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Abstract 9 

Forests hold significant potential for carbon sequestration and climate change mitigation. 10 

Forest biomass estimation is vital for sustainable forest management, providing critical input 11 

data for implementing the United Nations Reducing Emissions from Deforestation and forest 12 

Degradation-plus (REDD+) mechanism. This study investigates the total carbon pools—13 

aboveground biomass (AGB), belowground biomass (BGB), forest floor biomass, and soil 14 

carbon—using field-based information in the muyong forest management system, which is 15 

native to Ifugao in the Philippines. This study reveals that a difference may be observed between 16 

the total carbon stock of the private woodlots (muyong) and that of the communal forest (bilid). 17 

The results indicate that the bilid forest has trees with small diameter at breast height (DBH) and 18 

high tree density in contrast to the muyong, which has trees with high DBH and low tree density. 19 

The average carbon stock per unit area is higher in muyong (150.8 tC/ha) than in bilid (126.1 20 

tC/ha). These findings are valuable in determining whether Ifugao’s muyong forest system 21 

should be included under the REDD+ framework. Human mediation and management helps 22 

forests to sequester a greater amount of carbon than they would without human intervention. 23 

Implementation of REDD+ should promote Ifugao’s ecosystem and biodiversity conservation 24 

and agroforestry practices in addition to protecting traditional agricultural practices and 25 

livelihoods in relation to rice terraces. 26 

Keywords: Forest carbon stocks, REDD+, muyong, climate change mitigation 27 

1. Introduction 28 

mailto:ram.envjnu@gmail.com


2 
 

 Tropical forests are important carbon reservoirs, storing large quantities of biomass over 29 

long periods compared to agriculture and other systems (Ravindranath and Ostwald 2008; Avtar, 30 

et al., 2013a). They also fulfill an important role in the global carbon cycle because they act as 31 

reservoirs during succession and sources when deforested or degraded by natural or human 32 

disturbances (Marin-Spiotta and Sharma, 2013). Continued deforestation and forest degradation 33 

pose the threat of releasing large amounts of carbon, which may exacerbate the effects of climate 34 

change. The Philippines is one of the world’s seventeen countries recognized as megadiverse and 35 

is particularly vulnerable to climate change (World Bank, 2010). The total area of forest cover in 36 

the Philippines is 8.4 million hectares with 1,160 million tons of aboveground biomass (AGB) in 37 

forests and other woodlands (FAO-FRA, 2015). The promotion of restoration initiatives has the 38 

potential to increase the country’s carbon sink. 39 

 Deep in the heart of the Philippine Cordilleras mountain range lies the Ifugao province, 40 

which is famous for its rice terraces (UNESCO, 2019). The Ifugao agricultural system is an 41 

“agro-cultural complex system,” characterized by the interlocking of nature with agricultural 42 

practices, social systems, and historical, political, and cultural changes (O’Connor, 1995). The 43 

muyong system plays a major role in the survival of the Ifugao rice terraces, providing water and 44 

preventing soil erosion (Avtar et al., 2019; Soriano et al., 2019). In the local dialect of the Tuwali 45 

tribe, “muyong” translates literally to “forest,” although the precise definition may vary 46 

depending on the locality. Local people specifically use this term to denote privately-owned and 47 

managed woodlots located above rice terraces (payoh). Muyong forests differ from other systems 48 

with respect to their management and protection (Herath et al., 2015). The Ifugao land 49 

classification system designates land categories according to the location, function, and type of 50 

agronomic activity that takes place (Butic and Ngidlo, 2003). The muyong system is Ifugao’s 51 

native forest management system and is vital to the rice terracing system due to its watershed 52 

function (Durst et al., 2001). Globally, it has been acclaimed as a comprehensive ecosystem that 53 

provides a host of various ecosystem services.  54 

 During the last decade, various efforts have been made to accurately quantify forest 55 

carbon stock with the aim of understanding global and regional carbon budgets (Lindsell et al., 56 

2013; Ma et al., 2018). Maps of the spatial distribution of biomass can assist in decreasing 57 

uncertainty in relation to the global carbon cycle (Duncanson, 2019). The quantification of 58 
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global forest biomass relies on AGB estimation. Therefore, most recent studies have focused on 59 

the estimation of AGB using ground-based and remote sensing-based methods to improve 60 

accuracy. AGB can be estimated from ground-based forest inventory parameters using allometric 61 

equations (Brown, 1997; Chave et al., 2014). Geospatial data can also be used to improve AGB 62 

estimation using various satellite sensor data. Accuracy in biomass estimation is vital for the 63 

implementation of climate change mitigation mechanisms such as Reducing Emissions from 64 

Deforestation and forest Degradation-plus (REDD+) as well as for forest management in Asian 65 

countries (Andoh and Lee, 2018; Borah et al., 2018).  66 

The Ifugao rice terrace system was first recorded as a World Heritage site in 1995 by the 67 

United Nations Educational, Scientific and Cultural Organization (UNESCO) (Department of 68 

Environment and Natural Resources, 2008). However, the maintenance and conservation of 69 

World Heritage sites require financing (Timothy and Nyaupane, 2009). Toorn (2013) found that 70 

funding availability is the main issue in the conservation of these cultural landscapes. This study 71 

focuses on the assessment of forest biomass stock in the Ifugao system, which will be useful in 72 

creating funding opportunities under the existing REDD+ mechanism. Earlier studies have 73 

shown that population growth has led to increased demand for firewood and timber products, 74 

thereby contributing to deforestation and also affecting ecosystem services (Ravindranath and 75 

Ostwald 2008; Avtar et al., 2019). This study explores how REDD+ initiatives can mitigate 76 

climate change and value forests to help the traditional cultures of Ifugao communities and 77 

livelihoods (UN-REDD 2016). In the Philippines, the Department of Environment and Natural 78 

Resources (DENR) is pushing for the nationwide implementation of REDD+ initiatives to reduce 79 

the impact of climate change. Lasco et al. (2013) reviewed REDD+ projects in the Philippines 80 

and discussed the critical factors for their successful implementation. This study aims to assess 81 

the total forest carbon stock of the muyong and bilid forests in Ifugao and its role in climate 82 

change mitigation strategies under the REDD+ framework. The REDD+ intervention can also 83 

support the area’s indigenous people in adopting inventive mechanisms aimed at managing the 84 

transformation of the Ifugao economy. 85 

2. Study Area 86 

The Nagacadan barangay is one of the fourteen barangays of the Kiangan municipality of 87 

the Ifugao province of the Philippines. It is located about 320km from Metro Manila. The total 88 
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population of Nagacadan was 831 as per the 2015 census data. Agriculture and tourism are the 89 

main sources of income in the study area. Ifugao is a landlocked mountain province in the 90 

epicenter of the Philippine Cordilleras region. The topography of the area is marked by rugged 91 

terrain with mountainous forests. The Kiangan is situated in an upland area with an elevation 92 

ranges from 500 to 1,300 meters above the mean sea level. The highest point in Ifugao is Mt. 93 

Pulag, a popular hiking destination. The Ifugao rice terraces, with an estimated area of 10,323 ha, 94 

are listed in the UNESCO World Heritage site as part of the agricultural system used by the 95 

Ifugao (Calderon et al., 2009). Figure 1 shows the Ifugao rice terrace system with mountainous 96 

areas covered with the muyong and bilid forests. This shows how forest management and rice 97 

terraces are complementary to each other. 98 

 99 

Figure 1. Ifugao rice terraces with mountains covered with muyong and bilid forests 100 

The forests in the region are classified as the amalgamation of moss, pine, and 101 

dipterocarp forests, respectively (Daniel, 2014). Figure 2 shows the location of Nagacadan and 102 

variations of topographic conditions. Shuttle Radar Topographic Mission (SRTM) digital 103 

elevation (DEM) data shows the change in the topography in the study area. 104 
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 105 

Figure 2. Representation of the study area 106 

There are five land use classes in the study area namely: (1) muyong, (2) rice terrace (payoh), (3) 107 

bilid, (4) habal, and (5) fallow/open agricultural land. Table 1 shows the land use types in the 108 

study site and their description. 109 

Table 1. Various land-use types in the study area 110 

Land-use 
type 

Ownership Description 

Muyong Private Forest woodlot 

Payoh Private Rice terrace 

Bilid Communal Forest area around the mountain 

Habal Private Swidden farms designated for food production located on a 
steep incline 

Fallow Private Drained rice terraces  
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2.1. Forest Woodlots (Muyong) 111 

The muyong is a privately managed woodlot with diverse plant species, constituting an 112 

important part of the agricultural and social system. Within the context of the local culture, the 113 

muyong system is a highly functional and efficient mosaic of forest resources and is the product 114 

of thousands of years of experimental learning. The local people have observed a link between 115 

forest management and food security. Therefore, the protection of muyong is a vital component 116 

for the survival of rice terraces (Dugan et al., 2003). As muyong are located at higher elevations 117 

relative to the rice terraces, they are considered to regulate the supply of water, which is essential 118 

for rice production. Furthermore, the vegetation helps to reduce surface water runoff and erosion, 119 

thus also preventing the sediment accumulation in the underlying paddy fields (Matsushima and 120 

Tojo, 2010).  121 

2.2. Mountain Forest (Bilid) 122 

 The bilid is defined as the forested area around the mountain ridge, which operates under 123 

a regime of communal management. Not all of the area on the mountain ridge consists of bilid, 124 

as the mountain top is also inhabited by large swaths of tall cane grass and occasional swidden 125 

farms (Jang and Salcedo, 2013). The bilid is free for anyone to harvest. Therefore, many farmers 126 

take advantage of this when they feel that they have harvested too much from their muyong. The 127 

bilid can appear physically similar to a muyong, but it has different management and tenure 128 

system.  129 

2.3. Swidden Fields (Habal) 130 

 Also known as the kaingin in Nagacadan, the habal refers to an area that is explicitly 131 

designated for food production. It is one of the most important lands uses in the area and is 132 

created through slash-and-burn agriculture. Habal is often established on slopes that are too steep 133 

for rice terrace cultivation. As they do not require much maintenance, they are generally located 134 

far from the homestead. The habal is a necessary component of the muyong system because local 135 

communities rely on it to supplement their diet and it also offers insurance against years with low 136 

rice yields (Conklin, 1980).  137 

 138 
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3. Methodology 139 

This study's methodology was designed to assess forest carbon stocks with the aim of 140 

implementing the REDD+ mechanism in Nagacadan, Ifugao. It consists of field- and remote 141 

sensing-based biomass estimation. To understand the benefits of the REDD+ mechanism and 142 

achieve the objective of this study, forest biomass in the Ifugao system was estimated. Fieldwork 143 

was conducted to collect biomass data from February 8–14 2015. We adopted methodologies 144 

from Ravindranath and Ostwald (2008) for ground-based biomass calculation using forest 145 

inventory data. Avtar et al.'s (2013b) methodologies were used for Phased Array L-band type 146 

Synthetic Aperture Radar (PALSAR)-based forest biomass estimation. Figure 3 shows the 147 

outline of the methodology for biomass estimation using field-based observation for direct 148 

measurement and satellite-based observation for indirect measurement. 149 

 150 

Figure 3. Flow chart of forest biomass estimation using satellite-based and ground-based 151 

measurement 152 

Measurement and analysis of different carbon pools were performed to estimate total 153 

carbon stock in the forest. In most forest biomass studies, forest biomass and soil organic carbon 154 

(SOC) are the two major carbon pools. Forest biomass pools can be further divided into living 155 

AGB and belowground biomass (BGB), which includes litter, roots, litterfall, detritus, dead 156 
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organic material, and woody debris (Houghton, 2003). AGB is the major and most evident 157 

carbon pool in the terrestrial ecosystem (Ravindranath and Ostwald, 2008). BGB includes live 158 

roots that support the carbon cycle by transferring and storing carbon in the soil (Eggleston et al., 159 

2006). Biomass from litter, litterfall, detritus, dead organic material, and woody debris 160 

constitutes a small fraction of forest carbon stocks (Ravindranath and Ostwald, 2008). Soil 161 

organic matter is also a major contributor to forest carbon stocks and releases CO2 as a 162 

consequence of deforestation (Lal, 2005). Table 2 shows the various methods available for 163 

measuring different biomass pools and their suitability for carbon measurement. In this study, the 164 

plot-based method was used to estimate AGB. 165 

Non-destructive biomass measurement methods are popular in protected areas because 166 

AGB estimation can be achieved without destruction of trees. Data collected from sample plots 167 

can be used to estimate the mean carbon stock per unit area of each land-use type, which can 168 

then be extrapolated using remote sensing techniques (Avtar, Suzuki, et al., 2013b). This method 169 

of AGB estimation was considered the most suitable for the study area. However, the presence of 170 

steeply sloping mountainous terrain can cause errors and limit the use of synthetic aperture radar 171 

(SAR) data. Furthermore, the region's tropical climate is associated with high amounts of cloud 172 

cover, which limits the availability of cloud-free multispectral remote sensing data (Minh et al., 173 

2019). Therefore, the use of field-based measurements (in-situ) implementing non-destructive 174 

sampling techniques can minimize the uncertainties in AGB estimation. 175 

Table 2. Methods to measure carbon pools (Ravindranath and Ostwald, 2008)  176 

Pools  Methods Suitability for carbon measurement 

AGB Plot method Commonly used and familiar method 

Cost-effective and suitable 

Harvest method Not appropriate all the time 

Time-consuming, labor-intensive and expensive 

Plot-less or transect 
method 

This method is good but it is not suitable in dense 
forest as well as for periodical monitoring 

Modelling Need basic input data for building the models 

It is suitable for projections  
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Requires basic input parameters 

Satellite/remote sensing These methods are suitable for regional and national 
level monitoring but expensive for small projects. 

Carbon flux 
measurements 

This is an expensive method and requires skilled 
people. 

BGB Root extraction and 
weight measurement 

Time-consuming, labor-intensive and expensive 

 

Root to shoot ratio 
method 

This method is commonly used based on AGB data 

 

Biomass equations Need data e.g. DBH, tree height, girth etc. 

Dead 
organic 
matter 

Litter This method needs huge efforts 

Stock measurement This method is commonly adopted and feasible 

Soil 
carbon 

Diffuse reflectance 
spectroscopy method 

This method is expensive and requires skilled human 
resources 

Modelling Need basic input data from other methods and suitable 
for projection 

Laboratory estimation This is the most suitable method and commonly 
adopted  

 177 

3.1. Carbon Stock Estimation using Direct Measurement 178 

 Field-based biomass estimation methods were used to collect forest inventory parameters 179 

with the assistance of local people in the study area. The random sampling method was used to 180 

collect forest inventory parameters to measure forest carbon stock. Figure 4 shows the 181 

distribution of sampling plots in the Nagacadan area. In this study, temporary sampling plots 182 

were used in light of the limited budget. Moreover, we did not intend to conduct long-term 183 

monitoring of the biomass pattern.  184 
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 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

Figure 4. Field data collection and location of sampling plots 195 

 Square plots of 10 × 10 m were laid out with measuring tape for AGB estimation. The 196 

corners of the plots were located with the help of the Global Positioning System (GPS). The 197 

shape and size of the sampling plots constitutes a trade-off between time, accuracy, and cost of 198 

measurement. Wondo (2013) suggested that square plots tend to include more heterogeneity and 199 

favor more representation than circular plots in the same study area (Wondo, 2013). As 200 

suggested by Pearson et al. (2005), based on the consideration of medium-size diameter at breast 201 

height (DBH) at the study site, we adopted 10 × 10-m plots to minimize the heterogeneity. This 202 

was also due to the steep slope conditions in the mountainous forest. Moreover, the plots were 203 

the same size as the pixels of the Advanced Visible and Near-Infrared Radiometer type-2 204 

(AVNIR-2) data. 205 

 Data were collected from four carbon pools: AGB, BGB, forest floor biomass, and soil 206 

carbon. To estimate forest carbon stock, forest inventory parameters, including tree height, DBH, 207 

tree species, tree density, and forest types were collected. Tree height refers to the total height of 208 

trees instead of the height of the merchantable stem, which is used in some allometric equations. 209 

DBH of each tree was measured at 130 cm height from the ground by using DBH tapes and 210 

markers. All the trees with DBH ≥ 5 cm were measured with a DBH tape. To measure the DBH 211 
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in the steep slope, the measurement was conducted on the uphill side of the tree (Ravindranath 212 

and Ostwald, 2008). 213 

The following allometric equation was used for the AGB calculation (Brown, 1997). It was 214 

developed specifically for forest biomass estimation in moist tropical forests and covered most of 215 

the species of tropical forests. 216 

AGB = exp ( -2.289 + 2.649 × ln(dbh )-0.021×ln(dbh2)      (1) 217 

Where, ln = natural log, exp = “e to the power of” 218 

To estimate BGB (root biomass) from the AGB, an allometric equation was used as follows 219 

(Ravindranath and Ostwald, 2008): 220 

BGB = exp [-1.0587 + 0.8836 * ln (AGB)]    (2) 221 

Where, ln = natural log, exp = “e to the power of” 222 

The biomass value obtained from the above equations is converted to carbon stock using a 223 

carbon conversion factor of 0.47 (McGroddy et al., 2004). 224 

Carbon stock (tC/ha) = biomass (t/ha) x 0.47    (3) 225 

 Within the sample plot, a smaller plot of 1 × 1 m was established to measure the forest 226 

floor layer and soil carbon. The measurement design is presented in Figure 5. A 1 × 1-m plot was 227 

used to collect litter, herbaceous (live above ground non-woody with DBH < 2 cm), and soil 228 

samples. Deadwood, litter, and dead roots were also collected from the forest floor and separated 229 

into fresh and litter types before being dried in the oven. In the same plot, soil samples were 230 

randomly collected at a depth of 10 cm and then oven-dried at 70°C for 2 days. Walkley and 231 

Black’s (1934) methods were used to calculate organic carbon (%). The soil carbon (t/ha) was 232 

calculated using the method developed by Nelson and Sommers (1996). Earlier studies have 233 

found that the highest percentage of soil carbon is present in the upper soil layer (Racelis et al., 234 

2008 in the Philippines, Ullah et al., 2012 in Bangladesh; Hobley et al., 2016 in Australia). 235 

Soil carbon = [soil bulk density (gm–3) × soil depth (cm) × soil organic carbon (%)] × 100  (4) 236 

The total number of square plots for the collection of forest inventory data for muyong 237 

and bilid were 11 and 8, respectively. In contrast to the forest carbon stock and forest floor areas, 238 
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the total number of samples for soil carbon was five (three in muyong, two in bilid). Total carbon 239 

stock is the summation of carbon stock from AGB, BGB, forest floor, and soil carbon. 240 

 241 

Figure 5. The design of plot samples and carbon measurement in the field 242 

3.2. Carbon Stock Estimation using Indirect Measurement 243 

Conventional allometric-based biomass estimation is one of the most accurate methods 244 

used in carbon stock estimation. However, it is expensive, time-consuming, and labor-intensive 245 

(Avtar et al., 2012; Avtar et al., 2013c; Avtar et al., 2016). Moreover, it is only applicable in 246 

small areas for which forest inventory data are available. Remote sensing can overcome the 247 

above-mentioned limitations.  248 

Several studies have modeled forest biomass using various satellite sensors (Anaya et al., 249 

2009; Baccini et al., 2004; Drake et al., 2003; Vashum and Jayakumar, 2012). Avtar et al. 250 

(2013b) reported that SAR data are more effective than optical data in measuring AGB in 251 

tropical regions due to the limitation of clouds. Other studies have shown that light detection and 252 

ranging (LiDAR)-based biomass estimation offers greater accuracy than other remote sensing-253 

based observation methods (Nelson et al., 1988; Vashum and Jayakumar, 2012). However, the 254 

use of LiDAR data in developing countries is particularly limited owing to acquisition and 255 

processing costs. Therefore, PALSAR data were used to estimate AGB in this study. SAR data 256 

with cross-polarization (horizontal and vertical: HV) can detect tree volume and are useful in 257 

estimating forest biomass (Avtar et al. 2013b). SAR-based backscattering information is useful 258 

for estimating forest biomass and has been used extensively by other researchers (Englhart et al., 259 

2011). Furthermore, due to its penetrative capacity, SAR has the advantage of being insensitive 260 
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to weather conditions, such as clouds and rain, which is useful in tropical regions. SAR 261 

backscatter information is affected by the topography with steep slopes due to layover and 262 

foreshortening effects of SAR data (Avtar et al., 2013b).  263 

The satellite data were acquired from the Advanced Land Observation Satellite (ALOS) 264 

mission of the Japan Aerospace Exploration Agency (JAXA) in 2010. AVNIR-2 and PALSAR 265 

were used to estimate biomass in the study area. AVNIR-2 is a multispectral image with four 266 

bands consisting of blue, green, red, and near-infrared (NIR) bands with a 10-m pixel size. 267 

Similarly, PALSAR images have a spatial resolution of approximately 16 m with dual 268 

polarization (Tadono et al., 2009). Land use/land cover (LULC) classification of AVNIR-2 data 269 

was performed to distinguish various LULC classes in the study area, including bilid, muyong, 270 

rice terraces, built-up areas, grassy mountain terrain, open mountain, and water bodies. The 271 

maximum likelihood classification algorithm was used to classify AVNIR-2 data (Lillesand and 272 

Kiefer, 1999). Forest cover information can be a useful parameter for calculating total carbon 273 

stocks in the study area. Samreth et al. (2012) used remote sensing and a ground-based forest 274 

inventory approach to estimate carbon stocks in Cambodian forests. The use of forest area and 275 

average carbon stock in a particular forest can provide total carbon stock information. We 276 

explored similar methodological approaches to calculate average carbon stock in muyong and 277 

bilid forests using the following equation. 278 

Total carbon stock = Σ (forest areai × averaged carbon stocki)  (5) 279 

Where, i = forest types (muyong or bilid) 280 

We also used backscattering information from dual-polarization PALSAR data to 281 

estimate AGB using the methodology described in Avtar et al. (2013b). Field-calculated AGB 282 

was used to validate the PALSAR-estimated biomass.  283 

4. Results and Discussion 284 

This study aimed to assess the forest carbon stocks in the Ifugao system using direct and 285 

indirect measurement methods to obtain information from four carbon pools: (1) AGB, (2) BGB, 286 

(3) forest floor layer, and (4) SOC. We also attempted to generate a land-use map of the area 287 

using AVNIR-2 data and biomass estimation using equation 5. PALSAR-based methods were 288 

also used to estimate forest biomass. 289 
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4.1. Carbon Stock Estimation using Direct Measurement 290 

4.1.1. Forest Carbon Stock (AGB + BGB) 291 

To quantify forest carbon stocks, we collected forest inventory parameters (tree height, 292 

DBH, species, tree density, and forest types) in muyong and bilid forests. This study evaluated 293 

total forest biomass in the Ifugao forest management system. Appendices A1 and A2 show the 294 

forest inventory parameters and calculation of forest biomass stocks in the muyong and bilid 295 

forests, respectively. Statistical analysis was conducted to compare the various forest inventory 296 

parameters. Figure 6 shows the linear regression between tree density and average DBH of the 297 

sampling plots. A moderate relationship was observed between tree density and average DBH in 298 

muyong with a correlation value of 0.56 (R2 = 0.31), while a strong relationship was observed in 299 

bilid with a correlation value of 0.7 (R2 = 0.49). As tree density increases, the trees' DBH values 300 

tend to be smaller. The relationship between average DBH and tree density demonstrates that in 301 

dense forests, tree growth rate can be restricted due to the limited space and greater competition 302 

among trees for growth determinants such as nutrients, space, and access to sunlight. Similarly, 303 

Takahashi et al. (2018) also noticed a large DBH and a low tree density for evergreen conifers in 304 

the Shizumo forest reserve. Comparison of average DBH between the muyong and bilid revealed 305 

that the muyong features trees with a high average DBH and low tree density in contrast to the 306 

bilid forest. Furthermore, the findings show that tree density per hectare is higher in the bilid, 307 

which supports the theory that lack of maintenance allows the natural regrowth of plants in the 308 

bilid. 309 

(a)  (b)  
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Figure 6. Linear regression between DBH and tree density in (a) muyong and (b) bilid 310 

forests 311 

Figure 7 shows a histogram of the DBH frequency distribution with respect to tree 312 

density. The histogram shows the normal distribution of DBH in the muyong and bilid. The 313 

average and standard deviation of DBH were 15.79 cm and 11.63 cm in muyong, while the 314 

values were 13.14 cm and 6.29 cm in bilid. The muyong showed a greater difference in DBH 315 

than bilid. Despite the uneven number of sample plots, the data support the view that the muyong 316 

management system enables the growth of larger trees. This is evidenced by the measurement of 317 

the largest tree in the bilid at 36 cm DBH while 10 trees larger than 36 cm and one larger than 70 318 

cm (accounting for 0.6%) were observed in the muyong. The histogram illustrates the muyong's 319 

association with the growth of larger trees owing to the maintenance and protection activities 320 

implemented by private forest holders. 321 

 322 

Figure 7. Histogram of tree density and DBH in muyong and bilid forests 323 

In this study, Brown's (1997) allometric equation was used to determine the AGB based 324 

on DBH information. In tropical forests, the biomass of trees with DBH greater than 70 cm can 325 

account for 40% of the total forest biomass density, and these trees represent less than 5% of all 326 

trees (Brown and Lugo, 1992). Appendices A1 and A2 show the mean AGB (215 t/ha), BGB 327 

(38.9 t/ha) and total biomass (254.7 t/ha) recorded in the muyong forest, and the mean AGB 328 

(166.3 t/ha), BGB (33.5 t/ha) and total biomass (199.7 t/ha) recorded for bilid forest. The 329 

muyong forest had high average carbon stocks with 119.7 ± 76 tons of carbon per hectare (tC/ha) 330 
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compared to the bilid which had 93.9 ± 27.6 tC/ha. Although the plots in the bilid showed high 331 

tree density compared to the muyong, the muyong showed higher total forest carbon stock values. 332 

4.1.2. Forest Floor Biomass 333 

Table 3 shows the amount of fresh and litter samples in the 1-m2 sampling plots within 334 

the 10-m2 plots. The bilid forest showed higher coverage of fresh and litter samples than the 335 

muyong forest. After the fresh samples were collected, they were oven-dried to determine the dry 336 

mass.  337 

Table 3. Amounts of fresh and litter samples collected per square meter 338 

Forest types Fresh (herbaceous) (g) Litter (g) Total Sample (g) 

Muyong 419±188 1,075±446 1,494±481 

Bilid 673±447 1,776±412 2,449±608 

 339 

Table 4 shows the average dry mass and carbon content in the fresh and litter samples of 340 

the forest floor. The bilid showed higher average levels of dry mass in both fresh and litter 341 

samples than the muyong. The presence of high fresh and litter carbon in the bilid is due to the 342 

natural growth of herbaceous vegetation on the forest floor. 343 

Table 4. Average dry mass and carbon content in the fresh and litter samples of the forest 344 

floor 345 

Forest types 

Average Dry Mass Average Carbon  

Fresh Litter Total Fresh  Litter Total 

(t/ha) (t/ha) (t/ha) (tC/ha) (tC/ha) (tC/ha) 

Muyong 2.99 7.93 10.92 1.41 3.73 5.13 

Bilid 4.86 13.15 18.01 2.28 6.18 8.46 

 346 

4.1.3. Soil Carbon 347 

Soil carbon is the main contributor to forest carbon stocks next to AGB (Lal, 2005). Soil samples 348 

were collected from the 10-cm topsoil layer to estimate SOC. The soil samples were oven-dried 349 
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at 70°C for 48 h in the laboratory. They were then subjected to carbon content analysis under 350 

laboratory conditions. Table 5 shows the average soil organic carbon stock in muyong and bilid 351 

forests. The average SOC was 26.02 and 23.78 tC/ha in the muyong and bilid forests, 352 

respectively, to a soil depth of 10 cm. The 0–10-cm level of the soil is expected to be rich in 353 

carbon owing to the presence of humus or organic matter accumulated from the decomposed 354 

litter (Ullah et al., 2012; Hobley et al., 2016). The soil carbon results revealed a higher SOC 355 

value in muyong than in bilid. This may be attributed to the bilid's greater exposure to sunlight 356 

and its greater susceptibility to soil erosion. Furthermore, the practices of weeding, regular 357 

thinning, and treatment can play a beneficial role in carbon sequestration in muyong. Finkral and 358 

Evas (2008) also reported that thinning treatments can re-establish ecological processes and help 359 

in ecosystem restoration and function. 360 

Table 5. Average soil organic carbon stock 361 

Forest 
types 

Average Soil Bulk 
Density 

Mean  Soil Organic 
Carbon (%) 

Avg. Soil Organic 
Carbon Stock (tC/ha) 

Muyong 0.72+0.19 3.88±0.09 26.02±4.81 

Bilid 0.73±0.03 3.26±0.90 23.78±0.98 

 362 

4.1.4. Total Carbon Stock 363 

Table 6 shows the total carbon stocks in the muyong and bilid. The results show that the 364 

carbon stock in the muyong was higher than that in the bilid. The average carbon stock in the 365 

muyong was estimated to be 150.86 tC/ha compared to the 126.14 tC/ha found in the bilid. The 366 

presence of large DBH trees in muyong forests can contribute to the majority of forest biomass, 367 

as has been confirmed by other studies (Brown & Lugo, 1992; Brown et al., 1995; Culmsee, et 368 

al., 2010). Among the all-carbon pools, most of the carbon stock was in the AGB pool. Forest 369 

carbon stock information is important for planning, management, and carbon sequestration in the 370 

Ifugao system. Information of this nature is essential to understanding carbon stock potential in 371 

the forest system at a micro-level. Climate, soil type, topographic factors, and biotic factors are 372 

the main determinants of forest biomass and its spatial distribution (Xu et al., 2015). Biomass 373 
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accumulation in forests also varies according to microclimate and anthropogenic disturbances 374 

(Brown and Lugo, 1990). 375 

Table 6. Total carbon stocks based on field data 376 

 Forest 
types 

AGB 
(tC/ha) 

BGB 
(tC/ha) Forest Floor 

Soil 
carbon 
(0-10cm) 

Total 
Carbon 
Stock 

      Fresh Litter (tC/ha) (tC/ha) 
Muyong 101.4 18.3 1.41 3.73 26.02 150.86 
Bilid 78.2 15.7 2.28 6.18 23.78 126.14 

 377 

4.2. Carbon Stock Estimation using Indirect Measurement (remote sensing-based analysis) 378 

Geospatial data can be used to study forest biomass, which is fortunate, as conventional 379 

field-based methods are expensive and time-consuming. Moreover, conventional field-based 380 

methods are only applicable to small-scale analysis. Therefore, remote sensing-based methods 381 

can be applied to a larger area (Vashum et al., 2012). In this study, the maximum likelihood 382 

classification algorithm was used to classify AVNIR-2 data with the help of field data. Figure 8 383 

shows the LULC map of the study area. The area was classified into seven classes: muyong, bilid, 384 

rice terraces, built-up areas, grassy mountain area, open mountain, and water bodies. The 385 

classified image attempts to distinguish muyong (sea-green) forests from the bilid (green). Some 386 

misclassification with respect to bilid or muyong occurred owing to the presence of steep 387 

topography in the area. Most of the area is covered by bilid (32.5%), followed by rice terraces 388 

(30.4%) and muyong (29.5%). 389 

 390 

 391 

 392 
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 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

Figure 8. Land use/land cover map of the study area 404 

AVNIR-2-based forest area information and average carbon stocks in bilid and muyong 405 

forests were used to estimate total carbon stocks. Table 7 shows the estimated average carbon 406 

stocks in the muyong and bilid forests using field-based and remote sensing-based information. 407 

The total carbon stocks were 401,061.3 and 369,804.6 tC in muyong and bilid forests, 408 

respectively. This information will be useful for policy-makers in designing REDD+ policies for 409 

the study area. Some uncertainties in the biomass estimation may potentially arise because soil 410 

carbon up to soil depth of 10 cm is considered in this study. 411 

Table 7. Total carbon stocks in muyong and bilid based on remote sensing and field data  412 

Forest Types 
Forest area (ha) 
(2010) 

Average carbon stock 
(tC/ha) 

Total carbon 
stock (tC) 

Muyong 2658.5 150.86 401061.3 
Bilid 2931.7 126.14 369804.6 

 413 
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Avtar et al.'s (2013b) methodology was used to estimate AGB using PALSAR data. 414 

Figures 9a and 9b show the biomass map using PALSAR data and the slope map using SRTM-415 

DEM data from the study area. The slope map of the study area (Fig. 10b) clearly shows that 416 

most of the area had a slope greater than 20 degrees with the exception of the paddy fields. 417 

Therefore, the biomass estimation using PALSAR data may have low accuracy due to the 418 

topographic effects on SAR data. Attarchi and Gloaguen (2014) also noticed the effect of 419 

topography on PALSAR-based biomass estimation in a mountain forest in Iran and proposed the 420 

use of multi-satellite data to overcome topographic effects.  421 

 

(a) PALSAR based biomass (b) SRTM based slope map 
Figure (9a) PALSAR-based biomass of the study area (9b) SRTM-based slope map 422 

Figure 10 shows a weak correlation (R2 = 0.029) between PALSAR-estimated biomass 423 

and field-measured biomass. No significant relationship was observed with PALSAR-estimated 424 

biomass because most of the plots were on a steep slope and SAR data are not effective in steep 425 

areas owing to the topographic effects. Lone et al. (2017) also used PALSAR data to study the 426 

influence of slope and aspect in AGB estimation in India and found that topography influences 427 

the saturation of backscattering. The high slope areas have a high saturation limit of 428 

backscattering with 50–60 t/ha uncertainty. The key limitation to the PALSAR-based biomass 429 

estimation was the topographic effect of SAR data in the study area, which limits the 430 
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applications of remote sensing techniques. To overcome the topographic limitations, LiDAR data 431 

can be useful for more precise biomass estimation in mountainous areas. Further studies on 432 

forests in other areas of Ifugao would be useful in addressing the lack of information available 433 

for remote sensing analysis. However, the potential for remote sensing opportunities in the area 434 

remains limited due to the cloud cover and topography. 435 

 436 

Figure 10. Correlation between PALSAR-estimated biomass and field-measured biomass 437 

The estimation of total carbon stock is an important input for several current and future 438 

initiatives. The results can improve our understanding of how the muyong forest contributes 439 

potential carbon stock and the role of a landscape. The muyong forest showed higher total 440 

biomass than the bilid forest, and a greater difference in DBH was found in the muyong than in 441 

the bilid. Tree density is higher in the bilid forest than in the muyong, and this supports the 442 

hypothesis that the selective cutting and facilitated growth practices in the muyong are beneficial 443 

for carbon sequestration. Interestingly, the maintenance of muyong forests not only promotes 444 

carbon sequestration but also provides water for the rice fields during the dry season.  445 

Implementation of the REDD+ mechanism can provide opportunities for the local people 446 

to conserve and manage the muyong system more sustainably in addition to reaping the financial 447 

benefits associated with carbon sequestration in the muyong system. Furthermore, the 448 

implementation of REDD+ can help protect the environment and biodiversity. It can conserve 449 

carbon stocks and provide a better adaptation mechanism to climate change in the Philippines, 450 

which is one of the climate change mitigation policies (Center et al., n.d.; Roe, 2012).  451 
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Climate change and other anthropogenic factors are affecting the rice terraces, and local 452 

people are struggling to sustain their livelihoods. Consequently, people have begun to leave the 453 

muyong area in search of employment elsewhere (Avtar et al., 2019). As part of the effort to 454 

reduce the outward migration of local people, REDD+ can make a positive impact with respect 455 

to long-term maintenance of the muyong forest. As a means of generating more income, REDD+ 456 

supports coffee tree growth in the muyong forest and taps into the organic food market rather 457 

than wood collection. Thus, REDD+ is still considered a promising means of creating incentives 458 

and other livelihood options to reduce deforestation and sustain the economic transformations of 459 

the Ifugao economy.  460 

This preliminary study had several limitations, including the limited number of sampling 461 

plots and the relative spacing of sampling plots due to steep topography. Systematic sampling 462 

with a sufficient number of plots may be the optimal approach to accurately estimate total carbon 463 

stocks. The use of species-specific allometric equations may be more effective than generic 464 

allometric equations in reducing uncertainties (Kiyono et al., 2010; Samreth et al., 2012). We 465 

measured soil carbon only at a soil depth of 10 cm, although earlier studies used soil carbon data 466 

from a soil depth of 1 m. The number of sampling plots was also limited and should be increased 467 

to improve measurement accuracy. The use of permanent sampling plots (PSPs) may help to 468 

enhance the accuracy of carbon estimation (Samreth et al., 2012). Continuous monitoring is 469 

required to determine the rate of sequestration with the establishment of PSPs. 470 

The use of remote sensing techniques for biomass estimation in this study was limited by 471 

cloud cover and topographic conditions (i.e., slope). However, this could be improved through 472 

the application of advanced topographic correction techniques (Umarhadi and Danoedoro, 2019) 473 

as well as the use of high-resolution satellite data with object-based classification methods, such 474 

as GEOBIA (Weih Jr. and Riggan Jr., 2010) and the use of advanced modeling methods to 475 

estimate biomass, such as random forest (RF), stepwise regression (SR), and support vector 476 

regression (SVR) (Liu et al., 2017). The use of multi-sensor remote sensing data can improve the 477 

accuracy of image classification and biomass estimation. Improvement of biomass estimation is 478 

essential for an effective measurement, reporting, and verification (MRV) system. The incentives 479 

from REDD+ can help muyong forests with high carbon stock. The biomass products will also 480 
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be useful for Sustainable Development Goals (SDG) Goal 15, which includes the improvement 481 

of carbon management. 482 

5. Conclusions 483 

This study has demonstrated the effective use of direct and indirect methods to assess 484 

forest carbon stocks. The results reveal that carbon stock differs among muyong and bilid forests 485 

of the Ifugao system, and most of the carbon stock is found in AGB. Field-based methods are 486 

useful for calculating average carbon stocks in muyong (150.86 tC/ha) and bilid (126.14 tC/ha) 487 

forests. Owing to the positive role of human interventions, muyong forests happen to sequester a 488 

larger amount of carbon (than the natural capacity). This makes the muyong an appropriate forest 489 

management system for the implementation of the REDD+ framework. These data can play an 490 

important role in filling the gaps in the existing national forest biomass estimation. It is essential 491 

that high-quality carbon stock data be generated to facilitate the monitoring of forest carbon and 492 

understanding resilience under the REDD+ mechanism. Remote sensing data have limited 493 

applications in the study area due to cloud cover and topographic effects. Accurate and reliable 494 

biomass estimation models are necessary for the non-destructive estimation of carbon stocks. 495 

Furthermore, carbon sequestration safeguards against deforestation and also helps to develop 496 

symbiotic linkages between agroforestry and biodiversity conservation. REDD+ mediation is 497 

expected to support the Ifugao economy by providing additional incentives and opportunities that 498 

will assist local communities in maintaining their traditional rice terraces system. 499 
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Appendix 698 

Table A1. Muyong Forest Carbon Stock 699 

Muyong AGB BGB AGB+BGB C Stock 

  kg tons/ha kg tons/ha kg tons/ha kg tons/ha 

M01 666.22 70.1 133.30 14.0 799.52 84.1 375.8 39.5 

M02 2345.49 246.6 417.87 43.9 2763.36 290.6 1298.8 136.6 

M03 3167.92 333.1 535.70 56.3 3703.62 389.4 1740.7 183.0 

M04 1066.22 112.1 209.00 22.0 1275.21 134.1 599.3 63.0 

M05 2465.64 259.3 515.15 54.2 2980.79 313.4 1401.0 147.3 

M06 1008.68 106.1 191.53 20.1 1200.21 126.2 564.1 59.3 

M07 1500.47 157.8 291.27 30.6 1791.74 188.4 842.1 88.5 

M08 1965.55 206.7 375.16 39.4 2340.72 246.1 1100.1 115.7 

M09 5421.45 570.0 834.79 87.8 6256.24 657.8 2940.4 309.2 

M10 1248.71 131.3 240.64 25.3 1489.35 156.6 700.0 73.6 

M11 1723.20 181.2 322.56 33.9 2045.76 215.1 961.5 101.1 

Average 2052.7 215.8 369.7 38.9 2422.41 254.7 1138.5 119.7 

Std. 
Dev 

1338.0 140.7 201.5 21.2 1537.1 161.6 722.5 76.0 

 700 

Table A2. Bilid Forest Carbon Stock 701 

Bilid AGB BGB AGB+BGB C Stock 

  kg tons/ha kg tons/ha kg tons/ha kg tons/ha 

B01 1383.0 145.4 264.6 27.8 1647.6 173.2 774.4 81.4 

B02 1243.6 130.8 252.9 26.6 1496.5 157.3 703.4 73.9 

B03 1324.9 139.3 273.2 28.7 1598.1 168.0 751.1 79.0 

B04 915.9 96.3 196.6 20.7 1112.5 117.0 522.9 55.0 

B05 1542.0 162.1 303.1 31.9 1845.1 194.0 867.2 91.2 

B06 2389.5 251.2 464.9 48.9 2854.4 300.1 1341.6 141.0 
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B07 1589.8 167.2 346.3 36.4 1936.2 203.6 910.0 95.7 

B08 2262.8 237.9 443.6 46.6 2706.3 284.6 1272.0 133.8 

Average 1581.4 166.3 318.2 33.5 1899.6 199.7 892.8 93.9 

Std. 
Dev 

471.8 49.6 88.2 9.3 559.4 58.8 262.9 27.6 

 702 


