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We investigate how feedback delays affect the quality of solutions from an amoeba-inspired
analog electronic computing system that solves the “traveling salesman problem.” Delays in
the feedback process induce the oscillation of state variables. With an appropriate delay length,
the system converges to the stable state that corresponds to the solution after oscillation. We
find that the solution quality is improved by increasing the delay length. Consequently, delays
bring a trade-off between the solution search time and the solution quality. Delay scheduling

can further improve solution quality.



Delays are unavoidable in a physical system, and they decelerate the operations of conventional
electronic computers. However, they sometimes play an important role in a feedback system
such as a harmonic oscillator!?, which is indispensable for many electronic systems. The
delayed feedback mechanism is also ubiquitous in human biological systems such as the neural
network®~, the auditory system®’, multistability in a neuron®, production of white blood cells®!°,
etc. All of this suggests that delays in a bio-inspired electronic system can play a constructive
or positive role in its function. As one of such electronic systems, we have recently developed
an amoeba-inspired, all-analog electronic computing system to solve optimization problems

called the “electronic amoeba”!!-12

. This system consists of an instance-mapping circuit (IMC)
and an amoeba core that represents the spatiotemporal dynamics of an amoeboid organism
(shown in Fig. 1). Each unit in the amoeba core corresponds to state variables. The IMC feeds
back into the amoeba core in accordance with a specific rule (the “bounce-back rule”) derived
from the given constraints'!'2. This analog electronic system has a configuration similar to a
recurrent neural network. It operates in an asynchronous way, with the state variables
sometimes oscillating due to a delay in the feedback process, causing the system to destabilize.
Therefore, we investigate the delay-induced instability in an amoeba-inspired analog electronic
computing system that solves the traveling salesman problem (TSP) and its effect on solution
quality. When the system destabilizes, the amoeba core employs trial and error using the
oscillations, which provides an opportunity to improve solution quality. In this study, we use a
numerical model for investigating the effect of delay feedback in the electronic amoeba. Our
results show that delay feedback introduces a trade-off between the solution quality and the
solution search time, and we find a way to change solution quality by tuning the delay time.
The electronic amoeba shown in Fig. 1 electronically mimics the solution-searching
behavior of the amoeboid organism Physarum Polycephalum''. The amoeba’s core is a star
topology network of pseudopod units with a hub current source. Using Kirchhoftf’s current law,
the current conservation at the hub represents the volume conservation of the amoeboid
organism. The charges in a capacitor of each pseudopod in the amoeba core represent a state
variable, Xy,. Each pseudopod unit has a sigmoid function on its end. The input of the sigmoid
function is the amount of charges in a capacitor in the pseudopod unit, and the output of the
function is sent to the IMC. The IMC is composed of a crossbar circuit with a resistor on each
cross-point. The bounce-back rule is mapped by setting the resistance values that correspond to
the weighting. The IMC performs product-sum operations of the weighted variables with an
operational amplifier, carries out the threshold detection with a comparator, and returns the

processed signal to the amoeba core to update the variables. In this process, a signal-propagation
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delay occurs due to the parasitic capacitance (shown in Fig. 1). As a result, the state variables
oscillate. So far, analog-digital hybrid, fully analog, superconducting, and fully digital
electronic amoebae dedicated to solving optimization problems have been proposed!'?~!4.

The TSP is formulized as searching for a short route when a salesman should visit every
city only once and then return to the city started at. Aono ef al. have defined the bounce-back
rule for the TSP and the satisfiability problem (SAT)!>!7. In the TSP, when the number of cities
N increases, the number of solution candidates increases in accordance with (N-1)!/2. This
results in so called “combinatorial explosion”!®!°. Nobody knows the exact algorithm for
finding an optimal solution, the shortest route, in polynomial time. Algorithms that search for a
semi-optimal solution in a short time (e.g., k-opt with simulated annealing, genetic algorithms,
ant colony optimization, and particle swarm optimization) have already been widely studied?-
23

We use N? variables to represent a solution to an N-city TSP instance as Hopfield
recurrent neural networks®*®. Xy = 1 (0 < X< 1, V= {1, 2, .., N}, k= {1, 2, ..., N})
corresponds to each unit in the amoeba core and denotes that a salesman visits V city at k-th
order. In this study, the spatiotemporal dynamic behavior of the electronic amoeba is

formularized as follows:

=[O e Gt rpo O
Lt + 1) = 0y, (D Wi~ O, (Kt =) @
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oap =1/(1+exp(—a- (x —p))), (4)

where A;, is the amount of resource supply and A, is the amount of resource withdrawal, Loy
ensures the current conservation at the network hub, 7 is delay time larger than a time step, 6(x)
is a threshold function with a threshold at 0.5, and Wy s is a variable interaction coefficient
defined by the bounce-back rule. o, represents a sigmoid function where o is an inverse
temperature and £ is a threshold value. Lyx is a bounce-back signal that decides whether Xy is
flipped from 1 to 0. Considering a delay in process, we formulate that the bounce-back signal
controls the variable Xy(¢-r). When all the variables take either 0 or 1, we judge the system as
having found a solution. In this study, Xy is 0 when Xy < 0.2, whereas Xy« is regarded as 1

when X > 0.8. The variable interaction Wy, v 1s defined as follows:



0.5 (ifv=Uatk#lorV=+Uatk=1)
Wyor =4 v-dist(V,U) (iffV#Uand (k-1 =1orlk—1=n-1)), (5)
0 (otherwise)

where dist(V,U) is the intercity distance between V and U, and v is a normalization coefficient
that makes the system stable when it finds a solution!>2°, The interaction Wy v is defined to
forbid visiting the same city twice, forbid visiting different cities at the same time, and minimize
the total path. v is defined as v = 0.5/max(dist(V,V”)+dist(V",V”*)) (V # V’ # V), where max(x)
returns the maximum value of x. This value depends on the instance, and it is pre-computed
before the search for the solution. Its evaluation needs polynomial time O(N?). In the numerical
simulation, we used the parameters A;, = 0.1, Ao = 700, a1 = -1000, p1 = 0.5, a2 = -35, and f»
= 0.5. In this study, we use negative logic for Xyx and Ly because it is convenient for the
physical circuit implementation. The sigmoid functions are simply represented using the
inverter circuit (a1 and a2 < 0) (shown in Fig. 1). The initial value of each element of {Xyx} was
randomly assigned between 0.99 +2.5x107, and that of {Lyx} was assigned 1. In the numerical
experiment, we used a randomly generated 10-city TSP instance whose average intercity
distance was 100 and whose standard deviation was 17.

Figure 2 shows an example of the time evolutions of the variables {Xyx} in solving 10-
city TSP for various lengths of delay 7. In this example, we used v = 19.04 x 10, Although all
variables (100 variables) are displayed in the figure, they are almost overlapped. When 7 = 0,
the variables did not oscillate; they immediately reached the stationary state, finding a solution
(Fig. 2(a)). In contrast, when 7 = 100 and 7 = 200, the variables obviously oscillated and could
reach the stationary state, shown in Figs. 2(b) and 2(c). From detailed observation, it was found
that initially all the variables oscillated similarly, then gradually phased out from each other,
and bifurcated. The variables involved in the same city bifurcated almost at the same time and
followed the same curve. When 7 was increased, both the number of oscillations and the
oscillating period increased, shown in Figs. 3(a) and 3(b). These results confirmed that the
search time to find a solution depended on the length of the delay. Figure 3(c) shows the
solution quality and Figure 3(d) shows the number of iterations to find a solution as a function
of the length of a delay. We observed that the solution quality improved and the number of
iterations increased as 7 increased. When using the metaheuristic algorithm to solve the
optimization problem, solution quality is often proportional to the solution search time?°23,
However, when 7 = 300, the variables continued oscillation without reaching the stationary
state, as shown in Fig. 2(d). In this case, the system could not find a solution. The results

indicated that introducing appropriate feedback delays made it possible for the amoeba-inspired



computing system to improve solution quality through trial and error.

To further improve solution quality, we investigated a process of stabilizing the system
that was in the oscillatory state during a long feedback delay. Here, we examined the scheduling
of the delay length, inspired by the annealing schedule in the simulated annealing (SA)?’. The
delay length was initially set to be long enough to avoid the variables converging at a low-
quality solution. Then, the delay length was decreased step by step, as shown in Fig. 4(a). In
this study, we defined 3 parameters for the scheduling: the maximum delay length and the step
width and height in decreasing delays (hereafter called “width” and “height,” respectively), as
shown in Fig. 4(a). Figure 4(b) shows an example of the time evolutions of {Xyx} when we
scheduled the delays. The variables oscillated when the system started; however, the
oscillations disappeared, and the system reached a stable state. Figures 4(c)—4(f) show the
simulation results of changing the width and the height at the fixed maximum delay length. The
scheduling parameters we used in Figs. 4(c¢) and 4(d) are the maximum length of a delay of 300
and a height of 3 at fixed width, and those in Figs. 4(e) and 4(f) are the maximum length of a
delay of 300 and a width of 15,000 at fixed height. We improved the solution quality by
increasing the width or decreasing the height. On the other hand, the number of iterations
increased when the width was increased or the height was decreased, as shown in Figs. 4(d)
and 4(f). The behavior we obtained was analog to the temperature scheduling in the SA?’. By
scheduling the delays, the system made a trade-off between the solution quality and the number
of iterations (i.e., search time).

Finally, we investigated a possible approach to shifting the balance point of the trade-off
between the solution quality and the search time. We expected the parameters in the system, Az,
Aous, 01, P1, 02, 2 and v, to affect the balance point. We examined the normalization coefficient
v because we found that v significantly affected the solution quality. By increasing v, the
optimality of the solution increased while the system sometimes reached an illegal candidate.
Figure 5 shows the simulation results of the solution searchability when v was offset as v =
19.04 x 10* + voper. The delay scheduling parameters were the maximum delay of 300, the
width of 25,000, and the height of 3. Increasing v,z improved the solution quality, but the
number of iterations remained almost unchanged (see Figs. 5(a) and 5(b)). As Fig. 5(c) shows,
the success rate of finding a solution was maintained when voger <4 x 10, On the other hand,
when voger > 4 % 104, the success rate decreased sharply, and the system could not find a legal
solution. Therefore, the balance point of the trade-off between the solution quality and the
number of iterations could be shifted by changing v,se:. The optimal value of vy was bounded

by the legality of the solution, like a penalty term of Ising machines?®%.
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Previously, noises and/or errors have been used to perform global searches in various
solution search machines. However, these approaches require many random signal generators
that correspond to the number of the variables, which is an obstacle to physical
implementation®’. The delay feedback approach does not need such generators, and compact
implementation of the system is feasible. There are several options for time-dependent control
of the lengths of delays in a physical electronic system, the simplest being to control the current
of the current source in the amoeba core. It is noted that, in the case of the electronic system
using an asynchronous analog electronic circuit, the time constant of the capacitance in the
amoeba core effectively defines one iteration in the computer model and the feedback delay z
is controlled by the parasitic capacitance mainly in the wiring between the amoeba core and the
crossbar. Thus, the increase of the current in the network hub reduces the capacitance’s charging
time and results in relative increase of the feedback delay. Thereby, to reproduce the delay
scheduling in Fig. 4(a), the current of the current source is gradually decreased with time.
Similarly, gradual increase of the resistances in the amoeba core is also possible for scheduling.

In conclusion, we investigated the effect of feedback delays in an amoeba-inspired
computing system, solving the TSP by forming an electronic amoeba with feedback delays and
numerical simulations using this model. We showed that feedback delays caused the oscillations
of the state variables; however, they improved the quality of the solution of the TSP. We found
that feedback delay made a trade-off between the solution quality and the solution search time.
We demonstrated that delay scheduling could further improve solution quality. The solution
search without scheduling is one of the advantages of the amoeba-inspired computing system
against the annealing machines?!*2, however, it turns out to be a disadvantage in the case of
solving TSP because of the difficulty in controlling the quality of solutions. The delay
scheduling should provide a feasible option to overcome the disadvantage of the amoeba-

inspired system.
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Fig. 1: Schematic view of the amoeba-inspired electronic computing system “electronic
amoeba” for solving TSP. The electronic amoeba consists of an amoeba core that searches for
a solution and an IMC that returns feedback signal to the amoeba core in accordance with a

bounce-back rule. A cube in each branch of the amoeba core represents a sigmoid function.
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solution in (d). All variables (100 variables) are displayed in each plot.
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