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We make a spin-wave analysis of magnetic Raman scattering in an antiferromagnetic Heisenberg model on the
two-dimensional Penrose lattice of C5v point symmetry. Following the Shastry-Shraiman perturbation scheme
for a strongly correlated Hubbard model, we go so far as to obtain the fourth-order effective Raman operators.
Within the second-order mechanism, there is one and only Raman active mode of E2 symmetry, yielding a spec-
tral weight independent of light polarization. Taking account of the fourth-order scatterings as well activates
A1 and A2 as well as E2 modes and therefore results in polarization-dependent Raman spectra. With the use of
linearly and circularly polarized lights, we can separately extract all the symmetry species from observations.
Though the linear spin-wave theory, i.e. the harmonic oscillator approximation, is far from quantitative, the A2

and E2 Raman intensities are well describable with two magnon interactions. The Raman-active A1 mode owes
much to higher order magnon-magnon interactions as well.
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1 Introduction
Since the discovery of quasicrystal [1], quasiperiodic

systems have been of much interest. Quasicrystals are
characterized by quasiperiodicity, which is a coexistence
of long-range order without translational symmetry and
crystallographically forbidden rotational symmetry. These
expect that the physical properties of quasiperiodic sys-
tems are quite different from both periodic and amorphous
systems. The Penrose lattice is one of the most popular
two-dimensional quasicrystals. On this lattice, the tight-
binding model of noninteracting electrons has been stud-
ied. It exhibits many interesting features, such as confined
states [2,3] characterized by thermodynamically degen-
erate states with strictly localized and self-similar wave
functions, and multifractal spectrum [4]. Recently, quan-
tum critical behavior has been observed in the quasicrystal
Au51Al34Yb15 [5]. In this compound, the 4f electrons
of Yb are strongly correlated. Investigating the interplay
between quasiperiodicity and strong correlation is a big
issue. In the quasiperiodic systems, strongly correlated
electron models have been studied such as Hubbard model
[6], Ising model for classical spins [7], and Heisenberg
model for quantum spins [8,9].

One of the important probes of antiferromagnets is
magnetic Raman scattering. It is inelastic photon scatter-
ing mediated by magnetic excitations. Loudon and Fleury
established a standard framework for the two-magnon Ra-
man scattering [10]. For instance, it was used to estimate
the exchange interaction constant of the high-Tc super-
conductor La2CuO4 [11]. The insulating phase of layered
cuprates can be well accounted for quasi-two-dimensional
Heisenberg antiferromagnets on the square lattice. The
magnetic Raman spectra at absolute zero temperature have
been calculated by spin-wave theory [12–14], exact di-
agonalization [14], and quantum Monte Carlo methods
[14]. Magnetic Raman spectra have also been computed
for other systems such as the triangular [15] and Kagome
[16] lattices. The polarization dependence of the magnetic
Raman intensity depends on the geometry of the lattice
and the symmetry of the ground state. It provides useful
information on magnetic excitation.

Microscopic description of the magnetic Raman scat-
tering was given by Shastry and Shraiman [17,18]. In this
formulation, the Loudon-Fleury mechanism is obtained in
second-order perturbation theory. Magnetic Raman scatter-
ing beyond the Loudon-Fleury mechanism is obtained in
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higher-order perturbation. It includes additional magnetic
excitations, such as the spin-chirality terms Si · (Sj ×Sk)
and/or the ring-exchange terms (Si · Sj)(Sk · Sl) [19,
20]. We present the Raman intensity profile of the Penrose
lattice Heisenberg antiferromagnet within and beyond the
Loudon-Fleury mechanism by spin-wave theory. Beyond
the Loudon-Fleury mechanism does the A2 mode becomes
Raman active, with its dynamic spin-chirality fluctuations
owing much to the quasiperiodic lattice structure. A com-
parison with exact diagonalization reveals the effects of
magnon-magnon interactions.

2 Model

e1e2

e3

e4

e5

(a) (b)

(c)

Figure 1 Finite patch of the two-dimensional Penrose lattice with
fivefold rotational symmetry (a) and enlarged view of the cir-
cled area (b). Closed and open circles represent vertices that be-
long to sublattice A and B, respectively. Primitive lattice vectors
of the Penrose lattice e1, · · · , e5 (c) are projection of the five-
dimensional canonical basis vectors, and they satisfy e1 + e2 +
e3 + e4 + e5 = 0.

2.1 Penrose lattice
Figure 1 shows a finite cluster of the Penrose lattice.

It is constructed from two prototiles: thin (acute angle
π/5) and thick (acute angle 2π/5) rhombuses with equal
edge length. Since the lattice consists of even-number-
sided polygons, the Penrose lattice is bipartite. The two-
dimensional Penrose lattice is obtained by projecting a
five-dimensional hypercubic lattice onto an irrational tilted
plane [8]. The Penrose lattice holds four independent prim-
itive lattice vectors. Due to the quasiperiodicity, the rank
of the Penrose lattice r = 4 is greater than the lattice di-
mension d = 2. In this study, we consider open-boundary
clusters of the Penrose lattice with fivefold rotational sym-
metry.

2.2 Hamiltonian
We consider the so-called vertex model, where spins are

located at the vertices of the Penrose rhombus tiling. We
consider the nearest-neighbor antiferromagnetic Heisen-

berg model:

H = J
∑
⟨i,j⟩

Si · Sj (J > 0) (1)

where Si is a spin-1/2 operator at site i, and ⟨i, j⟩ are pairs
of linked vertices of the Penrose lattice.

2.3 Spin-wave theory
We divide the Penrose lattice into two sublattices A and B

consisting of NA and NB sites, respectively. In the classical
ground state of the non-frustrated system, all A sublattice
spins point in one direction and the B sublattice spins point
in the opposite direction. We introduce bosonic operators
by using the Holstein-Primakoff transformation:

Sz
i = S − a†iai

S+
i = (2S − a†iai)

1
2 ai

S−
i = a†i (2S − a†iai)

1
2 (2)

for i ∈ A, and

Sz
j = −S + b†jbj

S+
j = b†j(2S − b†jbj)

1
2

S−
j = (2S − b†jbj)

1
2 bj (3)

for j ∈ B. Expanding the square roots of 1/S, and keeping
terms of up to O(S0), spin-wave Hamiltonian is written as

HSW =J
∑
⟨i,j⟩

[
−S2 + S(a†iai + b†jbj + aibj + a†i b

†
j)

−
{
a†iaib

†
jbj +

1

4
(a†iaiaibj + a†i b

†
jb

†
jbj +H.c.)

}]
(4)

We apply the Wick decomposition to the O(S0) terms in
Equation (4),

a†iaib
†
jbj →⟨a†iai⟩b

†
jbj + ⟨b†jbj⟩a

†
iai − ⟨a†iai⟩⟨b

†
jbj⟩

+ ⟨a†i b
†
j⟩aibj + ⟨aibj⟩a†i b

†
j − ⟨a†i b

†
j⟩⟨aibj⟩

a†iaiaibj →2(⟨a†iai⟩aibj + ⟨aibj⟩a†iai − ⟨a†iai⟩⟨aibj⟩)
a†i b

†
jb

†
jbj →2(⟨a†i b

†
j⟩b

†
jbj + ⟨b†jbj⟩a

†
i b

†
j − ⟨a†i b

†
j⟩⟨b

†
jbj⟩)

a†ia
†
iaib

†
j →2(⟨a†iai⟩a

†
i b

†
j + ⟨a†i b

†
j⟩a

†
iai − ⟨a†iai⟩⟨a

†
i b

†
j⟩)

aib
†
jbjbj →2(⟨aibj⟩b†jbj + ⟨b†jbj⟩aibj − ⟨aibj⟩⟨b†jbj⟩)

(5)

where ⟨· · · ⟩ denotes a quantum average in the magnon
vacuum. Here, we omit the normal ordering of the quar-
tic terms and assume that ⟨a†i bj⟩ = ⟨aib†j⟩ = ⟨aiai⟩ =

⟨a†ia
†
i ⟩ = ⟨b†jb

†
j⟩ = ⟨bjbj⟩ = 0 due to the conservation

of magnetization. After decomposing the quartic terms,
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we obtain a quadratic form spin-wave Hamiltonian in real
space. Carrying out the Bogoliubov transformation, we can
diagonalize the quadratic spin-wave Hamiltonian into

H ′
SW =

nα∑
k=1

ε
(α)
k α†

kαk +

nβ∑
l=1

ε
(β)
l β†

l βl + EGS (6)

where ε(α)k [ε(β)l ] is the eigenvalue of the bosonic mode αk

(βl), nα (nβ) is the number of the αk (βl) modes, and EGS

is the ground-state energy. Figure 2 shows the eigenvalues
ε
(α)
k and ε

(β)
l of Equation (6) in ascending order for three

sizes of Penrose lattices. The eigenvalues become denser as
the lattice size increases, and two gaps open near ε ≈ 2.2
and ε ≈ 3.2.
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Figure 2 Eigenvalues of the Heisenberg antiferromagnet on the
Penrose lattice of three different sizes (N = 226, 601, 1591)
within spin-wave approximation. The horizontal axis is normal-
ized by the size of the lattice.

3 Effective magnetic Raman operator
The magnetic Raman scattering is described by interac-

tion between spins and photons. In this section, we follow a
microscopic description of the magnetic Raman scattering,
which is first given by Shastry and Shraiman [17–20], and
present an effective magnetic Raman operator on the Pen-
rose lattice. First, we consider a strongly correlated single-
band Hubbard model:

HHb = HU +Ht = U
∑
i

ni↑ni↓ −
∑
i,j,σ

tijc
†
iσcjσ (7)

where c†iσ (ciσ) is the electron creation (annihilation) op-
erator on site i with spin σ =↑, ↓ and niσ ≡ c†iσciσ . tij
is the transfer integral, and U(> 0) is the on-site Coulomb
repulsion. Hereafter, electron hopping is restricted to occur
only between the nearest-neighbor sites.

The electron-photon coupling can be introduced by the
Peierls substitution: c†iσcjσ → c†iσcjσ exp(

ie
h̄c

∫ i

j
A · dr),

where A is the vector potential of the photon. We assume
that incoming and outgoing photon wavelengths are much

larger than lattice spacing. Then second-quantized vector
potential is written as A = gineinγkin

+ gsce
∗
scγ

†
ksc

where
gin =

√
hc2/ωinV and gsc =

√
hc2/ωscV with volume

V . ωin(ωsc), kin(ksc), and ein(esc) stand for frequency,
momentum, and polarization of incident (scattered) pho-
ton, respectively. γ†(γ) denotes the photon creation (anni-
hilation) operator. Expanding the exponential of the hop-
ping terms and extracting the first-order term of the vector
potential, the current operator reads

Hc = − ie

h̄c

∑
i,j,σ

tijA · δijc†iσcjσ (8)

where δij is the vector connecting sites i and j.
Since the Raman process is made of two photons (one

photon in, one photon out), only the second-order pro-
cess of A is required. We are interested in a half-filled
(
∑

σ⟨niσ⟩ = 1) and localized (U ≫ t) system. In this situ-
ation, both the initial and final states belong to the ground-
state manifold of singly occupied states, and Hc and Ht

can be treated as a perturbation. The initial states are taken
to be a direct product of singly occupied electron states
with incident photon. When Hc is operated there, the in-
termediate states are described as electron states with one
holon and one doublon, and photon states with zero or two
photons. The energy gap between the initial and interme-
diate states is U − h̄ωin for no photons and U + h̄ωsc for
two photons, respectively. Considering a situation where
the photon energy is non-negligible with respect to U and
assuming U + h̄ωsc ≫ U ≫ U − h̄ωin > t, the inter-
mediate states with no photons are dominant. Under this
condition, the effective Raman operator reads

R =PHc
1

εi −HU −Ht
HcP

=PHc
1

εi −HU

∞∑
n=0

(
Ht

1

εi −HU

)n

HcP (9)

where εi is the initial-state energy and P is a projection
operator to the spin-1/2 sector. Because of the electron-
hole symmetry in the half-filled band, any term of odd n
vanishes in Equation (9). Furthermore, (εi − HU )

−1 =
(h̄ωin − U)−1 becomes a c-number. Finally, we convert
the electron operators into S = 1/2 spin operators using
the following projection:

Pc†iσciσ′P =
1

2
δσ′,σ + Si · τσ′σ (10)

where τ is the Pauli matrix.
The second-order perturbation is the lowest nonvanish-

ing order in the Shastry-Shraiman formulation. It corre-
sponds to the n = 0 term in Equation (9) and gives the
Loudon-Fleury magnetic Raman operator [10]:

R(2) =
∑
⟨i,j⟩

4t2

U − h̄ωin
(ein · δij)(e∗sc · δij)Si · Sj (11)
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Here, we omit some constants that do not affect the Raman
intensity. The second-order Raman operator is dominant in
the case of U − h̄ωin ≫ t.

The fourth-order effective Raman operator is the next
nonvanishing order. It corresponds to n = 2 in Equation
(9). The fourth-order magnetic Raman operator includes
the scalar-spin-chirality terms Si · (Sj × Sk) and/or the
ring-exchange terms (Si ·Sj)(Sk ·Sl). The prefactor of the
fourth-order magnetic Raman operator is t4/(U − h̄ωin)

3.
For details about the fourth-order magnetic Raman oper-
ator, see Appendix A. If the incident photon energy h̄ωin

approaches to the resonant region U−h̄ωin ∼ O(t), fourth-
order contributions can manifest in the Raman intensity.

For theoretical calculations, it is convenient to decom-
pose the polarization dependence of the magnetic Raman
spectrum into the irreducible representations (irreps) of the
lattice point group. The point group of the Penrose lattice
is C5v. In C5v, the polarization dependence of the Raman-
active modes decomposes into two one-dimensional irreps
A1 and A2, and one two-dimensional irrep E2 as follows:

A1 : exine
∗x
sc + eyine

∗y
sc

A2 : exine
∗y
sc − eyine

∗x
sc

E
(1)
2 : exine

∗x
sc − eyine

∗y
sc

E
(2)
2 : exine

∗y
sc + eyine

∗x
sc (12)

The magnetic Raman spectrum at T = 0 is given by
Fermi’s golden rule:

I(ω) =
∑
n

∣∣∣⟨Ψn|R|Ψ0⟩
∣∣∣2δ(h̄ω − En + E0) (13)

where |Ψ0⟩ is a ground state of the Heisenberg model, |Ψn⟩
is excited states. E0 and En are eigenvalues of the ground
and excited states, respectively.

4 Results
4.1 Second-order magnetic Raman intensity:

Within the Loudon-Fleury mechanism
First, we consider the Raman spectrum within the

Loudon-Fleury mechanism. In this section, we use the
second-order magnetic Raman operator [Equation (11)].
We consider a bosonic representation of the spin oper-
ators in Equation (11) by using the Holstein-Primakoff
transformation. In this study, we consider the two-magnon
scattering. It corresponds to the expansion of the magnetic
Raman operator up to the bosonic two-body terms.

Figure 3 shows the spin-wave result of the two-magnon
scattering Raman intensity within the second-order Raman
operator for the N = 601 sites cluster of the Penrose lat-
tice. We find that the second-order Raman intensity comes
from the E2 representation and shows no linear polariza-
tion dependence. To understand this depolarization, we set
the incident and scattered polarization vectors as

ein = (cos θin, sin θin), esc = (cos θsc, sin θsc) (14)

In
te

n
si

ty
 (

ar
b

. 
u

n
it

s)

ħω/J

0 2 84 61 3 5 7

esc

ein

E2

Figure 3 Two-magnon scattering magnetic Raman spectrum of
the N = 601 sites cluster Penrose lattice Heisenberg antiferro-
magnet within the second-order magnetic Raman operator. The
spectrum arises from the E2 representation of the C5v point
group, and does not depend on the incident and scattered photon
polarizations ein and esc.

where θin and θsc are the angles of the polarization vectors
of the incident and scattered photons with respect to the x
axis. Under this condition, the E2 mode Raman spectrum
is written as

I(ω, θin, θsc) =
∑
n

∣∣∣⟨Ψn|RE
(1)
2

cos(θin + θsc)

+R
E

(2)
2

sin(θin + θsc)|Ψ0⟩
∣∣∣2

× δ(h̄ω − En + E0) (15)

where R
E

(1)
2

and R
E

(2)
2

are magnetic Raman operators ob-
tained by irreducible decomposition for the first and second
components of the E2 representation, respectively. R

E
(1)
2

and R
E

(2)
2

are orthogonal to each other. Scattering inten-
sities of R

E
(1)
2

and R
E

(2)
2

are degenerate. Therefore, the
E2 mode Raman spectrum is independent of polarization
angles:

I(ω, θin, θsc) = cos2(θin + θsc)IE2(ω)

+ sin2(θin + θsc)IE2
(ω) = IE2

(ω) (16)

where IE2(ω) denotes intensity of the E2 mode.
4.2 Fourth-order magnetic Raman intensity: Be-

yond the Loudon-Fleury mechanism
Next, we calculate the two-magnon scattering Raman in-

tensity of the fourth-order magnetic Raman operator. We
consider two polarizations, one is called xx polarization
corresponding to (θin, θsc) = (0, 0), and the other is called
xy polarization that corresponds to (θin, θsc) = (0, π/2).
As shown in Figure 4, the fourth-order Raman operators
yield spectral weight of the A1 mode in the xx polariza-
tion [Figure 4(a)], and the A2 mode in the xy polarization
[Figure 4(b)], as well as the linearly polarization indepen-
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Figure 4 Two-magnon scattering magnetic Raman spectra of the
fourth-order magnetic Raman operator on the N = 601 sites
cluster for xx polarization (a) and xy polarization (b).

dent E2 mode. The observed spectrum for each polariza-
tion is described as Ixx(ω) = IA1

(ω) + IE2
(ω) for the xx

polarization, and Ixy(ω) = IA2
(ω)+IE2

(ω) for the xy po-
larization. In general, the linear polarization dependence of
the fourth-order Raman intensity is given by

I(ω, θin, θsc) = cos2(θin − θsc)IA1
(ω)

+ sin2(θin − θsc)IA2
(ω) + IE2

(ω) (17)

As shown in Equation (17), the fourth-order Raman spec-
trum is observed as a superposition of Raman-active
modes. We employ two linearly and one circularly po-
larized lights to decompose the Raman intensities into
all the symmetry species from observations. In order to
separate all the irreducible components of the spectrum,
only linearly polarized light is insufficient, and circularly
polarized light is required. The Raman intensities of each
irreducible representation are obtained as follows:

IA1(ω) = Ixx(ω)−
1

2
ILR(ω)

IA2
(ω) = Ixy(ω)−

1

2
ILR(ω)

IE2
(ω) =

1

2
ILR(ω) (18)

where ILR(ω) is the LR polarization Raman intensity. The
LR polarization refers to left circularly polarized incident
photon ein = 1√

2
(1, i) and right circularly polarized scat-

tered photon esc =
1√
2
(1,−i).

The fourth-order magnetic Raman spectra include sev-
eral magnetic excitation contributions. In particular, the
A2 mode spectrum provides a direct observation of dy-
namic spin-chirality fluctuations. The geometry of the lat-
tice plays an important role in the observation of spin-
chirality fluctuations through Raman scattering. The spin-
chirality terms of the fourth-order magnetic Raman op-
erator cancel out on the two types of fourth-order elec-
tron hopping pathways: (1) four-site loop pathway and (2)
three-site straight pathway. As an example, we consider
a two-dimensional periodic lattice with a single-site unit
cell. This lattice has only two independent primitive lat-
tice vectors. It always satisfies the conditions to cancel the
spin-chirality terms. However, this is not the case with the
Penrose lattice. Because of the quasiperiodicity, the Pen-
rose lattice has four independent primitive lattice vectors
with greater than the lattice dimension d = 2. This allows
extra fourth-order electron hopping pathways. Therefore,
the spin-chirality-driven A2 mode spectrum can survive in
the Penrose lattice.

4.3 Effects of magnon-magnon interactions
To compare the spin-wave results with the Lanczös exact

diagonalization results, we consider a small-sized (N =
16), fivefold rotationally symmetric Penrose lattice cluster.
In the Lanczös method, the Raman spectrum is obtained
from a continued fraction:

I(ω) = − 1

π
Im

{
⟨Ψ0|R† 1

h̄ω + E0 + iη −H
R|Ψ0⟩

}
(19)

where η is a small imaginary part added to give a finite
damping of the δ-functions.

In the spin-wave calculation, we incorporate the
magnon-magnon interactions by the configuration inter-
action (CI) method. We apply the two-magnon excitation
CI method in this study. We consider a zero-magnon state
|0M⟩ and two-magnon excited states |2M⟩ [21]:

|0M⟩ = |0⟩, |2M(k, l)⟩ = α†
kβ

†
l |0⟩ (20)

where |0⟩ denotes the magnon-vacuum state. Spin-wave
eigenstates are improved as

|Ψn⟩CI = c0,n|0⟩+
∑
k,l

c(k,l),nα
†
kβ

†
l |0⟩ (21)

where coefficients c0,n and c(k,l),n are components of the
eigenvector obtained by diagonalizing the two-magnon ex-
citation CI Hamiltonian matrix:

HCI =

[
⟨0M|HSW|0M⟩ ⟨0M|HSW|2M⟩
⟨2M|HSW|0M⟩ ⟨2M|HSW|2M⟩

]
(22)
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Figure 5 The fourth-order magnetic Raman spectra on the N =
16 sites cluster for (a) A2 mode, (b) E2 mode, and (c) A1 mode.
Spectra are calculated by Lanczös exact diagonalization (ED),
spin-wave theory without magnon-magnon interactions (SWT),
and spin-wave theory with magnon-magnon interactions intro-
duced by two-magnon excitation CI method [SWT(2MCI)].

We note that the two-magnon excitation CI calculation
corresponds to solving the ladder-approximation Bethe-
Salpeter equation with quartic magnon interaction terms
[12].

Results are shown in Figure 5. First, we focus on the
A2 mode spectra [Figure 5(a)]. Comparing the spin-wave
results in the absence and presence of the magnon-magnon
interactions, we find that the interaction shifts the Raman

intensity peak to the lower energy side. The line shapes
and peak positions of the interacting spin-wave result are in
good agreement with the exact diagonalization result. We
conclude that the spin-wave calculation of the two-magnon
scattering process can describe the spin-chirality-driven A2

mode magnetic Raman spectrum very well.
Figure 5(b) shows the E2 mode spectra. We find that

the two-magnon scattering intensity of the spin-wave the-
ory with the magnon-magnon interactions agrees well
with the exact diagonalization result in the low-frequency
(about h̄ω < 4J) region compared to the case without the
interaction. However, even the interacting spin-wave result
lacks the high-frequency tail of the exact result. This is ex-
pected to be explained by contributions from higher-order
magnon scattering.

On the other hand, as shown in Figure 5(c), the A1

mode magnetic Raman spectra of the exact diagonalization
and the spin-waves are not consistent. The two-magnon
scattering spin-wave spectra are considerably smaller than
the exact spectrum, even when the magnon-magnon inter-
actions are included. This suggests that the higher order
multimagnon scattering, for instance four-magnon scatter-
ing, is dominant in the A1 mode Raman intensity.

5 Conclusion
We have presented the magnetic Raman spectra of the

two-dimensional C5v Penrose lattice Heisenberg antifer-
romagnet. The Raman intensity within the Loudon-Fleury
mechanism arises from the E2 mode and shows no linear
polarization dependence due to the degeneracy of the two-
dimensional irreducible representation E2. In contrast, the
fourth-order Raman intensities consist of A1 and A2, as
well as E2, modes and therefore yield strong polarization
dependence. The A2 mode spectrum is driven by scalar-
spin-chirality terms. It is arisen from quasiperiodic struc-
ture of the Penrose lattice. We can separately extract all
the symmetry species from observations with the use of
two linearly and one circularly polarized lights. The two-
magnon scattering with the magnon-magnon interactions
can describe the A2 and E2 mode spectra very well. This
means that the spin-chirality excitations and exchange ex-
citations can be understood by the two-magnon scatter-
ing process. In contrast, the A1 mode spectrum, which is
mainly due to the ring-exchange excitations, are not con-
sistent with the two-magnon scattering results, even when
the magnon-magnon interactions are incorporated. Consid-
ering multimagnon scattering processes and higher-order
interactions is left for future investigation.
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Appendix A: The fourth-order effective magnetic
Raman operator
The fourth-order effective magnetic Raman operator is
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written as

R(4) =
∑

⟨1,2,3,4⟩

t4

(U − h̄ωin)3

{

− 4

4∑
n=1

(ein · δn)(e∗sc · [δn+1 + 2δn+2 + δn+3])

×
[
Q1234 +Q1432 −Q1324

]
+ 2i

4∑
n=1

∆ch
n Sn+2 · (Sn+1 × Sn)

+

4∑
n=1

∆ex
n Sn · Sn+1 +

2∑
n=1

∆ex′

n Sn · Sn+2

}
+

∑
⟨1,2,3⟩

t4

(U − h̄ωin)3

{
4i
[
(ein · δ1)(e∗sc · δ2)− (ein · δ2)(e∗sc · δ1)

]
× S3 · (S2 × S1)

+ 2

2∑
n=1

∆̃ex
n Sn · Sn+1

− 2
[
(ein · δ1)(e∗sc · δ2) + (ein · δ2)(e∗sc · δ1)

]
× S1 · S3

}

Qijkl ≡ (Si · Sj)(Sk · Sl)

∆ch
n ≡(ein · δn)(e∗sc · [−δn+1 − 2δn+2 + δn+3])

+ (ein · δn+1)(e
∗
sc · [−δn+2 + 2δn+3 + δn])

+ (ein · δn+2)(e
∗
sc · [δn+3 + 2δn + δn+1])

+ (ein · δn+3)(e
∗
sc · [−δn − 2δn+1 − δn+2])

∆ex
n ≡(ein · δn)(e∗sc · [−δn+1 + 2δn+2 − δn+3])

+ (ein · δn+1)(e
∗
sc · [δn+2 − 2δn+3 − δn])

+ (ein · δn+2)(e
∗
sc · [δn+3 + 2δn + δn+1])

+ (ein · δn+3)(e
∗
sc · [−δn − 2δn+1 + δn+2])

∆ex′

n ≡(ein · δn)(e∗sc · [δn+1 + 2δn+2 − δn+3])

+ (ein · δn+1)(e
∗
sc · [−δn+2 + 2δn+3 + δn])

+ (ein · δn+2)(e
∗
sc · [δn+3 + 2δn − δn+1])

+ (ein · δn+3)(esc · [−δn + 2δn+1 + δn+2])

∆̃ex
n ≡(ein · δn)(e∗sc · [δ1 + δ2])

+ (ein · [δ1 + δ2])(e
∗
sc · δn)

where
∑

⟨1,2,3,4⟩ is taken over four-sites loop pathways,
and

∑
⟨1,2,3⟩ is taken over three-sites linked pathways (Fig-

ure 6). ein and e∗sc are the polarization vectors of incident
and scattered photons. δn ≡ rn+1 − rn is the vector con-
necting sites n and n+ 1. We set n ≡ n+ 4 (mod 4).

(a) (b)

1 2

34

1 2

3

Figure 6 Two types of fourth-order electron hopping pathways.
(a) Four-site loop pathway and (b) three-site pathway. Arrows de-
note the movement of electrons arising from Hc and Ht.

Appendix B: Irreducible decomposition of the
magnetic Raman operator
The projection operator for the irreducible representation
(irrep) β of group G is given by

P
(β)
l(m) =

dβ
g

∑
R

D
(β)
lm (R)∗R

where dβ is a dimension of the irrep β, g is an order of
group G, R is a symmetry operation, and D

(β)
lm (R) is a

unitary representation matrix of R, respectively. Table 1
shows the representation matrix of the C5v point group.
In this case, the A1, A2, and E2 representations can be
Raman active [22]. The magnetic Raman operator decom-
poses into two one-dimensional irreps A1 and A2, and one
two-dimensional irrep E2,

RA1
=P (A1)R = EA1

OA1

RA2
=P (A2)R = EA2

OA2

R
E

(1)
2

=P
(E2)
1(1) R = E

E
(1)
2

O
E

(1)
2

R
E

(2)
2

=P
(E2)
2(2) R = E

E
(2)
2

O
E

(2)
2

where EA1
= exine

∗x
sc + eyine

∗y
sc , EA2

= exine
∗y
sc − eyine

∗x
sc ,

E
E

(1)
2

= exine
∗x
sc − eyine

∗y
sc , and E

E
(2)
2

= exine
∗y
sc + eyine

∗x
sc

Table 1 The representation matrix of the C5v point group.

Cn
5 σn

A1 1 1

A2 1 −1

E1

(
cos θn sin θn

− sin θn cos θn

) (
cos 2αn sin 2αn

sin 2αn − cos 2αn

)

E2

(
cos 2θn sin 2θn

sin 2θn cos 2θn

) (
cos 4αn sin 4αn

sin 4αn − cos 4αn

)
θn = 2π

5
n, αn = 2π

5
n− π

10
, n = 1, 2, 3, 4, 5
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are polarization dependence, and OA1 , OA2 , O
E

(1)
2

, and
O

E
(2)
2

are linear combinations of spin operators in each ir-
reducible representation.

In the second-order magnetic Raman operator, the spin
operator part is represented by the nearest-neighbor ex-
change coupling, as shown in Equation (11). Since the A1

representation matrix is unity for all symmetry operations,
OA1

commutes with the Hamiltonian. Therefore, the A1

mode spectrum does not appear. Next, if we consider the
time reversal operation of Raman processes, this is equiv-
alent to swapping the creation and annihilation of photons
and reversing the hopping path of electrons. As a result,
ein and e∗sc are replaced in the polarization dependence and
site indices are reversed in the spin operators. The spin op-
erator parts are even under this operation for all irreducible
representations. However, EA2

is odd under this operation
(other modes are even), A2 mode is unsuitable because it is
not even in its entirety. For the above reasons, there is only
E2 mode in the second-order Raman intensity.

On the other hand, in the fourth-order magnetic Raman
operator, A1 and A2 modes can become Raman active as
well as E2 mode. This is due to next-nearest-neighbor ex-
change, ring-exchange, and spin-chirality terms.
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This work reports theoretical calculations of the magnetic Raman
scattering on the two-dimensional quasiperiodic Heisenberg anti-
ferromagnets. The Raman scattering intensity profile detects var-
ious magnetic excitations, including spin-chirality fluctuations.
The interactions between magnons play important role in the
magnetic Raman scattering process.
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