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Abstract In this paper, we study the class of free hyperplane arrangements. Specifi-
cally, we investigate the relations between freeness over a field of finite characteristic
and freeness over Q.
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1 Introduction

Let V be a vector space of dimension l over a field K. Fix a system of coordinates
(x1, . . . , xl) of V ∗. We denote by S = S(V ∗) = K[x1, . . . , xl] the symmetric al-
gebra. A hyperplane arrangement A = {H1, . . . ,Hn} is a finite collection of hyper-
planes in V .

Freeness of an arrangement is a key notion which connects arrangement theory
with algebraic geometry and combinatorics. The study of free arrangements was
started by Saito [14] and a remarkable factorization theorem was proved by Terao
[16]. This theorem asserts that the characteristic polynomial of a free arrangement
completely factors into linear polynomials over the integers. This imposes a neces-
sary condition on the structure of the intersection lattice for an arrangement to be
free. The Terao conjecture is the converse problem, i.e. to understand if the structure
of the intersection lattice characterize freeness of arrangements. A lot of work has
been done to solve this conjecture especially in the case of characteristic 0 (see for
example [18], [19], [3], [1] and [6]). However, also the case of finite characteristic
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has been analyzed (see for example [17] and [20]). Despite this effort, this question
is still open.

The purpose of this paper is to study the connections between freeness over a
field of characteristic zero and over a finite field, and to describe in which cases the
two situations are related and how.

2 Preliminares on hyperplane arrangements

In this section, we recall the terminology, the basic notations and some fundamental
results related to hyperplane arrangements.

Let K be a field. A finite set of affine hyperplanes A = {H1, . . . ,Hn} in Kl

is called a hyperplane arrangement. For each hyperplane Hi we fix a polynomial
αi ∈ S = K[x1, . . . , xl] such that Hi = α−1i (0), and let Q(A) =

∏n
i=1 αi. An

arrangementA is called central if each Hi contains the origin of Kl. In this case, the
defining polynomial αi ∈ S is linear homogeneous, and henceQ(A) is homogeneous
of degree n.

Let L(A) = {
⋂
H∈BH | B ⊆ A} be the lattice of intersection of A, ordered

by reverse inclusion, i.e. X ≤ Y if and only if Y ⊆ X , for X,Y ∈ L(A). Define
a rank function on L(A) by rk(X) = codim(X). L(A) plays a fundamental role in
the study of hyperplane arrangements, in fact it determines the combinatorics of the
arrangement.

Let µ : L(A) −→ Z be the Möbius function of L(A) defined by

µ(X) =

{
1 for X = Kl,

−
∑
Y <X µ(Y ) if X > Kl.

The characteristic polynomial of A is defined by

χ(A, t) =
∑

X∈L(A)

µ(X)tdim(X).

For i = 0, . . . , l we define the i-th Betti number bi(A) by the formula

χ(A, t) =

l∑
i=0

(−1)ibi(A)tl−i.

The importance of the characteristic polynomial in combinatorics is justified by the
following result from [7], [11] and [21].

Theorem 2.1 We have that

1. If A is an arrangement in Flp, then |Flp \
⋃
H∈AH| = χ(A, p).

2. If A is an arrangement in Cl, then the topological i-th Betti number of the com-
plement is bi(Cl \

⋃
H∈AH) = bi(A).

3. If A is an arrangement in Rl, then |χ(A,−1)| is the number of chambers and
|χ(A, 1)| is the number of bounded chambers.
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3 Free hyperplane arrangements

We recall the basic notions and properties of free hyperplane arrangements.
We denote by DerKl = {

∑l
i=1 fi∂xi | fi ∈ S} the S-module of polynomial

vector fields on Kl (or S-derivations). Let δ =
∑l
i=1 fi∂xi ∈ DerKl . Then δ is

said to be homogeneous of polynomial degree d if f1, . . . , fl are homogeneous
polynomials of degree d in S. In this case, we write pdeg(δ) = d.

Definition 3.1 Let A be a central arrangement in Kl. Define the module of vector
fields logarithmic tangent to A (or logarithmic vector fields) by

D(A) = {δ ∈ DerKl | δ(αi) ∈ (αi)S, ∀i}.

The module D(A) is obviously a graded S-module and we have that D(A) =
{δ ∈ DerKl | δ(Q(A)) ∈ (Q(A))S}. In particular, since the arrangement A is
central, then the Euler vector field δE =

∑l
i=1 xi∂xi belongs to D(A), in fact

δE(Q(A)) = nQ(A).

Definition 3.2 A central arrangement A in Kl is said to be free with exponents
(e1, . . . , el) if and only if D(A) is a free S-module and there exists a basis δ1, . . . , δl
of D(A) such that pdeg(δi) = ei, or equivalently D(A) ∼=

⊕l
i=1 S(−ei).

In general the exponents of an arrangement depend on the characteristic of K. In
fact, we have the following examples.

Example 3.3 ([12], Example 4.35) Consider the arrangement A in K3 with defin-
ing polynomial Q(A) = xyz(x − y)(x + z)(y + z)(x + y + z). Then A is free for
any K, but its exponents depend on the characteristic of K.

If char(K) 6= 2, then A is free with exponents (1, 3, 3), in fact we can take as
basis of D(A) the following vector fields δE , δ2 = x(x+ z)(x+ y + z)∂x + y(y +
z)(x+ y + z)∂y and δ3 = x(x+ z)(2y + z)∂x + y(y + z)(2x+ z)∂y .

If char(K) = 2, then A is free with exponents (1, 2, 4), in fact we can take
as basis of D(A) the following vector fields δE , δ2 = x2∂x + y2∂y + z2∂z and
δ3 = x4∂x + y4∂y + z4∂z .

Example 3.4 Consider A the arrangement in K3 as the cone of A[−2,2] the Shi-
Catalan arrangement of type B , see for example [2]. Then A is free for any K, but
its exponents depend on the characteristic of K.

If char(K) = 5, then A is free with exponents [1, 5, 15]. If char(K) = 7, then
A is free with exponents [1, 7, 13]. If char(K) 6= 5, 7, then A is free with exponents
[1, 9, 11].

Let δ1, . . . , δl ∈ D(A). Then det(δi(xj))i,j is divisible byQ(A). One of the most
famous characterization of freeness is due to Saito [14] and it uses the determinant
of the coefficient matrix of δ1, . . . , δl to check if the arrangement A is free or not.
Notice that the original statement is for characteristic 0, but in [17] Terao showed
that this statement holds true for any characteristic.

Theorem 3.5 (Saito’s criterion) LetA be a central arrangement inKl and consider
δ1, . . . , δl ∈ D(A). Then the following statements are equivalent
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1. D(A) is free with basis δ1, . . . , δl, i. e. D(A) = S · δ1 ⊕ · · · ⊕ S · δl.
2. det(δi(xj))i,j = cQ(A), where c ∈ K \ {0}.
3. δ1, . . . , δl are linearly independent over S and

∑l
i=1 pdeg(δi) = n.

Given an arrangement A in Kl, the Jacobian ideal of A is the ideal of S gen-
erated by Q(A) and all its partial derivatives, and it is denoted by J(A). This ideal
has a central role in the study of free arrangements. In fact, we can also characterize
freeness by looking at the Jacobian ideal of A. This characterization by Terao [15]
will be used in Section 6. Notice that Terao described this result for characteristic 0,
but a similar proof (c.f. [10]) also works for any characteristic.

Theorem 3.6 (Terao’s criterion) A central arrangement A in Kl is free if and only
if S/J(A) is 0 or (l − 2)-dimensional Cohen-Macaulay.

Proof If A has only one hyperplane, then S/J(A) is 0. Assume now that |A| ≥ 2.
In this case S/J(A) 6= 0 and dim(S/J(A)) = l − 2. Denote by OA the quotient
S/(Q(A). We have the exact sequence

0 // D(A)
i // Sl

β // J(A)OA // 0 , (1)

where i is the inclusion and

β((g1, . . . , gl)
t) =

l∑
i=1

gi∂Q(A)/∂xi for (g1, . . . , gl)
t ∈ Sl.

From the exact sequence (1) together with the Auslander-Buchsbaum equality (see
[9]), we deduce that

D(A) is free ⇔ depth(J(A)OA) = l − 1.

The Depth Lemma (see [9]) applied now to the short exact sequence

0 −→ J(A)OA −→ OA −→ OA/J(A)OA −→ 0

shows that

depth(J(A)OA) = l − 1⇔ depth(OA/J(A)OA) = l − 2.

Since S/J(A) ∼= OA/J(A)OA, we obtain that

D(A) is free ⇔ depth(S/J(A)) = l − 2.

Since we have the following equivalence

depth(S/J(A)) = l−2 = dim(S/J(A))⇔ S/J(A) is Cohen-Macaulay of dimension l−2,

we obtain the thesis.

Freeness has several consequences. For example we recall the following.
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Theorem 3.7 ([16]) Suppose that A is a free arrangement in Kl with exponents
(e1, . . . , el). Then

χ(A, t) =

l∏
i=1

(t− ei).

The previous theorem imposes a necessary condition on the structure of L(A)
for the arrangement A to be free. The Terao conjecture is the problem to ask the
converse, i.e if the structure of L(A) characterize freeness of A. This conjecture is
still unsolved. In [20], Yoshinaga gave an affirmative result when K = Fp and l = 3.
Specifically, he proved the following result.

Theorem 3.8 ([20]) Let A be a central arrangement in F3
p. Then the following facts

hold true.

1. When |A| ≥ 2p, A is free if and only if χ(A, p) = 0.
2. When |A| = 2p− 1, A is free if and only if either χ(A, p) = 0 or
χ(A, t) = (t− 1)(t− p+ 1)2.

3. When |A| = 2p− 2, A is free if and only if either χ(A, p) = 0 or
χ(A, t) = (t− 1)(t− p+ 1)(t− p+ 2).

More in general, Yoshinaga also proved the following.

Theorem 3.9 ([20]) Let A be a central arrangement in Flp. If χ(A, pl−2) = 0, then
A is free with exponents (1, p, . . . , pl−2, |A| − 1− p− · · · − pl−2).

4 From characteristic 0 to characteristic p

From now on we will assume that A = {H1, . . . ,Hn} is a central arrangement in
Ql. After clearing the denominators, we can suppose that αi ∈ Z[x1, . . . , xl] for all
i = 1, . . . , n, and hence that Q(A) =

∏n
i=1 αi ∈ Z[x1, . . . , xl]. Moreover, we can

also assume that there exists no prime number p that divides any αi.
Let p be a prime number. Consider the image of Q(A) under the canonical ho-

momorphism πp : Z[x1, . . . , xl] −→ Fp[x1, . . . , xl].

Definition 4.1 Let A be a central arrangement in Ql. We will say that a prime num-
ber p is good for A if πp(Q(A)) is reduced.

Lemma 4.2 There is a finite number of primes p that are not good for A.

Proof We have that πp(Q(A)) is not reduced if and only if πp(αi) is a multiple of
πp(αj) for some i 6= j and this can happen only for a finite number of primes.

Now let p be a good prime forA, and consider Ap the arrangement in Flp defined
by πp(Q(A)). Hence, by construction, Q(Ap) = πp(Q(A)) 6= 0 and it is reduced.

Theorem 4.3 If A is free in Ql with exponents (e1, . . . , el), then Ap is free in Flp
with exponents (e1, . . . , el), for all good primes except possibly a finite number of
them.
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Proof Let ∆ = {δ1, . . . , δl} be a basis of the module D(A) with pdeg(δi) = ei,
for all i = 1, . . . , l. After clearing all possible denominators, we can assume that
every polynomial that appear in each δ ∈ ∆ is in Z[x1, . . . , xl]. Hence, if we write
δ =

∑l
i=1 gi∂/∂xi ∈ ∆, we can consider δ̄ =

∑l
i=1 πp(gi)∂/∂xi ∈ DerFlp . We

can assume that p - δ for all δ ∈ ∆, and hence δ̄ 6= 0 for all δ ∈ ∆. This implies
pdeg(δ̄i) = pdeg(δi) = ei for all i = 1, . . . , l.

By the definition of D(A), for each δ =
∑l
i=1 gi∂/∂xi ∈ ∆ there exists h ∈

Z[x1, . . . , xl] such that δ(Q(A)) = hQ(A). If we apply πp to this expression, we ob-
tain that δ̄(Q(Ap)) =

∑l
i=1 πp(gi)∂πp(Q(A))/∂xi = πp(δ(Q(A))) = πp(hQ(A)) =

πp(h)πp(Q(A)) = πp(h)Q(Ap), and hence δ̄ ∈ D(Ap).
By Theorem 3.5, since in each δ ∈ ∆ every polynomial that appear have only

integer coefficients and since there exists no prime number that divides any αi, there
exists c ∈ Z \ {0} such that det(δi(xj))i,j = cQ(A). If we apply πp to the pre-
vious equality we obtain that det(δ̄i(xj))i,j = πp(det(δi(xj))i,j) = πp(cQ(A)) =
πp(c)Q(Ap). Hence if p does not divide c, we have πp(c) ∈ Fp \{0} and hence again
by Theorem 3.5, we have that δ̄1, . . . , δ̄l are a basis of D(Ap). This proves thatAp is
free with exponents (e1, . . . , el).

By Lemma 4.2, the number of non-good primes is finite. Hence we have the
following.

Corollary 4.4 Let A be a central arrangement in Ql and p a large prime number.
If A is free in Ql with exponents (e1, . . . , el), then Ap is free in Flp with exponents
(e1, . . . , el).

From Example 3.3, we have the following.

Example 4.5 Consider the arrangement A of Example 3.3 with K = Q. Then the
determinant of the coefficient matrix of the basis of D(A) is equal to 2Q(A). A
direct computation shows that if we take another basis of D(A) with only integer
coefficients, then the determinant of the coefficient matrix is equal to cQ(A) with
c ∈ 2Z \ {0}. This is why over F2 the exponents of A change.

Similarly to the previous example, we have the following

Example 4.6 ConsiderA the cone ofA[−2,2] the Shi-Catalan arrangement of type B
as in Example 3.4 with K = Q. Then the determinant of the coefficient matrix of any
basis of D(A) with only integer coefficients is equal to cQ(A), with c ∈ 35Z \ {0}.
This is why over F5 and F7 the exponents of A change.

The following example shows that some good primes need indeed to be removed
in Theorem 4.3. Specifically, it is an example of a free arrangements in Ql that is not
free in Flp, for some good prime p.

Example 4.7 Consider A the arrangement in Q4 as the cone of A[−2,2] the Shi-
Catalan arrangement of type B. As described in [2], A is a free arrangement with
exponents (1, 13, 15, 17). Moreover, the determinant of the coefficient matrix of a
basis ofD(A) with only integer coefficients is equal to cQ(A), with c ∈ 56595Z\{0}.
Notice that 56595 = 3 · 5 · 73 · 11. Now, 3 is not a good prime but 5, 7 and 11 are.
A direct computation shows that the arrangement A5 over F5 is free with exponents
(1, 5, 15, 25). However, both A7 over F7 and A11 over F11 are not free.
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5 Homogeneous ideals in Z[x1, . . . , xl]

In this section, we study ideals in Z[x1, . . . , xl], their Betti numbers and their zero
divisors. This will play an important role in Section 6.

Definition 5.1 Given a sequence of numbers {ci,j}i,j∈N, we obtain a new sequence
by a cancellation as follows. Fix a j, and choose i and i′ so that one of the numbers is
odd and the other is even. Then replace ci,j by ci,j − 1, and replace ci′,j by ci′,j − 1.
We have a consecutive cancellation when i′ = i+ 1.

The following result is a generalization of Proposition 5.3 from the first arXiv
version of [8] and it will play an important role in Theorem 6.1.

Proposition 5.2 Let I be a homogeneous ideal of the ring R = Z[x1, . . . , xl] and p
a prime number that is a non-zero divisor in R/I . Then, the graded Betti numbers
of (R/I) ⊗Z Q can be obtained from the ones of (R/I) ⊗Z Fp by a sequence of
consecutive cancellations.

Proof Since p is a non-zero divisor in R/I , then (R/I) ⊗Z Z(p) is flat over Z(p).
Let H• be a minimal graded free R⊗Z Z(p)-resolution of (R/I)⊗Z Z(p). The mini-
mality assumption on H• means that we can choose homogeneous bases for the free
modules in this complex such that the entries in the matrices are homogeneous and
they belong to the ideal (p, x1, . . . , xl). This implies that H• ⊗Z Z(p) is a free res-
olution of (R/I) ⊗Z Z(p) over R ⊗Z Z(p) = Z(p)[x1, . . . , xl], and that the graded
Betti numbers of H• and H• ⊗Z Z(p) are the same. The flatness of (R/I) ⊗Z Z(p)

over Z(p) ensures that the complex H• ⊗Z Fp = H• ⊗Z Z(p) ⊗Z(p)
Fp is a free reso-

lution of (R/I) ⊗Z Fp = (R/I) ⊗Z Z(p) ⊗Z(p)
Fp over R ⊗Z Fp = Fp[x1, . . . , xl].

Now matrices giving the maps in this complex are in (x1, . . . , xl), i.e., it is a minimal
resolution. This shows that the graded Betti number of H• coincides with the one of
(R/I)⊗Z Fp.

Now H•⊗Z(p)
Q is a graded free (R⊗Z Q)-resolution of (R/I)⊗Z Q. Therefore

we can write H•⊗Z(p)
Q = G•⊕G′•, where G• is a minimal graded free (R⊗Z Q)-

resolution of (R/I) ⊗Z Q and G′• is a graded trivial complex of free (R ⊗Z Q)-
modules [9, Theorem 20.2]. Therefore, the graded Betti numbers of (R/I)⊗Z Q can
be obtained from the one of (R/I)⊗ZFp by a sequence of consecutive cancellations.

From the Proposition 5.2, we directly obtain the relation between projective di-
mensions.

Corollary 5.3 Let I be a homogeneous ideal of R = Z[x1, . . . , xl] and p a prime
number that is a non-zero divisor in R/I . Then, the Betti numbers of (R/I) ⊗Z Q
are smaller or equal to the one of (R/I) ⊗Z Fp, and hence pdim((R/I) ⊗Z Q) ≤
pdim((R/I)⊗Z Fp).

In general, given I an ideal of R = Z[x1, . . . , xl], the number of zero divisor in
R/I is infinite. However, if we restrict our attention to zero divisors that are prime
numbers, we have the following.

Proposition 5.4 Let I be an ideal of R = Z[x1, . . . , xl]. Then the number of distinct
prime numbers that are zero divisors in R/I is finite.
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Proof By Theorem 14.4 of [9], there exists a ∈ Z \ {0} such that (R/I)[a−1] is a
free Z[a−1]-module. This implies that the set of distinct prime numbers that are zero
divisors in R/I is included in the set of distinct prime numbers that divide a, that is
finite by the unique factorization theorem.

As described in Proposition 5.4, the cardinality of prime numbers that are zero
divisors in R/I is finite. The rest of this section is dedicated to describe a method to
compute them via the theory of Gröbner basis.

Consider I an ideal of R = Z[x1, . . . , xl] and σ a term ordering on R. As for the
case of polynomial rings over fields, we can study the theory of Gröbner basis for
ideals of R. We refer to Chapter 4.5 of [4] for details.

Given f ∈ R, we define the leading term of f as LTσ(f) = maxσ{t ∈
Supp(f)}, the leading coefficient of f as the coefficient multiplying the LTσ(f)
in the writing of f and we denote it by LCσ(f), and the leading monomial of f as
LMσ(f) = LCσ(f) LTσ(f).

Definition 5.5 Let I be an ideal of R = Z[x1, . . . , xl], σ a term ordering on R and
G = {g1, . . . , gt} a set of non-zero polynomials in I . Then we say thatG is a minimal
strong σ-Gröbner basis for I if the following conditions hold true

1. G forms a set of generators of I;
2. for each f ∈ I , there exists i ∈ {1, . . . , t} such that LMσ(gi) divides LMσ(f);
3. if i 6= j, then LMσ(gi) does not divide LMσ(gj).

Remark 5.6 (c.f. [4], Lemma 4.5.8) The reduced σ-Gröbner basis of an ideal I of
Z[x1, . . . , xl] is also a minimal strong σ-Gröbner basis of I . Moreover, every minimal
strong σ-Gröbner basis of I is also a σ-Gröbner basis.

Proposition 5.7 ([4], Exercise 4.5.9) Let I be a non-zero ideal ofR = Z[x1, . . . , xl]
and σ a term ordering on R. Then there always exists a minimal strong σ-Gröbner
basis of I

Notice that in general a minimal strong σ-Gröbner basis is not unique. Consider the
following example.

Example 5.8 Consider the ideal I = (x2 − y, 3y) in Z[x, y] and σ = degrevlex.
Then both {x2−y, 3y} and {x2 + 2y, 3y} are minimal strong σ-Gröbner basis for I .

Lemma 5.9 Let I be an ideal of the polynomial ringR = Z[x1, . . . , xl], and σ a term
ordering on R. Let G1 and G2 be two minimal strong σ-Gröbner bases of I . Then
{LMσ(g) | g ∈ G1} = {LMσ(g) | g ∈ G2}. Consequently we have |G1| = |G2| and
{LCσ(g) | g ∈ G1} = {LCσ(g) | g ∈ G2}.

Proof Assume that there exists t ∈ LMσ(G1) \ LMσ(G2). Now, t ∈ LMσ(I) and
hence there exists f ∈ I such that t = LMσ(f). Since G2 is a minimal strong σ-
Gröbner basis for I , there exists g ∈ G2 such that LMσ(g) = t′ divides LMσ(f) = t.
With a similar argument, we see that t′, and hence t, is a multiple of an element t′′

in LMσ(G1). The minimality of G1 implies that t′′ = t. Hence, t = t′ ∈ LMσ(G2),
but this is a contradiction. This shows that LMσ(G1) ⊆ LMσ(G2).

With the same argument we can show that LMσ(G2) ⊆ LMσ(G1), and hence
that LMσ(G1) = LMσ(G2).
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Remark 5.10 The previous lemma implies that {LMσ(g) | g ∈ G} generates the
monomial ideal LMσ(I).

By Lemma 5.9, we can introduce the following definition. See [13], for more
details.

Definition 5.11 Let I be an ideal of R = Z[x1, . . . , xl], and σ be a term ordering on
R. If a prime number p does not divide the leading coefficient of any polynomial in a
minimal strong σ-Gröbner basis for I , then we will say p is σ-lucky for I .

Remark 5.12 Given I an ideal of R = Z[x1, . . . , xl] and σ a term ordering on R,
since a minimal strong σ-Gröbner basis is finite, then the number of primes that are
not σ-lucky for I is finite.

Notice that the list of σ-lucky primes for an ideal depends on the choice of term
ordering.

Example 5.13 Consider the ideal I = (3x − y) in Z[x, y]. Consider on Z[x, y] a
term ordering σ such that x >σ y. Then {3x − y} is a minimal strong σ-Gröbner
basis of I , and hence every prime p 6= 3 is σ-lucky for I . However, if we consider
on Z[x, y] a term ordering τ such that y >τ x, then {y − 3x} is a minimal strong
τ -Gröbner basis of I . Hence every prime p is τ -lucky for I , also p = 3.

Notice that in general, we cannot determine the σ-lucky primes from the coeffi-
cients that appear in a set of generators.

Example 5.14 Consider the ideal I = (2x+3y, x−y) in Z[x, y] with σ = degrevlex.
In this case, {5y, x− y} is a minimal strong σ-Gröbner basis of I , and hence p = 5
is the only non σ-lucky prime of I .

We are now ready to describe the relation between σ-lucky primes and primes
that are non-zero divisors.

Proposition 5.15 Let I be an ideal of R = Z[x1, . . . , xl] and σ a term ordering on
R. If p is a σ-lucky prime for I , then p is a non-zero divisor in R/I .

Proof Let G = {g1, . . . , gt} be a minimal strong σ-Gröbner basis of I and p a σ-
lucky prime for I . Suppose that p is a zero divisor in R/I . This implies that there
exists f ∈ R \ I such that pf ∈ I . By definition of minimal strong σ-Gröbner
basis, there exists i ∈ {1, . . . , t} such that LMσ(gi) divides LMσ(pf). We can now
consider h1 = pf − LMσ(pf)

LMσ(gi)
gi ∈ I . Since p is σ-lucky, p|LMσ(pf)

LMσ(gj)
, and hence we

have h1 = pf1, for some f1 ∈ R. We can now repeat the process with pf1 ∈ I and
obtain pf2 = pf1 − LMσ(pf1)

LMσ(gj)
gj ∈ I , for some j. Since G is a σ-Gröbner basis this

process will end after a finite number of steps, i.e. we will obtain that there exists a
k ≥ 1 such that pfk ∈ I with pfk 6= 0 but pfk+1 = 0. Retrieving each step, we can
write pf =

∑t
i=1 paigi, for some ai ∈ R. This implies that f =

∑t
i=1 aigi ∈ I , but

this is impossible by assumption.

Notice that in general the set of distinct prime numbers that are non-zero divisors
in R/I contains strictly the set of σ-lucky primes for I .

Example 5.16 Consider the ideal of Example 5.13 with the term ordering σ. Then
p = 3 is a non-zero divisor in R/I , but it is not a σ-lucky prime.
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6 From characteristic p to characteristic 0

As in Section 4, we will assume that A = {H1, . . . ,Hn} is a central arrangement
in Ql and hence that αi ∈ Z[x1, . . . , xl] for all i = 1, . . . , n. Moreover, we can also
assume that there exists no prime number p that divides any αi.

In the rest of the paper, we will denote by J(A)Z the ideal of Z[x1, . . . , xl] gen-
erated by Q(A) and its partial derivatives.

Theorem 6.1 Let A = {H1, . . . ,Hn} be a central arrangement in Ql. Let p be
a good prime number for A that is a non-zero divisor in Z[x1, . . . , xl]/J(A)Z. If
Ap is free in Flp with exponents (e1, . . . , el), then A is free in Ql with exponents
(e1, . . . , el).

Proof Denote S = Q[x1, . . . , xl], Sp = Fp[x1, . . . , xl] and R = Z[x1, . . . , xl].
Notice that Sp/J(Ap) ∼= (R/J(A)Z)⊗Z Fp and S/J(A) ∼= (R/J(A)Z)⊗Z Q.

If n = 1, then both Sp/J(Ap) and S/J(A) are zero.
Assume now that n ≥ 2. This implies that Sp/J(Ap) 6= 0. By Theorem 3.6,

Sp/J(Ap) is Cohen-Macaulay of dimension l− 2. By Auslander-Buchsbaum equal-
ity, we can write

depth(Sp/J(Ap)) + pdim(Sp/J(Ap)) = l = depth(S/J(A)) + pdim(S/J(A)).

By Corollary 5.3, pdim(Sp/J(Ap)) ≥ pdim(S/J(A)) and hence, by the previous
equality, depth(Sp/J(Ap)) ≤ depth(S/J(A)). Now Sp/J(Ap) is Cohen-Macaulay,
hence depth(Sp/J(Ap)) = dim(Sp/J(Ap)) = l−2 = dim(S/J(A)). This implies
that depth(S/J(A)) ≥ l−2 = dim(S/J(A)). On the other hand, depth(S/J(A)) ≤
dim(S/J(A)) and hence we have that depth(S/J(A)) = dim(S/J(A)). This im-
plies that S/J(A) is Cohen-Macaulay of dimension l − 2, and so A is free in Ql.

This argument together with equation (1) show that 2 = pdim(Sp/J(Ap)) =
pdim(S/J(A)), and hence, S/J(A) have the same Betti numbers as Sp/J(Ap).
Since the exponents of A can be computed uniquely from the Betti numbers of
S/J(A), this implies that A has exponents (e1, . . . , el).

In Theorem 6.1, the assumption that the prime p is a non-zero divisor in the
quotient Z[x1, . . . , xl]/J(A)Z is fundamental. In fact we have the following.

Example 6.2 Consider the arrangement A ⊆ Q3 with defining polynomial Q(A) =
z(x+2y−4z)(y+4z)(x+3y−6z).A is non free and both 2 and 3 are zero divisors
in Z[x1, . . . , xl]/J(A)Z. In fact, we have that 3(y2z2 + 2yz3 − 8z4) ∈ J(A)Z but
y2z2+2yz3−8z4 /∈ J(A)Z, and similarly 2(xyz2+4y2z2+4xz3+8yz3−32z4) ∈
J(A)Z but xyz2 + 4y2z2 + 4xz3 + 8yz3 − 32z4 /∈ J(A)Z. However, both A2 and
A3 are free with exponents (1, 1, 2).

By Proposition 5.15, if σ is a term ordering on Z[x1, . . . , xl], then every σ-lucky
prime for J(A)Z is also a non-zero divisor in Z[x1, . . . , xl]/J(A)Z. This fact together
with Theorem 6.1 gives us the following corollary.

Corollary 6.3 Let A be a central arrangement in Ql. Let p be a good prime number
for A that is a σ-lucky prime for J(A)Z, for some term ordering σ. If Ap is free in
Flp with exponents (e1, . . . , el), then A is free in Ql with exponents (e1, . . . , el).
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By Proposition 5.4, the cardinality of prime numbers that are zero divisors in
the quotient Z[x1, . . . , xl]/J(A)Z is finite. Hence, putting together Corollary 4.4 and
Theorem 6.1, we have the following.

Corollary 6.4 LetA be a central arrangement in Ql and p a large prime number.Ap
is free in Flp with exponents (e1, . . . , el) if and only if A is free in Ql with exponents
(e1, . . . , el).

From Theorems 3.8 and 6.1, we have the following.

Theorem 6.5 Let A be a central arrangement in Q3. Let p be a good prime number
forA that is a non-zero divisor in Z[x1, x2, x3]/J(A)Z. Then the following facts hold
true.

1. When |A| ≥ 2p, A is free if χ(Ap, p) = 0.
2. When |A| = 2p− 1, A is free if either χ(Ap, p) = 0 or
χ(Ap, t) = (t− 1)(t− p+ 1)2.

3. When |A| = 2p− 2, A is free if either χ(Ap, p) = 0 or
χ(Ap, t) = (t− 1)(t− p+ 1)(t− p+ 2).

More in general, from Theorems 3.9 and 6.1, we have the following.

Theorem 6.6 Let A be a central arrangement in Ql. Let p be a good prime number
for A that is a non-zero divisor in Z[x1, . . . , xl]/J(A)Z. If χ(Ap, pl−2) = 0, then A
is a free arrangement with exponents (1, p, . . . , pl−2, |A| − 1− p− · · · − pl−2).

As noted in [5], if p is a large prime number, then A and Ap have isomor-
phic intersection lattices, and hence have the same characteristic polynomial. This
fact, together with the finiteness of good prime numbers that are zero divisors in
Z[x1, . . . , xl]/J(A)Z, allows us to say that if A is a central arrangement in Ql,
p is a large prime number, and χ(A, pl−2) = 0, then A is free with exponents
(1, p, . . . , pl−2, |A| − 1− p− · · · − pl−2).

Example 6.7 Consider the arrangement A in Q3 with defining equation Q(A) =
xyz(x−y)(x+y)(x− z)(x+ z)(y− z)(y+ z). Now, p = 5 is a good prime number
forA that does not divide |A| = 9 and that is a non-zero divisor in Z[x, y, z]/J(A)Z.
A direct computations shows that, χ(A5, t) = (t − 1)(t − 3)(t − 5) and hence, by
Theorem 6.5 or 6.6, A is free with exponents (1, 3, 5). Notice that in this case,A and
A5 have isomorphic intersection lattice, hence p = 5 is a “large prime number”.
However, in general, it is difficult to detect when a prime number is “large” enough.

Acknowledgements The authors would like to thank G. Caviglia, M. Kummini, N. Nakashima and M.
Yoshinaga for many helpful discussions.
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