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LOGARITHMIC A-HYPERGEOMETRIC SERIES

MUTSUMI SAITO

Abstract. The method of Frobenius is a standard technique to
construct series solutions of an ordinary linear differential equa-
tion around a regular singular point. In the classical case, when
the roots of the indicial polynomial are separated by an integer,
logarithmic solutions can be constructed by means of perturbation
of a root.

The method for a regular A-hypergeometric system is a theme
of the book by Saito, Sturmfels, and Takayama. Whereas they per-
turbed a parameter vector to obtain logarithmic A-hypergeometric
series solutions, we adopt a different perturbation in this paper.

Mathematics Subject Classification (2010): 33C70
Keywords: A-hypergeometric systems, the method of Frobenius

1. Introduction

The method of Frobenius is a standard technique to construct series
solutions of an ordinary linear differential equation around a regular
singular point. In the classical case, when the roots of the indicial
polynomial are separated by an integer, logarithmic solutions can be
constructed by means of perturbation of a root; introducing a new
parameter s in a series, differentiating it with respect to s several times,
and taking the limit s → 0 give logarithmic solutions ([4], see e.g. [3,
pp. 243-258], [8, pp. 396-404]).

Let A = (a1, . . . ,an) = (aij) be a d × n-matrix of rank d with
coefficients in Z. Throughout this paper, we assume the homogeneity
of A, i.e., we assume that all aj belong to one hyperplane off the origin
in Qd. Let N be the set of nonnegative integers. Let IA denote the
toric ideal in the polynomial ring C[∂] = C[∂1, . . . , ∂n], i.e.,

(1) IA = 〈∂u − ∂v : Au = Av, u,v ∈ Nn〉 ⊆ C[∂].

Here and hereafter we use the multi-index notation; for example, ∂u

means ∂u1 · · · ∂un for u = (u1, . . . , un)T . Given a column vector β =
(β1, . . . , βd)

T ∈ Cd, let HA(β) denote the left ideal of the Weyl algebra

D = C〈x1, . . . , xn, ∂1, . . . , ∂n〉
1
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generated by IA and

(2)
n∑
j=1

aijθj − βi (i = 1, . . . , d),

where θj = xj∂j. The quotient MA(β) = D/HA(β) is called the A-
hypergeometric system with parameter β, and a formal series annihi-
lated by HA(β) an A-hypergeometric series with parameter β. The
homogeneity of A is known to be equivalent to the regularity of MA(β)
by Hotta [7] and Schulze, Walther [11].

For a generic parameter β, Gel’fand, Graev, Kapranov, and Zelevin-
sky [5], [6] constructed series solutions to MA(β). More generally,
Saito, Sturmfels, and Takayama [10] constructed logarithm-free series
solutions, which we will review in Section 2. Then they perturbed a
parameter vector to construct logarithmic series solutions [10, §3.5].
This is reasonable, because this method perturbed the easier equations
(2) keeping the difficult ones (1) unchanged. Then we can easily ob-
tain perturbed solutions. However, we need to make a suitable linear
combination of perturbed solutions before taking a limit, and it is not
clear how to describe this linear combination (except the unimodular
case [10, §3.6]).

Set

(3) L := KerZ(A) = {u ∈ Zn |Au = 0}.

We know that the logarithmic coefficients of A-hypergeometric series
solutions are polynomials of log xb (b ∈ L) [9, Proposition 5.2]. In
this paper, we adopt a perturbation by elements of L. At first glance,
it does not seem a good idea, because we perturb a solution of the
difficult equations (1) keeping the easier ones (2). But it turns out
that we can evaluate the order of perturbation, and we can explicitly
describe logarithmic series solutions (Theorems 5.4, 6.2 and Remarks
5.6, 6.3).

In [1], Adolphson and Sperber treated A-hypergeometric series solu-
tions with logarithm mainly of degree 1 or 2, and considered an appli-
cation to mirror symmetry.

This paper is organized as follows. In Sections 2 and 3, following
[10], we recall some notions on A-hypergeometric series. In particular,
we recall fake exponents and negative supports in Section 2, and then
we recall that the fake exponents can be computed by the standard
pairs of the initial ideal of IA in Section 3.

In Section 4, for a generic weight w and a fake exponent v, we
define a set NSw(v) of negative supports, over which we consider a
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series. Then we introduce a Gale dual and a hyperplane arrangement
to visualize negative supports.

In Sections 5 and 6, we state the main results (Theorems 5.4, 6.2 and
Remarks 5.6, 6.3). We consider a perturbation by a single element and
several elements of L in Sections 5 and 6, respectively. We make one
section for the single element case, because it is much easier to consider.
In both sections, we first consider orders of perturbations (Lemma 5.1,
Corollaries 5.2, 5.3, and Lemma 6.1). Then we see that the perturbed
solution operated by the difficult ones (1) has some positive orders, and
we can prove the main results.

Throughout this paper we run three examples (Examples 3.1, 3.2,
and 3.3) to illustrate the theory.

2. logarithm-free canonical A-hypergeometric series

In this section, we recall logarithm-free canonical A-hypergeometric
series. For details, see [10].

Fix a generic weight vector w = (w1, . . . , wn) ∈ Rn. The ideal of the
polynomial ring C[θ] = C[θ1, . . . , θn] defined by

(4) fĩnw(HA(β)) := D · inw(IA) ∩ C[θ] + 〈Aθ − β〉
is called the fake indicial ideal, where inw(IA) denotes the initial ideal
of IA with respect to w, and 〈Aθ − β〉 denotes the ideal generated by∑n

j=1 aijθj−βi (i = 1, . . . , d). Each zero of fĩnw(HA(β)) is called a fake
exponent.

Let w ·u denote w1u1+ · · ·+wnun for u ∈ Qn. An A-hypergeometric
series

(5) xv ·
∑
u∈L

gu(log x)xu (gu ∈ C[x] := C[x1, . . . , xn])

is said to be in the direction of w if there exists a basis u(1), . . . ,u(n)

of Qn with w · u(j) > 0 (j = 1, . . . , n) such that gu = 0 whenever
u /∈

∑n
j=1 Q≥0u(j). A fake exponent v is called an exponent if there

exists an A-hypergeometric series (5) in the direction ofw with nonzero
g0. Let ≺ be the lexicographic order on Nn. Suppose that u(1), . . . ,u(n)

is a basis as above. Then a monomial like xv · in≺(g0)(log x) in the A-
hypergeometric series

(6) xv ·
∑

u∈L∩
∑n

j=1 Q≥0u(j)

gu(log x)xu (gu ∈ C[x])

with nonzero g0 is called a starting monomial. The A-hypergeometric
series (6) is said to be canonical with respect to w if no starting mono-
mials other than xv · in≺(g0)(log x) appear in the series.
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Next we recall logarithm-free A-hypergeometric series φv. For v ∈
Cn, its negative support nsupp(v) is the set of indices i with vi ∈
Z<0. When nsupp(v) is minimal with respect to inclusions among
nsupp(v + u) with u ∈ L, v is said to have minimal negative support.
For v satisfying Av = β with minimal negative support, we define a
formal series

(7) φv = xv ·
∑
u∈Nv

[v]u−
[v + u]u+

xu,

where

(8) Nv = {u ∈ L | nsupp(v) = nsupp(v + u) },

and u+,u− ∈ Nn satisfy u = u+ − u− with disjoint supports, and
[v]u =

∏n
j=1[vj]uj =

∏n
j=1 vj(vj − 1) · · · (vj − uj + 1) for u ∈ Nn.

Proposition 3.4.13 and Theorem 3.4.14 in [10] respectively state that
the series φv is A-hypergeometric, and that if v is a fake exponent of
MA(β), then φv is canonical, and v is an exponent.

3. Standard pairs and fake exponents

In this section, we review standard pairs and fake exponents following
[10].

Let M be a monomial ideal in C[∂] = C[∂1, . . . ∂n]. A pair (a, σ)
(a ∈ Nn, σ ⊆ [1, n]) is standard if it satisfies

(1) ai = 0 for all i ∈ σ.
(2) For any b ∈ Nσ, ∂a∂b /∈M .
(3) For any l /∈ σ, there exists b ∈ Nσ∪{l} such that ∂a∂b ∈M .

Let S(M) denote the set of standard pairs of M . Then, by [10,
Corollary 3.2.3], v is a fake exponent of MA(β) with respect to w if
and only if Av = β and there exists a standard pair (a, σ) ∈ S(inw(IA))
such that vj = aj for all j /∈ σ.

Example 3.1 (cf. Example 3.5.3 in [10]). Let A =

(
1 1 1
0 1 2

)
, and

take w so that inw(IA) = 〈∂1∂3〉. Hence

S(inw(IA)) = {(0, ∗, ∗), (∗, ∗, 0)},

where, for a standard pair (a, σ), we put ∗ in the place of σ, aj at
j /∈ σ.

Let β =

(
10
8

)
. Then the fake exponents are (2, 8, 0)T and (0, 12,−2)T .

Since (2, 8, 0)T has minimal negative support, φ(2,8,0)T is a solution.
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Example 3.2. Let A =

(
1 1 1 1
0 1 3 4

)
. Then

IA = 〈 ∂21∂3 − ∂32 , ∂2∂24 − ∂33 , ∂1∂4 − ∂2∂3, ∂1∂23 − ∂22∂4 〉.
Take w (e.g. w = (3, 1, 0, 0)) so that

inwIA = 〈 ∂21∂3, ∂2∂24 , ∂1∂4, ∂1∂23 〉.
Hence

S(inw(IA)) = {(0, 0, ∗, ∗), (0, ∗, ∗, 0), (0, ∗, ∗, 1), (∗, ∗, 0, 0), (1, ∗, 1, 0)}.

Let β =

(
−2
−1

)
. Then the fake exponents (with their corresponding

standard pairs) are

• v3 := (0, 0,−7, 5)T ↔ (0, 0, ∗, ∗),
• v∅ := (0,−5/2, 1/2, 0)T ↔ (0, ∗, ∗, 0),
• v2,3 := (0,−2,−1, 1)T ↔ (0, ∗, ∗, 1),
• v1,2 := (−1,−1, 0, 0)T ↔ (∗, ∗, 0, 0),
• v2 := (1,−4, 1, 0)T ↔ (1, ∗, 1, 0).

Since v∅,v2,v3 have minimal negative supports, φv∅ , φv2 , φv3 are solu-
tions.

Example 3.3 (cf. Example 3.5.2 in [10]). LetA =

 1 1 1 1 1
−1 1 1 −1 0
−1 −1 1 1 0

.

Then

IA = 〈 ∂1∂3 − ∂25 , ∂2∂4 − ∂25 〉.
Take w so that inw(IA) = 〈 ∂1∂3, ∂2∂4 〉. Hence

S(inw(IA)) = {(0, 0, ∗, ∗, ∗), (∗, 0, 0, ∗, ∗), (∗, ∗, 0, 0, ∗), (0, ∗, ∗, 0, ∗)}.

Let β =

1
0
0

 . Then (0, 0, 0, 0, 1)T is a unique fake exponent. Hence

φ(0,0,0,0,1)T = x5 is a solution.

4. Negative supports and hyperplane arrangements

In this section, first we see that the sum (5) is taken over a set of neg-
ative supports. Then we define a set NSw(v) of negative supports, and
we introduce a Gale dual and a hyperplane arrangement to visualize
negative supports.

For an A-hypergeometric series φ (5), set

supp(φ) := {u | gu 6= 0}.
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Proposition 4.1. Let φ be an A-hypergeometric series (5). Suppose
that u ∈ supp(φ) and nsupp(v + u) = nsupp(v + u′) for u,u′ ∈ L.

Then u′ ∈ supp(φ). Furthermore, the terms of the highest total
degree of gu and those of gu′ are the same up to nonzero scalar multi-
plication.

Proof. Suppose that p(log x) is the terms of the highest total degree of
gu. Consider

(u′ − u) = (u′ − u)+ − (u′ − u)−
and

∂(u
′−u)−xv+up(log x).

Suppose that u′j − uj < 0.

• If j ∈ nsupp(v + u) = nsupp(v + u′), then vj + u′j = vj + uj +
(u′j − uj) < vj + uj < 0. Hence [vj + uj]uj−u′j 6= 0.

• Suppose that j /∈ nsupp(v + u) = nsupp(v + u′). If vj /∈ Z,
then clearly [vj + uj]uj−u′j 6= 0. If vj ∈ Z, then 0 ≤ vj + u′j =

vj + uj + (u′j − uj) < vj + uj. Hence [vj + uj]uj−u′j 6= 0.

Hence the highest log-term of ∂(u
′−u)−(xv+up(log x)) is equal to

(∂(u
′−u)−xv+u)p(log x),

which is not zero. Hence u′ ∈ supp(φ). Do the same argument ex-
changing u and u′, and find that the terms of the highest total tegree
of gu and those of gu′ are the same up to nonzero scalar multiplica-
tion. �

Let w be a generic weight. Suppose that G := {∂u
(i)
+ − ∂u

(i)
− | i =

1, 2, . . . , r} is a Gröbner basis of IA with respect to w, and that ∂u
(i)
+ ∈

inw(IA) for all i. Set

C(w) :=
r∑
i=1

Nu(i).

Here recall that N = {0, 1, 2, · · · }.

Lemma 4.2 (cf. Theorem 6.12.14 in [12]). Suppose that u ∈ L satisfies
∂u+ ∈ inw(IA).

Then u ∈ C(w).

Proof. Since G is a Gröbner basis, ∂u+−∂u− is reduced to 0 by G. This
means that u belongs to

∑r
i=1Nu(i). �

Corollary 4.3. Let φ be an A-hypergeometric series with exponent v
in the direction of w. Suppose that u ∈ supp(φ). Then

{u′ ∈ L | nsupp(v + u′) = nsupp(v + u)} ⊆ C(w).
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Proof. We may assume that w1, . . . , wn are linearly independent over
Q.

By Proposition 4.1, for u′ ∈ L with nsupp(v + u′) = nsupp(v + u),
we have u′ ∈ supp(φ). If u′ = 0, then clearly u′ ∈ C(w).

Let u′ 6= 0. Since φ is in the direction of w, we have w · u′ > 0, or
w · u′+ > w · u′−. By Lemma 4.2, u′ belongs to C(w). �

For a fake exponent v, set
(9)

NSw(v) :=

{
I

∣∣∣∣ I = nsupp(v + u) for some u ∈ C(w).
If nsupp(v + u′) = I for u′ ∈ L, then u′ ∈ C(w).

}
,

and
NSw(v)c := {nsupp(v + u) |u ∈ L} \ NSw(v).

Proposition 4.4. Let w be a generic weight, and v a fake exponent.
Then

{nsupp(v + u) | nsupp(v + u) ⊆ nsupp(v), u ∈ L} ⊆ NSw(v).

In particular, nsupp(v) ∈ NSw(v).

Proof. We may assume that w1, . . . , wn are linearly independent over
Q.

Let u ∈ L \ {0}. We show

(10) nsupp(v + u) ⊆ nsupp(v)⇒ w · u > 0.

Suppose that w · u < 0. Then ∂u−xv = 0 since v is a fake exponent.
Hence there exists j such that uj < 0, vj ∈ N, and vj+uj < 0. Namely,
j ∈ nsupp(v+u)\nsupp(v), and we have proved (10). Then by Lemma
4.2, we have u ∈ C(w) (this is also valid for u = 0.). �

Corollary 4.5. Let v have the smallest w-weight among the set of fake
exponents in v + L.

If v + u0 is a fake exponent, then nsupp(v + u0) ∈ NSw(v).

Proof. We may assume that w1, . . . , wn are linearly independent over
Q.

If u0 = 0, then the assertion is in Proposition 4.4. Suppose that
u0 6= 0. By the minimality of v, we have w ·u0 > 0. If nsupp(v+u0 +
u) = nsupp(v + u0), then w · u ≥ 0 by (10). Hence u0 + u ∈ C(w)
by Lemma 4.2, and nsupp(v + u0) ∈ NSw(v). �

To visualize NSw(v), we introduce a Gale dual (cf. e.g. [13]). Let
{b1, b2, . . . , bn−d} be a basis of L. Set

B := (b1, b2, . . . , bn−d) = (g1, g2, . . . , gn)T .
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For v ∈ Cn, define

ψv : Rn−d ' v + LR ⊆ Cn

by ψv(x) = v +Bx, where LR = R⊗Z L. Set Z(v) := {i ∈ [1, n] | vi ∈
Z}. For a subset I ⊆ Z(v), set

(11) NI(v) := {v + u |u ∈ L, nsupp(v + u) = I}.
Then

NI(v) = {z ∈ v + L | zi < 0 (i ∈ I); zj ≥ 0 (j ∈ Z(v) \ I)}
= {z ∈ v + L | e∗i (z) < 0 (i ∈ I); e∗j(z) ≥ 0 (j ∈ Z(v) \ I)},

where {e∗i | 1 ≤ i ≤ n} is the dual basis of the standard basis {ei | 1 ≤
i ≤ n} of Cn. Hence NI(v) is the set of lattice points in a union of
faces of the hyperplane arrangement {e∗i = 0 | i ∈ Z(v)} on v + LR.
Transfer this to the hyperplane arrangement on Rn−d by ψv. Since

(ψ∗v(e∗i ))(x) = (e∗i )(ψv(x)) = (e∗i )(v +Bx)

= vi + (BTei)(x) = vi + gi(x),

we can regard NI(v) as the set of lattice points in a union of faces of
the hyperplane arrangement {Hi | i ∈ Z(v)} on Rn−d, where

Hi = {x ∈ Rn−d | gi(x) + vi = 0}.

Example 4.6 (Continuation of Example 3.1). Let A =

(
1 1 1
0 1 2

)
,

and take w as before. Then C(w) = N(1,−2, 1). Let

B =

 1
−2
1

 = (b) = (g1, g2, g3)
T .

Let β =

(
10
8

)
. Then the fake exponents are v := (0, 12,−2)T and

v′ := (2, 8, 0)T . We have

ψv : R 3 x 7→ v + xb = (x,−2x+ 12, x− 2)T ∈ R3,

and

nsupp(v + xb) =


{2} (x ≥ 7)
∅ (x = 2, 3, 4, 5, 6)
{3} (x = 0, 1)
{1, 3} (x ≤ −1).

Since C(w) corresponds to {x ∈ N}, we have

NSw(v) = {{2}, {3}, ∅}, NSw(v)c = {{1, 3}}.
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In Figure 4.1, a small arrow indicates the positive side. Note that a
hyperplane (a point in this example) itself belongs to its positive side.

x

H1 H3 H2

−2 −1 v 1 v′ 3 4 5 7

{1, 3} {3} ∅ {2}

Figure 4.1

Example 4.7 (Continuation of Example 3.2). Let A =

(
1 1 1 1
0 1 3 4

)
,

and take w as before. Then

C(w) = N(1,−1,−1, 1)T + N(2,−3, 1, 0)T + N(0, 1,−3, 2)T + N(1,−2, 2,−1)T

= N(1,−2, 2,−1)T ⊕ N(0, 1,−3, 2)T .

Let

B :=


1 0
−2 1
2 −3
−1 2

 = (b1, b2) = (g1, g2, g3, g4)
T .

Let β =

(
−2
−1

)
, and v := v1,2 = (−1,−1, 0, 0)T . Then

NSw(v) = {{2}, {3}, {2, 3}, {1, 2} = I0},

NSw(v)c = {{1, 3}, {2, 4}, {1, 4}, {1, 3, 4}, {1, 2, 4}}.

In Figure 4.2, we put I in the face where nsupp(v + x1b1 + x2b2) = I
for a lattice point (x1, x2)

T .



10 MUTSUMI SAITO

x1

x2 H1 H2

H3

H4

v

{1, 3}

{3}

{2, 3}

{2}

{2, 4}

{1, 2, 4}{1, 4}
{1, 3, 4}

Figure 4.2

Example 4.8 (Continuation of Example 3.3). LetA =

 1 1 1 1 1
−1 1 1 −1 0
−1 −1 1 1 0

,

and take w as before. Let

B =


1 0
0 1
1 0
0 1
−2 −2

 = (b1, b2) = (g1, . . . , g5)
T .

Let β =

1
0
0

 . Then v := (0, 0, 0, 0, 1)T is the unique fake exponent.

NSw(v) = {∅, {5}},

NSw(v)c = {{1, 3}, {2, 4}, {1, 3, 5}, {2, 4, 5}, {1, 2, 3, 4}}.
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H1 = H3

H2 = H4

H5

v x1

x2

{5}

{1, 3, 5}

{1, 3}{1, 2, 3, 4}

{2, 4}

{2, 4, 5}

Figure 4.3

5. Method 1

In this section, we consider a Frobenius’s method by perturbing an
exponent with a single vector in L.

Lemma 5.1. Let b ∈ L, u ∈ Nn. Then

[v + sb]u = (
∏

i∈nsupp(v−u)\nsupp(v)

bi)[̂v]us
|nsupp(v−u)|−|nsupp(v)|

+o(s|nsupp(v−u)|−|nsupp(v)|),

where [̂v]u is the product of nonzero factors of [v]u;

[̂v]u = (
∏

i/∈nsupp(v−u)\nsupp(v)

[vi]ui)

×(
∏

i∈nsupp(v−u)\nsupp(v)

(vi)!(−1)|vi−ui+1|(|vi − ui + 1|!)).

Proof. Note that

[v + sb]u =
n∏
i=1

(vi + sbi)(vi − 1 + sbi) · · · (vi − ui + 1 + sbi).
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In (vi + sbi)(vi − 1 + sbi) · · · (vi − ui + 1 + sbi), the factor s appears if
and only if vi ∈ N and vi − ui ∈ Z<0, and furthermore if that is the
case, it appears only once and always with bi.

Finally note that nsupp(v −u) ⊇ nsupp(v). Hence |nsupp(v −u) \
nsupp(v)| = |nsupp(v − u)| − |nsupp(v)|. �

Corollary 5.2. Let b,u ∈ L. Suppose that bj 6= 0 for any j. Then

(1) ords([v + sb]u−) = |nsupp(v + u) \ nsupp(v)|.
(2) ords([v + sb+ u]u+) = |nsupp(v) \ nsupp(v + u)|.

Proof. (1) By Lemma 5.1, ords([v+sb]u−) = |nsupp(v−u−)\nsupp(v)|.
We have nsupp(v + u) = nsupp(v + u+ − u−) ⊆ nsupp(v − u−).

Hence (nsupp(v + u) \ nsupp(v)) ⊆ nsupp(v − u−) \ nsupp(v).
Let j ∈ nsupp(v − u−) \ nsupp(v). Then uj < 0. Hence (u+)j = 0,

and j ∈ nsupp(v − u− + u+) \ nsupp(v). Therefore nsupp(v − u−) \
nsupp(v) = nsupp(v + u) \ nsupp(v).

(2) In (1), replace v,u by v + u,−u, respectively. �

Corollary 5.3. Let b,u ∈ L. Suppose that bj 6= 0 for any j. Let

au(s) :=
[v + sb]u−

[v + sb+ u]u+

.

Then
ords(au(s)) = |nsupp(v + u)| − |nsupp(v)|.

Indeed,

au(s) =

∏
i∈nsupp(v+u)\nsupp(v) bi∏
j∈nsupp(v)\nsupp(v+u) bj

[̂v]u−
̂[v + u]u+

s|nsupp(v+u)|−|nsupp(v)|

+o(s|nsupp(v+u)|−|nsupp(v)|).

Proof. For finite sets X and Y ,

|X \ Y | − |Y \X| = |X \ Y |+ |X ∩ Y | − (|Y \X|+ |X ∩ Y |)
= |X| − |Y |.

Hence the statement follows from Lemma 5.1 and Corollary 5.2. �

Let v be a fake exponent. For 0 6= b ∈ L with bi 6= 0 (i ∈ nsupp(v)),
set

Fb(x, s) :=
∑

u∈L, nsupp(v+u)∈NSw(v)

au(s)xv+sb+u,

where

au(s) =
[v + sb]u−

[v + sb+ u]u+

.
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The condition bi 6= 0 (i ∈ nsupp(v)) guarantees the denominator of
au(s) not to be zero by Corollary 5.3.

Set Iu := nsupp(v + u) for u ∈ L.

Theorem 5.4. Let v be a fake exponent. Put m := minI∈NSw(v) |I| and
M := minI∈NSw(v),J∈NSw(v)c(|I ∪ J |). Since I0 ∈ NSw(v) (Proposition
4.4), we have |I0| ≥ m. Let b ∈ L satisfy b 6= 0 and bi 6= 0 for
i ∈ nsupp(v). Then

(1) (∂jss
|I0|−mFb(x, s))|s=0 (j = 0, 1, . . . ,M −m− 1) are solutions

to MA(β).
If M > |I0|, then v is an exponent with multiplicity at least(

n−d+M−|I0|−1
M−|I0|−1

)
.

(2) If b(1), b(2), . . . b(k) ∈ L satisfy

k∑
i=1

b
(i)
I\I0b

(i)
J\I

b
(i)
I0\I

= 0

for all I ∈ NSw(v), J ∈ NSw(v)c with |I ∪ J | = M , then

(∂M−ms s|I0|−m
k∑
i=1

Fb(i)(x, s))|s=0

is also a solution to MA(β), where bK =
∏

k∈K bk. If M ≥ |I0|,
then v is an exponent.

Proof. First of all, since b ∈ L, we have

(
n∑
j=1

aijθj − βi)Fb(x, s) = 0 (i = 1, . . . , d).

Let u′ ∈ L.
Suppose that Iu, Iu+u′ ∈ NSw(v). Then as in [10, (3.29)]

∂u
′
−(au(s)xv+sb+u) = ∂u

′
+(au+u′(s)x

v+sb+u+u′).
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Hence

(∂u
′
+ − ∂u′−)Fb(x, s)

=
∑

Iu∈NSw(v), Iu−u′∈NSw(v)c

∂u
′
+(au(s)xv+sb+u)

−
∑

Iu∈NSw(v), Iu+u′∈NSw(v)c

∂u
′
−(au(s)xv+sb+u)

=
∑

Iu∈NSw(v), Iu−u′∈NSw(v)c

∂u
′
+(au(s)xv+sb+u)

−
∑

Iu∈NSw(v), Iu−(−u′)∈NSw(v)c

∂(−u
′)+(au(s)xv+sb+u).

Suppose that Iu ∈ NSw(v) and J := Iu−u′ ∈ NSw(v)c. Then u′j >
0 (j ∈ J \ Iu), and

∂u
′
+(au(s)xv+sb+u) = au(s)[v + sb+ u]u′+x

v+sb+u−u′+ .

By Corollary 5.3,

au(s) = c
bIu\I0
bI0\Iu

s|Iu|−|I0| + higher terms,

where c is a nonzero constant unrelated to s and bj’s. Hence s|I0|−mau(s)
does not have a pole at s = 0.

By Lemma 5.1,

[v + sb+ u]u′+ = c′bJ\Ius
|J\Iu| + higher terms.

Hence,

∂u
′
+(au(s)xv+sb+u) = c

bIu\I0bJ\Iu
bI0\Iu

s|Iu|−|I0|s|J\Iu| + higher terms

= c
bIu\I0bJ\Iu
bI0\Iu

s|Iu∪J |−|I0| + higher terms.(12)

Thus each coefficient of ∂u
′
+s|I0|−m(au(s)xv+sb+u) has order at least

M −m in s, and we have proved the first part of (1). By looking at
the coefficient of (12), we have (2).

Note that the starting part of (∂
|I0|−m+k
s s|I0|−mFb(x, s))|s=0 is a nonzero

multiple of xv(log xb)k (k = 0, 1, . . . ,M−|I0|−1). Since rankL = n−d,
we have the second part of (1). �

Remark 5.5. Since the degrees of logarithmic polynomials in the coef-
ficients of (∂jss

|I0|−mFb(x, s))|s=0 are less than or equal to j,

(∂jss
|I0|−mFb(x, s))|s=0 (j = |I0| −m, . . . ,M −m− 1)
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in Theorem 5.4 (1) are basic Nilsson series solutions [2, Definition 2.6].

Remark 5.6. In Theorem 5.4, we may replace NSw(v) and NSw(v)c by
any N ⊆ NSw(v) with N 3 nsupp(v) and N c := (NSw(v)∪NSw(v)c)\
N . Indeed, the proof of Theorem 5.4 is also valid for N and N c.

Example 5.7. Let v be a fake exponent with minimal negative sup-
port, and N := {nsupp(v)}.

Then for any J ∈ N c we have I0 ∪ J ) I0. Hence M > |I0| = m,
and we see that φv is a solution with exponent v by Theorem 5.4 for
N .

Example 5.8 (Continuation of Example 4.6). Let A =

(
1 1 1
0 1 2

)
,

and take w as before.

Let β =

(
10
8

)
, and v := (0, 12,−2)T .

Then

NSw(v) = {{2}, {3}, ∅}, NSw(v)c = {{1, 3}}.

Hence

M = 2, m = 0, I0 = {3},
and by Theorem 5.4 (∂jssFb(x, s))|s=0 (j = 0, 1) are solutions. Here

(∂0ssFb(x, s))|s=0 = cφv′ ,

where b = (1,−2, 1)T , v′ = (2, 8, 0)T = v + 2b, and

c = (sa2b(s))|s=0 = (
s[12− 2s]4
[s+ 2]2[s]2

)|s=0 = −5940.

(∂ssFb(x, s))|s=0 =
∑

k 6=2,3,...,6

akb(0)xv+kb +
6∑

k=2

∂s(sakb(s))|s=0x
v+kb

+
6∑

k=2

(sakb(s))|s=0(log xb)xv+kb.

Here note that akb(s) has a pole of order 1 at s = 0 for k = 2, 3, 4, 5, 6
by Corollary 5.3.

Note that the ψ(0, x) in [10, Example 3.5.3] has a typo.

Example 5.9 (Continuation of Example 4.7). Let A =

(
1 1 1 1
0 1 3 4

)
,

and take w as before.
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Let β =

(
−2
−1

)
, and v := v1,2 = (−1,−1, 0, 0)T . Then

NSw(v) = {{2}, {3}, {2, 3}, {1, 2} = I0},

NSw(v)c = {{1, 3}, {2, 4}, {1, 4}, {1, 3, 4}, {1, 2, 4}}.
Hence M = 2,m = 1, I0 = {1, 2}. By Theorem 5.4 (1), (sFb(x, s))s=0 is
a solution for any b ∈ L with b1, b2 6= 0. We have v2 = v+(2,−3, 1, 0)T

and v3 = v + (1, 1,−7, 5)T . Hence by Corollary 5.3

(sFb(x, s))s=0 = (sa(2,−3,1,0)T (s))s=0φv2 + (sa(1,1,−7,5)T (s))s=0φv3

= − 6

b1
φv2 +

6b3
b1b2

φv3 .

The (I, J)’s with the condition of Theorem 5.4 (2) are

({3}, {1, 3}), ({2}, {2, 4}).

Hence if b(1), b(2) ∈ L satisfy

2∑
i=1

b
(i)
3 b

(i)
1

b
(i)
1 b

(i)
2

=
2∑
i=1

b
(i)
3

b
(i)
2

= 0,
2∑
i=1

b
(i)
4 b

(i)
1

b
(i)
1

=
2∑
i=1

b
(i)
4 = 0,

then (∂s
∑2

i=1 sFb(i))|s=0 is a solution. We see that

b(1) = (1,−2, 2,−1)T , b(2) = (1,−1,−1, 1)T

would do. Hence v1,2 is an exponent, and

(∂s

2∑
i=1

sFb(i)(x, s))|s=0

= (∂s(
2∑
i=1

∑
nsupp(v+u)∈NSw(v)

sa(i)u (s)xv+sb
(i)+u)|s=0

=
∑

nsupp(v+u)={1,2},{2,3}

(a(1)u (0) + a(2)u (0))xv+u

+
∑

nsupp(v+u)={2},{3}

(∂s(sa
(1)
u (s) + sa(2)u (s)))|s=0x

v+u

+
∑

nsupp(v+u)={2},{3}

(sa(1)u (s))|s=0(log xb
(1)

)xv+u

+
∑

nsupp(v+u)={2},{3}

(sa(2)u (s))|s=0(log xb
(2)

)xv+u,
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where

a(i)u (s) =
[v + sb(i)]u−

[v + sb(i) + u]u+

.

6. Method 2

In this section, we consider a Frobenius’s method by perturbing an
exponent with several vectors in L.

Let v be a fake exponent, and let b(1), b(2), . . . , b(l) ∈ L be non-zero.

We suppose that for any i ∈ nsupp(v) there exists j such that b
(j)
i 6= 0.

For such b(1), b(2), . . . , b(l) ∈ L, set

Fb(1),b(2),...,b(l)(x, s) :=
∑

u∈L, nsupp(v+u)∈NSw(v)

au(s)xv+sb+u,

where

s = (s1, s2, . . . , sl), sb = s1b
(1) + s2b

(2) + · · ·+ slb
(l),

au(s) =
[v + sb]u−

[v + sb+ u]u+

.

Similarly to Lemma 5.1 and Corollary 5.3, we have the following
lemma.

Lemma 6.1. (1)

au(s) = c

∏
i∈nsupp(v+u)\nsupp(v)(s1b

(1)
i + s2b

(2)
i + · · ·+ slb

(l)
i ) + higher terms∏

j∈nsupp(v)\nsupp(v+u)(s1b
(1)
j + s2b

(2)
j + · · ·+ slb

(l)
j ) + higher terms

.

(2)

[v+ sb+u]u′+ = c
∏

i∈nsupp(v+u−u′)\nsupp(v+u)

(s1b
(1)
i + s2b

(2)
i + · · ·+ slb

(l)
i ) + higher terms.

Here c is a nonzero constant unrelated to s and b(k)’s.

Theorem 6.2. Put K := ∩I∈NSw(v)I. Set

F̃ (x, s) :=
∏

i∈I0\K

(s1b
(1)
i + s2b

(2)
i + · · ·+ slb

(l)
i ) · Fb(1),b(2),...,b(l)(x, s).

Let M be the one in Theorem 5.4. Then

(1) (∂p1s1 · · · ∂
pl
sl
F̃ (x, s))|s=0 are solutions to MA(β) for

∑l
k=1 pk <

M − |K|.
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(2) Suppose that
∑l

k=1 pk = M − |K|.
If ∑

∐l
j=1 Lj=I∪J\K; |L1|=p1,...,|Ll|=pl

l∏
j=1

b
(j)
Lj

= 0

for all I ∈ NSw(v) and J ∈ NSw(v)c with |I ∪ J | = M , then

(∂p1s1 · · · ∂
pl
sl
F̃ (x, s))|s=0 is also a solution to MA(β).

Proof. By Lemma 6.1, we see that
∏

i∈I0\K(s1b
(1)
i +s2b

(2)
i + · · ·+slb

(l)
i ) ·

au(s) does not have a pole at s = 0 for any u with Iu ∈ NSw(v).
Let u′ ∈ L, nsupp(v + u) = I ∈ NSw(v), and nsupp(v + u− u′) =

J ∈ NSw(v)c. By Lemma 6.1, the part of the lowest total degree in∏
i∈I0\K

(s1b
(1)
i + s2b

(2)
i + · · ·+ slb

(l)
i )∂u

′
+au(s)xv+sb+u

is a nonzero constant multiple of∏
i∈(I0\K)\(I0\I)

(s1b
(1)
i + s2b

(2)
i + · · ·+ slb

(l)
i )(13)

×
∏
i∈J\I

(s1b
(1)
i + s2b

(2)
i + · · ·+ slb

(l)
i )

×
∏
i∈I\I0

(s1b
(1)
i + s2b

(2)
i + · · ·+ slb

(l)
i ).

We have (I0 \K) \ (I0 \ I) = I0∩ I \K. Since the three sets I0∩ I \K,
J \ I, and I \ I0 are disjoint and their union equals I ∪ J \K, we see
that (13) equals∏

i∈I∪J\K

(s1b
(1)
i + s2b

(2)
i + · · ·+ slb

(l)
i )

=
∑

I∪J\K=
∐l

j=1 Lj

l∏
j=1

∏
i∈Lj

sjb
(j)
i

=
∑

∑l
j=1 pj=|I∪J\K|

∑
|L1|=p1,...,|Ll|=pl

l∏
j=1

b
(j)
Lj
sp11 s

p2
2 · · · s

pl
l .

Hence, as in the proof of Theorem 5.4, we have (1).
Furthermore, if the assumption of (2) is satisfied, then the sp11 s

p2
2 · · · s

pl
l

part of each ∂u
′
+F̃ (x, s) is zero. Hence we have (2). �
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Remark 6.3. The proof of Theorem 6.2 is again valid for any N ⊆
NSw(v) with N 3 nsupp(v) and N c := (NSw(v) ∪ NSw(v)c) \ N in
place of NSw(v) and NSw(v)c.

Example 6.4 (Continuation of Example 4.8). LetA =

 1 1 1 1 1
−1 1 1 −1 0
−1 −1 1 1 0

,

and take w as before.

Let β =

1
0
0

 . Then v := (0, 0, 0, 0, 1)T is the unique fake exponent.

NSw(v) = {∅, {5}},

NSw(v)c = {{1, 3}, {2, 4}, {1, 3, 5}, {2, 4, 5}, {1, 2, 3, 4}},

Hence M = 2, m = 0, I0 = ∅, and

(∂jsFb(x, s))|s=0 (j = 0, 1)

are solutions for any b ∈ L by Theorem 5.4.
Let b(1), b(2) be the column vectors of B in Example 4.8. We have

K = ∅. The (I ∪ J \K)’s with |I ∪ J | = M are

{1, 3}, {2, 4}.

Let p1 = p2 = 1. Then

b
(1)
1 b

(2)
3 + b

(1)
3 b

(2)
1 = 1 · 0 + 1 · 0 = 0 (I ∪ J \K = {1, 3}),

b
(1)
2 b

(2)
4 + b

(1)
4 b

(2)
2 = 0 · 1 + 0 · 1 = 0 (I ∪ J \K = {2, 4}).

Hence, by Theorem 6.2 (2), (∂s1∂s2Fb1,b2(x, s))|s=0 is also a solution.
Note that nsupp(v + u) = ∅ ⇔ u = 0, and a0(s) = 1. We have

Fb1,b2(x,0) = x5,

(∂s1Fb1,b2(x, s))|s=0 = (∂sFb1(x, s))|s=0

= x5(log xb1) +
∑

nsupp(v+u)={5}

(∂s1au)(0)xv+u,

(∂s2Fb1,b2(x, s))|s=0 = (∂sFb2(x, s))|s=0

= x5(log xb2) +
∑

nsupp(v+u)={5}

(∂s2au)(0)xv+u,
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(∂s1∂s2Fb1,b2(x, s))|s=0 = x5(log xb1)(log xb2)

+
∑

nsupp(v+u)={5}

(∂s1au)(0)(log xb2)xv+u

+
∑

nsupp(v+u)={5}

(∂s2au)(0)(log xb1)xv+u

+
∑

nsupp(v+u)={5}

(∂s1∂s2au)(0)xv+u.
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