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Abstract 20 

Objectives 21 

The aim of the present study is to demonstrate the effects of inhaled methyl 22 

methacrylate (MMA) on the excitability of neurons in the area postrema (AP). We also 23 

investigated the relation between vagal afferent inputs and responding cells in the AP. 24 

Methods 25 

We set up two groups of experimental animals, such as rats inhaling MMA and rats 26 

inhaling room air. To visualize the changes of AP neuron excitability after inhalation of 27 

MMA for 90 min, c-Fos protein expression was identified and quantified by 28 

immunohistochemical analysis. Some rats receiving ventral gastric branch vagotomy 29 

were also subjected to the abovementioned experiment. 30 

Results 31 

The number of c-Fos-immunoreactive (Fos-ir) cells in the MMA group was more than 32 

six times greater than that of the control group (statistically significant, p<0.01). In 33 

vagotomized rats inhaling MMA, markedly smaller number of Fos-ir cells was 34 

identified in the AP compared to that of rats inhaling MMA without vagotomy. 35 

Conclusions 36 

These results indicate that inhalation of MMA increases neuronal excitability in the AP, 37 



suggesting that vagal afferent inputs are involved in the induction mechanism of Fos-ir 38 

cells by MMA. 39 

 40 
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1. Introduction 44 

 The area postrema (AP) lacks the blood-brain barrier and is well known as the 45 

chemoreceptor trigger zone for emesis [1]. Previous studies have revealed the 46 

receptivity of the AP neurons to many chemical substances; however, the effects of 47 

methyl methacrylate (MMA) remained to be determined. Therefore, we hypothesized 48 

that MMA inhalation increases the excitability of AP neurons triggering nausea and/or 49 

emesis. 50 

 The MMA is a major component in some popular dental resin that is often used 51 

in dental medicine, such as dental composite resins, dentures, temporary crowns, etc. As 52 

the MMA vaporizes easily at room temperature, dentists or patients possibly inhale a 53 

small amount of MMA during dental treatment. Although safety has been established 54 

for small amounts of MMA inhalation, health hazards such as nausea and vomiting are a 55 

concern if inhaled in large quantities [2]. For example, toluene, an organic solvent, 56 

vaporizes easily and excites the AP neurons [3]. We also investigated the role of vagal 57 

afferent inputs in the effects of inhaled MMA on the excitability of AP neurons, because 58 

a previous study has reported that the vagal afferent inputs are involved in the induction 59 

mechanism of cisplatin-induced emesis [4]. 60 

 The present study demonstrated the MMA-induced upregulation of the AP 61 



neuronal excitability using immunohistochemical analysis of c-Fos expression and the 62 

possible role of abdominal vagal afferent inputs in the effects of MMA on AP neurons. 63 

 64 

2. Materials and Methods 65 

2.1. Subjects 66 

 The Hokkaido University Animal Use Committee approved this study. Adult 67 

male Wister or SD rats (MMA, 5 rats; control, 5 rats; vagotomy, 3 rats; 150–600 g body 68 

weight) were housed individually under a 12/12 h light/dark cycle (lights on at 7 AM; 69 

off at 7 PM). Experiments were performed during the light phase. 70 

 71 

2.2 Ventral gastric branch vagotomy 72 

 Ventral gastric branch vagotomy was performed as reported previously [5]. 73 

Briefly, rats were anesthetized and incised in the middle of the abdomen. The stomach 74 

was gently manipulated to pick out the ventral gastric branch of the subdiaphragmatic 75 

vagus. The ventral branch of the vagal nerve was transected, and pyloroplasty was 76 

performed to prevent pyloric stenosis. The pyloric sphincter was incised longitudinally 77 

(0.5–0.7 mm), and the incised part was sutured with silk sutures. After 10–14 days of 78 

recovery, the rats were subjected to the MMA inhalation experiment. 79 



 80 

2.3 Administration of MMA 81 

 A rat was moved from the breeding cage to a desiccator and was habituated for 82 

4 h before starting each experiment (Fig. 1). The rats without vagotomy were divided 83 

into two experimental groups: one group breathes MMA for 90 min (n = 5), and the 84 

other group breathes room air (n = 5). MMA liquid (3 mL) was dropped and volatilized 85 

in the desiccator at room temperature (approximately 25±3°C). Three rats that 86 

underwent vagotomy inhaled the MMA in the same manner as above. Immediately after 87 

inhalation of MMA or room air for 90 min, animals were deeply anesthetized with 88 

urethane and then perfused with 4% paraformaldehyde (PFA). Brains were carefully 89 

removed from the skull and fixed in 4% PFA at 4°C overnight, and then transferred to a 90 

30% sucrose/PBS solution at 4°C until the brains sank to the bottom. 91 

 92 

2.4 Immunohistochemical analysis 93 

 Coronal sections including the AP (Fig. 2A) [6] were cut at a thickness of 94 

50 µm in the freezing microtome (FX-801; Yamato, Saitama, Japan) and kept in wells 95 

containing PBS at 4°C. Each section was rinsed thrice in PBS for 5 min, and sections 96 

were immersed in 80% methanol containing 0.3% hydrogen peroxide (H2O2) for 1 h at 97 



room temperature. After three rinses in PBS for 10 min and immersion in blocking 98 

buffer (1.5% normal goat serum and 0.4% Triton X-100 in PBS) for 1 h at room 99 

temperature, sections were incubated in primary rabbit anti-cFos antibody (sc-52; Santa 100 

Cruz, Dallas, United States) diluted 1:5000 in blocking buffer at room temperature 101 

overnight or at 4°C for 3–5 days. Each section was rinsed thrice in PBS for 10 min and 102 

incubated in biotinylated anti-rabbit secondary antibody (VECTASTAIN Elite ABC kit, 103 

Vector Laboratories, Burlingame, United States) for 1 h at room temperature. Sections 104 

were rinsed twice in PBS for 10 min and rinsed twice in TBS for 10 min and then 105 

immersed in TBS containing 0.01% DAB and 0.05% nickel ammonium sulfate for 10 106 

min at room temperature. Each section was treated with 0.0006% H2O2 for 7 min, and 107 

then sections were rinsed in TBS for 5 min and in PBS for 10 min and mounted on glass 108 

slides and coverslipped with Entellan (Merck, Darmstadt, Germany). Microscopic 109 

images of each section were analyzed on a personal computer using the Cell Counter 110 

plugin of ImageJ (NIH, Bethesda, United States). The average value of Fos-ir cells was 111 

determined by counting the number of cells from three sections in each animal, which 112 

was used for analysis as a representative value. 113 

 114 

2.5 Statistical analysis 115 



 Using MATLAB (Mathworks, Statistics and Machine Learning Toolbox, 116 

Natick, United States), the number of Fos-ir cells between each experimental group was 117 

statistically analyzed by Wilcoxon signed-rank tests. Data were represented by means ± 118 

SEM. 119 

 120 

3. Results 121 

3.1 c-Fos expression in the AP through MMA inhalation 122 

 As shown in Figure 2A and 2B, many Fos-ir cells were found in the AP of the 123 

MMA group compared to the control group. The number of Fos-ir cells in the MMA 124 

group (168 ± 46 cells, n = 5 rats) was more than six times greater than that in the control 125 

group (26 ± 3, n = 5, p = 0.0079, Wilcoxon signed-rank tests, Fig. 2C). This result 126 

indicates that MMA inhalation increases neuronal excitability in the AP. 127 

 128 

3.2 Effects of vagotomy on the expression of c-Fos in the AP 129 

In vagotomized rats (n = 3), the average number of Fos-ir cells in the AP was 37±1 (Fig. 130 

3A, B). This value was markedly smaller than that of the MMA group (168 ± 46, n = 5). 131 

This result suggests that vagal afferent inputs are involved in MMA-induced c-Fos 132 

expression of the AP neurons. 133 



 134 

4. Discussion 135 

 In the present study, we investigated the effects of MMA on the excitability of 136 

neurons in the AP. The major findings in the present study were (1) MMA inhalation 137 

induced c-Fos expression in the AP, and 2) ventral gastric branch vagotomy suppressed 138 

c-Fos expression in the AP. These results revealed the sensitivity of AP neurons to 139 

MMA, suggested that vagal afferent inputs are involved in MMA-induced upregulation 140 

of neuronal excitability in the AP. 141 

 The c-Fos protein is often used as a marker of neuronal activity [7-10], because 142 

its expression indicates the facilitation of neuronal activity associated with the 143 

depolarization of membrane potentials, reaching a peak after 1.5–2 h from excitation of 144 

the neuron [11]. Some studies have reported that administration of cisplatin, which is an 145 

anticancer drug that causes nausea and vomiting as a side effect, introduces expression 146 

of the c-Fos protein in the AP of rodents [12, 13]. Another study has examined that c-147 

Fos protein expression is related with the intake of kaolin, which is a measurement of 148 

nausea [14]. 149 

 Two possible pathways of the effects of MMA on AP neuronal excitability are 150 

(1) circulating MMA induced upregulation of the vagal afferent inputs to AP neurons, 151 



and 2) AP neurons may directly respond to circulating MMA. There are vagal afferent 152 

nerves that show the direct projection to AP neurons [15] and the indirect projection to 153 

AP neurons via the nucleus tractus solitarius (NTS) [16]. 154 

 The present study suggests that vagal afferent inputs are involved in the 155 

excitation of the AP neurons by the MMA. Whether the MMA in the blood directly 156 

excites the AP neurons remains unexplained. To answer this question, we will perform 157 

another experiment using electrophysiological methods [17-24]. 158 

 Considering the functional role of AP in triggering nausea and/or emesis, 159 

animals may feel nauseous during exposure to MMA in the present study. A study on 160 

humans has reported that inhalation of MMA caused respiratory tract irritation, 161 

weakness, fever, dizziness, nausea, headache, and sleepiness [2]. An animal study using 162 

rats has reported that the main clinical signs of acute MMA inhalation were depression, 163 

ataxia, and excessive salivation [25]. Some previous studies have reported MMA 164 

toxicity to nasal mucosal epithelial cells in rats [26, 27]. Raje et al. have subjected rats 165 

to MMA inhalation (100 ppm) for up to 4 hours, and they have reported several 166 

symptoms such as interalveolar congestion/hemorrhage, pulmonary vasodilatation, and 167 

edema; however, no histopathologic change was seen in the brain [28]. When rats 168 

inhaled a relatively high concentration of MMA (3000 ppm), extensive cerebellar 169 



congestion and hemorrhage occurred in the cerebellar peduncles [29]. Increase of Fos-ir 170 

cells in the AP after MMA inhalation may occur because of MMA toxicity; however, 171 

further work is required for its elucidation. 172 

 Some previous studies have reported that intestinal motor activities and smooth 173 

muscle tonus were reduced by MMA inhalation (116 ppm) [30, 31]. In the present 174 

study, MMA-induced gastrointestinal motility disorder possibly increased afferent vagal 175 

nerve activity, resulting in the increased number of Fos-ir cells in the AP. 176 

 177 

5. Conclusion 178 

 The present study revealed that AP neurons could respond to the inhalation of 179 

extreme amounts of MMA. Increases in the vagal nerve activity by MMA are possibly 180 

involved in the upregulation of neuronal excitability in the AP. 181 
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Figure legends 288 

Fig. 1. Experimental design 289 

Immediately after administration of MMA or room air for 90 min in the desiccator, rats 290 

are fixed with 4% paraformaldehyde (PFA) 291 

 292 

Fig. 2. Fos-ir cells in the AP after MMA inhalation 293 

A, A schematic diagram of the coronal section of the AP. The AP is located at the 294 

bottom of the fourth ventricle and lacks the blood-brain barrier, called the 295 

chemoreceptor trigger zone 296 

B, Example photomicrographs of a coronal section of the area postrema region. Each 297 

lower panel is an enlarged view of the part surrounded by a solid line in the upper panel. 298 



A lot of Fos-ir cells (white arrows) were found in the AP of the MMA group rats, 299 

whereas few cells in the control group rats. Scale bar: 100 µm (upper) and 50 µm 300 

(lower) 301 

C, The average number of Fos-ir cells in the MMA group is significantly larger than that 302 

in the control group. **: p < 0.01, Wilcoxon signed-rank tests 303 

 304 

Fig. 3. Effects of vagotomy on the c-Fos expression of the AP neurons 305 

A, An example photomicrograph of a coronal section of the area postrema region in 306 

vagotomized rats. Scale bar: 100 µm 307 

B, The average number of Fos-ir cells in the vagotomy group (n = 3) is markedly 308 

smaller than that in the MMA group (n = 5, same value as shown in Fig. 2C) 309 

 310 

Fig.4. Schematic illustration of the possible mechanism of the MMA effects on the AP 311 

neurons 312 

The present study suggests that MMA absorbed into the blood from the lungs increases 313 

abdominal vagal nerve activity, and the excitability of the AP neurons receiving 314 

synaptic inputs from the vagus nerve increased (solid arrows). Further, MMA may 315 

directly affect the AP neurons; however, it remains to be determined (dotted arrow) 316 

  317 
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