
 

Instructions for use

Title Construction of a Flow-Simulating Method with Finite Volume Based on a Voronoi Diagram

Author(s) Taniguchi, Nobuyuki; Arakawa, Chuichi; Kobayashi, Toshio

Citation
JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties,
34(1), 18-23
https://doi.org/10.1299/jsmeb1988.34.1_18

Issue Date 1991-02-15

Doc URL http://hdl.handle.net/2115/83392

Type article

File Information JSME_Int_J_1991.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


18 

Construction of a Flow-Simulating Method 
with Finite Volume Based on a 

Voronoi Diagram* 

Nobuyuki TANIGUCHI**, Chuichi ARAKAWA*** 
and Toshio KOBAYASHI** 

In flow simulations performed with the finite difference method or the finite volume 
method, it is a serious limitation that the calculating points must be ordered on the 
coordinates. Using the Voronoi diagram for the cell division of the finite volume 
method creates a new discretization form which permits an arbitrary distribution of 
points. This paper constructs a new method for the flow simulations by a V oronoi 
diagram and shows the calculation results of two-dimensional flows. 

Key Words: Computational Fluid Dynamics, Numerical Analysis, Finite Volume 
Method, V oronoi Diagram, Unstructured Grid 

1. Introduction 

In simulations of complicated flow fields, there 
are two difficulties : adaptability to the wall boundary 
and computational time. The former is due to the 
restrictions for calculational grids ; for example, in 
the structured grid, the points must be along a global 
coordinate system. The latter is mainly related to the 
efficiency of the solution methods for a system of 
discretized equations, especially on array-processor 
or multiprocessor systems of supercomputers. 

Flow-simulating techniques based on the finite 
difference method (FDM) or the finite volume method 
(FVM) are superior in computational time because 
efficient iterative methods and algorithms can be 
easily applied to solve their equation systems. In order 
to introduce mathematical models for turbulence or 
other physical phenomena, they have another advan-
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tage in that their equations can be expressed as simple 
forms. However, it is often difficult to generate the 
appropriate grids, even in the case of a flow field with 
simple geometry. Although the body-fitted coordinate 
system has been successfully adopted in some simula­
tions, it causes another problem of grid generation. 

Therefore, we introduced the V oronoi diagram to 
derive the discretized equations on unstructured grids 
which are independent on any global coordinates. A 
V oronoi diagram defines a system of territories by the 
scattered points. In the fields of computational geome­
try, many studies<ll involving the Voronoi diagram 
have been conducted. According to these studies, we 
extended the FVM to the unstructured grid on the 
condition that iterative techniques of matrix solutions 
are as effective as in the previous methods<2

> on the 
global coordinate system, which were successfully 
developed on the supercomputers. With respect to the 
incompressible flow, an effective algorithm, SIMPLE, 
can be applied with little expansion. 

This paper will outline the present simulation 
method and indicate some results in two-dimensional 
laminar flows . 
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2. Discretizing Method 

2. 1 Control cells 
According to the FVM, a differential equation is 

integrated in each control cell which fills the whole 
calculation domain. The integrated form for a general 
value </> , such as a component of the velocity vector or 
a scalar value, is 

i/lf dv = ls J. dn + i, BdV ( 1 ) 

where 1
0

, dV : volume integration, 1 dn : surface 

integration, J( = v</>+ I'v' </>) : total flux vector, B : 
source of</>, v : velocity vector, I': diffusive coefficient 
and n : surface vector. 

In previous methods(2>, calculation grids are 
defined along a global coordinate system and their 
control cells are figured with a rectangular mesh in 
the two - dimensional case. According to these 
methods, the volume integrations in the right-hand 
side of Eq. ( 1 ) and the second in the left, ''are esti­
mated by a constant value in each control cell ; the 
surface integrations of the first term in the left are 
discretized on each boundary face of the cell by the 
values on the points across it. The coefficient between 
these points is calculated by a flux interpolation on the 
face, or in other words, a scheme. The general form of 
the discretized equation is 

ac</>c = ~ aNB</>NB+ b ( 2) 

where a : coefficient of linearized equation, b : source 
term, and suffixes C and NB : central point and 
neighbor points along the coordinates. Because the 
points related in Eq. ( 1 ) are ordered along the global 
coordinates, some effective iterative methods are 
available to solve its system, while the grid generation 
is as difficult as in the FDM. 

Another concept of cell generation enables the 
derivation of a new discretizing method from Eq. ( 1 ) 
because there is no restriction for the cell figures. It is 
considered that they must be under the following 
conditions in order to retain the above advantages of 
the previous FVM. 

( 1 ) The whole region is filled with cells which are 
never superimposed on each other. 

( 2 ) Each cell has one calculation point in it. 
The present paper proposes applying a V oronoi 

diagram for the cell generation satisfying the above 
conditions. Concerning the n points (Xn) scattered in 
a calculational region, a V oronoi diagram defines 
their territories, 

V(Xi)= n{Xld(Xi, X)~d(XJ, X)} 
J=I 

where d(X,Xi) : distance between X and X\ X : a 
point in the domain. In the two-dimensional case, its 
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concept is illustrated in Fig. 1, where the bold lines 
indicate the V oronoi diagram for the mother points as 
small circles and define their cell boundaries. It is 
known in computational geometry that such a closed 
cell should be always and uniquely generated for each 
point without the boundary and also that it should be 
a convex polygon. For any grid, the Voronoi diagram 
can be drawn automatically from its characteristic 
that a segment is defined as the bisector of two neigh­
boring points and their intersection is the center of a 
circumscribed circle for their mother points. 

The method of discretizing Eq. ( 1 ) on the cell 
system by the V oronoi diagram will be summarized as 
follows. 

2. 2 Flux interpolation 
According to the FVM, the first term in the 

right-hand side of Eq. ( 1 ) can be calculated if the 
total flux, J, is approximated to be constant on a side 
of the polygon by V oronoi diagram. Then, it is noted 
that the arrangement of points across a face is the 
same in the cell system by the V oronoi diagram as in 
the previous method on the Cartesian coordinates 
where each cell face is a normal bisector of two 
neighboring points, for example, the face "a" and 
the points X 0 and X' in Fig. 1. Therefore, the flux 
through the face, ]( =J · n), can be interpolated by 
the schemes on the Cartesian coordinates (3>. In this 
research, we adopted a scheme based on the analytical 
solution of the one-dimensional equation, (df I dx) = 0, 
that is, 

Fig. 1 Cell system by V oronol diagram 
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] - { exp(Pe) ,1.0+ 1 ¢1} ( 3) 
- u 1-exp(Pe) 'Y 1-exp(Pe) 

where Pe ( = uL/I') : cell Pecret number, ¢0 and ¢ 1 
: 

values at X 0 and X 1
, L : distance between the two 

points, u : velocity component in their direction. 
Equation ( 3 ) is approximated as follows : 

J = (I'/L)F(Pe )( ¢ 1 
- ¢0

) + u</JuP 

<PuP={<Po u~O (4) 
¢ 1 u<0 

where F(Pe), the function of Pecret number Pe, is 
expressed for each scheme as in Table 1. The power­
law scheme is used in the present calculations. The 
scalar product, J · n, can be easily calculated because 
the direction of the flux J in Eq. ( 3) is defined as 
normal to the cell face. 

2. 3 Source terms 
A source term, the second in the right of Eq. ( 1 ) , 

is dependent on the variable ¢ . In the flow simulations 
by turbulence models such as the k- e model, it is 
expressed by the first-order differential coefficients of 
other values ; for example, a pressure gradient term 
appears for a component of velocity, or the product by 
the strain velocity tensors for a scalar value k or c. A 
gradient vector, f7 t/J, can be estimated in the following 
way. In this section, superscript and subscript symbols 
respectively indicate the position and the component 
of a vector, and the summing symbol refers to the 
position. 

Firstly, concerning the points X 0 and xnb across 
a cell face "nb", the difference between them expres­
ses the projection component of the gradient vector, 
f7 t/J in this direction "nb", as follows : 

qJnb_ qJO 
(f7 tpnb)nb llxnb _ xoll ( 5 ) 

where llxnd 
- x0 11 is the length of the two points. In 

addition, the difference from the value in the central 
point x 0 

~,J,nb <Pnb - ¢0 
• nb 

u.,., llxnb_xoll f?t/J e ( 6) 

can be derived on each face of a cell, where enb is the 
unit vector normal to the face "nb" which agrees 
with the direction "nb". 

The weighted mean square of Eq. ( 6 ) for all 
faces of a cell, 

Table 1 Functions the flux interpolation 

• Central di f. F ( Pe) - o·. 5* I Pe I 
• Upwind F ( Pe) 

• Hybrid F ( Pe) max (0 ,1- .5*1 Pel) 

• Power Law F ( Pe) max (0 ,{1- .1* I Pel ) 5 ) 

Series II, Vol. 34, No. 1, 1991 

( 7) 

gives a definition of f7 <p, as it is minimized for a set of 
components. It is expressed by 

aw 
a(f?t/J)a O ( 8) 

Here, orthogonal coordinates should be adopted for 
the components; generally, the Cartesian is available. 
The weighted coefficient, gnb is defined by the angle of 
vision for the face segment in the present calculations. 

Finally, the following system of linear equations 
is derived: 

[A]f?t/J=r (9) 
Aab= ~{gnb(enb)a(enbh} 

nb 
ra= ~{gnb(enb)a(f? tpnb)a} 

nb 

where suffixes a and b : components of the orthogonal 
coordinates. As matrix [A] is assured to be regular 
on the cell system by the V oronoi diagram, the compo­
nents of l7 ¢ can be calculated. 

According to the above techniques, Eq. ( 1 ) can be 
discretized in the linear form 

ac</Jc=~ aNB<PNB+b (10) 

where suffixes C and NB are the central and neighbor­
ing points defined by the Voronoi diagram. It is noted 
that the number of neighboring points is dependent on 
the figure of each cell. Equation (10) is equivalent to 
Eq. ( 2 ) for the grid along the Cartesian coordinates 
because the cell system obtained by the V oronoi 
diagram coincides with that derived by the coordi­
nates. 

2. 4 Simple method 
Concerning the continuity equation, the SIMPLE 

method which is a most popular method in steady 
simulations, was modified by Rhie and Chow ( 4 ) for 
the nonstaggered grid system. It is also available for 
the present cell system. 

Discretizing the continuity equation in the cells by 
the V oronoi diagram, we can derive the next form, 

~(uS)nb=0 (11) 

where u : velocity component normal to the surface, S 
: area of the surface, and nb : cell surface index. The 
velocity, u, in Eq.(11) is calculated by the averaged 
momentum equation with respect to two points x 0 and 
xnb across the face "nb". That is, 

u = u - d(ll P)u 

u=[{(~ aNBUNB+b1)/ acf 

+ {(~ aNBUNB+b1)/ ac}°]/2 (12) 

d=[( V/pac)1+( V/pac)0]/2 

where ( ) u : component in the direction of u, a : 
coefficients in Eq. (10). b': the source term without 
pressure, V: volume of cell, p: density, and { }0

,{ }1 
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: the values at x0, x 1. Following Rhie and Chow, the 
pressure term is rewritten by the two-point difference. 

(v'P)u
= (P 1 -P°)/L, 

where L is the distance from x0 to x 1. 
According to the SIMPLE method, the velocity 

and pressure divided into the assumed values, u • and 
p拿

， and the corrective values u'and P', 
u = u*+u', P = P*+P' (13) 

are substituted into Eqs. (11) and (12) when the 
corrective velocity terms are neglected with respect 
to the neighboring points. 

Finally, the equation of corrective pressure is 
derived in the same form as Eq. (10), which has the 
same reference points. The calculating algorithm fol­
lows the previous method on the Cartesian coordi­
nates. 

4. Calculating Procedures

Adopting the above-mentioned techniques to the 
flow simulations, we completed the following proce­
dures: 

(1 ) Defining the grid points, 
( 2 )  Generating the cell system by Voronoi dia­

gram, 
( 3 )  Calculating the geometrical information, 
(4) Setting the reference index for matrix calcu­

lations,
(5) Solving flow by the SIMPLE method.

In order to increase the computational speed, the
last procedure should be paid the most attention 
because it uses the most CPU time and can be highly 
accelerated by parallel processing. It is noted that, for 
the matrix solution of Eq. (10), point iterative 
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methods are vaild without preconditioning. In the 
present study, the multicolored SOR (successive over­
relaxation) technique is adopted, optimizing the calcu­
lating order of SOR for parallel processing. It is useful 
especially for the unstructured grid whose points are 
not previously ordered. As mentioned, the grid in the 
present method can be as unstructured as that in a 
finite element method (FEM). In the calculation pro­
gram, the neighboring points are called through the 
list-vectors which are arranged in procedure (4) 
following the multicolor technique. 

5. Calculation Results

Firstly, a steady and laminar incompressible flow 
in a lid-driven square cavity is simulated on a 
structured (type A) and an unstructured (type B) grid 
with the same number (1600) of points by the same 
program based on the present method. The grids are 
illustrated in Fig. 2, where the bold lines indicate the 
systems of cells. In type A, the present cell system 
coincides with that on the Cartesian coordinates and 
the discretized equations are also identical to the 
previous method. The results obtained by both grids 
have a satisfactory agreement, such as the stream­
lines in Fig. 3, where the Reynolds number is 1 000 
based on the width of the cavity and the lid-driving 
velocity. 

In the present method, the calculation points can 
be optionally added and purged. Figure 4 shows a 
sample grid by the addition of points to the Cartesian 
grid, where the symbols are the additional points and 
the bold lines represent the modified cell system. The 
result for 1 000 Reynolds numbers is shown in the next 
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Fig. 2 Two types of grids on a square cavity 
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STREAM FUNCTION CONTOUR 
Calculation grid Type A 
Driving velocity 1.0 
Cavity size 1.0 x 1.0 
Reynolds number 1000 

Ill 
JI 

'tl 
41 
X 

STREAM FUNCTION CONTOUR 
Calculation grid Type B 
Driving velocity 1.0 
Cavity size 1.0 x 1.0 
Reynolds number 1000 

fixed wall 

Fig. 3 Computational streamlines of the square cavity flow 
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Fig. 4 A cell system of the grid with adding points and corputed velocity 

I ' 

.,,,,,,,.. _.,,. ----------------------~ 

Fig. 5 A cell system of semicircular cavity and a computed velocity 
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Table 2 Computational time for the procedures 

Di vi ding cells 

Calculating inform. of fig. 

Setting ref. index 

M680 

6.4 sec 

2.6 sec 

0.32sec 

on benchmark S820 

Solving flow 113 sec 628 4.2 sec 

Total 122 sec 678 

FVM on Cartesian 

figure. 
Figure 5 shows a grid on the semicircular cavity 

and the predicted velocities by the straight driving lid. 
It is such a typical case with the grid sµigularity 
problem that it is impossible to structure the smooth 
grid on any global coordinates without singularity 
points. 

Finally, the computational time of each procedure 
is arranged in Table 2, in the first case with grid type 
A. 

The convergence criterion for the iterative proce­
dure of SIMPLE is given as the condition that the 
nondimensional residuals of the discretized equation 
become less than 10-3

• The calculations are performed 
by the general-purpose computer (M 680 H by Hita­
chi) or the supercomputer (S 820/80), whose perfor­
mances of scalar computation are almost the same. 

It is clear that the iterative procedure uses much 
more CPU time than the former procedures and was 
accelerated sufficiently by the parallel computations. 
Compared with the previous method, the present one 
has about one - tenth performance with respect to 
the computational speed based on the benchmark 
problem<5>. The referential data are given by the FVM 
based on the Cartesian coordinates and the SIMPLE 
method with the staggered grid system, which is the 
most efficient method for the steady flow simulations. 
The performance of the present method can be 
satisfied from two points of views in that an arbitrary 
unstructured grid can be adopted and that high 
acceleration is expected for the parallel computation. 
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6. Conclusions 

By adopting the concept of the V oronoi diagram, 
a new method on an arbitrary grid system is con­
structed for the incompressible steady flow simula­
tions. This method effectively simulates two-dimen­
sional laminar flow in lid-driven cavities. Compared 
with the previous method on FVM, its high perfor­
mance is confirmed for computational time and grid 
dependency. 
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