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DOUBLE COVERINGS OF ARRANGEMENT COMPLEMENTS
AND 2-TORSION IN MILNOR FIBER HOMOLOGY

MASAHIKO YOSHINAGA

Dedicated to the memory of Stefan Papadima

ABSTRACT. We prove that the mod 2 Betti numbers of double coverings
of a complex hyperplane arrangement complement are combinatorially
determined. The proof is based on a relation between the mod 2 Aomoto
complex and the transfer long exact sequence.

Applying the above result to the icosidodecahedral arrangement (16
planes in the three dimensional space related to the icosidodecahedron),
we conclude that the first homology of the Milnor fiber has non-trivial
2-torsion.
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1. INTRODUCTION

An arrangement of hyperplanes is a finite collection of hyperplanes in a
finite dimensional vector (affine, or projective) space. For a complex ar-
rangement, we can associate several topological spaces: the complement,
Milnor fiber, their covering spaces, boundary manifolds and so on. These
provides important spaces in topology such as the classifying space of the
pure braid (Artin) group and their subgroups.

Another important aspect of arrangement is the combinatorial structure.
An arrangement defines the poset of subspaces expressed as intersections
of hyperplanes. These subspaces can be also considered as (the closure of)
strata of a stratification of the total space. As is naturally expected, the
poset of intersections has a lot of information on the associated topological
spaces. Indeed, some of topological invariant (e.g., cohomology ring of the
complement [22]. See also §2 for more details) is determined by the poset
of intersections, while some other can not be determined by the poset (e.g.,
the fundamental group [27]). Furthermore, there are many invariant whose
relations to the poset of intersections are yet unclear.

Recently, Milnor fibers, and more generally, covering spaces of the ar-
rangement complements received considerable amount of attention. See for
[33] for survey on the topic. Among other results, we just recall some of
recent results on the Milnor fiber of an arrangement:

• Explicit computations for interesting examples [2, 11, 20, 36].
• Upper/lower bounds of monodromy eigenspaces [3, 5, 25, 35, 36].
• Vanishing of non-trivial monodromy eigenspaces [4, 29, 30].
• Examples of arrangements with multiplicities whose first homology

group of the Milnor fiber has torsion [6].
• Examples of arrangements whose higher degree homology of the

Milnor fiber has torsion [9].
• Purely combinatorial description of monodromy eigenspaces for line

arrangements which have only double and triple intersections. [10,
18, 26].

The purpose of this paper is to study the mod 2 homology and 2-torsion
in the integral homology of covering spaces of arrangement complements.
The main results of this paper are as follows. The first result is concerning
mod 2 homology of the double covering.

Theorem 1.1. (See Theorem 3.7 for more precise statement.) The mod 2
Betti numbers of double covers of arrangement complements are combina-
torially determined.

More precisely, we will obtain a combinatorial expression of the rank of
mod 2 homology in terms of the mod 2 Aomoto complex.
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The second result is about the Milnor fiber of the icosidodecahedral ar-
rangement which is the arrangement of 16 planes in R3 associated to the
icosidodecahedron. (See §4.1 for definition).

Theorem 1.2. (See Theorem 4.3 (3).) Let FAID be the Milnor fiber of the
icosidodecahedral arrangement AID. Then H1(FAID ,Z) has 2-torsion.

The organization of this paper is as follows. In §2, we review several
results concerning Milnor fiber of arrangements, intersection poset, Orlik-
Solomon algebra, and Aomoto complex, which are necessary for stating
results and proofs.
§3 summarizes results on abelian covering spaces. After recalling the

transfer long exact sequence of a double covering in §3.1-§3.2, we prove, in
§3.3, a key lemma (Lemma 3.2) which guarantees the first mod 2 Betti num-
ber does not decrease by taking certain (“Z4-liftable”) double coverings. In
§3.4, we prove the first main result, that is a combinatorial formula for the
mod 2 Betti numbers of double coverings of an arrangement complement
(Theorem 3.7).

In §4.1, we introduce the icosidodecahedral arrangementAID, and prove
in §4.2 and §4.3 that the first homology of the Milnor fiber has 2-torsion.

Notation and Convention. We will use the following convention through-
out the paper.

• In this paper, Zn denotes the cyclic group (also a finite ring) Z/nZ.
• For a space X with the homotopy type of a finite CW complex,
bi(X) = rankZH

i(X,Z) denotes the Betti number, and bi(X) =
rankZ2 H

i(X,Z2) denotes the mod 2 Betti number.
• A covering Y −→ X always means an unbranched covering. Un-

less otherwise stated, we assume X and Y are connected.
• We will assume that the base point x0 ∈ X is fixed when we con-

sider the fundamental group π1(X) = π1(X, x0).
• For an element γ ∈ π1(X), denote by [γ] its homology class. If
(Y, y0) −→ (X, x0) is a covering, γ̃ denotes the lifting of γ starting
from the the base point y0. Note that γ̃ is not necessarily a closed
curve.

2. GENERALITIES ON HYPERPLANE ARRANGEMENTS

In this section, we summarize notation and several results on hyperplane
arrangements. See [23, 24] for more details.

Let A = {H1, H2, . . . , Hn} be a collection of affine hyperplanes in
C`. We denote by M(A) = C` r

⋃n
i=1Hi the complement. Let H∞

be a projective hyperplane in CP`. Using the identification CP` = C` t
H∞, A naturally induces an arrangement of n + 1 projective hyperplanes
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A = {H1, . . . , Hn, H∞}. A projective hyperplane Hi defines a linear
hyperplane H̃i in C`+1. The collection of these linear hyperplanes Ã =

{H̃1, . . . , H̃n, H̃∞} is called the coning ofA (which is also denoted by cA).
We can also define the opposite operation, which is called the deconing of
Ã with respect to H̃∞ and denoted by A = dH̃∞Ã.

There is a natural projection p : M(cA) −→ M(A). It is easily seen
that M(cA) ' M(A) × C×. Let αi : C`+1 −→ C be a non-zero linear
form such that H̃i = α−1i (0) (i = 1, . . . , n,∞). Then Q =

∏
i αi is a

homogeneous polynomial of degree n+1. F := {x ∈ C`+1 | Q(x) = 1} ⊂
C`+1 is called the Milnor fiber of cA. Since Q is homogeneous, the cyclic
group Z/(n + 1)Z ' {ζ ∈ C | ζn+1 = 1} acts on F defined by the map
µ : F −→ F, x 7−→ ζ · x. This action is nothing but the monodromy action
of the fibration Q : M(cA) −→ C×. The monodromy map µ : F −→ F
induces a linear map on homology µ∗ : Hk(F,Z) −→ Hk(F,Z). Since the
map has finite order, the homology with coefficients in C is decomposed
into the direct sum of eigenspaces,

Hk(F,C) =
⊕

ζn+1=1

Hk(F,C)ζ ,

where Hk(F,C)ζ is the ζ-eigenspace of µ∗. Since M(A) can be identified
with the quotient F/〈µ〉, we have Hk(F,C)1 ' Hk(M(A),C).

Given an affine arrangement A = {H1, . . . , Hn}, non-empty intersec-
tionsX =

⋂
H∈S H (S ⊂ A) form a poset with respect to reverse inclusion,

which is denoted by L(A) and called the intersection poset. We say that
S ⊂ A does not intersect if

⋂
H∈S H = ∅. A subset S ⊂ A is called de-

pendent if
⋂
H∈S H 6= ∅ and codim

⋂
H∈S H < #S. For X ∈ L(A), we

denote by AX := {H ∈ A | H ⊃ X} the localization of A at X .
From the intersection poset, the Orlik-Solomon algebraA•Z(A) is defined

as follows. Let E =
⊕n

i=1 Zei be the free abelian group generated by the
symbols ei corresponding to the hyperplanes Hi. Let ∧E = Z⊕E⊕E∧2⊕
· · · ⊕E∧n be the exterior algebra on E. For given S = {i1, i2, . . . , ik} ⊂ A
with i1 < · · · < ik, let eS := ei1 ∧ · · · ∧ eik , and define ∂eS ∈ E∧(k−1) by

∂eS =
k∑
p=1

(−1)p−1ei1 ∧ . . . êip ∧ · · · ∧ eik .

Define I(A) to be the ideal of ∧E generated by the following elements.

{∂eS | S is dependent} ∪ {eS | S does not intersect}.
The quotient ringA∗Z(A) := ∧E/I(A) is called the Orlik-Solomon algebra.
For any abelian groupR, denoteA∗R(A) := A∗Z(A)⊗ZR. Note that whenR
is a commutative ring, A∗R(A) becomes a graded commutative R-algebra.
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Brieskorn’s Lemma [23, Corollary 3.73] shows that the degree k component
of the Orlik-Solomon algebra is

AkR(A) '
⊕

X∈L(A)
codimX=k

AkR(AX).

Orlik and Solomon [22] proved that each homology groupHk(M(A),Z)
is torsion free and the cohomology ring is isomorphic to the Orlik-Solomon
algebra. Namely, for any commutative ring R, we have an isormorphism

H∗(M(A), R) ' A∗R(A)
as graded commutative R-algebras.

The following will be used later.

Lemma 2.1. Let A = {H1, . . . , Hn} be an arrangement of n lines (n ≥ 3)
in C2 with unique intersection (Figure 1). Let R be an integral domain.
Let η =

∑n
i=1 aiei and ω =

∑n
i=1 biei ∈ A1

R(A). Then the following are
equivalent.

(a) η ∧ ω = 0.
(b)
∑n

i=1 ai =
∑n

i=1 bi = 0 or ω, η are linearly dependent (i. e., there
are c1, c2 ∈ R, not both zero, such that c1η + c2ω = 0).

Proof. See [38, Proposition 2.1] (or [34, Lemma 3.1]). �

H1

H2
Hn

FIGURE 1. n lines with one intersection (n ≥ 3)

For a given ω ∈ A1
R(A), Orlik-Solomon algebra determines the cochain

complex (A•R(A), ω ∧−), which is called the Aomoto complex. This com-
plex plays crucial role in the computation of twisted cohomology groups
[1, 12, 13, 19, 25, 31, 34, 38].

3. FINITE COVERINGS AND COMBINATORIAL STRUCTURES

3.1. Finite abelian covering. Let G be a finite abelian group. Recall that
a group homomorphism w : π1(X) −→ G determines a finite abelian cov-
ering p(w) : Xw −→ X . Since G is abelian, we have

Hom(π1(X), G) = Hom(H1(X,Z), G) ' H1(X,G).
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The element w ∈ H1(X,G) is called the characteristic class of the cov-
ering. Note that Ker(w : π1(X) → G) is isomorphic to π1(X

w) and
π1(X)/π1(X

w) ' Im(w : π1(X)→ G).

3.2. Double covering and transfer exact sequence. (See [15, §4.3] for
details.) Now we consider the double covering p : Y −→ X with the unique
nontrivial deck transformation σ : Y −→ Y . Assume that Y is connected.
Denote the characteristic class by w ∈ H1(X,Z2) = Hom(π1(X),Z2).
Recall that the transfer map

τ∗ : Hk(X,Z2) −→ Hk(Y,Z2),

is given by [γ] 7−→ [p−1(γ)]. Denote by τ ∗ : Hk(Y,Z2) −→ Hk(X,Z2) the
induced map between cohomology groups.

Example 3.1. Let us closely look at the transfer map τ∗ in degree one. Let
γ ∈ π1(X). Then either w(γ) = 0 or 6= 0.

(1) Suppose w(γ) 6= 0, equivalently, γ /∈ π1(Y )(⊂ π1(X)). Then the
lift γ̃ is no longer a cycle. Note that p−1(γ) is the union of γ̃ and
σ(γ̃), which is the lift of γ2. Since γ2 ∈ π1(Y ) ⊂ π1(X), we have
τ∗([γ]) = [γ2].

(2) Suppose w(γ) = 0. Then the lift γ̃ is a cycle on Y . Hence τ∗([γ]) =
[γ̃] + [σ(γ̃)].

The transfer map fits into the following long exact sequence.
(3.1)
· · ·Hk−1(X,Z2)

w∪−→ Hk(X,Z2)
p∗−→ Hk(Y,Z2)

τ∗−→ Hk(X,Z2)
w∪−→ Hk+1(X,Z2) · · · .

3.3. Mod 2 Betti number of Z4-liftable double coverings. In this section,
we prove an inequality between the mod 2 first Betti numbers of a double
covering Y −→ X , which will play a crucial role later in §4.3.

Lemma 3.2. Let w : π1(X) −→ Z4 be a surjective homomorphism. By
composing the canonical surjective homomorphism Z4 → Z2, we obtain an
epimorphism w : π1(X) −→ Z2. Consider the associated double coverings
Xw −→ Xw and Xw −→ X .

(1) w ∈ H1(X,Z2) satisfies w ∪ w = 0.
(2) b1(Xw) ≥ b1(X).

Proof. (1) Recall that the exact sequence of abelian groups 0 → Z2 →
Z4 → Z2 → 0 induces the exact sequence

H1(X,Z4)
ϕ→ H1(X,Z2)

β→ H2(X,Z2).

The first mapϕ sendsw tow. The second map β : H1(X,Z2)→ H2(X,Z2)
is the so-called Bockstein homomorphism, which is β(x) = x∪x [14, Sec-
tion 4.L]. Since β ◦ ϕ = 0, we have w ∪ w = 0.
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(2) Since p∗ : H0(X,Z2) ' H0(Xw,Z2) is an isomorphism, the begin-
ning of the transfer exact sequence is as follows.

0→ H0(X,Z2)
w∪→ H1(X,Z2)

p∗→ H1(Xw,Z2)
τ∗→ H1(X,Z2)

w∪→ H2(X,Z2).

We have

rankZ2 H
1(Xw,Z2) = rankZ2 H

1(X,Z2)− 1 + rankZ2 Im(τ ∗).

Since w ∈ Ker(w∪) = Im(τ ∗), rankZ2 Im(τ ∗) ≥ 1. This completes the
proof. �

Remark 3.3. Without the assumption of Z4-liftability in Lemma 3.2 (2),
the inequality between mod 2 Betti numbers does not hold in general. For
example, the double covering Sm −→ RPm does not satisfy the inequality
for m ≥ 2. Indeed rankZ2 H

1(Sm,Z2) = 0 and rankZ2 H
1(RPm,Z2) = 1.

Corollary 3.4. (1) Let Xk → Xk−1 → · · · → X0 (k ≥ 2) be a tower
of double coverings of connected spaces (i.e., each Xi → Xi−1 is a
double covering) such thatXk → X0 is a cyclic Z2k-covering. Then

b1(Xk−1) ≥ b1(Xk−2) ≥ · · · ≥ b1(X1) ≥ b1(X0).

(2) Let w : π1(X) −→ Z be a surjective homomorphism, and w :
π1(X) −→ Z2k be the induced surjection (k ≥ 1). Then

b1(X
w) ≥ b1(X).

Proof. (1) is proved by induction on k using Lemma 3.2. (2) follows im-
mediately from (1). �

3.4. Double coverings of arrangement complements. Now let us formu-
late a problem asking whether the Betti numbers of finite coverings of ar-
rangement complements are combinatorially determined.

Problem 3.5. Let A be an arrangement in C`. Let G be a finite abelian
group, andR be an abelian group. Letw ∈ A1

G(A) ' Hom(π1(M(A)), G).
Describe the cohomology groups Hk(M(A)w, R) (or their ranks) in terms
of L(A) and w ∈ A1

G(A).

Example 3.6. Let A = {H1, . . . , Hn} be an arrangement of n hyper-
planes and G = Zn+1 be the cyclic group of order (n + 1). Let w :=
e1 + e2 + · · · + en ∈ A1

Zn+1
(A). Then the corresponding covering M(A)w

is homeomorphic to the Milnor fiber F of the coning cA.

Problem 3.5 is widely open. Indeed, many research problems are related
to Problem 3.5 [8, 16, 17, 28]. For example, the notion of characteristic
variety is deeply related to the computation of rankZHk(M(A)w,Z). See
[32, 33] for surveys of the topic.
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As a special case of Problem 3.5, we now prove that the mod 2 Betti
numbers of the double covering M(A)w of an arrangement complement
are combinatorially determined.

Theorem 3.7. Let w ∈ A1
Z2
(A), w 6= 0. Then the k-th mod 2 Betti number

(k ≥ 0) of the double covering M(A)w is expressed as follows.

(3.2) bk(M(A)w) = bk(M(A)) + rankZ2 H
k(A•Z2

(A), w ∧ −).

Proof. Denote Zk := Ker(w∧ : AkZ2
(A)→ Ak+1

Z2
(A)) and Bk := Im(w∧ :

Ak−1Z2
(A) → AkZ2

(A)). From the transfer long exact sequence, we have the
following exact sequence.

0 −→ Bk −→ AkZ2
(A) −→ Hk(M(A)w,Z2) −→ Zk −→ 0.

Since Zk/Bk ' Hk(A•Z2
(A), w ∧ −),

rankZ2 H
k(M(A)w,Z2) = rankZ2 A

k
Z2
(A) + rankZ2 Zk − rankZ2 Bk

= bk(M(A)) + rankZ2 H
k(A•Z2

(A), w ∧ −).
�

Remark 3.8. Note that Theorem 3.7 gives only mod 2 Betti numbers. It is
not clear whether we can combinatorially describe Betti numbers or (mod
2) cohomology ring structure of the double covering.

4. 2-TORSIONS IN MILNOR FIBER HOMOLOGY

4.1. Icosidodecahedral arrangement AID.

Definition 4.1. The icosidodecahedral arrangement AID is the coning of
the 15 affine lines in Figure 2. Namely, AID consists of 16 planes in R3.
(Another deconing of AID is depicted in Figure 3.)

Let us briefly comment on the naming “Icosidodecahedral arrangement”.
Actually, AID can be constructed from the icosidodecahedron as follows,
which seems to be the most symmetric realization of AID.

The icosidodecahedron (Figure 4) is a polyhedron which is commonly
obtained as vertex truncations of the icosahedron and the dodecahedron (by
truncating mid points of edges). An icosidodecahedron has 32 faces (20
triangles and 12 pentagons), 60 edges and 30 vertices (Figure 4). We can
choose 10 edges to form the equator of the polyhedron, which are lying on
a plane in R3. Similarly, we obtain 6 planes in total (they correspond to the
blue lines H11, . . . , H15, H16 in Figures 2 and 3).

Each pentagonal face of the icosidodecahedron has five diagonals. There
are 60 such diagonals in all. If we choose appropriately consecutive six of
them, they are lying on a plane (the red diagonals in Figure 4). We obtain
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FIGURE 2. A deconing dH16AID of the icosidodecahedral
arrangement (with respect to a blue line at infinity H16). The
coloring expresses the nontrivial cocycle in the mod 2 Ao-
moto complex (§4.2).
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3 4

FIGURE 3. Another deconing dH1AID of the icosidodeca-
hedral arrangement (with respect to a red line H1 at infinity)
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in this manner 10 planes consisting of diagonals (Figure 5). As a result, we
have an arrangement of 16 planes in R3, which is isomorphic to AID.

For computations, we use mainly the deconing from Figure 2.

FIGURE 4. Icosidodecahedron (blue) and a diagonal plane (red)

FIGURE 5. Icosidodecahedral arrangement

4.2. Mod 2 Aomoto complex of icosidodecahedral arrangement. Let
dAID := dH16AID be the affine arrangement in Figure 2. Let w2 :=
e1 + · · ·+ e15 ∈ A1

Z2
(dAID). For a subset S ⊂ dAID, let eS :=

∑
Hi∈S ei.

Obviously, every element in A1
Z2
(dAID) can be expressed as eS , where S is

a subset of dAID.

Proposition 4.2. rankZ2 H
1(A•Z2

(dAID), w2 ∧ −) = 1.

Proof. Let S0 := {1, 2, . . . , 10} (red in Figure 2) and S1 := {11, 12, 13, 14, 15}
(blue in Figure 2). Note that at each intersection p, the localization (dAID)p
consists of either
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• two lines from S0, or
• two from S0 and two from S1.

This property, together with Lemma 2.1, enables us to conclude

w2 ∧ eS0 = w2 ∧ eS1 = 0.

Therefore, rankZ2 H
1(A•Z2

(dAID), w2 ∧ −) ≥ 1.
Next we show that [eS0 ] = [eS1 ] is the unique nonzero cohomology class.

Suppose w2 ∧ eS = 0 for some S ⊂ dAID. If S ∩ S0 6= ∅, choose an
i ∈ S ∩ S0, then by Lemma 2.1, all j such that i and j intersect at a double
point must be contained in S. Thus, if S ∩ S0 6= ∅, S ⊃ S0. By replacing
eS by eS + w2 = edAIDrS , we may assume S ∩ S0 = ∅, in other words,
S ⊂ S1. Again by Lemma 2.1, S must be either S1 or ∅. This completes
the proof. �

4.3. Milnor fiber of icosidodecahedral arrangement.
Theorem 4.3. Let FAID be the Milnor fiber of the icosidodecahedral ar-
rangement AID. Then,

(1) rankZH
1(FAID ,Z) = 15.

(2) rankZ2 H
1(FAID ,Z2) ≥ 16.

(3) The integral first homology group H1(FAID ,Z) has 2-torsion.

Proof. (1) Recall thatH1(FAID ,Z) admits Z16 action by monodromy. Then
the homology with complex coefficients has eigenspace decomposition

H1(FAID ,C) =
⊕
λ16=1

H1(FAID ,C)λ.

Each eigenspaceH1(FAID ,C)λ is known to be isomorphic toH1(M(dAID),Lλ)
[7], where Lλ is the complex rank one local system onM(dAID) which has
monodromy λ along the meridian of each line H ∈ dAID in C2. In partic-
ular, the 1-eigen space is H1(FAID ,C)1 ' H1(M(dAID),C) ' C15. For
λ 6= 1, there are several practical ways to check that H1(FAID ,C)λ = 0.
One of the methods is to apply the result by Esnault-Schechtman-Viehweg
[12] and Schechtman-Varchenko-Terao [31]. Let a1, . . . , a16 ∈ C. Assume
the following three conditions.

(P1) exp
(
2π
√
−1 · ai

)
= λ,

(P2)
∑16

i=1 ai = 0.
(P3) Let AID be the induced projective arrangement of 16 lines. For

each quadruple intersection p ∈ CP2 of AID, the sum
∑

Hi3p ai is
not contained in Z>0.

(In some literature, such a local system is called admissible [21].) Then
[12, 31] asserts that

(4.1) Hk(M(dAID),Lλ) ' Hk(A•C(dAID), η ∧ −),



12 MASAHIKO YOSHINAGA

for k ≥ 0, where η =
∑15

i=1 aiei ∈ A1
C(dAID).

Here let us illustrate how to prove H1(M(dAID),Lλ) = 0 for λ = −1.
We can choose a1, . . . , a16 as

a1 = a2 = · · · = a9 = a10 =
1

2
,

a11 = a12 = · · · = a15 = −
1

2

a16 = −
5

2
.

Then at each quadruple point, the sum of ai’s is either 0 or −2. Thus
the conditions (P1), (P2) and (P3) are verified. Set η :=

∑15
i=1 aiei ∈

A1
C(dAID). We can checkHk(A•C(dAID), η∧−) = 0 by arguments similar

to the proof of Proposition 4.2. The vanishing of the eigenspaces for other
eigenvalues λ can be proved in a similar way.

We can obtain the same result also by using resonant band algorithms
formulated in [36, 37].

(2) follows from Theorem 3.7, Proposition 4.2 and Corollary 3.4.
(3) By universal coefficient theorem and (1), if H1(FAID ,Z) does not

have 2-torsion, H1(FAID ,Z2) ' H1(FAID ,Z) ⊗ Z2 has rank 15 over Z2.
This contradicts (2). �

Remark 4.4. The proof of Theorem 4.3 works more generally. Let A be an
arrangement in C3. Suppose

• #A is a power of 2.
• The first cohomology of the mod 2 Aomoto complex of the decon-

ing of A does not vanish.
• The first cohomology of the Milnor fiber H1(FA,C) does not have

nontrivial monodromy eigenspaces.
Then we can conclude H1(FA,Z) has 2-torsion.

Remark 4.5. Proposition 4.2 and Theorem 4.3 (1) show thatAID is a coun-
terexample to a conjectures in [26, Conjecture 1.9]. More precisely, the
equality β2 = e2 in [26] does not hold for AID.

Remark 4.6. Enrique Artal-Bartolo communicated to us that he checked by
computer that H1(FAID ,Z) ' Z15⊕Z2. It would be a challenging problem
to develop a method which can check the result theoretically. The following
are also interesting problems.

(1) Describe the mod 2 Betti numbers of the Milnor fibers of arrange-
ments.

(2) Describe the mod 2 cohomology rings of double covers of arrange-
ment complements.
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