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Information on the extent, diversity, and connectivity of populations is lacking for most 20 
deep-sea invertebrates. Species in the order Tanaidacea, one of the most diverse and abundant 21 
macrofaunal groups in the deep sea, are benthic, lack a planktonic larval stage, and thus 22 
would be expected to have narrow distributional ranges. But here we show that, with 23 
molecular evidence from the COI gene, the deep-sea tanaidacean Carpoapseudes spinigena 24 
has a distributional range spanning at least 3700 km, from off northern Japan to the 25 
southeastern Bering Sea. Living individuals found in a sediment core indicated that the 26 
species is a sedentary burrower. COI analyses revealed a low level of genetic diversity overall 27 
for C. spinigena, and low differentiation (p-distance, 0.2–0.8%) between the Japan and 28 
Bering Sea populations. One hypothesis to explain the low genetic diversity over a broad 29 
region is the Japan population was founded by individuals transported by ocean currents from 30 
the Bering Sea; however, due limited data, other explanations cannot be ruled out. Our results 31 
underscore that continued sampling is of fundamental importance to understanding how 32 
genetic and taxonomic diversity originate and are maintained in the deep sea. 33 
 34 
ADDITIONAL KEYWORDS:  COX1 - Crustacea - direct development - Malacostraca - 35 
Pacific - phylogeography - population genetics. 36 
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INTRODUCTION 38 
 39 
Sea bottoms deeper than 200 m occupy about 70% of the Earth’s surface, yet the population 40 
genetic data necessary to understand the extent, diversity, and connectivity of deep-sea 41 
invertebrate populations have been very limited (Taylor & Roterman, 2017). Population 42 
genetic studies are now appearing for various groups (e.g. Boavida et al., 2019; Janssen et al., 43 
2019; Cheng et al., 2020; Guggolz et al., in press). As with shallow-water species, dispersal 44 
of planktonic larvae by ocean currents is probably the main factor maintaining connectivity 45 
between populations of most deep-sea invertebrates (e.g. Yahagi et al., 2017; Kobayashi et al., 46 
2018). However, the migration of adults in species with high swimming capability (e.g. 47 
Winkelmann et al., 2013) and the transport of epibenthic adults by bottom currents (e.g. 48 
Braby et al., 2009; Hamel et al., 2019) could also enable gene flow between populations. 49 
Dispersal barriers proposed for deep-sea animals include strong currents crossing between 50 
populations, low-oxygen zones, topographical factors (e.g. shallow straits, mid-ocean ridges, 51 
depth differences), and long distances between patches of suitable habitat (McClain & Hardy, 52 
2010). 53 

The superorder Peracarida is the most speciose crustacean group with ca. 17000 54 
described species (Appeltans et al., 2012) and is well represented in the deep sea (e.g. Grassle 55 
& Maciolek, 1992). Although peracarids show diverse modes of living, such as benthic, 56 
planktonic (including symbionts on gelatinous plankton), and parasitic (Ohtsuka et al., 2009; 57 
Kakui, 2016; Castellani et al., 2017; Smit et al., 2019), peracarids generally lack a primary 58 
planktonic larval stage but instead undergo direct development, although parasitic species 59 
tend to have highly mobile stages (Smit et al., 2019). The innate dispersal capability of 60 
peracarids thus depends largely on their mode of living, and sedentary, benthic species are 61 
expected to have low dispersal capability. 62 

Some deep-sea benthic peracarids show restricted distributions (Riehl & De Smet, 63 
2020), but others have much broader distributions (Brandt et al., 2012) than expected from 64 
their mode of living; in some cases, conspecificity has been confirmed by molecular 65 
phylogeographic studies based on mitochondrial gene markers, i.e., cytochrome c oxidase 66 
subunit I (COI), 12S rRNA, and/or 16S rRNA genes (e.g. Brix et al., 2011; Riehl & Kaiser, 67 
2012; Riehl et al., 2018). Riehl & Kaiser (2012) discussed the importance of bottom currents 68 
and other erosion-deposition events on continental shelves as factors allowing deep-sea 69 
infaunal peracarids to achieve broad distributions. 70 

The peracarid order Tanaidacea contains about 1500 described species worldwide 71 
(Anderson, 2020), most of which are small (up to a few millimeters long) and are free living 72 
in benthic habitats (Kakui, 2016). Tanaidaceans comprise one of the most diverse and 73 
abundant macrofaunal groups in the deep sea (Larsen et al., 2015), but little is known of their 74 
biology there, and no previous study has examined their population structure in that 75 
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environment.  76 
Carpoapseudes spinigena Bamber, 2007, a member of the relatively rare, deep-sea 77 

tanaidacean genus Carpoapseudes Lang, 1968 (Apseudoidea: Apseudidae), has not been 78 
reported since its original description which was based on fixed specimens collected from a 79 
single site in the Pacific Ocean off northern Japan (Fig. 1; 974–965 m depth; Bamber, 2007). 80 
During research cruises in 2007 and 2017, we collected C. spingena from two localities 81 
several thousand kilometers apart, one being the type locality around northern Japan (1028–82 
1075 m depth) and the other located in the southeastern Bering Sea (1536–1569 m depth). In 83 
addition, we observed the behavior of living C. spinigena trapped in a core sampler, and 84 
examined the morphology of juvenile individuals at stage of release from the maternal brood 85 
pouch. Here we show the genetic relationship between these two C. spinigena populations 86 
based on partial COI gene sequences, describe the mode of living of this species, and discuss 87 
the wide distribution of C. spinigena. 88 
 89 
 90 

MATERIAL AND METHODS 91 
 92 
Tanaidaceans were collected with a beam trawl having a 3 m opening, a dredge installed on a 93 
Deep Tow Camera System, and a multiple corer during research cruises of the research vessel 94 
(R/V) Tansei-maru and R/V Mirai (Japan Agency for Marine-Earth Science and Technology, 95 
JAMSTEC) (Table 1), near the type locality in northern Japan and in the eastern Aleutian 96 
Islands, USA, respectively (Fig. 1). Specimens from the two Bering Sea sites were regarded 97 
as samples from a single population, because the two sites were only ca. 1.2 km apart, shorter 98 
than the distance between net-in and net-out (ca. 2.7 km) of the beam trawl at station 99 
KT-07-29-K1 in northern Japan. Living individuals collected with the multiple corer, and 100 
some fresh specimens collected during the R/V Mirai cruise, were photographed before 101 
fixation. Whole bodies or dissected parts of specimens were fixed in 80% ethanol, and later 102 
transferred to 99% ethanol for preservation. See Supporting Information S1 for additional 103 
details. 104 

Morphological terminology follows Larsen (2003). The identification of specimens 105 
was based on Bamber (2007) and Hansknecht & Santos (2008). Female tanaidaceans have a 106 
marsupium (brood pouch) for brooding eggs (cf. Kakui et al., 2017) and release juveniles at 107 
the “manca II” stage directly from the marsupium (Larsen, 2003); manca II individuals 108 
resemble adults, but are unisex and lack pereopod 6 (6th walking leg) and pleopods 109 
(abdominal legs used for ventilating the burrow or for swimming). Male apseudoid 110 
tanaidaceans have a genital cone whereas females lack it. Specimens were identified to stage 111 
(manca II, female, or male) under a Nikon SMZ1500 stereomicroscope, and deposited with 112 
JAMSTEC (JAMSTEC nos. 1170055975, 1170055978, 1170055979, 1170055985, 113 
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1170055986) and in the Invertebrate Collection of the Hokkaido University Museum 114 
(ICHUM), Sapporo (ICHUM-6092–6112). 115 

Total DNA was extracted from the cheliped or whole body of adults, and from an 116 
embryo collected from a marsupium, by using a NucleoSpin Tissue XS Kit (TaKaRa Bio, 117 
Japan); after extraction, each exoskeleton was recovered and preserved in 80% ethanol. Part 118 
of the COI gene was amplified by PCR using primers LCO-1490 and HCO-2198 (Folmer et 119 
al., 1994). PCR amplification conditions with TaKaRa Ex Taq DNA polymerase (TaKaRa 120 
Bio) were 94°C for 1 min; 35 cycles of 98°C for 10 sec, 42 or 50°C for 30 sec, and 72°C for 121 
50 sec; and 72°C for 2 min. Nucleotide sequences were determined by direct sequencing with 122 
a BigDye Terminator Kit ver. 3.1 and a 3730 Genetic Analyzer (Life Technologies, USA). 123 
Sequences (658 nt, encoding 219 amino acids) were aligned by using MEGA7 (Kumar et al., 124 
2016) (the dataset contained no indels), and p-distances among sequences were calculated 125 
with MEGA7. All sequences we determined were deposited in the International Nucleotide 126 
Sequence Database (INSD) through the DNA Data Bank of Japan (DDBJ), under accession 127 
numbers LC545527–545558. 128 

An integer neighbor-joining (IntNJ) network (Leigh & Bryant, 2015) for the COI 129 
sequences was constructed with PopART v. 1.7 (Leigh & Bryant, 2015) at 0.50 reticulation 130 
tolerance. Haplotype diversity (h) and nucleotide diversity (π) were calculated with DnaSP v. 131 
6.12.03 (Rozas et al., 2017). Tajima’s D (Tajima, 1989), Fu’s FS (Fu, 1997), and ΦST were 132 
calculated with Arlequin v. 3.5.2.2 (Excoffier & Lischer, 2010). 133 
 134 
 135 

RESULTS 136 
 137 
Male and female C. spinigena were similar in general body shape and had narrow, rod-shaped 138 
pleopods; manca II specimens were generally similar to males and females but lacked 139 
pleopods (Fig. 2A–F, f1). In one core from the multiple corer, we found three living 140 
individuals on the sediment surface, each of which was positioned at the entrance to a burrow, 141 
with the posterior part of the body in the burrow (Fig. 2G; also see Kakui, 2020a).  142 

We identified 10 COI haplotypes (H1–10) among 32 C. spinigena individuals (21 143 
from Japan and 11 from the Bering Sea). The aligned sequences (658 nt) contained 10 144 
polymorphic sites (Table 2) involving only synonymous substitutions. In the IntNJ network 145 
(Fig. 3), haplotypes H1–4 from the Japan population and H5–10 from the Bering Sea 146 
population formed separate groups; the two populations shared no haplotypes. Eighteen of 147 
the 21 sequences from Japan were H4. The most common haplotypes in the Bering Sea 148 
population were H5 (three individuals) and H7 (four individuals). The most nucleotide 149 
substitutions observed in pairwise comparisons among haplotypes was five (H1, H2, H3 vs. 150 
H10), corresponding to a p-distance of 0.8%. The fewest nucleotide substitutions between 151 
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haplotypes from the two populations was one (H4 vs. H5). 152 
Overall h for C. spinigena was moderately high (0.673) but π was low (0.0020) (Table 153 

2). In the Japan population, both h and π values were low (0.271 and 0.0004, respectively); in 154 
the Bering Sea population, h was high (0.836) but π was low (0.0022). Tajima’s D value for 155 
the Japan population was a significant, negative value (–1.727; p = 0.024), whereas other 156 
values were not significant. Fu’s FS values for C. spinigena overall and for both populations 157 
were significant (p < 0.02; Holsinger, 2017), negative values (Table 2). ΦST between Japan 158 
and Bering Sea populations was significant and high (0.6797; p < 0.001). 159 
 160 
 161 

DISCUSSION 162 
 163 
Low dispersal capability of Carpoapseudes spinigena 164 
The life cycle, morphology, and mode of living of Carpoapseudes spinigena indicate that its 165 
native dispersal capability is quite low. As a tanaidacean (cf. Kakui et al., 2017), the species 166 
lacks planktonic larval stages, and females directly release manca II individuals from their 167 
marsupium. In both males and females, as described by Bamber (2007), the pleopods are 168 
narrow and rod-shaped, rather than wide and leaf-shaped (cf. Shiino, 1966: fig. 7G), 169 
indicating that both sexes have poor swimming ability. Manca II individuals are similar in 170 
body shape to males and females but lack pleopods. None of the developmental stages we 171 
observed show apparent swimming adaptations such as the enormously long or 172 
paddle-shaped pereopods known in deep-sea swimming isopods (Marshall & Diebel, 1995). 173 
Our multiple corer sample showed that C. spinigena lives as a burrower (Fig. 2G). All of 174 
these observations indicate that C. spinigena individuals are likely sedentary throughout their 175 
life. 176 
 177 
Genetic diversity in C. spinigena overall and in two populations 178 
Our phylogeographic analysis of the COI sequences revealed low genetic diversity in C. 179 
spinigena. The maximum p-distance of 0.8% that we detected among 32 C. spinigena 180 
sequences from two populations ca. 3700 km apart is much lower than that observed within a 181 
single population in a shallow-water apseudoid species, Mesokalliapseudes macsweenyi 182 
(Drumm, 2003) (ca. 3% p-distance; Drumm & Kreiser, 2012). The moderately high h (0.673) 183 
and low π (0.0020) and significantly negative Fu’s FS values suggest that the overall 184 
population we sampled underwent a population reduction followed by rapid population 185 
growth and accumulation of mutations (Grant & Bowen, 1998). The Japan and Bering Sea 186 
populations shared no haplotypes, and the ΦST value between the two populations was 187 
significant and high, indicating low connectivity between the two populations. 188 

The Japan and Bering Sea populations appear to have different histories. The two 189 
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clusters in our haplotype network are separated by one nucleotide substitution. The Japan 190 
cluster shows a star-like pattern, with haplotype H4 comprising 18 of 21 sequences (86%) 191 
and three haplotypes each connected to H4 by one mutational step (Fig. 3). Both the h and π 192 
values were low (0.271 and 0.0004, respectively), and Tajima’s D and Fu’s FS values were 193 
significant and negative, indicating that the Japan population underwent a recent population 194 
bottleneck or was established by a founder event (Grant & Bowen, 1998). The Bering Sea 195 
cluster was more branched and more diverse, with high h (0.836), low π (0.0022), and a 196 
significant, negative Fu’s FS value. These indices indicate that the Bering Sea population 197 
underwent a past reduction in size followed by expansion, but may have been affected by 198 
small sample size (n = 11). 199 
 200 
How did C. spinigena become widely distributed? 201 
The low genetic distance between the two widely separate populations we examined is 202 
difficult to reconcile with the low innate dispersal capability expected for a small, deep-sea 203 
fossorial crustacean lacking planktonic larval stages. One possible explanation is that the 204 
Japan population originated through a founder from the Bering Sea population via transport 205 
by deep ocean currents, a mechanism that Riehl & Kaiser (2012) suggested for dispersal by 206 
deep-sea macrostylid isopods. In our study area, bottom currents at the depths where we 207 
found C. spinigena (1000–1500 m) are complex and have been minimally investigated, but 208 
do occur along the Aleutian Ridge (flowing eastward) and Bering Sea Slope (flowing 209 
northwestward) (Kinder et al., 1975; Roden, 1995); additionally, a southward flow dominated 210 
by the East Kamchatka Current occurs at depths of 1500 m or shallower on the western side 211 
of the Kamchatka Strait (Stabeno et al., 1999; the maximum depth of the strait is 4420 m), 212 
and a southwestward flow of the Oyashio Current has been observed at the depths of 1000 m 213 
or shallower off the eastern coast of northern Japan (Uehara & Miyake, 1999) (Fig. 1). 214 

A pattern similar to our COI haplotype network, where the Bering Sea cluster is more 215 
branched and more diverse than the Japan cluster, was observed in the crangonid shrimp 216 
Argis lar (Owen, 1839) (Fujita et al., 2017). In that species, however, more nucleotide 217 
substitutions (six or 14 substitutions in 571 nt) were detected between a Bering cluster 218 
(Lineage C) and Japan clusters (Lineages A and B), indicating older divergences in A. lar 219 
than in C. spinigena and that the two species have different evolutionary histories. Argis lar 220 
differs from C. spinigena in having a relatively short (15–20 days at 5°C; Nakano, 1993) 221 
pelagic larval phase in its life cycle and in inhabiting shallower depths (10–350 m; Komai & 222 
Komatsu, 2009), both of which would increase the feasibility of dispersal by surface currents. 223 

Other hypotheses than a single long-distance dispersal event are possible to account 224 
for the low genetic diversity of C. spinigena between the southeastern Bering Sea and 225 
northern Japan. The haplotype pattern and diversity values apparently indicating a founder 226 
event for the population in northern Japan could also have resulted from a local bottleneck. 227 
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Furthermore, it is unknown whether C. spinigena is continuously distributed in the relevant 228 
depth interval between northern Japan and the southeastern Bering Sea. A continuous 229 
distribution along the Kurile Islands, eastern Kamchatka, Aleutian Basin, and Aleutian 230 
archipelago could have been achieved by relatively rapid but stepwise dispersal mediated by 231 
deep-sea currents, or by slower, stepwise range expansion. Even poorly dispersing bottom 232 
dwellers can expand their range gradually by local currents (e.g. Martel & Chia, 1991; 233 
Norkko et al., 2001). Finally, even if a founder population of C. spinigena was established in 234 
northern Japan by long-distance dispersal, the source population could have been closer than 235 
the Bering Sea, i.e., the Kuriles or Kamchatka. Data from across the putatively broad range of 236 
C. spinigena are necessary to determine the most likely among these various possibilities. 237 

It is unknown whether other deep-sea tanaidaceans show similarly wide distributions. 238 
Species in Protanais, one of the main indicators of successional stages in deep-sea wood-fall 239 
communities (McClain & Barry, 2014), may show narrower distributions restricted to areas 240 
where sunken wood is abundant. Species in some groups producing males adapted for 241 
swimming (natatory males; Błażewicz-Paszkowycz et al., 2014) possibly show wider 242 
distributions and more connectivity among populations. 243 

The main results of our study are 1) that the deep-sea tanaidacean species 244 
Carpoapseudes spinigena is a burrower, which together with the lack of swimming 245 
appendages and a larval phase, indicate poor dispersal capability, and 2) that two populations 246 
thousands of kilometers apart show remarkably low genetic divergence. Explaining these 247 
incongruent results is of fundamental importance to understanding how genetic and 248 
taxonomic diversity originate and are maintained in the deep sea, and our results underscore 249 
the need for continued sampling in this environment. 250 
 251 
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SUPPORTING INFORMATION 443 
 444 
Supporting information S1. Details on sampling, sorting, and sample fixation.  445 
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Figure legends 446 
 447 
Figure 1. Map showing our sampling sites for Carpoapseudes spinigena (red circles) and the 448 
type locality (black open circle; Bamber, 2007). Bathymetric contours are 200 m (thicker 449 
lines) and 5000 m (thinner lines). Map and plots were generated using GMT5 (Wessel et al., 450 
2013) based on data publicly available from ETOPO1 (Amante & Eakins, 2009). Bottom 451 
currents around 1000–1500 m depth (thick blue arrows) were drawn with reference to Kinder 452 
et al. (1975), Roden (1995), Stabeno et al. (1999), and Uehara & Miyake (1999). 453 
Abbreviations: AR, Aleutian Ridge; BSS, Bering Sea Slope; KS, Kamchatka Strait. 454 
 455 
Figure 2. Carpoapseudes spinigena collected from the Bering Sea. A, B, Fresh female, 456 
dorsal (A) and left (B) views; C, D, fresh male, dorsal (C) and left (D) views; E, F, f1, 457 
ethanol fixed manca II, dorsal (E) and left (F, f1) views (f1, pleon and pleotelson), most of 458 
uropod lost; G, living individual without major disturbance in collection, with its posterior 459 
half in a burrow, found in a sediment core sample. Scale: f1, 1 mm; others, 5 mm. 460 
 461 
Figure 3. IntNJ network for COI haplotypes (658 nt) from 21 and 11 Carpoapseudes 462 
spinigena individuals from the Japan and Bering Sea populations, respectively. Labeled 463 
circles indicate haplotypes, with size of the circle proportional to frequency of the haplotype; 464 
number of individuals > 1 also labeled inside circles. Smaller, black circle indicates an 465 
intermediate haplotype not observed; each line between circles indicates a single mutational 466 
substitution. H1–10, haplotypes 1–10. 467 









Table 1.  List of stations by R/V Tansei-maru (KT) and R/V Mirai (MR). BT, beam trawl 
with 3 m opening; D, dredge installed on a Deep Tow Camera System; MC, multiple corer. a, 
net in; b, net out. 
 
Station no. Gear Date Start position End position Depth (m) 

Japan population 

  KT-07-29-K1 

 

 

BT 

 

7 Nov 2007 

 

42°35.0´N 

144°48.0´Ea 

 

42°34.7´N 

144°49.9´Eb 

 

1028–1075 

Bering Sea population 

  MR17-04_Leg2 St. G 

 

 

D 

 

15 Aug 2017 

 

54°11.6378´N 

166°59.3735´W 

 

54°11.6336´N 

166°59.4198´W 

 

1566–1569 

  MR17-04_Leg2 St. G 

 

MC 15 Aug 2017 54°11.7635´N 

166°58.3413´W 

 1536 

 
 



Table 2.  Genetic diversity indices for two Carpoapseudes spinigena populations. N, number 
of individuals; Nh, number of haplotypes; Np, number of polymorphic sites; h, haplotype 
diversity; π, nucleotide diversity. 
 
Population N Nh Np H π Tajima’s D Fu’s FS 

Japan 21 4 3 0.271 0.0004 –1.727 (p = 0.024) –2.820 (p < 0.001) 

Bering Sea 11 6 6 0.836 0.0022 –1.218 (p = 0.115) –2.508 (p = 0.013) 

Overall 32 10 10 0.673 0.0020 –1.465 (p = 0.064) –5.076 (p = 0.001) 

 
 


