirect
pairs of species whose interactions is of second order importance. This approach has
been criticized by some authors (e.g., [112]) if “causality” is indeed claimed about
the inferred interactions and in consideration of the fact that polyadic relationships
may be underrepresented. In this study we spouse the view of [112] for which
TEs are considered as measures of reduction in uncertainty about one time series
given another (thus, with predictable power) with potential but not certain causality,
leaving aside the issue of what specific biological causality is investigated (e.g.,
influence, physical causality, etc.). The idea of using conditional entropies is solely
related to find the most informative set of species to identify the core microbiome
interaction network.

Maximum Entropy Networks

Subsequently, the inference of interspecies TEs, among all values of TEs the ques-
tion remains on which value is the most informative about the potential causal re-
lationship between two variables. We emphasize that here “causal” is in the sense
of of predictability, sensu uncertainty reduction, rather than “certain” biological re-
ality. As in [30], we proposed to select TEs that lead to the maximum entropy for
the inferred network. This corresponds to maximize the Fisher information ma-
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trix [113] that produces the lowest complexity and the highest informative set of
information about a pattern of interest. MaxEnt favors probability distribution func-
tions with maximum entropy as the most general distributions that fit the observed
data [114]. This theory can be applied to a functional network where edge weights
are based on TE. The network with the greatest total entropy can be similarly fa-
vored as the most general network structure that fits the observed data. The method
considers all possible pairs of variables in both directions for predicting a pattern of
interest. The edges that comprise the network with the greatest total TE are then in-
cluded. Selecting the edges that contribute to the greatest amounts of TE, according
to the MaxEnt theory, produces the network that most accurately describes “causal”
patterns among the included variables. Note that MaxEnt should be interpreted in
an information theoretic sense, where higher entropy means higher information. We
show how this entropy (useful to characterize the system) is related to the state of
each health group that has a more ecological and physical sense in a thermodynamic
purview; in particular, how the absolute value of total entropy is lower for stable and
healthy states vs. unhealthy ones.

A utility function is needed to establish the function where MaxEnt is applied.
The utility function can be thought as a systemic (network) value function

∑
i,j fi,j(X)wi,j

(potentially multiplied by weight factors wi,j) where value functions fi,j are TEs
among RSAs. These TEs, as in Equation (2.4), assess the potential causal interac-
tions between species pairs. Thus, the utility function is the total network entropy
H(N) (Equation (3.2)) that needs to be optimized in order to define necessary and
sufficient TEs with the maximum entropy. The optimization can be subjected to
feasibility constraints, for instance related to the ability to control certain species or
data limitations. In the context of the present goal of creating a microbiome network
indicator, the value functions fi,j are defined as:

fi,j(X) =

{
TEXi →Xj

, for {Xi, Xj} ∈ EMENet

0, for {Xi, Xj} /∈ EMENet
, (3.3)

where {Xi, Xj} represents the directed edge connecting Xi to Xj , and MENet
(Maximum Entropy Network) represents the set of directed edges in the network
with the maximum total network entropy H(N). The selection of edges to be in-
cluded in the network is determined by finding the network with the greatest total
entropy as in Equation (3.2). In the present study, the utility function was defined as
the total TE of the network (plus Shannon entropies of each RSA but those turned
out to be second- or third-order factors that can be neglected), and it is maximized
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by selection of the fi,j functions. To the best of our knowledge, this is one of the
first times that TE was framed in a decision analytical model via a network threshold
entropy criteria that defines MENets.

Optimal Information Networks

To reduce redundancy in creating a MENet, variables that are strongly predicted by
other variables (hypothetically establishing a strong causality—in a predictive sense
rather than in a biological one—if prediction accuracy of one decreases quickly
when removing the other [20]) can be excluded. This can be done by evaluating the
weighted in-degree and out-degree of each node in the network (i.e., TE). Nodes
with a greater weighted out-degree than in-degree can be included in the Optimal
Information Network (OIN) that one among many MENets with the same average
total entropy. These nodes are strongly predicting the variability of other nodes,
thus the overall network dynamics. OIN is then the necessary and sufficient MENet
for predicting microbiome function. Here, we refer to microbiome function as the
information network related to the interdependence between RSA measured by TE;
this function is not the “true” biological function but it is likely related to the vari-
ability in mutual abundance that is commonly found in any complex ecological
systems [115]. Thus, OINs are purely information networks and not causal biologi-
cal networks. This entropy reduction to define OINs based on conditional entropies
(calculated on sets of potentially influencing species that do not affect much the
total entropy, yet removing the indirect interactions as in [111] in order to estimate
information flow vs. information transfer [84], where the former is more likely
representing “causal” species interactions)) can be further achieved by introducing
functions g(Xi), defined as follows

g(Xi) =

{
1, for

∑
j fi,j(X) >

∑
j fj,i(X)

0, for
∑

j fi,j(X) ≤
∑

j fj,i(X)
, (3.4)

where
∑

j fi,j(X) = OTE and
∑

j fj,i(X) = ITE. OTE and ITE are the total out-
going and incoming TE for a node, respectively. Thus, variable inclusion depends
on the comparison of the TE projected by the variable Xi onto the other variables
and the TE projected by the other variables onto Xi.

The defined function g was then used to create the total network entropy that
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can be used to carefully describe the network dynamics:

H(N ≡ OIN) =
∑
i

H(xi) ·g(xi,t)+
∑
i

∑
j 6=i

TEi(xi, xj) ·g(xi,t)+σ(Y ) (3.5)

which represents the sum of all necessary variables that were included by the struc-
ture of MENet in a multi-criteria value function, and the sufficient variables after
the redundancy exclusion to form OIN. In this way, the OIN inference was based
on information theoretic and functional topological criteria to screen: (i) the nec-
essary information to maximize network entropy H(MENet) (i.e., total information
content); and (ii) the smallest non-redundant information to sufficiently predict to-
tal network function (of maximum entropy H(OIN)). Note that the first criterion
on H(MENet) is a global one on the total information content while the criterion
on H(OIN)) is a local one on the information of a node with respect to the func-
tionally connected nodes. This entropy minimization is somehow the equivalent
of the energy minimization of other optimized networks [116]. However, this OIN
is the network with the highest accuracy in predicting macroecological patterns of
diversity over time that are dependent on fluctuating RSA. Then, OINs are charac-
terized by the highest information content (lowest uncertainty), highest information
diversity (e.g., represented by the values of TEs), and lowest complexity.

Assessment of Species Importance and Collectivity

After the inference of OINs, it is possible to quantify the importance of differ-
ent species considering their variability in isolation and in cooperation with other
species for predicting the dynamics of the microbiome. Species first order impor-
tance and interaction for reproducing the network dynamics are then calculated
considering new indices based on nodal information flow rather than on Mutual
Information Indices (MII). σi describes species interaction and is calculated as
the ratio between the total Outgoing Transfer Entropy (OTE) as information flow
(OTE(j) =

∑
i TEj→i) and the total network entropy, while µi describes the

species importance as the ratio between the nodal Entropy as information content
(using Shannon entropy) and the total network entropy. These Transfer Entropy
Indices (TEI) are useful when no systemic variable is needed (contrary to [30]),
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and analytically they are formulated as:

TEI =


σi =

OTE(j) =
∑

i TEj→i
H(OIN)

µi =
H(xi) · g(xi,t)

H(OIN)

, (3.6)

When considering a systemic indicator [30], MII are better suited to identify
variable importance because no directional influence is needed. MII use the mutual
information (MI) normalized by the entropy of the output variable considering one
independent variable or pairs of variables for predicting a dependent variable Y that
is in this case undefined. These MII indices are si = MI(Xi;Y )

H(Y )
and sij =

MI(Xi;Xj |Y )

H(Y )
,

where Xi is any variable (e.g., RSA) and Y is the predicted variable built using
the same process of constructing OINs but selecting variable features rather than
keeping entropy of species as independent variables. The use of TE can give further
information about the directionality of causality (in a predictive sense of the model),
and the time-lag of the causality.

3.2.5 Macroecological Indicators

To characterize the microbiome as an ecosystem we introduce macroecological
indicators that aim to describe ecosystems’ collective dynamics of diversity lo-
cally, within communities or time points, and globally. In this paper we use such
macroecological indicators that are time dependent (because space information is
not provided and hardly inferable) and of order zero mathematically speaking (as
in [63] the order is related to the exponent to which the probability of RSA is el-
evated to). For a set of unique distinct species S = {S1, S2, ..., Sn} whose RSA
X = {X1, X2, ..., Xn} changes over time, we define the local species diversity,
or α-diversity as:

α(t) =
n∑

k=1,t

pk(t)
0 (3.7)

where pk(t) is the probability to find one species at time t. Thus, α is the sum
of diverse species at any given time during the observation period (30 days) or
the reconstructed period (see Section “Time Series Reconstruction”). Considering
this definition of α it is easily noticeable that the sum of the entropy of all RSA
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Hα =
∑

kH(xk) = −
∑

k pk(t) log pk(t) is proportional to the Shannon index that
is the local species diversity of order one [63].

Leaving aside the controversy about the definition of interspecies diversity over
time, i.e., species turnover, we define β-diversity as the complementary variable of
species similarity (here introduced via the Jaccard Similarity Index (JSI) as in [102]
and [87]):

β(t) = 1− JSI(t) = 1− St,t+1

St + St+1 − St,t+1

(3.8)

where St,t+1 =
∑n

k=1,t(pk(t)
0 + pk(t + 1)0)/2 is the number of species present

at both time steps if pk(t)0 and pk(t + 1)0 are 6= 0, otherwise St,t+1 = 1. St =∑n
k=1,t pk(t)

0 = α(t) is the number of species present at time t (or t + 1) (Equa-
tion (3.7)). Note that, β-diversity as a measure of species turnover overemphasizes
the role of rare species as the difference in species composition between two com-
munities or two time steps is likely reflecting the presence and absence of some rare
species in the assemblages.

Note that the definition of β in Equation (3.8) is proportional to the “true” β
that is classically defined as the number of diverse species between two samples
(either over space or time). β-diversity can also be defined as a second order index
where the entropy related to β is Hβ = Hγ − Hα [63] where Hγ = H(N) is the
total network entropy (Equation (3.2)). Considering the variation of diversity over
time β-diversity is proportional to the complementary of the mutual information 1−
MIXi,Xj

= 1−
∑
p(Xj, Xi) · log2

(
p(Xj ,Xi)

p(Xj) p(Xi)

)
. However, 1−β(t) is proportional

to the sum of the TEs. These relationships between information theoretic quantities
and macroecological indicator is novel and worth being addressed in further papers.

The total diversity γ is defined as:

γ(t) =

S,T∑
k=1,t=1

pk(t)
0 (3.9)

that can be established over time or over the total number of speciation events
M . M is the sum of all species at any given time independently of their diversity
calculated from time t = 1 to the final time of observation T ; equivalently, M is the
number of events when new or existing species are introduced. A speciation event is
an event when a species is introduced in the microbiome; this species can be already
present or can be a new distinct species that is established over the total number
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of speciation events M . The concept of speciation event is introduced because
that determines the number of total species introductions independently of the true
temporal dimension. Thus, the speciation event focuses on the dynamics of the
process independently of time because it counts events. Considering M allows one
to map how the total diversity changes as a function of biodiversity meaningful
scales, equivalently to the species–area.

vs. mapping its change over time (that may not be an influencing variable). The
total number of speciation events can be related to the number of unique species S
(i.e., all distinct species occurred in the time period) as follows:

M =
S∑
k=1

mix
0
i (3.10)

where S is the number of unique species across the whole observation period, xi is
the RSA of the counted species, and mi is the number of times that species occurs.
Considering the validity of the information balance equation (Equation (3.2)) that
leads to the diversity balance equation Hγ = Hα + Hβ , the total diversity can also
be calculated as γ = α · β [63].

3.2.6 Functional and Structural Network Metrics

The topological organization of the microbiome is characterized via structural and
functional complex network metrics. Functional metrics are based on information
theoretic functions that quantify the interactions among species while structural
metrics are based on the geometry of the network and can be derived from the
former ones.

The functional distance between species is defined as:

df (Xi, Xj) = minτ e−MI(Xi(t±τ),Xj(t)) (3.11)

where the minimum value of the distance is taken for all possible time delays τ .
Xi and Xj are the RSA of species i and j and MI is the mutual information evalu-
ated for different values of the temporal scale of species dependency τ . The τ that
minimizes the distance df is chosen for capturing the maximum interdependence
MImax. Such distance as in [59] quantifies the magnitude of the most meaningful
interactions between species in a predictive sense: the higher MI the shorter the
distance that signifies high levels of interaction (sensu predictability) without spec-
ifying the directionality. Thus, because of the inability of assessing the direction of
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interdependence between species (whether that is information transfer or flow [84]),
MI (or df equivalently) is a metric useful for identifying the most interacting pairs
of the microbiome rather than individual species.

The calculation of the structural distance is based on the functional distance
and the concept of the shortest path. The structural distance is then defined as the
minimum number of steps from one node (species) to another independently of the
magnitude of these steps (e.g., in terms of TE). Thus, analytically the structural
distance is defined as:

d(Xi, Xj) = argmin

[∑
i,j

df (Xi, Xj)
0

]
if Aij = 1 (3.12)

where Aij = TE0
ij is the adjacency matrix that can be formulated in terms of TE.

The rationale for considering the shortest paths is related to the exponentially large
ensemble of distances as a function of the number of nodes and the fact that bio-
logical systems always optimize information transmission [116]; however, Pareto
shortest paths are always chosen [116].

In terms of connectivity, the functional degree is defined for the directed network
as the sum of the weighted in- and out-degree (i.e., TE) elevated to a power exponent
equal to zero. Then, analytically the functional degree is:

kf = kin + kout =
∑
i,j

[
fi,j(X)0 + fj,i(X)0

]
(3.13)

where
∑
fi,j(X) = TEij is the transfer entropy as defined in Equation (2.4).

The structural degree is defined by thinking the network as an undirected net-
work (without signs related to TEs), thus

k =
∑
i

ai,j (3.14)

where ai,j = 1 = TE0
i,j if i and j are connected. Classically, the structural degree

considers the number of connections independently of the bidirectional pathways
implied by TE. Thus, functional degree is always greater or equal to structural de-
gree.
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3.3 Results

3.3.1 RSA Analysis

The simplest analysis of the microbiome starts by looking at the temporal trajec-
tories of RSA. By a simple cursory analysis, it was evident that the average RSA
of the healthy microbiome is lower than the average RSA of the unhealthy micro-
biome independently of the species; however, the maximum RSA was found for the
healthy microbiome and the species with the highest RSA is one of the most ben-
eficial for health. A recent dataset with absolute abundances suggests that healthy
gut microbiota have higher total abundances than diseased ones [117] but no studies
exist about the universality of this abundance-health relationship. By looking into
species diversity (Figure 3.1A), it was observed that the average number of species
at any time point (α) is lower for the healthy microbiome than the unhealthy one.
This may seem in contrast with previous findings that report higher diversity for
healthy microbiome or in general for healthy ecosystems [95, 118, 119]. A con-
troversy on the subject is already found in literature [118], thus just maximizing
total diversity without considering how that diversity grows and is organized is not
intuitively a necessary and sufficient ingredient to achieve a stable healthy state.
More importantly, the RSA-rank pattern (Figure 3.1B) shows only one dynami-
cal regime, corresponding to the common Zipf–Mandelbrot model for RSA [120],
for the healthy microbiome vs. two regimes for the transitory and the unhealthy
microbiomes (double Pareto, lognormal or exponential regime). Figure 3.1C shows
that the decay in richness over RSA is higher for the unhealthy microbiome; this
result underlines the fact that higher diversity does not imply stability because of
the suboptimal, yet unsustainable distribution of species in the unhealthy micro-
biome. Stability is related to network topology [76], which also affects diversity
and the systemic fluctuations of the microbiome, as shown by the Taylor’s law [81]
that highlights how variance in RSA abundance changes with the mean. “Optimal”
organization is in this case referring to the healthy state as a reference state because
it has the smallest fluctuations for the highest achievable total diversity growth rate
γ′ (this is the Pareto solution) and the associated network topology is more resilient
to random node removal (Figure B.3). The Pareto solution has the largest diversity
growth rate and is not by chance accompanied by a Pareto-like species interac-
tion network where interactions are inferred by TE (Figure 3.5b). Figure 3.1B,C
shows the RSA-rank plot and the Preston’s plot of species diversity dependent on
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RSA. The RSA-rank shows two dynamical regimes for the unhealthy and transi-
tory groups: a result that likely confirms the bimodality in local species richness α.
By plotting the Preston’s plot in log-log, a scaling relationship was found showing
a faster decay in species richness for the unhealthy group.
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Figure 3.1: RSA trajectories, RSA-rank, and Relative Species Abundance.
Blue, green and red curves refer to the healthy, transitory and unhealthy micro-
biome, respectively. The healthy microbiome shows smaller fluctuations in species
diversity α vs. RSA and one regime when considering the RSA-rank profile. An in-
verse scaling law was detected between the average species diversity and RSA (inset
(C)).

Considering the RSA of species in time, from the most to the least relatively
abundant, a transition in the pdf of RSA was observed from a pseudo-normal distri-
bution (corresponding to a homogenous spatial distribution) to a Dirac-like distribu-

61



3.3. Results
Chapter 3. Optimal Microbiome Networks:

Macroecology and Criticality

tion (corresponding to a singular point distribution) considering the maximum and
minimum RSA. Considering the RSA of all species together (Figure B.2) the tran-
sition is less dramatic, from an exponential to a log-normal-like distribution. Inter-
mediate RSA species, independently of species belonging to the healthy, unhealthy
or transitory group, show a scale-free like distribution underlying the fact that these
species are fundamentally important in the function of the complex microbiome as
highlighted in [95]. Rare species seem also to display a truncated scale-free be-
havior (limited by their maximum RSA as a finite size factor rather than limited by
spatial biological constraints), which also underlines their importance for the mi-
crobiome organization. These pdfs are a signature of species interaction networks
for different RSA groups: pseudo-random, scale-free, and small-world topology for
the highest, intermediate and lowest RSA class, respectively. Further results discuss
the connection between RSA and species information flow.

3.3.2 Network Inference

The inferred microbial networks corresponding to the three microbiome groups are
shown in Figure 3.2. Maximum entropy networks evidence the different topology in
microbiome organization for healthy, unhealthy and transitory group. In the struc-
ture of these networks, the size of each node is proportional to the Shannon entropy
of the species and the color is proportional to the structural degree. In Figure B.3,
we show the networks whose nodal color is proportional to the total outgoing TE
(OTE) that is likely more representative of node activity in a collective network
sense. The higher is the value of the structural degree (or OTE in Figure B.3), the
warmer is the color. The width of each edge is proportional to the TE between pairs
and the direction is corresponding to the directional influence. All OINs are special
MaxEnt networks, i.e., networks for which the total network entropy is maximized
(MENets) and where redundant nodes are removed (see Section 3.2.4). Thus, OINs
allow one to identify the fundamental functional species interactions useful for pre-
dicting microbiome dynamics. The transition in network topology, from random
to small-world (tending toward a scale-free network) for the unhealthy and healthy
groups, is manifested also by the shift in total entropy pattern (left plot in Figure
3.2). The latter is asymmetrical and symmetrical for the random/unhealthy and
scale-free/healthy microbiomes, respectively. This type of network transitions has
been observed for large ecosystems. The network entropy plots show that network
entropy over information flow is roughly symmetrical for healthy individuals, ex-
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pressing that the interconnectedness in healthy communities is more dynamically
balanced than unhealthy ones. Figure S3 shows microbiome networks for a high
value of the threshold on TEij , which establish the information exchange (of flow)
between species above which links become relevant. However, these networks are
no more OINs. Considering the total network entropy and its decomposition, it was
observed that the most important nodes in terms of OTE (Equation (3.5) and Fig-
ure B.6), that is the information flow necessary to predict all other nodes’ dynamics,
are the dominant species in making up the total information network (Figure B.5).
In other words, the entropy of each single node in isolation H(xi) is a second- or
third-order factor in determining the total network entropy.Figure B.7 shows that
most species interactions (TEs) are positive for the unhealthy microbiome, which
is underlying the evidence that mutualistic positive feedbacks leads to instability;
therefore, higher α and γ diversity in short and long term do not guarantee stability
if interactions are predominantly in one direction. The healthy microbiome instead
has balanced positive and negative interactions that lead to microbiome stability.

Figure 3.3 shows macroecological indicators of diversity of the microbiome for
healthy, unhealthy and transitory individuals. We show that species diversity α,
and total species diversity γ are the highest in the unhealthy group (for which av-
erage RSA is also the highest) but species similarity 1−β and the diversity growth
rate α′ over time are the highest for the healthy group. This is a critical result
that shapes microbiome organization around healthy or dysbiotic states. The high-
est fluctuations in RSA and macroecological indicators (in particular, α and γ) were
observed for the transitory and unhealthy groups. These results underline the poten-
tial conclusion that too high levels of diversity are possibly unsustainable, leading
to unhealthy unstable states related to the abnormally excessive multiplication of
species in the guy ecosystem. These species may be invasive from outside sources
or subspecies created within the gut as a response to external stressors. It is inter-
esting to note that the behavior of the pdf of α informs about the potential states of
the microbiome in each group. The pdf is platykurtic multimodal for the unhealthy
microbiome, which suggests the presence of multiple unstable states, and it is lep-
tokurtic monomodal for the healthy microbiome which implies one stable state.
The transitory microbiome shows an almost symmetrical pdf underlying the fact it
exists in between the healthy and unhealthy microbiome. These results underlines
the resilience of the microbiome as a whole dictated by the ability to change as a
function of external stressors as well as the higher stability of the optimal healthy
state. However, the latter seems easy to perturb considering the lower entropy (and
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probability, or corresponding high free energy) defined in one state. This ability to
change state is also a good indicator of gut adaptability and human body resilience.

Species collective interaction and singular importance is shown in Figure 3.4 by
plotting the information theoretic TEI σi and µi (see Methods, Section “Assessment
of Species Importance and Collectivity”). The top 10 interacting species are also
the least relatively abundant for the healthy microbiome and the most detrimental;
however, these species are controlled by other species and the microbiome is orga-
nized into a healthy state. Figure B.7 shows that from the top to the least 10 TE
species there is a shift in the pdf of RSA from a bimodal to a monomodal distri-
bution for the healthy microbiome. For the transitory and unhealthy microbiome,
instead, there is a shift from a leptokurtic (Dirac-like) to a platykurtic pdf (uniform-
like). The top 10 TE species are the most detrimental bacteria (“antibiotic”) but
their RSA is small for the healthy microbiome; this means that these bacteria are
controlled (in terms of RSA variability) by all other beneficial bacteria. The top 10
TE species are mostly characterized by positive interactions (positive TEs) while
the least ten 10 TE species are characterized by negative interactions (feedbacks).
For characterizing species collectivity or single species dynamics, as well as for pre-
dictability, OTE that is a node function is better suited than TE that is a link function.
The pdfs of OTE in Figure B.6 show more clearly the changes in species dynam-
ics for each health state and overall species activity manifested by the magnitude
of OTE. The top 10 OTE species are always characterized by positive feedbacks
vs. the least 10 OTE species with negative feedbacks (top and bottom plots of Fig-
ure B.6). Figure B.8, by plotting the pdf of all TEs and OTEs for any group, further
emphasizes the fact that there is a positive bias and an asymmetry for the unhealthy
group species interactions.

The non-linear duality between microbiome structure and function is shown in
Figure 3.5 where structure is considered via the network degree (Figures B.9 and
B.10) and function is about the nodal information flow OTE. The epdfs show how
microbiome function is much more suited to show functional network topology ver-
sus microbiome structure. Function is a much more important property than struc-
ture which is just based on geometrical analyses of cooccurrence species networks.
This scale-free function may be related to the scale-free behavior of the intermediate
RSA species, as shown in Figure B.2. As shown in Figure 3.2, visually, the healthy
microbiome functional network is tending toward a scale-free topological organiza-
tion. Statistics of the functional scale-free network based on TE are in Figure 3.5.
This mild scale-free organization (see, e.g., [121], where the authors highlighted
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the difficulty in defining the classification for these networks into one topology rad-
ically) does not correspond to a scale-free distribution of α-diversity (Figure 3.5
bottom plot) that instead is exponential. Additionally, some functional network
features beyond the inferred RSA-based interdependence (TE and OTE) show a
bimodal or Poisson distribution (Figure B.10) characterizing more small-world net-
works rather than scale-free ones. However, we point out how these features are
more structural than functional (see Equations (3.11) and (3.13)) since they char-
acterize species interactions directly. The non-linearity among structure, function
and microbiome service (i.e., diversity in this paper) is highlighted when plotting α
dependent on functional network degree and distance (Figure B.10). α diversity in-
creases for high values of the functional degree (Equation (3.13)) but does not have
a clear trend when considering the functional distance (Equation (3.11)). α(df ) is
lower for the unhealthy than the healthy microbiome for the same range of func-
tional distances which highlights the more random distribution of diversity in any
dysbiotic state. We observed 72, 378, and 9647 unique values of functional distance
for the healthy, transitory and unhealthy group. The highest diversity in functional
distances for the unhealthy group confirm the fact that the unhealthy microbiome
is more densely connected and the number of small distances (high species inter-
dependencies) is lower than the healthy one. However, the healthy microbiome
is more clusterized into species clusters. The values of functional distance were
normalized and the distribution of α over the normalized distance shows a random
arrangement for the unhealthy group with respect to the healthy one (Figure B.10).

We found the most interesting results when we combined microbiome service
and function indicators, for instance considering total macroecological diversity γ
and OTE. Figure 3.6 shows the relationship between γ and the temporal sampling
scale (i.e., the number of speciation events) in analogy to the species–area relation-
ship widely used in macroecology. The plot shows a scaling relationship valid for
two orders of magnitude whose exponent is higher for the healthy than unhealthy
group underlying the optimal growth of diversity for the healthy microbiome. Con-
sidering this optimal diversity growth relationship, it is meaningful how the transi-
tory microbiome has the largest value of γ′ leading to a change in diversity from the
healthy species “poor” to the unhealthy species “rich” microbiome. These results
are in synchrony with the power-law decay of species similarity 1 − β over time
(Figure 3.6, bottom left). When considering OTE of species as a function of their
RSA, we found a surprising scaling law over four orders of magnitude; this law
with an average exponent close to 1/4 (very common in biology, for instance the
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mass-specific Kleiber’s law [122]) implies a decay in species interaction for highly
relatively abundant species. When comparing γ over OTE (Figure 3.6D), a non-
linear growth is detected where a common increase in total diversity occurs until a
critical species interaction value, above which γ slows down or remains stationary,
at least for the healthy and transitory groups. For the unhealthy group, the growth
of γ seems to slow down but not reach a stationary state; this may relate to the
continuous multiplicative generation of detrimental species in the gut.

3.4 Discussion

We employed an information theoretic model for the inference of microbial species
interaction networks based on RSA interdependence. The model was used to infer
microbial networks associated to different health states and is suitable for predicting
selected biodiversity patterns characterizing the space-time organization of bacte-
ria α-, β-, and γ-diversity. Thus, the primary purpose of the model is not to infer
causal (or “true”) species–species interactions among bacteria. The computational
inference of “real” interactions is always very hard—provided that there is a com-
plete knowledge of the reality on which results can be validated—and any inferred
interaction is always dependent on the analytics and data used. For instance, RSA
profile may not necessarily contain the information about all species–species inter-
actions aimed to be assessed but still the question remains about what is truly an
interaction (aimed to be measured) since any physical or functional interaction may
not necessarily reflect any change in RSA, or other biomarker. Additionally, any
change in RSA or other biomarkers may be related to other external factors, such as
environmental fluctuations, which alter species simultaneously. What is certainly
true, however, is that, if the inference model detects strikingly different patterns for
different population groups, then those patterns likely tell something meaningful
about different dynamics and collective environmentally driven changes [104, 105].

In this perspective the entropy-based model is focused on the predictability of
patterns vs. causal investigation of mechanisms. The proposed model can be ap-
plied to both abundance and RSA, or other biomarkers, without any special modifi-
cation. Theoretically, the pdf of abundance and relative abundance is the same leav-
ing aside numerical artifacts; independently of this, RSA seems better suited for this
type of ecological analyses because it informs about changes of species abundance
with respect to the whole community. Abundance and/or RSA seems also the most
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likely to detect species functional roles and interactions as highlighted by recent
studies [115]. Constructing a network for each health group is the purpose of studies
such as ours that try to identify common group dynamics in populations indepen-
dently of individual variability, where universal group dynamics in microbiome is
the core quest). The identified network topologies have a correspondence with the
dynamics of RSA, that is a critical dynamics for the scale-free information network
associated to the healthy state, and exponential dynamics for the random network
associated to the unhealthy state. The total network entropy is the lowest for the
healthy microbiome for any threshold of the information flow TE (Figure 3.2). This
implies higher free energy available to the healthy microbiome and lower infor-
mation needed to function where information entropy in the physical space can be
thought of as the average interspecies communication/interdependence. The lower
entropy in species collective interactions has certain implications for data collection,
potentially implying fewer data are needed for characterizing healthy microbiomes.
This is because one single globally stable state was identified for the healthy mi-
crobiome (in the entropy pattern in Figure 3.2) vs. multiple stable states for the
unhealthy microbiome (one globally and two locally stable state for high, medium
and low value of network entropy, respectively). These states correspond to differ-
ent biodiversity states in terms of α, β and γ. The existence of multiple dysbiotic
states seems to confirm the previously observed “Anna Karenina effect” [119] where
“all healthy microbiome look alike, instead each unhealthy microbiome is diverse in
its own way”. More theoretically speaking, the lowest entropy across the system’s
landscape of potential states is a sign of criticality that is the state toward which any
ecosystem tends to [99]; the critical state is where there is a balance of system’s
self-organization and environmental influence [105].

The inferred patterns in this paper are representative of confirmed health states
where individuals are confirmed representative samples ( [108] published the origi-
nal dataset) for IBS and non-IBS people, as reported by [81]. Patterns and methods
are proposed to highlight what is relevant to look at when describing state tran-
sitions and characterizing health states. The number of individuals sampled in a
population matters as a function of expected or reported patterns’ changes. Reli-
ability is not only dependent on the sample size but also on the consistency and
differences within and among samples. In this particular study, we found striking
differences between potential health states and many times concordant with the re-
ported literature. Further research is required to test the biological universality or
local specificity of these patters across a much larger population sample than the
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one considered. Analyses were made considering varying data lengths for individ-
uals, which did not change any pattern considered significantly. This means that
the dynamics represented in the time series is well contained at least in the small-
est data sample available. The smallest reliable sample is for ten data points that
seems in this case the minimum data length to have in order to have representative
probability distributions.

Considering the issue of compositionality, which is related to the issue of hav-
ing samples consisting of proportions of various species with a sum constrained to a
constant, the theory suggests that a small number of species should increase compo-
sitional effects. In our case, the number of species is 47 at minimum and that should
limit the effect of compositionality because the sample is large enough. Microbiome
sequence datasets are typically high dimensional, with the number of species much
greater than the number of samples. The consideration of pdfs limits the issue of
compositionality, as well as the focus on group vs. individual statistics limits the
issue of data sparsity (considering both rare species and the length of time series).
Of course, this macroecological purview does not imply any strict causality infer-
ence but rather aims to set up the basis for the predictability of microbiome group
features. This is also because there is no well established data or model to identify
what is truly a causal effect between species, although some advancements have
been made in the field of information theory such as in [84] where information flow
(such as the one used in our model via TE after entropy reduction) proves to assess
local causality vs. information transfer via simple TE. Arguments have also been
formulated about the general validity of TE to infer causality (see [112]). However,
beyond these analytics centered debates, the fundamental argument should also be
focusing on what kind of interaction based on data is truly inferred, what is the in-
teraction that is wished to be inferred, and what is the modeler choice of analytics
selected to represent reality [85]. All these elements of discussion would make the
interpretation of results clearer, such as the distinction between inferred networks
for predicting patterns vs. inferred networks claimed to represent the physics of the
biological system considered. Despite sophisticated approaches to statistical trans-
formation (such as centered log-ratio transformation that can remove the constraint
of the sum of species proportions), the analysis of compositional data may remain
a partially intractable problem because RSA is the information that is available.
Given these findings, promising work has been done on addressing compositional
data as a significant challenge to co-occurrence network inference, but the problem
is still not solved. However, TE is not affected by compositional data (provided
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enough data are given to characterize pdfs) precisely because it uses pdfs in net-
work inference and the pdf of RSA, raw abundance, and any transformation applied
to all species is the same. A problem may arise only when data are asymmetrically
transformed in a way that the pdf of one or more species is altered.

The entropy/free energy patterns (or “entropy-flow patterns”) in Figure 3.2 do
not show any strong scale invariance as for instance in [30], likely because no pure
scale-free networks are observed in the microbiome organization. In this study, we
focused on the total entropy as a utility function versus the value function defined
in [30] (based on a systemic indicator) where raw values of network variables were
considered rather than TEs among them. The focus on network variable interde-
pendence (that is between species in this context) rather than nodal values (i.e.,
RSA for the microbiome) leads to a higher variability in network entropy patterns.
Therefore, we believe that the focus should be on network function in order to bet-
ter characterize networks; this is substantiated by the higher importance of species
interactions (OTE) versus species independent dynamics (represented by nodal en-
tropy), as shown inFigure B.5. This figure shows that OTE makes up almost the
whole Network Entropy (HN ) (see Equation (3.5)) so Nodal Entropy has little im-
portance. Entropy-flow patterns are then useful for detecting scale-invariance in the
functional topology of the network and for identifying MaxEnt states. Additionally
the entropy-flow patterns can reveal healthy vs. unhealthy states by considering the
symmetry of the entropy distribution; if symmetrical positive and negative species
interactions (TEs) are found these interactions sum up to zero leading to a healthy
neutral state. The asymmetry of unhealthy microbiome can certainly relate to non-
neutral states created by strong stressors, as highlighted theoretically in [113]; these
state may not allow host individuals to keep the microbiome “on a leash” [123] that
causes overgrowth of abundance and multiplication of species. However, the bro-
ken symmetry can be indeed manifesting an unhealthy state. The neutral state also
coincides with the critical state because of the tendency of the network toward a
scale-free organization manifested by the epdf of OTE (Figure 3.5), higher func-
tional distances and smaller functional degrees (Figure B.10).

To assess the robustness of microbiome networks, we considered the network
topology for high thresholds values of the interspecies TE. In other words, we con-
sidered as meaningful TEs, only those above a certain threshold. According to
the 80-20 Pareto principle (that states that 20% of subcomponents make up at least
80% of a system’s dynamics [124]) (note that this principle works for scale-free sys-
tems), we considered only the highest 20% of TEs for the inferred networks. These
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Pareto high threshold networks show that the healthy group maintains the topology
while changing TE; this is because healthy networks are more scale-free than un-
healthy ones (see Figure 3.5, middle, for the epdf of OTE), yet scale-invariance is
preserved when changing the threshold defining the scale at which the network is
constructed (or observed). This scale analysis is equivalent to make experiments
when random nodes are removed simulating a random attack on networks [125];
thus, we can also claim the higher resilience of the healthy network for the mi-
crobiome. However, this result is expected considering the known optimality of
scale-free networks [116]. The scale-free configuration enhances stability as con-
firmed by the calculation of the dominant eigenvalue for both the adjacency and
TE matrices; the dominant eigenvalue is the smallest for the healthy group that is a
signature of network stability [76].

The “non-pure” scale-free organization of the microbiome confers the ability to
adapt to different externally-driven changes and to adapt vs. a more stable scale-
free topology. Overall, we suggest to focus on TE and OTE as the best indicators
of microbiome function (for pairs and node functional characterization), vs. any
other indicator, since those are related to species interdependence. As highlighted
in recent studies (see [115]) abundance determines the functional role of bacterial
phylotypes in complex communities; rare and common bacteria are implicated in
fundamentally different types of ecosystem function [115]. Such knowledge could
be used, for example, to understand how bacteria modulate biogeochemical cycles,
and to engineer bacterial communities to optimize desirable functional processes.
Microbiome service is here identified by any microbiome diversity indicator in anal-
ogy to how services are also expressed for large scale ecosystems. Certainly, it is
true that α-, β- and γ-diversity cannot be “equated” to large scale ecosystem ser-
vices (i.e., the benefits that people derive from nature and how these are quantified
as “natural capital”), but any diversity measure is a valuable indicator of biological
function at any scale of biological organization (see, for instance, [126] and [127])
much more than structural indicators, as shown in this paper. Therefore, there is
a desired ecosystem service-function nexus that is desirable and related to healthy
states (which is the benefit individuals get from having the “right” value and pat-
terns of macroecological indicators manifesting optimal biodiversity organization).
Of course, especially in microbial ecology where the identification of species is
more difficult than large scale ecosystems, there are arguments about the utility and
validity of different diversity metrics such as γ vs. evenness. Nonetheless, indepen-
dently of this, we argue that our analyses would result in equivalent conclusions.
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For instance, in our case, high γ corresponds to low evenness and vice versa; thus,
biodiversity patterns would reveal opposite trends but provide the same meaning
because of the γ-evenness relationship.

In our microbiome data, we considered the complementary of β-diversity over
time via the Jaccard Similarity Index (JSI) and we showed that JSI is higher for the
healthy than the unhealthy microbiome over time. This means that the local species
richness, α, tends to be more equal to previous values over time; however, this
underlines the stability of α (species organization) in the healthy state. For the un-
healthy microbiome, the similarity over time is lower (i.e., higher species turnover,
or higher β-diversity) such as for the corals in [119] that are evaluated over time as a
function of external stressors. In other types of ecosystems, e.g., in coral ecosystems
under stress, [119] found that the true β-diversity increases over time. In macroecol-
ogy, leaving aside the debates about the many definitions of species turnover, and in
an entropic context the true β-diversity is the ratio between regional (γ) and local
species diversity (α) [63]. This definition is in line with the general information
balance equation (Equation (3.2)) and the more specific diversity balance equation
Hγ = Hα + Hβ as in [63]. An increase in β is typically associated with a decrease
in α as much as we observe for the healthy microbiome, and this is also associated
to fluctuations of α that are smaller than those for the unhealthy microbiome. The
“proportional species turnover” (i.e., where βp = 1 − α/γ, when considering γ

partitioned into additive rather than multiplicative components) that quantifies what
proportion of species diversity is not contained in an average representative sam-
ple, is also higher. This emphasizes how our results are robust independently of
the peculiar definition of species diversity indicators. In ecology these quantities
are typically evaluated over space and in healthy conditions 1-β has a relatively fast
decay but never goes to zero; this means that heterogeneity exists but even commu-
nities far apart have species in common. Considering space in unhealthy conditions,
typically the “true” β-diversity is smaller than in healthy conditions because much
more homogeneity is achieved. However, heterogeneity is a good thing as shown
for ecosystems at any scale of biological organization.

The higher variability of β-diversity in healthy individuals highlights the “Anna
Karenina phenomenon” for human microbiomes. The principles underlying the
phenomenon states that dysbiotic individuals vary more in microbial community
composition than healthy individuals paralleling Leo Tolstoy’s dictum that all happy
families look alike (“each unhappy family is unhappy in its own way”). The stability-
unimodal pattern of diversity is concordant with current theories looking into β-
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diversity vs. solely α-diversity for the stability of ecosystems [118]. This is also
concordant with the network entropy pattern that is unimodally stable for the healthy
group. Thus, we innovatively highlight the linkage between information exchange
and diversity in biological systems. [128] previously found that ecosystem hotspots
are those that maximize the Value of Information (of biodiversity) which coincides
with those that minimize β-diversity variability over time. The multiplicity of “un-
happy/unhealthy” states is reflected by the network topology that is random for the
unhealthy group, which allows many more potential unhealthy microbiome combi-
nations. We support the position of previous studies that Anna Karenina effects are
a common and important response of animal microbiomes to stressors that reduce
the ability of the host or its microbiome to regulate community composition. These
effects may be transient and necessary to bring back the system to the healthy state.

Similar to other ecosystems, we show that scale-invariance (that is occurring
for the healthy microbiome) does not arise from an underlying criticality (where
fluctuations becomes bigger and bigger causing the system to tip abruptly) nor self-
organization at the edge of a phase transition. Instead, it emerges from the fact that
perturbations to the system exhibit a neutral drift (also relate to small extrinsic en-
vironmental changes) with respect to the endogenous spontaneous dynamics. This
neutral dynamics, similar to the one in genetics and ecology, shows fluctuations of
all sizes simultaneously that likely determine power-law distributed species diver-
sity (as well as power-law information exchange among species). The tipping point
that was observed, i.e., between healthy and unhealthy microbiome, is a second-
order critical transition where exogenous fluctuations are too large to be assimilated
by the system and the microbiome tips from healthy to unhealthy. This transition is
evident in the shape of the pdf of microbiome function and diversity (as microbiome
service) but not in the shape of microbiome structure (unless a rescaling in size is
performed, for instance for the microbial network degree; see Figure 3.5).

The introduction of new pathogens driven by the environment can lead to the
alteration of the whole ecosystem microbiome [81]. In our case study, despite the
non-explicit consideration of the disturbance agent, we found a transition in IBS
individuals from healthy to unhealthy states. However, this disturbance agent was
considered by [108] and [81], who worked on the original dataset. Independently
of the disturbance, healthy individuals have larger gradients of speciation events
and higher growth rate for γ-diversity because they produce more species (diverse
of not) to guarantee necessary/basic biological function and other functions related
to extreme fluctuations. Not all species need to be present all the time and that is
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likely the motivation for which the average γ′ is higher for healthy and transitory
individuals than unhealthy people as well the average γ is lower for healthy ones.
γ′ seems to reflect the general dynamical systems’ pattern indicated by the Heap’s
law [129] that regulates the rate of diversity produced by a system. This is asso-
ciated to the Taylor’s law regulating mean and fluctuations and the Zipf’s law (in
our case of RSA which influence macroecological indicators). In a more ecologi-
cal purview, the species–area-like relationship in Figure 3.6A can also emphasize
the island biogeographic effect where for islands/healthy individuals γ is lower but
γ′ is higher than the mainland/unhealthy people due to optimal growth (ideally not
impacted by invasions). The higher γ for unhealthy individuals is likely related
to invasive species for instance attributable to external sources; healthy individuals
instead, have a gut flora composed by only endemic species. In a general view,
Taylor’s law regulating RSA fluctuations, Zipf’s law governing RSA distribution,
Heap’s law relating γ’s growth over time, and the mass-specific Kleiber’s law are all
liked together by the Pareto optimal principle of self-organized design [130–133]
that can inform about the optimality or pathology of biological systems.

The microbiome in the gut is similar to any ecosystem: no other species at
all scales of biological organization can survive optimally if the microbiome is al-
tered. The microbiome is the linkage between the fundamental genetic organiza-
tion of life and the stochastic environmental dynamics; in the context of a person’s
growth, it is possible to refer to those two processes as nature and nurture. The
proposed information theoretic global sensitivity and uncertainty analyses (Figure
3.4) allow one to map the dynamics of species considering their interactions and
absolute influence, and to see how these quantities vary considering their intrin-
sic biological variability and environmentally driven variability. One must keep in
mind that these interactions are based on mutual RSA interdependence assessed by
TE, so TEs might not represent the whole “true” interactions among species; how-
ever, recent evidence points to this conclusion [115] but there is still a lot work to
be done in this area. In the healthy state, more species (fewer in number) are in-
fluencing the collective dynamics with a more organized distribution of interactions
(“hierarchical” organization), while for the transitory and unhealthy state all species
(higher in number) are somehow behaving equally and likely driven by external en-
vironmental stimuli (“random” organization). This organization is also reflected
by network properties (Figures B.9 and B.10) that can be altered for the same set
of species/diversity. Researchers have found that cooperation promotes ecosystem
biodiversity, which in turn increases its stability without any fine tuning of species

73



3.4. Discussion
Chapter 3. Optimal Microbiome Networks:

Macroecology and Criticality

interaction strengths or of the self-interactions (i.e., neutrality) [134]. Even small
values of TEs (close to zero) manifesting mutualistic interactions (positive) among
species can stabilize the dynamics. Stability increases with the ecosystem simplic-
ity where the latter is related to the scale-free like organization of bacteria. On the
other side, too much cooperation (e.g., dictated by networks for high values of TE)
promotes instability and complex random networks. It is interesting to note that
this scale-free cooperation of species leads to Taylor’s laws [135] between mean
and variance of RSA where Taylor’s exponent is different for healthy and unhealthy
groups [81]. However, this reemphasizes the connection between time dynamics,
network organization, and ecological patterns of diversity and RSA [97, 134, 136].
In particular, it has been shown that higher-order interactions (e.g., captured by σi
in our model) have a stabilizing role [136]. These higher-order interactions are all
those beyond the simple pairwise interactions whose sum indeed cannot explain
the whole composition and dynamics of ecosystems [137]. We show that these
higher-order interactions cannot be prevalent because some species must have an
independent dynamics (captured by µi) otherwise instability and tendency toward
disorganized unhealthy state is very likely (Figure 3.4).The healthy critical state is
in fact characterized by an heterogenous distribution of σi and µi for species that is
optimal for the microbiome.

The definitions of detrimental and beneficial bacteria (some of them listed in
Figure 3.4) were based on previously published papers. For instance, Lactobacil-
laceae and AcidobacteriaGp18 are beneficial, while Neisseriaceae and Campy-
lobacter aceae are detrimental. Of course, this is just a rough categorical classifica-
tion because as we emphasize in this work, for a bacteria being detrimental or not is
a function of relative abundance and network topology rather than just being present
or not in the microbiome or other independent properties without considering the
bacteria collectivity. Microbiome functional network topology defines how all bac-
teria behave synergistically and that synergy brings a healthy or an unhealthy state.
Additionally, the functional topology characterization, for instance determined by
OTE, can avoid the issue of determining precisely what true “species” are that is a
debated topic in microbial ecology. The focus is on portfolios of interacting species
whose interaction is responsible for the microbiome dynamics/state. This result
sheds some light into a vision where a diminishing role of network hubs (consid-
ering total information flow) is reported as found by other studies [138]. The least
relatively abundant species for the unhealthy microbiome are the most interactive
and the least detrimental. On the contrary, the most relatively abundant species
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(Figure B.4) for the unhealthy microbiome are the least interactive and the most
detrimental. These analyses considering the activity of species show the importance
of weak ties (interactions) for the healthy and unhealthy groups. This is in accor-
dance to general dynamical principles such as the Granovetter principle about the
strength of weak ties for the systemic dynamics of a complex system [139]. For the
healthy microbiome, the highest RSA species interact the least and these species
are the most beneficial. These species–specific analyses, when verified, are useful
for detecting species that are more beneficial or detrimental and this knowledge can
lead to design probiotic treatment, microbiome transplants [140], and large scale
ecosystem microbiome controls [141] for instance.

Universality in human microbiota dynamics, whether present, can be ideally ma-
nipulated in a similar or even identical fashion in multiple individuals for population
health. Following the discovery of universality and the demonstration of beneficiary
effects of specific interventions, microbiome engineering efforts can be applied to
a large number of people. In this way, microbiome engineering will be highly cost-
effective as a public-health based approach. This is in sharp contrast to the excessive
cost of “precision-medicine” approaches that try to target individual microbiome
dynamics by considering it as a purely individual-based feature. Current frontier
topics are also related to the understanding of how the microbiome and functional
brain networks “communicate” [142]. It seems that the nervous system contribute
to dictate which microbes inhabit the gut; this in turns affects emotional response
and long term well being beyond short-term health. The hypothalamic–pituitary–
adrenal axis (HPA axis) is a primary mechanism by which the brain can commu-
nicate with the gut to help control digestion through the action of hormones [142].
It seems that the nervous system, through its ability to affect gut transit time and
mucus secretion, can help dictate which microbes inhabit the gut, which in turns
affects emotional response and long-term well being beyond short-term health.

3.5 Conclusion

An information theoretic model for the inference of microbiome networks and the
related biodiversity organization over time is proposed. The model consists in the
assessment of transfer entropy-based species interactions after entropy reduction
calculations that remove the second-order indirect interactions between species as
in the works of [84] and [111]. Maximum entropy networks are then extracted
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considering the highest information content without model overfit; overfitting is
avoided by removing the redundant variables for the simplest MENet, that is an
Optimal Information Network. Species interactions should be interpreted in terms
of species predictability rather than causal mechanisms due to the data- and model
based-dependence of the inferred interactions [112]. The macroecological valida-
tion of the model was performed considering the ability to simultaneously predict
the pdf of α-diversity, γ-diversity growth, species similarity (1− β) decay, and the
RSA-rank profile. This validation allowed predicting other biodiversity patterns
such as the Preston’s plot of average species richness dependent on species RSA.
Considering the application of the model to healthy and IBS symptomatic individ-
uals, the following points are worth mentioning without lack of generality.

• Directed species interdependencies and phase transitions of the microbiome
over time were detected. The healthy microbiome is characterized by bal-
anced positive and negative species interactions vs. the unhealthy microbiome
where most species interactions are positive. The balanced interactions were
evidenced by the symmetrical pattern of the total network entropy as a func-
tion of the pairwise information flow (TE) vs. the positively biased asymmet-
rical pattern of the dysbiotic microbiome. The healthy symmetrical network
entropy pattern underlines the neutral “sum to zero” dynamics of species in-
teractions (based on RSA); the same neutrality was found for biodiversity
of large scale ecosystems at stationarity that are driven predominantly by in-
trinsic ecological stochasticity (ecological drift). On the contrary, unhealthy
microbiome entropic patterns are affected by environmental disturbances; the
positive bias in information flow (that may relate to infections and antibiotics,
as shown in the original data [108]) causes an overgrowth in RSA of many op-
portunistic species as well as the generation of new detrimental species. The
categorization of beneficial and detrimental species was based on published
literature; however, we emphasize how important it is to consider collective
bacteria topology vs. individual bacteria behavior when defining health and
disease;

• The healthy state is characterized by the highest total species diversity growth
rate γ′ (leaving aside the transitory microbiome) and the lowest loss of species
similarity over time, i.e., species turnover ((1−β)′). A relationship similar to
the species–area relationship for large scale ecosystems was found between
γ-diversity and the number of species generations with an exponent equal to
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0.20 on average. The fact that the healthy microbiome has the lowest average
total diversity (γ) is in contrast to what is observed in large-scale ecosystems
at stationarity where the highest total diversity correspond to the stable and
supposedly healthy state [143]. However, we speculate that an optimal di-
versity growth is oriented toward maximizing growth rate rather than total
diversity (as according to many Pareto portfolio theories). The latter can lead
to over-redundancy of microbial interactions and instability as observed for
the dysbiotic microbiome; the highest γ diversity for unhealthy ecosystems
is related to non-endemic species. Hence, we tend to challenge the diversity–
health–stability hypothesis when for diversity the total systemic diversity γ is
solely considered without the consideration of “invasive” species and γ′;

• We observed a phase transition of the second order from the healthy to the
unhealthy state and vice versa. The transition from healthy to unhealthy is
characterized by typical signs of transitions observed in many complex sys-
tems [144], i.e., an increase and a decrease in mean and variance of species
diversity while approaching the transition (“critical slowing down”). In the
unhealthy state the variance of α is higher than in the healthy state and con-
centrated around two values which underline the likely chaotic-like dynamics
of the microbiome. In terms of microbiome functional network topology,
a transition between the scale-free to the random network topology is ob-
served. The critical state, defined by a scale-free-like organization of micro-
bial species interactions, coincides with the neutral state (i.e., for the symmet-
rical network entropy pattern) emphasizing how criticality does not necessar-
ily occur at critical phase transitions, particularly for second-order transitions
as in this case. Rather, criticality can coincide with neutrality in open energy
dissipative systems, as observed in other complex systems [89]. Criticality
at the phase transition can favor gut adaptability but may pose high risks to
tip to unhealthy states. Neutrality implies lower topological complexity and
higher dynamical stability (corresponding to higher symmetry, higher orga-
nized information exchange, lower entropy/total information, higher diver-
sity, and higher predictability (or information content)) considering the scale-
free and small-world functional and structural organization of the microbial
network. We emphasize how the healthy local stable state is dynamically
flexible because of the lower entropy (i.e., higher free energy) and more pre-
dictable due to the more organized collective behavior of species; however,
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due to the gradient in entropy moving from locally stable unhealthy condi-
tions to the globally healthy stable one is hard;

• A probabilistic linkage was found between microbiome function and services,
defined by species interaction topology and biodiversity organization, respec-
tively. We did not find any correspondence between microbiome structure and
function, which emphasizes the non-linearity between the two and the impor-
tance of assessing function rather than structure in biological networks. We
propose the total Outgoing Transfer Entropy (OTE) as the measure to identify
the most influential nodes (and pairs); these nodes are able to predict the be-
havior of all other connected nodes, as well as of the whole microbiome. OTE
is largely determining the total entropy of the network compared to the sum
of nodal entropies whose contribution is negligible. This emphasizes even
more the role of collective behavior vs. individual nodes considered in iso-
lation. The highest OTE nodes have the lowest RSA, and these are the most
beneficial and the most detrimental bacteria for the dysbiotic and healthy mi-
crobiome. A scaling law was found between OTE and RSA with an exponent
close to 1/4 that is similar to the mass-specific Kleiber’s law [122] where the
species specific metabolic rate is the OTE and the mass is the RSA. A power-
law distribution for the microbiome function (i.e., the sum of nodal OTE)
was found for the healthy state (with an exponent ∼2 that implies finite mean
but infinite variance suggesting how the healthy condition is prone to pertur-
bations enhancing fluctuations of all sizes) despite no information (or reso-
lution) invariance being detected in the network entropy pattern (see [30]).
The lack of scale invariance in the entropy/free-energy phase space may im-
ply the metastability of the microbiome that can indicate its resilience in terms
of ability to move quickly from one state to another.
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Figure 3.2: Network entropy patterns and inferred Optimal Microbiome Net-
works. Network entropy dependent on the pairwise information flow (TE) (left
pattern) and extracted Optimal Information Networks for the microbiome on the
right (Maximum Entropy Networks after node redundancy exclusion). The size of
each node is proportional to the Shannon Entropy of the species; the color of the
node is proportional to the structural degree (in Figure B.3, the color of each node
is proportional to the sum of total outgoing TEs of each node (OTE); the higher is
the OTE, the warmer is the color); the distance is proportional to exp(−MI(X, Y ))

whereMI(X, Y ) is the mutual information between species RSA x and y; the width
of each edge is proportional to the pairwise Transfer Entropy; and the direction is
related to TE(i− >j); the direction of this edge is from i to j.
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Figure 3.3: Macroecological indicators of microbiome networks and probabilis-
tic characterization. Average α, species similarity 1− β, and total diversity γ are
plotted as a function of time. Their probability distribution is shown on the right.
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Figure 3.4: Importance and interaction of microbial species, and top 10 most
active species species. Transfer Entropy Indices: σ is describing species interaction
and is calculated as the ratio between the total Outgoing Information Flow (OTE)
(OTE(j) =

∑
i TEj→i) and the Total Network Entropy, while µ is describing the

species importance as the ratio between the Nodal Entropy (Shannon Entropy) and
the Total Network Entropy. The continuous line in each σ-µ plot shows the critical
edge that describes a state between regularity and chaos. On the right, the top
10 most active species in terms of OTE (and least relatively abundant) are ranked.
These species are the most detrimental for the healthy group and the most beneficial
for the unhealthy one.
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Figure 3.6: Macroecological scaling patterns and predicted species interactions.
(Left) The scaling of total γ-diversity and species similarity 1 − β dependent on
the number of speciation events (that is the number of new and existing species
introduced until the time considered); speciation time is a proxy of the sampling
area over time. (Right) The scaling of OTE vs. RSA and γ-diversity vs. OTE
that consider the mutual variability of information exchange and macroecological
indicators of the microbiome.
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Chapter 4

Temperature-driven organization of
fish ecosystems and fishery
implications

4.1 Introduction

4.1.1 Impacts of Ocean Warming on Marine Fisheries

Marine fishes and invertebrates remain one of major sources of food, nutrition feed-
ing hundreds of millions of people around the world, and have become of increasing
importance, especially for coastal and developing countries, where they provide in-
habitants with as much as 50% of animal protein intake [145]. According to annual
reports from FAO, global food fish consumption grew at an average rate of 3.1%

from 1960s, and the average food fish consumption per capita had increased from
9.0 Kg in 1961 to 20.5 Kg in 2018, with the rate of about 1.5% per year [146]. De-
spite their critical role in global food security and nutrition, fishery ecosystems are
all along under increasing anthropogenic pressure from pollution, habitat degrada-
tion, overfishing and climate change that has been steadily warming the sea water.
As of 2015, 33.1% of global fish stocks were assessed as fished at a rate faster than
they can reproduce and therefore overexploited, while only 10% in 1974. Marine
fishery ecosystems are complex systems that are highly dynamical and sensitive
to external environmental factors including sea temperature. Ocean warming is
altering fishery ecosystems and generally pushing negative impacts on the popu-
lations and behavior of fish species. Data from the US National Oceanic and At-
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mospheric Administration (NOAA) shows that sea temperature anomaly increased
from -0.02◦C in 1974 to 0.79◦C in 2016 which is the largest anomaly observed in
last 100 years [147]. By comparing sea temperature data from last two decades
(1999-2019) to two decades before that (1979-1999), it is observed that the rate of
ocean warming had increased over 430%, meaning that ocean warming had dramat-
ically sped up in last two decades [147, 148]. ”Fish are like Goldilocks: They dont
like their water too hot or too cold, but just right.”, said Malin L. Pinsky, a co-author
of the study [149], where they found that some few species populations benefited
from ocean warming, but more of them suffered. Most fishes are not tolerant of
abnormal fluctuations of sea temperature. From the perspective of fishery catches,
ocean warming have reduced the sustainable harvest from a wide range of species
by 4.1% (1.4 million metric tons of fish, approximately) since 1930s [149]. It has
been making fish species diversity and abundance decline, and putting food supply
at risk for millions of people around the world.

Due to increasing societal concerns about the sustainability of marine fish ecosys-
tems and relevant ecological degradation under the conditions of ocean warming,
assessing the vulnerability of these ecosystems to ocean warming and identifying
what the sea temperature would impose on ecosystems have received considerable
interest. Currently, most studies use purely biological models to conduct these re-
search topics on temporal scale. Through collecting and visualizing macroecologi-
cal time-series data, observing the evolution of species abundance, distribution and
diversity over time, and comparing macroecological evolution to the variation of
oceanographic climatic data, they concluded that marine fish ecosystems are de-
teriorating, and one of the reasons for the deterioration is the increasing fluctua-
tion of sea temperature caused by climate change. For example, Cheung, W. et al.
found that increasingly warming sea temperature altered the composition of marine
fish catches, with an increase in the proportion of warmer water species catches
at higher latitudes and a decrease of subtropical species catches at lower latitudes.
They plotted sea surface temperature in the past four decades and calculated mean
temperature as an indicator describing the preference temperature of fish species
quantified as annual fish catches of 52 large marine ecosystems [150]. Christo-
pher M. Free et al. applied temperature-dependent population models to measure
effects of ocean warming on the productivity of 235 populations of 124 species in
38 ecological regions. They analyzed the data of marine fishery production from
1930 to 2010 and computed maximum sustainable yield over time. These results
addressed that maximum sustainable yield of considered fish populations decreased
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by 4.1% in five ecological regions experiencing losses of 15 to 35% during the stud-
ied period [149]. Aidan Hunter et al. used the time-series data of herring and sprat
populations collected from North Sea since 1960s and west of Scotland since 1980s
to identify long-term trend of species’ growth rate and maturation schedules in av-
erage [151]. They visualized abundance and temperature, and estimated the trend
of length at age and growth parameters including absolute growth rate over time.
This study confirmed the fact that sea temperature is correlated to growth and mat-
uration of fish species, and the mean length of herring populations steadily declined
across multiple age groups. Hubert du Pontavice et al. examined influences of sea
temperature on global biomass transfers from marine secondary production to fish
stocks [152]. This study plotted the past observations of the trend of trophic trans-
fer efficiency (TTE) and biomass residence time (BRT) in the seafood web from
1950 to 2010, and applied them to the projection of TTE and BRT by the end of
the century. By visualizing the projection of TTE and BRT over time, they pre-
dicted that TTE and BRT would decrease until 2040 and remain relatively stable
after 2040. All these studies, as examples, were conducted by using purely biolog-
ical models on temporal scale and concluded biological results in particular fields
in time domain. Results from these temporal biological models are important and
valuable, but insufficient to completely describe marine fish ecosystems especially
considering system dynamics and internal mechanism.

Scientists have recently paid great attention to investigating the impacts of ocean
warming on marine fish ecosystems. Although conventional time-domain biological
analyses are able to macroscopically display the change of fish species abundance,
populations and diversity over sea temperature, it is hard to further understand how
the fluctuation of sea temperature affects the collective behavior of marine fish com-
munities, and information dynamics of ecosystems. In fact, macroscopic analyses
on fish species are far from adequate to track the evolution of marine fish ecosys-
tems under the conditions of ocean warming. In a particular fish community, there
are a large number of fish species that play different roles including native and
invasive species, prey and predator. In view of system, these species take vari-
ous responsibilities for maintaining the marine fish ecosystem stable, and reshape
the ecosystem in different ways. Therefore, investigating fish ecosystems simul-
taneously in temporal, systemic and species-specific sense is quite important and
requisite to understand mutual relationships between fish species and sea tempera-
ture, and to find solutions to improve resilience of marine fish ecosystems to ocean
warming. Purely biological analyses are incompetent to study internal responses of
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fish communities to the fluctuation of sea temperature in terms of system dynamics,
and to specifically identify the species that are most affected by sea temperature,
and most responsible for system stability. In addition, methodologies that incorpo-
rate modern information technologies and computational techniques into modeling
marine fish ecosystems and relevant prediction are still lacking.

4.1.2 Optimal Information Flow Model and Multi-scale Ecosys-
tem Analysis

In this study, to overcome limitations of conventional time-domain biological anal-
yses and disentangle the complexity of mutual relationships between marine fish
ecosystems and sea temperature, we develop the optimal information flow (OIF)
model and employ this information-theoretic model to study a fish community in
Maizuru Bay that is managed by the Maizuru Fishery Research Station of Kyoto
University [21]. OIF model is based on transfer entropy (TE) that provides an
asymmetric approach to measure directed information flow between random vari-
ables (species) [23, 153]. It is used to infer interdependencies (defined as species
interactions) between species in the fish community and reconstruct networks for
describing the marine fish ecosystem, allowing us to study the ecosystem on both
temporal and temperature-dependent scales in systemic way. OIF model is im-
proved with respect to [31] by considering its extension over time to reconstruct
dynamical information networks, the varied Markov order of random variables and
a refined pattern-oriented criteria to select optimal time delay and threshold based
on maximization of mutual information. Therefore, OIF overcomes the limited TE
for the directed uncertainty reduction scheme, for the consideration of maximum in-
formation (entropy) network [30], and MI-based maximization criteria to define the
optimal time delay and interaction threshold to accurately predict systems’ patterns
(e.g. biodiversity). It is noteworthy to mention that the optimal threshold on interac-
tions is not necessarily within the scale-free or maximum entropy range of inferred
collective behavior. In this way, interaction processes are clearly linked to patterns
which provide relevance to the inference problem. Additionally, OIF is dependent
on the choice of appropriate time delay between variables for TE calculation.

Considering the fish community, in order to specifically study the effects of
sea temperature on the marine fish ecosystem in view of system, long-term abun-
dance time-series data are categorized into five groups considering five temperature
ranges (TR): ≤10◦C, 10-15◦C, 15-20◦C, 20-25◦C, ≥25◦C. We detect mutual rela-

87



4.1. Introduction
Chapter 4. Temperature-driven organization of

fish ecosystems and fishery implications

tionships between species and reconstruct networks for each TR group in attempt
to investigate how the fluctuations of sea temperature affect the collective behav-
ior of particular fish species and the whole fish ecosystem by conducting network-
based analyses. For each TR group, mutual causal interactions between species
are inferred by OIF model (computed as TE considering optimal time delay and
threshold). These OIF-inferred species interactions define the connectivity among
species, forming OIF networks for all TR groups. Structural and functional patterns
are recognized for OIF networks. Network-based species-specific analyses are also
conducted by analyzing how much a particular species interacts others, and iden-
tifying the most salient links and critical nodes in networks. Through comparing
structural and functional patterns of and critical species in networks among five TR
groups, we conclude the influences of fluctuations of sea temperature on the marine
fish ecosystem and its stability and identify behavioral responses to sea temperature.
In particular, temperature-dependently dynamical networks are also built and ana-
lyzed to tract the evolution of the marine fish ecosystem over sea temperature. As
well, since time is the most common reference system in nature, temporally dynam-
ical networks are also implemented to capture the change of marine fish ecosystem
considering long-term ocean warming. Combining with temporal biological analy-
ses, this work is expected to give a better understanding for marine fish ecosystems
that help to maintain the ecosystems stable.

4.1.3 Stability, Sustainability and Management of Marine Fish
Ecosystems

Oceans are home to a wondrous array of plants and animals including estimated
20,000 fish species, supporting the species bank of the planet, providing humans
with food consumption, and maintaining the stability of global ecosystem and en-
vironment. Although it is impossible to know the exact number of species in the
ocean (scientists estimate that more than 80% of oceanic species have yet to be dis-
covered [154]), the number of species which people already knew in the ocean is de-
creasing. More importantly, the rate of species extinction is still increasing, making
marine fish ecosystems in trouble under ocean warming caused by anthropogenic
climate change. It is urgent and important to keep marine fish ecosystems stable,
sustainable and well-managed for global environment and human health. People
always understand ecosystem stability in terms of biodiversity, species richness and
composition, and community structure. Studying ecosystem stability only consid-
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ering these biomass and taxonomic indicators is not enough. Intuitively speaking,
biodiversity increases ecosystem stability, but climate change or other human-driven
perturbations may alter these positive relationships [155]. Therefore, these relation-
ships has been contentious. In fact, the concept of ecosystem stability is complex
due to multifaceted understanding and types [156–158]. As for a ecosystem, differ-
ent types of stability describe different features that might lead to different patterns.
Besides considering biomass and taxonomic indicators, ecosystem stability should
be also explored from the perspective of the strength of species interactions, con-
nective complex networks, topology of food webs, and resilience of species com-
munities to different types of environmental perturbations [159].

In addition to biomass and taxonomic indicators from macroecological analy-
ses, OIF is used to investigate ecosystem stability by inferring species interactions
and reconstructing networks in this study. We macroscopically analyze the evolu-
tion of the marine fish ecosystem over sea temperature, and microscopically identify
critical species who play a significant role in maintaining the structure and function
of the fish ecosystem. In attempt to understand the dynamics of the fish ecosystem
completely, results from biomass and taxonomic analysis and dynamical OIF in-
teraction networks are combined together to study the fish community on multiple
scales. This work would provide a potent tool to observe the stability of marine fish
ecosystems, and be valuable to formulate science-based and accurate fishery policy
to maintain these ecosystems stable and sustainable.

4.2 Methods

4.2.1 Time-series Data and Categorization

Long-term time-series data (in total 285 time points) of the fish community were
collected by scientists at Maizuru Fisheries Research Station, Kyoto University
[21]. They conducted underwater visual census approximately every two weeks
along the coast of Maizuru Bay from 1 January 2002 to 2 April 2014 [160]. Such
high-frequency time series enable the detection of interactions between species.
Maizuru Bay is a typical semi-enclosed water area with nearly 50m of the shore
and at a water depth of 0-10m, located in the west of Wakasa Bay, Japan. Precipi-
tation is rather high from summer to winter which is the rainy season in this area.
Sea surface temperature ranged from 5.2 to 31.8, sea bottom temperature from 8.5
to 29.6, which were measured near the surface and at the depth of 10m underwater
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during the diving, respectively [161].
In this data set, only 14 dominant fish species whose total observation counts

were higher than 1000, and 1 jellyfish species were included because rare species
were not observed during most of census period. Rare species would bring large
numbers of zeros in the time series which may lead to difficulty in analyzing data.
Ignoring rare species does not significantly change the marine fish ecosystem and
results of this work. Jellyfish, a non-fish species, was involved in the dataset since
it was thought to have prominent influences on the dynamics of the fish community
due to its large abundance. Note that time-series data were already normalized to
unit mean and variance before analysis [21, 162].

In this study, we propose to study effects of water temperature on system dy-
namics, stability and sustainability of the fish community. To specifically do so,
normalized time-series data were categorized into five subsets considering five mean
temperature (the average of surface and bottom water temperature) ranges includ-
ing ≤10◦C, 10-15◦C, 15-20◦C, 20-25◦C, ≥25◦C, resulting in five shortened time
series with 16, 93, 58, 62, 56 time points, and allowing us to separately analyze
time series of these five subsets in order to disentangle how system dynamics of the
fish community fluctuates with the change of sea temperature. It is worth noting
that, as an assumption, the subset of time-series data after categorization in con-
sideration of five temperature ranges are still regarded as sequential time series,
called temperature-dependent time series here, even though the data categorization
destroys the wholeness of original time series in terms of time order.

4.2.2 Probabilistic Portrayal of the Fish Community

We estimate the probability distribution of 1) the normalized abundance of fish
species, and 2) inferred interactions between species (both are generally indicated
as y as a generic random variable) in a way of using power-law distribution func-
tion [32, 124]. Theoretically, power-law function has two types: discrete and con-
tinuous, of which the continuous form is given by [163]:

p(y) =
ε− 1

ymin
(
y

ymin
)−ε, (4.1)

where ymin is an estimated lower bound for which the power-law holds and ymin >
0. ε is the power-law scale exponent underlying the statistical behavior of variable
studied. Power-law scale indicates how mean and variance of variables behave.
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With respect to probabilistic characterization, distributions of data are visualized
by computing discrete exceedance probability distribution (EPDF) that is defined as
P (Y ≥ y) = 1 − P (Y < y), where P (Y < y) is cumulative distribution function
(CDF) [163] derived from probability distribution function p(y) (pdf), and by plot-
ting EPDF on log-log scale. We also introduce cutoff Ybreak to the random variable
whose probability distribution explicitly presents multiple regimes. These proba-
bility distribution regimes with different power-law scale exponents are separately
estimated. Take EPDF with two regimes as an example, EPDF corresponding to
this type of power-law distribution is formulated as [109]:

P (Y ≥ y) ∼

{
( y
ymin

)−ε1+1f(y) for y < Ybreak

( y
ymin

)−ε2+1f(y) for y ≥ Ybreak
, (4.2)

where Ybreak is the break point isolating two regimes of power law distribution,
f(y) is a generality to formulate the cutoff (or homogeneity) function [109], ε1

and ε2 are power-law scale exponents of two regimes. This type of power law is
called broken power-law function, which is a piecewise function consisting of two
or more components with different power-law scales in combination with particular
break points [110, 164].

4.2.3 Species Diversity and Abundance Characterization

To biologically observe the fish community as a local marine ecosystem, α diversity,
one of the macroecological indicators, is introduced to describe the chronological
fluctuation of species diversity, and how species diversity changes with the increase
of temperature. Therefore, we utilize α diversity dependent on both dimensions:
time and temperature, aimed at figuring out collective behavior and system dynam-
ics of the fish community locally, temporally and spatially. α diversity referring to
the biodiversity within a particular scale: period, area or ecosystem, for instance,
is computed as the number of species in that scale. Given a set of unique species
S = {S1, S2, ..., Sn} whose normalized abundances X = {x1, x2, ..., xn} change
over time, time-dependent α diversity α(t) is defined as in [31]:

α(t) =
n∑
i=1

xi(t)
0, (4.3)

where xi(t) is the normalized abundance of species i at the time point t. For each
time point, sea surface temperature and bottom temperature were recorded. We
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average them as mean sea temperature and reorganize temporal α diversity consid-
ering the mean temperature corresponding to each time point, yielding temperature-
dependent α diversity α(C).

Additionally, fish species in the fish community are distinguished into fish stocks
(FS) [165, 166], native and invasive species groups as shown in Table C.1. We
separately calculate the total abundance of these species groups indicated as EP
(Ecological Productivity) [167], FS, native and invasive dependent on time and tem-
perature using the formula:

A(T ) =
n′∑
i=1

xi(T ), (4.4)

where T can be time point or temperature point, xi(T ) is the normalized abundance
of species i at the time point T , or at the temperature point T , n′ is the number of
species in a particular subgroup (for all species group EP, n′ is n equal to 15.).

4.2.4 Information-theoretical Pattern Recognition and Network
Inference

Information-theoretical Diversity Indices and Uncertainty

Diversity indices including Shannon index (”Shannon-Wiener index”) and Simp-
son’s diversity index are statistical measures of species diversity in the fish commu-
nity. They are not themselves diversities, but indices of diversity [63]. In completely
ecological sense, real diversity is an unambiguous concept recording the number of
species observed at a local scale and indicating species richness and evenness. It
is essential for experimentalists to document biodiversity on Earth, and ultimate re-
flections of disturbance driven by human activities or climate change in a particular
ecosystem. This is actually what raw data can to a restricted extent do, while it is
patently inadequate to dig out internal mechanisms about how ecosystems response
to perturbations in terms of system dynamics and collective behavior of species. En-
tropy and diversity indices have a wide variety of usages under different conditions
according to particular need. Entropic diversity indices are capable of providing
biological information on the mechanism of assembly including rarity, common-
ness and fluctuation of abundance of species in fish ecosystems than real taxonomic
diversity. Therefore, we calculate Shannon entropy for each species in the fish com-
munity based on probabilistic estimation of species abundance. Shannon entropy of
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species i is defined as H(Xi) = −
∑v

m=1 p(xi(m))log2p(xi(m)), where p(xi(m))

is the probability of an event m of unique normalized abundance of species i, v is
the number of all unique events of abundance. Considering the whole species com-
munity, taxonomic α diversity is defined as equation 4.3. It is obvious that the sum
of Shannon entropy of all speciesHα =

∑n
i=1H(Xi) is proportional to Shannon di-

versity index of the fish community, which is an information-theoretical index [31],
defined as H = −

∑n
i=1 pilog2pi (where pi is the probability of which the species

i is observed in the community). Shannon diversity index assumes that all species
are regarded as a sample reservoir and species observations are sampled randomly.
These information-based indices form a potent tool to understand biological mech-
anisms and dynamics of fish ecosystems.

Optimal Information Flow Model

To investigate internal mechanism and collective behavior of the fish community, we
estimate mutual causal interactions between fish species. Transfer Entropy (TE), a
quantity in information theory coined in [23], is extensively used to measure infor-
mation flow between two variables that is considered as one of the methods to quan-
tify causal interactions. TE is mathematically defined as the amount of information
that a source variable provides about the next state of a target variable in the con-
text of the past of the target [23]. It provides a prediction- and probabilistic-based
tool in detecting directed and dynamical causal interactions without demand for any
prior knowledge or assuming any particular functional form to describe the mutual
interactions among elements in a dynamical system. As a result, we understand the
”causal interaction” as predictability that is easier to mathematically quantified in
terms of directed uncertainty reduction. The calculation of TE between two vari-
ables builds on conditional probability and joint probability considering Markov
order and historical values of these variables. It is denoted as TEXi→Xj

(q, s, u) ac-
cording to equation 2.4, where Xi and Xj stand for two random variables, q and s
denote the Markov order of variables Xi and Xj , xi(t) and xj(t) are time-series ob-
servations, and u is the free varied source-target time delay that yields time lagged
interactions. In this study, Xi and Xj are normalized abundances of species i and
j in the fish community. TE assumes that all analyzed variables obey memoryless
stochastic Markov chain process [168]. It indicates that future states of variable
are only dependent on the current state, while not determined by states in the past.
Thus, q and s are fixed as 1 under this assumption. TE calculation is sensitive to
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data features including probability distribution, extreme values and zeros. In this
study, we apply Kernel (model-free) and Gaussian model (parameter-free) to test
the data set of the fish community [111] and compared the results with CCM model
that is another well-documented algorithm to measure causal interaction between
variables [20], and Pearson correlation coefficient (see Figure C.5). Figure C.5
shows that Kernel model provides higher resolution and gradient for TE estimation
compared to Gaussian model. TE from Kernel presents similar pattern in the map
(Figure C.5 C) to that of CCM model (Figure C.5 A) and Pearson correlation coef-
ficient (Figure C.5 B). Therefore, Kernel model is selected as the TE estimator in
the OIF model.

TE is commonly used as a powerful tool to estimate mutual interactions in
non-linear ecosystem thanks to properties of inherent non-linearity, asymmetry, no
model assumption (model-free) and predictability between variables [26, 27, 169,
170]. After computing TE between species, directed interaction network visual-
izing the interdependencies among all species is reconstructed from TE matrix.
Networks are always hard to distinguish due to large numbers of connections. In
order to reduce redundant information, we first select an appropriate time delay u
that minimizes the statistical distance between species defined as equation 4.5 [59],
equivalently maximizes the mutual information between two species.

d(Xi, Xj) = e−I(Xi;Xj), (4.5)

where I(Xi;Xj) is mutual information (MI) between species i and j. MI is given
in information theory as:

I(Xi;Xj) =
∑
xj

∑
xi

p(xi(t), xj(t))log
p(xi(t), xj(t))

p(xi(t))p(xj(t))
, (4.6)

where p(xi(t)) and p(xj(t)) are marginal distributions of species i and j and p(xi(t), xj(t))
is joint distribution of these two species. In this study, we specify the time delay
u ranged from 0 to 10. According to equation 4.6, time delay u is selected as an
integer in the range that maximizes the mutual information. It implies that u is deter-
mined by considering predictability rather than ”true” causality which is strenuous
to concretely estimate.

Afterwards, an appropriate value is chosen as a threshold to filter TE values.
This is the second step to do the redundancy reduction by removing weak interac-
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tions (links) in networks. This step is formulated as:

f(Xi → Xj) =

{
TEXi→Xj

for TEXi→Xj
≥ TEthre

0 for TEXi→Xj
< TEthre

, (4.7)

where f(Xi → Xj) is the quantification of species interactions from species i to
j, TEthre is the threshold chosen to filter TE values. In this study, TEthre can be
a fixed value 0.01 or top 20% TE value. This two-step scenario of redundancy
reduction forms the proposed optimal information flow (OIF) model.

Assessment of Network Stability and Species Ecological Importance

By applying OIF model to infer species interdependence, TE matrix is obtained to
quantify causal interactions between all pairs of species, and defines the structure of
reconstructed networks. Firstly, we exploit eigenvalues of TE matrix as an indicator
to evaluate network stability [21, 76, 171]. Let matrix W be the TE matrix, if there
is a vector v ∈ <n 6= 0 that satisfies:

Wv = ξv, (4.8)

then scalar ξ is called the eigenvalue of W with corresponding right eigenvector v.
Eigenvalue is a nonzero value which can be real or complex. Real part of eigen-
values determines whether and how fast the network returns to equilibrium from a
perturbation. Imaginary part of eigenvalues indicates the frequency of oscillation
during the return to equilibrium.

Secondly, we evaluate ecological importance of species based on OIF network,
and identify critical species in the fish community (indicated as nodes in OIF net-
works) using information-theoretic index and link salience measurement. The information-
theoretic index is defined as total outgoing transfer entropy (OTE, computed as
OTE(i) =

∑
j TEi→j) [31] that measures how much one species affects others to-

tally. OTE(i) is the total information transition from species i transmits to all other
species. It can be therefore interpreted as how much one species helps to predict
others in terms of predictability. OTE index is able to measure species influences
with directions thanks to the asymmetric property of TE.

On the other hand, we also employ link salience that was introduced in [172] to
measure the importance of links in OIF networks. Link salience approach is based
on the concept of effective distance dist(i, j) (computed as dist(i, j) = 1/Wij). It
is intuitively assumed that strongly (weakly) interacting nodes are close to (distant
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from) each other. In our heterogeneous networks with real-valued weights, the al-
gorithm of the shortest-path tree (SPT ) that identifies the most efficient routes from
a reference node r to the rest of the network is implemented for all nodes (SPT (r)).
Then SPT (r) is represented by a n×n matrix with element sptij(r) = 1 if the link
(i, j) is involved in the collection of shortest paths, and sptij(r) = 0 if it is not. In
conclusion, the link salience of OIF network is defined as:

SAL =
1

n

n∑
r=1

SPT (r), (4.9)

Therefore, SAL is a linear superposition of all SPTs. If the element sal(i, j) = 0,
link (i, j) has no role in networks; if sal(i, j) = 1, link (i, j) is important for all
reference nodes; and if sal(i, j) = 1/2, link (i, j) is important for only half of
reference nodes [172]. Node (species) importance is quantified by counting the
frequency that one node exists in the most salient links as the reference terminal
node (species).

4.2.5 Temporally and Temperature-dependently Dynamical Net-
work Analysis

We also apply OIF model to develop dynamical networks by truncating the whole
time series respectively considering time and temperature. The total number of
time-series units on which dynamical network inference is carried out by OIF model
is G = bL−l

∆l
c + 1, where b•c rounds G to the smaller integer. When reconstruct-

ing temporally dynamical networks, L is the total number of the whole time se-
ries (here, L = 285), l is the length of each time-series unit, ∆l is the numerical
inter-observation (or time step). In this study, each time period is set as one year
(the length of time-series unit l is 24 time points), time step ∆l is 2 time points
that correspond to one month, the whole time series is therefore truncated into 131
time-series units in total. When reconstructing temperature-dependently dynamical
networks considering temperature, L is the greater integer of the maximum mean
temperature, l is the upper limit of the first mean temperature range, ∆l is the tem-
perature step. In this data set, maximum mean temperature is 30.7◦C (thus, L is 31).
The first mean temperature range is [6, 10] that means l is 10, and ∆l is 1. There-
fore, the whole time series is truncated into 22 time-series units corresponding to
different temperature ranges whose difference is 5 except for the first temperature
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range [6, 10]. Note that the length of each time-series unit corresponding to each
mean temperature range can be different.

After temporal and temperature-dependent reorganization, OIF model is used to
infer species interaction (TE) matrix for each time-series unit, resulting in tempo-
ral or temperature-dependent interaction matrices Wi,j(g) and dynamical networks.
Here, g is the time point of each time-series unit for temporally dynamical networks,
while the lower limit of the temperature range for temperature-dependently dynam-
ical networks. We analyze dynamical networks by computing total interaction (TI),
dominant eigenvalues and estimated effective α diversity of each dynamical net-
work. TI is defined as the sum of all TE values in interaction matrix Wi,j(g):

TI(g) =
∑
i,j

Wi,j(g). (4.10)

Dynamical Stability (DS) is calculated as the absolute value of real part of dom-
inant eigenvalue:

DS(g) = |Re(ξmax(g))|, (4.11)

where ξmax(g) is the dominant eigenvalue of an interaction matrix. Estimated ef-
fective α diversity αe(g) is defined as the number of nodes (species) involved in a
dynamical network which is formulated as:

αe(g) =
n∑
i=1

hi(g), (4.12)

where

hi(g) =

{
0, for

∑n
j=1(|Wi,j(g)|+ |Wj,i(g)|) = 0

1, for
∑n

j=1(|Wi,j(g)|+ |Wj,i(g)|) 6= 0
. (4.13)

Therefore, αe(g) denotes the total number of nodes whose structural degrees are not
zero in a dynamical network.

4.3 Results

4.3.1 Temporal and Temperature-driven Biomass Analysis

A simple analysis for original data of fish species abundance starts by looking into
temporal trajectories and seasonal fluctuations of sea water temperature (Figure
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4.1A), taxonomic α diversity (Figure 4.1B) and normalized abundance (Figure 4.2).
It is evident that sea surface and bottom temperature, α diversity of the fish commu-
nity fluctuated over time synchronously and seasonally. Approximately from 2007,
seasonal fluctuations of sea surface and bottom temperature were slightly getting
higher except for 2009 with the least fluctuation (Figure 4.1A), while the global
trend of α diversity decreased (Figure 4.1B) in the meanwhile. This result means
that increasing fluctuations of sea temperature lead to biodiversity loss for the fish
community. The global decrease of biodiversity can be interpreted as a biological
response to increasing fluctuations of sea temperature. Total abundance of EP, FS,
native and invasive groups over time (Figure 4.2A, B) shows a slight increase with
fluctuations, that is opposite to the global trend of species diversity, from 2007 with
the exception of a spike in 2009 and a downward spiral in 2011. The highest total
abundance of species in EP, FS and native groups in 2009 is likely owing to the
least temperature fluctuation in this year. This result implies that increasing sea
temperature makes some species more abundant in a global view, even though it
negatively affects species diversity, and that species diversity and richness in the
fish community is sensitive to the instability of sea temperature, even a marginally
high fluctuation. These results can be more explicitly confirmed in Figure 4.2C, D
where total abundance of EP, FS, native, invasive groups and species 1 (Aurelia.sp)
is observed to increase exponentially over the increasing sea temperature [173, 174].
Therein, the abundance of species 2 (engraulis japonicus), the one in FS group as
an exception, decreases. Species whose abundance decreases with the increasing
temperature are supposed to compete with other species and present disadvantage
in species interactions. This competitive disadvantage may lead to departure and
extinction of some species, resulting in the global decrease of species diversity in
the fish community. We calculate α diversity and reorganize considering tempera-
ture, yielding α diversity against temperature shown in Figure 4.1C. It shows that α
diversity grows with the increasing temperature, while the rate of the increase of α
diversity (α′(C)) gradually declines (see the black line fitting the α(C) points in the
plot). The decreasing α′(C) implies that fish diversity does not continuously grow
with the increase of temperature. Within lower temperature ranges, the fish com-
munity is more sensitive to the change of temperature relative to higher temperature
ranges.

Time series of normalized abundance are categorized into five groups consid-
ering five mean temperature ranges (TRs): ≤10◦C, 10-15◦C, 15-20◦C, 20-25◦C,
≥25◦C. Probability distributions of abundance data for these five TR groups are
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characterized by plotting EPDF on doubly logarithmic axes and estimating expo-
nential parameters of power-law fitting (Figure 4.3A) [109]. EPDF plots and de-
creasing power-law scaling (see the subplot in Figure 4.3A) show that the distribu-
tion of abundance becomes more scale-free with the increase of temperature. Lower
scaling of power-law means fatter tail of power law distribution, indicating that the
abundance of fish species is distributed more evenly for higher TR groups since
some species become abundant. These results suggest that for higher temperature,
fish species presents wider distribution in abundance compared to the lower tem-
perature. Figure 4.3B shows standard deviation against mean abundance for each
species corresponding to each TR group. Positive slopes of linear regression for
these std-mean scatters address that fluctuations of species abundance scale with
its magnitude. Exponents of scaling law for ≤10◦C, 10-15◦C, 15-20◦C groups are
higher than those of 20-25◦C, ≥25◦C groups (see the subplot in Figure 4.3B). This
result confirms the finding from Figure 4.1C that the abundance of species in lower
TR groups (≤10◦C, 10-15◦C, 15-20◦C) is more sensitive to the change of temper-
ature compared to higher TR groups (20-25◦C, ≥25◦C). Sharp decrease of scaling
law implies that the fish community experiences a significant change in collective
behavior around the temperature of 20◦C.

4.3.2 Interaction Inference and Temperature-dependent Network
Characterization

Different patterns in EPDF and std-mean of species abundances shown in Figure
4.3 envision the discrepancy in species interactions and dynamics of ecosystem for
different TR groups. In this study, species interaction is quantified by TE that is an
information-theoretic variable measuring the amount of directed information flow
and evaluating connectivity between species. Networks for the whole time series
and five TR groups (see Figure 4.4) are therefore inferred by TE-based OIF model,
and graphically visualized with Gephi [175]. To refine network structure, links of
interactions lower than 0.01 are discarded by setting a threshold to filter TE. Consid-
ering the structure of networks, the size of nodes is proportional to Shannon entropy
of fish species. The color of nodes linearly scales with the total outgoing transfer en-
tropy (OTE) of species: the greater the OTE of a fish species is, the warmer the color
of the node. The width and color of edges (links) are proportional to interaction be-
tween species computed as TE: the greater the TE is, the wider the link becomes
and the warmer the link’s color is. The arrow of links stands for the direction of
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interaction (TE). Optimal Information Flow (OIF) networks present different struc-
tural and functional properties for particular TR fish groups. Network for the whole
time series shown in Figure 4.4A provides a static overview of the fish community
without considering the dynamical change of temperature or seasonality. It out-
lines causal relationships between species in the fish community, but is inadequate
to tackle the dynamics of fish ecosystems driven by the fluctuation of temperature,
and identify biological and behavioral responses. Therefore, in order to understand
how temperature affects the fish community, networks for five TR groups (≤10◦C,
10-15◦C, 15-20◦C, 20-25◦C and ≥25◦C) are reconstructed and listed in Figure 4.4
from B to F. Here we first define network size considering both the number of nodes
and the total amount of interactions between species. By looking at the structure of
networks (Figure 4.4 B,C,D,E,F), it is obviously observed that network size is larger
for the fish community within a higher temperature range. Nodes connected by links
with warm colors are regarded as a cluster in which species are significantly affect-
ing others or affected by others. Network of 15-20◦C group shows a larger cluster
with stronger interactions between species compared to other TR groups. Yet, the
distribution of species interactions in this TR group presents more evenness con-
sidering the gradient of links’ color in networks. This finding can be obviously
observed in Figure 4.4B’,C’,D’,E’,F’ describing the phase mapping of TE-based
interaction matrices. TE matrix for 15-20◦C group exhibits higher resolution and
gradient in numeric. This result reveals that the network for 15-20◦C group seems to
be less scale-free versus other networks, and stands on a critical point where the fish
ecosystem is experiencing a phase transition from one stable state to a metastable
state. When considering specific species within different TR groups, except for the
≤10◦C and 10-15◦C groups in a globally stable state, species 6 ,7, 8, 9 are always
the nodes with warm color (high OTE) (see Figure 4.4 A,C,D,E,F) in networks.
Yet, interactions between these species are higher than others considering the phase
mapping of TE matrices shown in Figure 4.4. This finding means that these species
are core species in this fish community that are interacting strongly with each other,
present quite different dynamics in behavior compared to other species, and play
a significant role in maintaining the ecosystem stable. It is noteworthy to mention
that all these species are native species in Maizuru bay (see Table. C.1).

We set a threshold as top 20% TE considering the Pareto Principle (also known
as the 80/20 rule) which specifies that roughly 80 percent of the consequences come
from 20 percent of the causes in many events [176]. TE threshold following this
rule is generally higher than 0.01 so that it would further reduce network size, mak-
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ing inferred networks briefer relative to the networks shown in Figure 4.4. OIF
networks for the whole time series and five TR groups using the threshold of top
20% TE are reconstructed using the same regulation as Figure 4.4 and shown in
Figure C.6. After the further reduction of network size, networks in Figure C.6
ignore more functional details, but are clearer to identify the structural difference
between networks compared to Figure 4.4. Furthermore, it is possible to statisti-
cally analyze the structural degree, in- and out-degree of nodes for each network. In
Figure C.6, nodes with warm color have more links with others than those with cool
color. Statistical analysis for nodal degree is shown in Figure C.7. Structural degree,
in- and out-degree are getting higher with the increase of temperature as a whole.
This result implies that warmer conditions make the fish community more socially
connected. Separately, pdf of structural degree (see Figure C.7) shows that struc-
tural degree of nodes increases with the increasing temperature, and favors bimodal
distribution with different shapes for ≤10◦C, 10-15◦C, 15-20◦C, 20-25◦C groups,
while roughly uniform distribution for≥25◦C group. For≤10◦C group, most struc-
tural degrees are distributed within the lower unimodal range from 1 to 3. With the
increasing temperature, more and more values of structural degree are distributed
in the higher unimodal range. However, for the highest TR (≥25◦C) group, the pdf
of structural degree presents more evenness within the range from 0 to 10 (uniform
distribution) compared to other groups. This result implies that structural degree
does not increase continuously with sea temperature, and that the fish community
would become less interacting when sea temperature is too high. Analogous fea-
tures can be observed in the distribution of in-degree (Figure C.7 B) and out-degree
( Figure C.7 C). For each TR group, OTE and average abundance are calculated for
each species without considering any threshold for TE. Species OTE favors bimodal
distribution with short range for ≤10◦C and 10-15◦C groups, and broad range for
15-20◦C, 20-25◦C and ≥25◦C groups (see Figure C.8 A). This result suggests that
overall effects of species on others grow with the increasing temperature. In a par-
ticular TR group, OTE exponentially scales with species abundance (see Figure C.8
B).

4.3.3 Interaction Spectrum, Phase Transition and System Sta-
bility

Probability distribution of TE-based interactions is characterized by calculating dis-
crete exceedance probability, then fitted using power-law function (see Figure 4.5).
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Among five TR groups, the greatest interaction occurs in the highest TR (≥25◦C)
group. This result indicates that species interactions increase with sea temperature.
The scaling of power-law distribution (computed as 1− ϕ) is lower for ≤10◦C, 10-
15◦C,≥25◦C groups and the first regime (black fitting) of 15-20◦C group compared
to 20-25◦C group and the second regime (green fitting) of 15-20◦C group. Lower
scaling of power-law fitting implies that species interactions distribute more evenly
compared to those groups whose scaling of power-law fitting is higher, and that the
distribution of species interactions favors more scale-free in terms of the pattern of
EPDF. It is concluded that the fish community within ≤10◦C and 10-15◦C lies on
a globally stable state. Fish community on global stability is in the situation that
the fish ecosystem is highly resistant to long-term perturbations (change of species
composition, sea temperature, for instance) [177, 178], and interspecific and in-
traspecific interactions are not too strong [179]. With the increase of temperature,
the fish community begins to get interacting gradually and two regimes appear in the
distribution of species interactions for 15-20◦C group. Therefore, the distribution
of species interactions for 15-20◦C group is divided into two sections by setting a
break point as 0.3686 [110, 164]. The scaling of these two regimes is estimated us-
ing power-law fitting separately. The first regime whose power-law scaling is lower
indicates that the fish community is still partly on a globally stable state, while the
second regime with a higher scaling presents a less scale-free pattern implying a
metastable state. This result suggests that for 15-20◦C temperature range, the fish
community stands on a critical point where the fish ecosystem is experiencing a
phase transition from the global stability to metastability, and that the collective
behavior of species is experiencing a significant change driven by sea temperature.
The change of collective behavior can be reflected by the fluctuation of species di-
versity and abundance. For example, a significant drop (transition) of scaling law is
observed in standard deviation against mean abundance as temperature rises from
15-20◦C to 20-25◦C (see Figure 4.3B). The power-law fitting for the second regime
of 15-20◦C group and 20-25◦C group is the highest scaling among five TR groups.
It suggests that major species interactions continue to increase as temperature rises,
and large numbers of minor species interactions emerge simultaneously, leading to
a distribution pattern that most interactions are clustered within a lower range. This
distribution pattern of the fish ecosystem implies a less scale-free state compared
to other TR groups. Fish ecosystems within 15-20◦C and 20-25◦C are therefore
metastable (also see Figure 4.4D,E,D’,E’). With the continuous increase of temper-
ature (≥25◦C), the power-law scaling of the species interaction distribution shows
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a significant decrease that is opposite to sea temperature. This result indicates that
several major species interactions continue to rise, while minor interactions dis-
appear, leading to a flatter distribution and more scale-free pattern compared to
15-20◦C and 20-25◦C groups. The fish ecosystem returns to another stable state
after fluctuations caused by sea temperature. This finding confirms the fact that
the fish community would not get interacting continuously with the increase of sea
temperature, yet the activity of fish species would decrease when temperature is too
high. This newly established stable state is interpreted as locally stable state which
addresses the fish ecosystem only resistant to small short-lived disturbances (minor
fluctuation of sea temperature, for instance) [180]. By connecting scaling expo-
nents of the power-law fitting for TR groups over sea temperature shown in Figure
4.5F, the trend of power-law exponents also explicitly shows that the dynamical fish
ecosystem is subjected to phase transition from global stability to metastability, and
finally returns to local stability with the increase of temperature. A bifurcation oc-
curs considering the division of species interaction distribution for 15-20◦C group.
This result reveals that, during the phase transition from global stability to local
stability, the fish ecosystem stands at a critical point within 15-20◦C where the fish
community experiences a significant change in collective behavior. These changes
result in different structural and functional features for the fish ecosystem within
different temperature ranges graphically shown in OIF networks (see Figure 4.4).

Eigenvalues and eigenvectors provide essential information for reflecting the
stability of dynamical systems [181]. Generally, differential equations are used to
mathematically describe system dynamics based on variables in the particular sys-
tem, and eigenvalues and eigenvectors can be used as a method to solve differential
equations. The real part of eigenvalues determines whether the system is stable,
and the imaginary part determines whether the oscillation is damped or not. If the
real part of eigenvalues is negative, the system is stable and damped if the imagi-
nary part is also negative, while undamped if the imaginary part is positive. If the
real part of eigenvalues is positive, the system is unstable [181]. In this study, the
eigenvalues of each interaction matrix corresponding to each TR group are scattered
together in a complex plane (Figure 4.6). This method displays the position of all
eigenvalues in the form of an ellipse [76, 171]. If only considering the eigenvalues
with positive real part that may result in instability, Figure 4.6 shows one eigenvalue
with the lowest positive real part for ≤10◦C group, no eigenvalue with positive real
part for 10-15◦C group, two eigenvalues with positive real part for 15-20◦C group,
one eigenvalue with a positive real part for 20-25◦C while lower than that for 15-
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20◦C group, and one eigenvalue with the largest positive real part for≥25◦C group.
These results highlight that the fish ecosystem within low sea temperature ranges
(≤10◦C and 10-15◦C) is stable, while becomes more interacting, leading to an un-
stable or metastable state as the sea temperature rises, especially for the 15-20◦C
group which has two eigenvalues with positive real part.

4.3.4 Network-based Biological Importance and Critical Species
Identification

Biological importance and critical species identification are conducted by further
analyzing the structural features of OIF networks and combining interaction spec-
trum with abundance spectrum. To this end, we first measure the salience for all
links in OIF networks [172]. Link salience computation is based on the effective
proximity dij defined by the strength of mutual interactions: dij = 1/TEij . It is
intuitively assumed that strongly (weakly) interacting nodes are close to (distant
from) each other. Link salience matrices shown in Figure 4.7 illustrate that species
7 (Pseudolabrus.sieboldi) is always the reference node of the most salient links with
the exception of ≤10◦C group where the reference node of the most salient links is
species 15 (Rudarius.ercodes) instead of species 7. According to the website of fish-
base (http://www.fishbase.org/summary/Pseudolabrus-sieboldi.
html), species 7 (Pseudolabrus.sieboldi) is a native species in northwest pacific
ocean and mainly distributed in Japan waters [182]. These results reveal that native
species 7 has the most critical influence on other species in the fish community, and
plays a vital role in maintaining structure and function of networks.

We also calculate Shannon entropy for species to measure the fluctuation and
uncertainty of species abundance, and compute species’ OTE as another nodal
(species) property to quantify how much the species totally influences others in OIF
networks. Then, species rankings considering top 5 Shannon entropy and top 5 OTE
are listed and shown in Figure C.9. On the one hand, the species ranking of Shan-
non entropy (left figures in Figure C.9) shows that species 2 or (and) 5 always have
the greatest Shannon entropy that represents the highest uncertainty in abundance
for these two species. This finding also can be observed in the original time series
of abundance plotted in Figure C.3. Species 2 and 5 have the highest fluctuation of
abundance and the most diverse events in numeric. On the other hand, the species
ranking of OTE (right figures in Figure C.9) shows that for all TR groups except the
≤10◦C group, species 7 always has the greatest OTE, and species 6, 7, 8 and 9 are
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are often involved in top 5 OTE ranking for 15-20◦C, 20-25◦C and ≥25◦C groups.
This finding means that these species have significant effects on other species in
the fish community, of which species 7 is the greatest. This result is in accordance
with the results of link salience matrices shown in Figure 4.7. In a word, through
measuring link salience and OTE, species 6, 7, 8, 9 can be identified as the critical
species in the fish community. Moreover, probability distribution functions of abun-
dance for all species (see Figure C.2) show that normalized species abundances of
these species are more evenly distributed within relatively small ranges (the least
range is [0,45) for species 7) compared to other species with wide distributions and
extreme values. It demonstrates that trajectories of species abundance for species 6,
7, 8 and 9 are remarkably divergent from other species. Species with wide distribu-
tions and extreme values present more uncertainty in abundance, that is, Shannon
entropy of these species is higher than that of species 6, 7, 8, 9. Transfer entropy
from source variables (species) with low uncertainty in abundance (species 6, 7,
8, 9, for instance) to target variables with high uncertainty (see left figures in Fig-
ure C.9) is supposed to be high. Considering species 6, 7, 8 and 9 themselves,
within the small range of abundance distribution, relatively speaking, these species
also present transparent divergences (dissimilarity) in the distribution of species
abundance. Therefore, mutual interactions (transfer entropy) between these species
are also high. These results address that the distribution of species abundance can
be used as a proxy of interactions by comparing the similarity and divergence. Take
species 2 (Engraulis.japonicus) as an extreme example, TEs from species 2 to oth-
ers are expected to be low since original data of species 2 have many zeros or values
close to zero that lead to lower uncertainty despite the asynchrony and divergence.

Considering the whole time series, rather than solely estimate the simple con-
tinuous pdf of abundance for each species (Figure C.2), we probabilistically charac-
terize distributions of abundance by computing EPDF and using power-law fitting.
The scaling exponent of power-law fitting is considered as another species property
in terms of the distribution of taxonomic abundance (see Figure C.1). Thereafter,
abundance-interaction phase space describing the relationships between power-law
scaling and species OTE (power-law exponents vs. OTE for all species, indeed) is
shown in Figure 4.8. For a particular species, the greater the exponent of power-law
fitting for the EPDF is, the more the abundance values are distributed within a lower
range; the higher the OTE is, the stronger the species interacts others. The phase
space mapping shows a rough trend as a whole that the exponent of power-law fit-
ting for the EPDF of species abundance is proportional to the species OTE with the
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exceptions of species 3 and 6. This result suggests that species whose abundance has
a wide distribution with a fat tail have relatively low total effects on other species,
while species whose abundance is evenly distributed within a narrow range have
high total effects on other species (species 7, 8, 9, 10 in the figure, for instance).
These findings are also observed in the phase mapping of interaction matrix for the
whole time series shown in Figure 4.4A’. It is intuitively speculated that species
with more uniform distribution play a cooperative role in the fish community that
is beneficial to the increase of abundance, but do not have strong effects on other
species. In Figure C.10, OTE vs. mean abundance shows that for most species,
effects on other fishes are proportional to the abundance of species (Figure C.10 A),
while inversely proportional to the standard deviation of the abundance of species
(Figure C.10 B). This result implies that native species with relatively uniform dis-
tribution of abundance play a significant role in the fish community.

Additionally, to identify which species are most affected by sea temperature,
TE, Pearson correlation coefficient (indicated as cc) and ρ of CCM [20] are used
as indicator to measure the relationship between species abundance and sea tem-
perature (Table 4.1). This table shows that TE from sea temperature to species
abundance for species 5, 6 and 7 is higher than other species, yet MI and ρ are
overall higher for species 5, 6, 7, 8 and 9. Species 5, 6, 7, 8 and 9 are therefore
considered as the species that are most affected by sea temperature. By looking
into Figure C.4, the abundance of species 5, 6, and 7 exponentially scales with sea
temperature more obviously than other species. The results mean that OIF-inferred
TE outperforms other indicators for this purpose. TE from species abundance to sea
temperature is also involved in the table and the TE values are very small. These are
intuitively understandable that fish species in the ocean do not affect environmental
factors [21].

4.3.5 Temporally and Temperature-dependently Dynamical In-
teractions and Stability

Considering both dimensions of time and temperature, temporally and temperature-
dependently dynamical species interaction (TE) matrices are inferred from time
series of each time and temperature unit, respectively. On the temporal scale, Fig-
ure C.11 A shows the real part of the dominant eigenvalue of TE matrix (blue line)
and adjacency matrix (red line) underlying the structure of temporally dynamical
networks. The real part of the dominant eigenvalue of TE matrix over time is lower
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Species TE(T→si) TE(si→T) MI ρ

Aurelia.sp 0.0233 0.0046 0.3158 0.0951
Engraulis.japonicus 0.0008 0.0143 0.1323 0.2902

Plotosus.lineatus 0.0292 0.0017 0.1981 0.3101
Sebastes.inermis 0.0144 0.0313 0.4109 0.3178

Trachurus.japonicus 0.1712 0.0135 0.6203 0.6235
Girella.punctata 0.1065 0.0002 0.4721 0.3847

Pseudolabrus.sieboldi 0.0709 0.0444 0.6913 0.6902
Halichoeres.poecilopterus 0.0212 0.0073 0.7122 0.4469
Halichoeres.tenuispinnis 0.0072 0.0063 0.7065 0.4239
Chaenogobius.gulosus 0.0021 0.0093 0.1274 0.0634
Pterogobius.zonoleucus 0.0040 0.0011 0.2761 0.1195

Tridentiger.trigonocephalus 0.0104 0.0244 0.2635 0.3158
Siganus.fuscescens 0.0256 0.0101 0.2071 0.2944
Sphyraena.pinguis 0.0386 0.0049 0.1942 0.1992
Rudarius.ercodes 0.0229 0.0153 0.3894 0.2265

Table 4.1: Indices measuring the relationship between sea temperature and species
abundance.

than that of adjacency matrix, yet the former presents an obvious seasonal fluc-
tuation. In the first half-year period (approx. from winter to early summer), it
is observed that the real part of the dominant eigenvalue increases over time and
reaches a spike during this period. Then it decreases in the second half-year period,
while increases again at the end of year. The increasing trend or the high level of
the real part of the dominant eigenvalue always appears within the time period with
higher changes (fluctuations) of sea temperature (from April to June or from Oc-
tober to December) in a year which probably corresponds to 15-20◦C to 20-25◦C
temperature ranges. These results suggest that the fluctuation of species interactions
becomes higher and fluctuates more frequently during the time period with higher
fluctuations of sea temperature, and that the fish ecosystem tends to be metastable
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as the fish community becomes active. For adjacency matrix, the high level of the
real part of the eigenvalue appears synchronously with that of TE matrix, while it is
hard to identify the seasonality due to lower fluctuations. Figure C.11 B shows the
magnitude of total interactions over time that is computed as the sum of TE values in
interaction matrices of temporally dynamical networks. Total interaction over time
presents clear seasonal fluctuations that highly synchronize with the seasonality ob-
served in eigenvalues of TE matrix shown in Figure C.11 A (blue line). This finding
verifies the result that species interactions in the fish community increase during the
time period with high fluctuations of sea temperature. Furthermore, species OTE
is calculated for each temporally dynamical network, obtaining 256 OTEs for each
species. Pdfs of species OTE show that critical species 6, 7, 8, 9 have higher effects
on other species in the fish community compared to others (see Figure C.12 ).

On the scale of temperature, Figure C.11 E shows how the real part of the dom-
inant eigenvalue of TE matrix (blue line) and adjacency matrix (red line) under-
lying the structure of temperature-dependently dynamical networks changes with
the increase of temperature, respectively. Both curves show that the real part of
the dominant eigenvalue rises with the increasing temperature as a whole, while
that of TE matrix has more informative fluctuations with higher frequency rela-
tive to adjacency matrix. Figure C.11 F shows the magnitude of total interaction
over temperature stemmed from TE matrices of temperature-dependently dynam-
ical networks. It is clearly observed that total interactions analogously fluctuate
with the real part of the dominant eigenvalue of TE matrix shown in Figure C.11
E, as well as to the estimated effective α diversity over temperature derived from
dynamical TE-based interaction matrices after filtering by top 20% TE shown in
Figure C.11 H. From the perspective of network-based models, these results indi-
cate that quantitative interactions between species in the fish community are more
sensitive to fluctuations of sea temperature compared to macroecological α diver-
sity. The fluctuation of species interactions provides a potent strategy to monitor
and predict biological collective behavior and system dynamics of the fish commu-
nity, especially for internal intra- and inter-specific mechanisms and their responses
to the change of environmental factors. The effective α diversity in temporal and
temperature-dependent dimensions is shown in Figure C.11 C,D,G,H.
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4.4 Discussion

Growth, reproduction and living habits of organisms in the ocean, as well as external
environmental factors including sea temperature and daytime present a transparent
seasonality. Therein, sea temperature is often perceived as a dominant ingredient
that drives the biological behavior of organisms in ecosystems [183, 184], while
also affected by human-induced climate change. For marine fish ecosystems, as
narrated in the part of introduction, ocean warming has been pushing significant
negative impacts on marine ecosystems and fish species. In this paper, we study
the multispecies fish community in Maizuru bay by conducting biomass and taxo-
nomic analyses on temporal scale first. These analyses capture the seasonal fluc-
tuations of sea temperature, species diversity and abundance and conclude that the
increasing fluctuations of sea temperature result in global biodiversity loss. Par-
ticularly, biomass and taxonomic analyses are also conducted on temperature scale
considering five temperature ranges to investigate how sea temperature affects the
fish community in biomass and taxonomy. Temperature-dependent analyses cap-
ture the difference in macroecological indicators of the fish community among five
TR groups. In addition, same analyses for EP, FS, native and invasive groups and
two species (species 1 and 2) are performed to identify cooperative or competitive
interactions in the fish community. The result is helpful to explain the finding that
species diversity loses even though the abundance of some fish species grows under
ocean warming. Some valuable results are obtained from the analysis considering
species abundance and diversity, while it is not sufficient to completely display the
impacts of sea temperature on the fish community, and limited to describe internal
mechanisms of how sea temperature affects the dynamics of the fish ecosystem.

To better understand biological responses of the fish community to the fluctu-
ations of sea temperature, the proposed information-theoretic OIF is employed to
study the fish community considering species interactions and system dynamics.
In information theory that has attracted attention in complex networks research, en-
tropy (information) is used to quantify the uncertainty of a variable and its computa-
tion is based on the distribution of observations. Transfer entropy is an asymmetric
variable that measures directed relationships between two random variables by es-
timating the directed information flow between variables. In complex ecosystems,
the concept of entropy is also used as indices for measuring diversity (Shannon-
Wiener and Gini-Simpson diversity, for instance) [63]. The fundamental work of
studying complex ecosystems is to detect complex interdependencies comprised of
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a large number of potential interactions between all species. Therefore, the intuitive
and heuristic notion in information theory for species interaction detection is trans-
fer entropy. Therefore, OIF model is introduced and deployed in this study to detect
potential species interactions that form information flow networks modeling the
fish ecosystem. Networks inferred from OIF model illustrate differences in struc-
ture and function among five TR groups. These structural and functional differences
imply different system states and dynamics the fish community presents within dif-
ferent temperature ranges. For the lowest temperature range, the fish community
lies on a globally stable state, then changes the state to metastability in intermediate
temperature ranges, and finally returns to a locally stable state. As well, different
patterns are recognized for internal mechanisms of the fish ecosystem within dif-
ferent temperature ranges by probabilistically characterizing species interactions.
These shifts of ecosystem state and dynamics explain how sea temperature substan-
tially affects the fish community. In addition, eigenvalues of TE-based interaction
matrix are computed as indices to asses the ecosystem stability of the fish commu-
nity [76, 171]. The determination of eigenvalues and eigenvectors of a system is
extremely important to many problems in physics and engineering including stabil-
ity analysis, oscillations of vibrating systems, to name only a few. It provides three
measures of stability in terms of species interactions: (i) whether the fish commu-
nity will return to the previous state after a certain perturbation, (ii) how fast the
return will occur, and (iii) what the interactome dynamics of the fish community
look like during the process of the return.

It is important to note that different species may respond to the fluctuation of
sea temperature in different ways. As one of the factors, these different behav-
ioral responses improve the complexity of the fish ecosystem, and could be expo-
nentially proportional to the number of species in the fish community. To further
tackle the complexity of system dynamics and identify the roles and importance
of some critical species under the conditions of ocean warming, species-specific
analyses are conducted by doing network-based computation and combining the
network-based results with species diversity and abundance information. Firstly,
link salience estimation is used as network-based analyses to classify the salient
links in complex networks based on a consensus estimate of all nodes [172]. Here,
we also apply this algorithm to identify critical species in the fish community by
finding the common species in the classified salient links. Native species 7 (Pseu-
dolabrus.sieboldi) is the most frequently observed species in the salient links as
a reference node. This result means that species 7 is likely to play a more sig-
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nificant role in maintaining the fish ecosystem stable compared to other species.
Secondly, OTE that counts the total effects of one species on others is calculated for
each species as a nodal property in networks. TE and OTE are considered as the
strong indicators of ecosystem dynamics for pairwise and nodal functional char-
acterization since those variables are related to species interdependence in view of
complex networks [31]. These information-theoretic indicators based on the inter-
dependence between species rather than pure biological species values lead to more
informative biological meaning and offer better characterization and understanding
for networks and their dynamical evolution. From the perspective of uncertainty re-
duction and predictability, it can be also said that TE measures how much the source
variable helps to predict the target. Therefore, OIF-inferred networks are interpreted
as predictive interaction networks, and OTE is a variable measuring how much one
species contributes to the prediction of next states of the fish ecosystem. From this
framework, species 6, 7, 8 and 9 are identified as critical species often involved in
top 5 OTE ranking, and species 7 has the greatest OTE for all TR groups, but the
≤10◦C group. This finding coincides with the results from salient link classifica-
tion. In consideration of biomass and taxonomic analyses, the abundance of species
6, 7, 8 and 9 presents remarkable divergence from other species (see Figure C.2 and
Figure C.3 ). For two divergent variables, TE from source variable with lower un-
certainty to the target with higher uncertainty is supposed to be high. By combining
these results together, it addresses that the distribution of species abundance can be
used as a proxy of interactions in terms of divergence, asynchronicity and diversity
of events.

We also develop dynamical networks dependent on time and temperature. In
consideration of the relationship between eigenvalues and system stability, species
interactions and effective diversity indicators, network-based analyses including the
real part of the dominant eigenvalue of TE matrices, total interaction of dynamical
networks and estimated effective α diversity are implemented in this section. Dom-
inant eigenvalues over time reveal that the fish ecosystem is less stable (metastable)
during the period with higher fluctuations of sea temperature in one year. This re-
sult is in line with the metastable state of 10-15◦C and 15-20◦C groups concluded in
section 3.3, since these two temperature ranges are more likely to appear in spring
and autumn which have relatively high temperature fluctuations in one year. Dom-
inant eigenvalues over temperature also suggest that in a certain temperature range
(≤18◦C), the increasing temperature rapidly makes the fish ecosystem more inter-
acting, but less stable. Total interaction of dynamical networks present equivalent
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fluctuations to eigenvalues on both scales that explicitly imply the relationship be-
tween species interaction and system stability. Moreover, effective α diversity from
OIF networks is able to roughly track the real taxonomic diversity. Therefore, dy-
namical network analyses provide a real-time and temperature-dependent monitor
that could directly display the system states and species activeness in view of sys-
tem dynamics. This is important and useful to understand how the fish ecosystem
responds to the change of sea temperature especially in the conditions of ocean
warming, and to keep the fish community well-managed and stable.

4.5 Conclusions

Temperature is one of the dominant environmental factors that drives marine fish
ecosystems and collective behavior of fish species. Abnormal fluctuations of sea
temperature caused by climate change have created significant challenges for fish
ecosystems [185]. In this study, the fish community in Maizuru Bay is studied
in the time domain, as well as on temperature scale by considering biomass and
taxonomy, species interactions and complex systems, and network-based species-
specific identification.

• Time-domain analyses of biomass and taxonomy present seasonal fluctua-
tions of sea temperature and α diversity. Slightly increasing fluctuations of
sea temperature are observed in the figure of temperature vs. year, while
the global level of species diversity decreases. Accordingly, the increasing
fluctuations of sea temperature may lead to the biodiversity loss in the fish
community. Total abundance of species in EP, FS, native and invasive groups
slightly increases over year, and exponentially increases with the increase of
sea temperature considering temperature scale. These findings indicate that
increasing sea temperature leads to the rise of species abundance, even though
it brings biodiversity loss in a global view. Biomass and taxonomic analyses
for five TR groups show that species abundance is distributed more evenly
for higher TR group, and the variance of species abundance scales with its
magnitude. On temperature scale, taxonomic α diversity grows with the in-
creasing temperature, and is more sensitive to the change of temperature for
lower TR groups.

• We introduce OIF model to infer species interactions in the fish community,
and reconstruct OIF networks for the whole time series and five TR groups.
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OIF network for 15-20◦C group seems to be less scale-free vs. other net-
works, indicating that the fish ecosystem within this temperature range is on
critical metastable state, and experiencing phase transition from local stabil-
ity (≤10◦C group) to metastability. In addition, collective behavior of species
undergoes a significant change. From ≤10◦C to ≥25◦C group, nodal degree
increases, but not consecutively when sea temperature continue to rise. High
sea temperature makes the fish community socially connected, while would
return to be silent when sea temperature is too high.

• Network-based analyses for species-specific identification based on the algo-
rithm to classify salient links and OTE framework reveal that species 7 (Pseu-
dolabrus.sieboldi) is likely to have the greatest influence on other species in
the fish community and play a more important role in maintaining the fish
ecosystem stable. OTE framework also recognizes a cluster involving species
6, 7, 8 and 9 who strongly interact each other. Note that species abundance
of these species is remarkably divergent from others (see Figure C.2 and Fig-
ure C.3 ). It is concluded that the distribution of species abundance can be a
proxy of species interaction in terms of divergence, asynchronicity and diver-
sity of events.

• Temporally dynamical networks present the seasonality of stability. During
the time period with high fluctuations of temperature (spring or autumn, for
instance) in one year, the real part of the dominant eigenvalue of TE-based
interaction matrix is high, suggesting that the fish community is more inter-
acting and becomes metastable. Considering temperature-dependently dy-
namical networks, the real part of the dominant eigenvalue over temperature
increases in a certain temperature range (≤18◦C). The increasing temperature
makes the fish ecosystem more interacting, but less stable. The fluctuation of
total interaction of dynamical networks is highly synchronous with that of the
real part of the dominant eigenvalue. Effective α diversity from dynamical
OIF networks is able to roughly track the taxonomic α diversity. Species in-
teraction is more sensitive to the fluctuation of sea temperature compared to
effective and taxonomic α diversity.

This study provides a two-dimensional (time and temperature) analysis for study-
ing the fish community considering biomass and taxonomy, and system dynamics,
respectively. Conventional time-domain analysis for biomass and taxonomy high-
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lights the seasonal fluctuation of alpha diversity and species abundance. OIF model
allows to investigate the fish community in view of species interactions and system
dynamics. By reconstructing OIF networks, we study the evolution of ecosystem
stability by analyzing structural and functional features of these networks. Network-
based species-specific analyses are also conducted to identify critical species and
clusters in the fish community, which might be most affected by the fluctuation of
sea temperature, and responsible for keeping the fish ecosystem stable. Therefore,
this work is important and useful to completely understand marine fish ecosystems
and their responses to the fluctuation of sea temperature. It would be helpful to for-
mulate science-based and accurate fishery policy to protect marine ecosystems and
improve system resilience to ocean warming caused by climate change.
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Figure 4.1: Seasonal fluctuations of sea temperature and α diversity, α diver-
sity over mean temperature. A: The sea surface temperature (red line) and bottom
temperature (blue line) over time within the range from June 2002 to April 2014.
B: Taxonomic α diversity over time. C: α diversity over mean temperature (the av-
erage of sea surface and bottom temperature). Blue points, light green points, green
points, yellow points and red points represent values of α diversity corresponding to
different temperature ranges: ≤10◦C, 10-15◦C, 15-20◦C, 20-25◦C, ≥25◦C, respec-
tively. Black curve in plot C is a second degree polynomial fitting for α diversity
over temperature.
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Figure 4.2: Total species abundance of EP, FS, Native and Invasive groups over
time and mean temperature. A: Exceedance probability distribution function
(EPDF) are scattered on log-log scale, and fitted by power-law function. |− ε+1| is
the exponent of the original power-law function. All exponents for five TR groups
are connected by a black dashed line shown in the subplot inside A. B: standard
deviation against mean species abundance is plotted on log-log scale for five TR
groups and fitted by power-law function. Here, v is the absolute slope (exponent)
of power-law function. All exponents of the scaling law for five TR groups are
connected by a black dashed line shown in the subplot inside B.
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Figure 4.3: Exceedance probability distribution, standard deviation vs. mean
of species abundance. A: Exceedance probability distribution function (EPDF) are
scattered on log-log scale, and fitted by power-law function. |−ε+1| is the exponent
of the original power-law function. All exponents for five TR groups are connected
by a black dashed line shown in the subplot inside A. B: standard deviation against
mean species abundance is plotted on log-log scale for five TR groups and fitted by
power-law function. Here, v is the absolute slope (exponent) of power-law function.
All exponents of the scaling law for five TR groups are connected by a black dashed
line shown in the subplot inside B.
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Figure 4.4: OIF-inferred species interaction networks and matrices. OIF model
is used to infer the causal interaction between all pairs of species, yielding inter-
action (TE) matrices for the whole time series and five TR groups. TE values in
interaction matrix are normalized to 1 and drawn in plots A’, B’, C’, D’, E’ and
F’. After removing weak interactions by setting a threshold (0.01) to filter transfer
entropy, species interaction networks are reconstructed using Gephi and shown in
plots A, B, C, D, E and F. The size of node is proportional to the Shannon Entropy
of species, the color of node is proportional to the total outgoing transfer entropy
(OTE) of species (the higher the OTE is, the warmer the node’s color is.); the width
and color of the link between species are proportional to the TE between the pair of
species (The higher the TE is, the warmer (wider) the link’s color (width) is.).
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The aim of this dissertation is to provide insight into the use of information-theoretic
complex network inference model to untangle ecosystem complexity and informa-
tion dynamics. An integrated Optimal Information Flow (OIF) model building on
variables in information theory including Shannon entropy, mutual information and
transfer entropy is introduced to quantify information flow (causal interactions) be-
tween all pairs of components and characterize the information dynamics of ecosys-
tems. This OIF first provides a methodological framework for structural and func-
tional quantification and visualization in view of information theory, leading to pre-
dictive species interaction networks. Through analyzing the information dynamics,
structural and functional features of OIF-inferred networks and their alterations with
environmental factors, OIF allows to identify the internal mechanisms of collective
behavior as biological responses to environmental changes, and track the dynamical
evolution of ecosystems. These results can be used to understand how a particular
ecosystem responds to the fluctuations of the external environment with the help of
macroecological analysis. Additionally, OIF links species interactions to taxonomic
abundance and diversity. Species interaction can be a proxy of species abundance
and diversity by comparing the similarity and divergence of time series. Therefore,
this research provides a better understanding for ecosystems that is useful to im-
prove the resilience to environmental disturbances, and create pathways to regulate
ecosystems in due course under the pressure of external stressors.

Chapter 2 places the validation work for the developed OIF model. We inves-
tigate the ability of OIF model to infer bidirectional causality by comparing that to
the well-documented CCM. The results from synthetic data generated by a simple
predator-prey model, real-world data of a sardine-anchovy-temperature system and
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of a multispecies fish ecosystem highlight that the developed OIF performs better
than CCM to predict the patterns of species abundance and diversity. Specifically,
OIF provides a more accurate inference for causal interactions with a larger gradient
and smaller fluctuations, and higher accuracy in predicting α-diversity considering
optimal time delays. Furthermore, an appropriate threshold on inferred causal in-
teractions is proposed to maximize the accuracy in predicting the fluctuations of
effective α-diversity, defined as the count of model-inferred interacting species in
dynamical networks. Overall OIF outperforms other models in assessing predictive
causality (also in terms of computational complexity) due to the explicit considera-
tion of synchronization, divergence and diversity of events that define model sensi-
tivity, uncertainty and complexity. Thus, OIF offers a broad ecological information
by extracting predictive causal networks of complex ecosystems from time-series
data in the space-time continuum. The accurate inference of species interactions
at any biological scale of organization is highly valuable because it allows to pre-
dict biodiversity changes, for instance as a function of climate and other anthro-
pogenic stressors. This has practical implications for defining optimal ecosystem
management and design, such as fish stock prioritization and delineation of ma-
rine protected areas based on derived collective multispecies assembly. OIF can be
applied to any complex systems and used for model evaluation and design where
causality is considered as non-linear predictability of diverse events of populations
or communities.

Chapter 3 explores the application of OIF model in gut-associated microbial
ecosystems for the Irritable Bowel Syndrome (IBS). Based on OIF model with
an threshold that maximizes the information content of inferred networks, we de-
tect species interaction networks that are functionally and structurally different for
healthy and unhealthy individuals. Healthy networks are characterized by a neu-
tral symmetrical pattern of species interactions and scale-free topology versus ran-
dom unhealthy networks. We also identify an inverse scaling relationship between
species total outgoing information flow, meaningful of node interactivity, and rel-
ative species abundance (RSA). The top ten interacting species are also the least
relatively abundant for the healthy microbiome and the most detrimental. These
findings support the idea about the diminishing role of network hubs and how these
should be defined considering the total outgoing information flow rather than the
node degree. Macroecologically, the healthy microbiome is characterized by the
highest Pareto total species diversity growth rate, the lowest species turnover, and
the smallest variability of RSA for all species. This result challenges current views
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that posit a universal association between healthy states and the highest absolute
species diversity in ecosystems. Additionally, we show how the transitory micro-
biome is unstable and microbiome criticality is not necessarily at the phase transi-
tion between healthy and unhealthy states. We stress the importance of considering
portfolios of interacting pairs versus single node dynamics when characterizing the
microbiome and of ranking these pairs in terms of their interactions (i.e., species
collective behavior) that shape transition from healthy to unhealthy states. The
macroecological characterization of the microbiome is useful for public health and
disease diagnosis and etiognosis, while species-specific analyses can detect bene-
ficial species leading to personalized design of pre- and probiotic treatments and
microbiome engineering.

Chapter 4 applies the OIF model to a multispecies fish ecosystem under ocean
warming caused by climate change for understanding how the fluctuations of sea
temperature affect the collective behavior and information dynamics of the fish
ecosystem. Macroecological analysis addresses that the global increase of tem-
perature from 2002 to 2014 reduces fish diversity, while some species become more
abundant and that causes ecological productivity to grow exponentially. Specially
to recognize the impacts of sea temperature on the fish community, the long-term
time-series data are analyzed considering five temperature ranges: ≤10◦C, 10-15◦C,
15-20◦C, 20-25◦C, ≥25◦C. OIF model is used to detect bidirectional interactions
between species and reconstruct species interaction networks that are functionally
different for each temperature range. Networks for lower and higher temperature
ranges are more scale-free compared to networks for the intermediate 15-20◦C
range in which the fish ecosystem experiences a first order phase transition from
a locally stable state to a metastable state. Species-specific analysis is conducted
by calculating the link salience and total outgoing information flow. Native species
whose abundance is distributed more uniformly have a higher total outgoing infor-
mation flow, and are always the reference species (nodes in networks) of the most
salient links (i.e. species 7). These species play an important role in maintain-
ing the fish ecosystem stability and sustainability. In addition, It is observed that
species diversity, total interactions and Shannon entropy of species abundance in
the fish community grow with the increase of temperature. This work provides a
data-driven tool for analyzing and monitoring fish ecosystems under the pressure
of global warming or other stressors. Macroecological and network-based analyses
are useful to formulate science-based and accurate fishery policy to maintain marine
fish ecosystems stable and sustainable.
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The results from all these studies evidence the efficiency of the developed OIF
model. In particular, applications in real-world ecosystems highlight the strong
performance and advantages of OIF in understanding collective behavior, informa-
tion dynamics and system stability and evolution, and predicting biodiversity and
species abundance in complex ecosystems. More importantly, OIF is competent
to infer and predict system patterns and information dynamics not only in ecosys-
tems studied in this work, but in many other complex systems (for instance, power
grid systems, 5G networks, social networks and brain sciences) where traditional
thinking and methodology may break down.
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Figure A.1: Relationship between suboptimal ρ and TE. Suboptimal ρ-s and
TEs for all selected library length L of time series and the time delay u between
variables (sardine-anchovy, sardine and SST, anchovy and SST from top to bottom),
respectively, are shown.
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Figure A.2: Interspecies abundance pattern. Abundance-abundance patterns of
all species in the Maizuru bay independent of time. The higher the correlation
coefficient the higher the divergence and asynchronicity between abundance
time series, and the higher TE (see Figure 2.7 for species from 4 to 9).
”Mirage” correlation between abundance of species (without considering the
delay between autocorrelated values) implies non-linearity and potentially strong
causality/physical interaction as demonstrated in Figure 3.4 by the mathematical
model results. Vice-versa, lack of correlation or low correlation implies
linearity into the dynamics and potentially low causality/physical interaction.
TE is advantageous because it is asymmetrical while interspecies correlation is
symmetrical, yet not allowing one to capture the directional interaction between
species.
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Figure A.3: Time-varying interspecies interactions via OIF and CCM model
for the Maizuru bay fish community. Interspecies interactions for the 14 pairs of
fish species listed in Table. A.2 quantified via (A) OIF and (B) CCM models. The
y-axis indicates the time period from 2002 to 2014 over which the abundance of
species was sampled every two weeks.
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Figure A.4: Mean interaction strength and dominant eigenvalue from OIF and
CCM interaction matrix. (A) Average of all species-species interactions over
time; (OIF and CCM model estimates in red and blue). (B) Atemporal relationship
between mean interactions from OIF and CCM models. (C) Dominant eigenvalue
corresponding to the highest frequency in interactions fluctuations (OIF and CCM
model estimates in red and blue); the real part of the dominant eigenvalue of the
interaction matrix at each time point is reported and represents a potential dynamical
stability. (D) Atemporal relationship between dominant eigenvalue from OIF and
CCM models. For (B) and (D) the slope k is the liner regression coefficient.
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Figure A.5: Distribution of pairwise species interactions from CCM and OIF.
(A) pdf of TE for all species interactions in the period 2002-2014. (B) pdf of ρ for
all species interactions in the period 2002-2014. (C) TE and CCM calculated for
each species pair ij considering each time period where abundance time series are
updated every two weeks in the period 2002-2014. The number of estimated TEs
and ρ (i.e., 3584) is given by the number of observations N (i.e., 256) multiplied by
the number of species pairs (i.e., 14).
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Figure A.6: Predicted α-diversity via CCM and OIF versus taxonomic
diversity. (A) ”Real” taxonomic α-diversity (green line), and inferred temporal
α-diversity from CCM and OIF (red lines) without setting any threshold on the
magnitude of species interactions (ρ and TE). (B) Inferred α-diversity after setting
the threshold to zero for CCM ρ (see Figure A.5 for pdf of ρ where ρ can be
negative). (C) Inferred α-diversity from OIF after setting the threshold to 0.5 for
TE (see Figure A.5 for pdf of TE). TEs are obtained from JIDT using a time delay
u = 1 that corresponds to 2 weeks. Sample data are provided every two weeks for
12 years (see Figure 2.7).
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Figure A.7: Biodiversity indicators over time for the Maizuru bay fish
community. (A) Taxonomic α-diversity as count of diverse species. (B) Shannon
diversity index Hα(t) based on the pdf of population abundance of species at each
time step (Eq. 2.8). (C) Simpson’s diversity index (SDI) over time that measures
diversity difference based on population abundance at adjacent time steps (Eq. 2.7).
Hα(t) is capturing more the trend of biodiversity that is in this case decaying over
time in terms of abundance but increasing in regularity because of the lower entropy.
SDI is more related to fluctuations whose periodicity is getting more stable in this
ecosystem and observable in the autocorrelation of α.
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Figure A.8: Network entropy dependent on the TE threshold. Network entropy
dependent on the pairwise information flow (TE) between species. Network entropy
is defined as the sum of Shannon entropies of all species (considering abundance)
and TEs of all pairwise species interactions.
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Number Source Target 〈ρ〉 〈TE〉

1 S. pinguis T. japonicus -0.2451 0.0886
2 T. japonicus S. pinguis 0.0701 0.1029
3 T. japonicus Aurelia a. 0.1416 0.4881
4 H. tenuispinis P. poecilepterus 0.5860 0.5781
5 P. poecilepterus S. cheni 0.0718 0.6516
6 P. l. japonicus P. sieboldi -0.1407 0.1387
7 T. trigonocephalus C. gulosus 0.0241 0.1393
8 S. fuscescens P. poecilepterus -0.3727 0.1469
9 G. punctata P. zonoleucus 0.1606 0.3199

10 P. l. japonicus T. trigonocephalus -0.2120 0.1253
11 R. ercodes T. japonicus 0.1606 0.4739
12 P. zonoleucus R. ercodes 0.0210 0.3427
13 P. zonoleucus C. gulosus -0.0124 0.0990
14 P. zonoleucus P. sieboldi 0.0828 0.3734

Table A.2: ρ and transfer entropy of 14 pairs of fish species.
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Species Entropy OTE ITE Mean Std

1. Aurelia aurita 2.5031 6.4767 9.612 23.826 126.05
2. Engraulis japonicus 0.5068 8.1583 3.4124 68.056 379.3

3. Plotosus lineatus japonicus 0.5472 7.0584 3.1744 28.253 133.03
4. Sebastes inermis 0.3261 6.16 10.524 31.874 50.512

5. Trachurus japonicus 0.9996 6.3931 8.029 174.94 258.7
6. Girella punctata 0.9914 6.0511 7.7665 14.863 29.911

7. Pseudolabrus sieboldi 0.5570 6.2727 10.308 7.3333 6.9701
8. Halichoeres poecilopterus 0.9803 6.1276 6.978 7.5649 11.755
9. Halichoeres tenuispinnis 0.9903 6.6597 5.7889 17.575 33.523
10. Chaenogobius gulosus 0.4852 8.0477 2.5391 8.9386 51.713
11. Pterogobius zonoleucus 0.9379 6.2296 6.8386 18.542 77.554

12. Tridentiger trigonocephalus 0.2022 6.9856 11.227 31.458 43.289
13. Siganus fuscescens 0.4855 7.0709 3.7683 4.6456 25.866
14. Sphyraena pinguis 0.3922 8.1649 2.3686 8.7614 50.779
15. Rudarius ercodes 0.5852 6.0053 9.527 12.142 33.463

Table A.3: Shannon entropy (Entropy), outgoing transfer entropy (OTE), incoming
transfer entropy (ITE), mean relative abundance (Mean) and standard deviation
(Std).
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Figure B.1: RSA time series for all species.. The RSA of species is reported over
time independently of the microbiome state.
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Figure B.2: Exceedance probability of RSA for all species. The epdf of RSA
is plotted for the top 10 highest RSA, intermediate 10 RSA, and the least 10
RSA species. A power law is observed for the latter two RSA classes, while an
exponential for the former RSA class.
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Figure B.3: Inferred maximum entropy and high-threshold networks.
Maximum entropy microbial networks and high threshold networks are plotted as
a function of the microbiome state. Network structure is lost for the transitory and
unhealthy microbiome. The color of each node is proportional to the sum of total
outgoing TEs of the node (OTE) (the higher OTE, the warmer the color).
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Figure B.4: Top ten RSA species for each microbiome group. RSA is reported
for the 10 highest RSA species of the healthy, transitory and unhealthy microbiome
group. For the unhealthy and healthy group, the top 10 highest RSA species are the
most beneficial and detrimental species.
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Figure B.5: Rank-entropy patterns. The rank of total network entropy and
Outgoing Transfer Entropy is plotted in semi-log plots. Many more values of OTE
and network entropy are observed for the unhealthy and transitory group.
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functions fitting the pdfs are shown.
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Figure B.7: Probability distribution function of pairwise Transfer Entropy and
RSA. Pdf for top, intermediate and least 10 pairwise TE and RSA classes are
reported as a function of the microbiome group.Spline function fitting of the pdf
is shown.
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Figure B.9: Probability distribution of structural and functional microbiome
networks. Pdf of structural and functional network degree and distance are shown
on the left and right dependent on the microbiome group. Spline function fitting of
pdf is shown.
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Figure B.10: Local species diversity as a function of microbiome network
features. Polynomial functions are used to fit the relationship between
macroecological indicators and structural network features. Only data are shown
for these relationships considering functional network features since no clear fitting
function is detected.
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Species NO. Species Name Fish Stock Native/Invasive

1 Aurelia.sp Yes Native
2 Engraulis.japonicus Yes Native
3 Plotosus.lineatus No Invasive
4 Sebastes.inermis Yes Native
5 Trachurus.japonicus Yes Native
6 Girella.punctata Yes Native
7 Pseudolabrus.sieboldi Yes Native
8 Halichoeres.poecilopterus Yes Native
9 Halichoeres.tenuispinnis No Native

10 Chaenogobius.gulosus No Native
11 Pterogobius.zonoleucus No Native
12 Tridentiger.trigonocephalus No Native
13 Siganus.fuscescens Yes Invasive
14 Sphyraena.pinguis Yes Native
15 Rudarius.ercodes No Invasive

Table C.1: Species ID considering the Maizuru dataset, scientific and common
name, categorization in terms of fish stock, location endemicity (native/invasive).
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Species OTE ITE Mean Std

Aurelia.sp 6.4767 9.612 23.826 126.05
Engraulis.japonicus 8.1583 3.4124 68.056 379.3

Plotosus.lineatus 7.0584 3.1744 28.253 133.03
Sebastes.inermis 6.16 10.524 31.874 50.512

Trachurus.japonicus 6.3931 8.029 174.94 258.7
Girella.punctata 6.0511 7.7665 14.863 29.911

Pseudolabrus.sieboldi 6.2727 10.308 7.3333 6.9701
Halichoeres.poecilopterus 6.1276 6.978 7.5649 11.755
Halichoeres.tenuispinnis 6.6597 5.7889 17.575 33.523
Chaenogobius.gulosus 8.0477 2.5391 8.9386 51.713
Pterogobius.zonoleucus 6.2296 6.8386 18.542 77.554

Tridentiger.trigonocephalus 6.9856 11.227 31.458 43.289
Siganus.fuscescens 7.0709 3.7683 4.6456 25.866
Sphyraena.pinguis 8.1649 2.3686 8.7614 50.779
Rudarius.ercodes 6.0053 9.527 12.142 33.463

Table C.2: Outgoing transfer entropy (OTE), incoming transfer entropy (ITE), mean
relative abundance (Mean) and standard deviation (Std).
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Figure C.1: EPDF of species abundance. EPDF of species abundance and
power-law fitting.
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abundance and mean temperature.
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Figure C.3: Species abundance and mean temperature over time.
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Figure C.4: The relationship between species abundance and mean
temperature. Species abundance on log scale vs. mean temperature is linearly
fitted by the first degree polynomial model (red line).
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Figure C.5: Model comparison. A: causal interaction inference from CCM model
developed by Sugihara et al. B: linear relationship between species computed as
Pearson correlation coefficient. C: TE-based causal interaction inference using
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Figure C.6: OIF-inferred interaction networks of top 20% greatest TEs. The
size of node is proportional to the Shannon Entropy of the species; the color of node
is proportional to the total outgoing transfer entropies (OTE) of node (the higher the
OTE is, the warmer the node’s color is.); the width and color of the link between
species are proportional to the TE between the pair of species (The higher the TE
is, the warmer (wider) the link’s color (width) is.).
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Figure C.7: Pdfs of nodal degree in OIF networks of top 20% greatest TEs. A:
Pdf of the structural degree, B: pdf of the in-degree, C: pdf of the out-degree, of
nodes in OIF networks corresponding to five MTR groups.
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Figure C.8: Pdf of OTE and OTE vs. species abundance. A: Pdf of OTE of
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181



Appendix C. Supplement for Chapter 4

A: ≤10°C

B: 10-15°C

C: 15-20°C

D: 20-25°C

E: ≥25°C

0

1

2

3

4

5

6

7

8

9

10

O
T

E

0

1

2

3

4

5

6

7

8

9

10

O
T

E

0

1

2

3

4

5

6

7

8

9

10

O
T

E

0

1

2

3

4

5

6

7

8

9

10

O
T

E

0

1

2

3

4

5

6

7

8

9

10

O
T

E

0

5

10

15

H
(X

)

0

5

10

15

H
(x

)

0

5

10

15

H
(x

)

0

5

10

15

H
(x

)

0

5

10

15

H
(x

)

2 12 4 15 7

2 5 4 1 12

2 5 10 4 1

5 2 3 15 10

1 5 3 11 14

15 12 7 1 4

7 12 4 15 11

7 8 9 12 15

7 5 8 9 6

7 5 8 6 4

Figure C.9: Species with top 5 greatest Shannon entropy and influences on
other species. On the left plots, species with top 5 greatest information content
quantified by Shannon entropy are ranked for five temperature ranges. On the right
plots, the top 5 most active species in terms of OTE are ranked for five temperature
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Figure C.10: OTE against mean and standard deviation of species abundance.
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Figure C.11: Temporally and temperature-dependently dynamical networks.
The stability of the fish ecosystem is indicated as eigenvalues of the TE matrix. Total
interactions are calculated as the sum of all TE values in the TE matrix. Effective
α diversity is the number of all connected nodes (species) in dynamical networks
elaborated from OIF-inferred TE matrix. A: the real part of the dominant eigenvalue
of temporally dynamical TE matrices (blue line) and corresponding adjacency
matrices (red line) over time. B: Total interactions of temporally dynamical TE
interaction matrices over time. C: effective α diversity of temporally dynamical
TE interaction matrices without threshold over time. D: effective α diversity of
temporally dynamical TE interaction matrices with 20% TE threshold over time.
E: the real part of the dominant eigenvalue of temperature-dependently dynamical
TE matrices (blue line) and corresponding adjacency matrices (red line) over
mean temperature. F: Total interactions of temperature-dependently dynamical
TE interaction matrices over mean temperature. G: effective α diversity of
temperature-dependently dynamical TE interaction matrices without threshold over
mean temperature. H: effective α diversity of temperature-dependently dynamical
TE interaction matrices with 20% TE threshold over mean temperature.
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Figure C.12: Continuous probability distribution function (pdf) of OTE.
Considering the whole time series, TE-based interaction matrix is inferred by OIF
model. Pdf of OTE is estimated for all species.
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