

HOKKAIDO UNIVERSITY

Title	Effects of methyl methacrylate on the excitability of the area postrema neurons in rats
Author(s)	Yoshizawa, Tomohiko; Funahashi, Makoto
Citation	Journal of oral biosciences, 62(4), 306-309 https://doi.org/10.1016/j.job.2020.09.003
Issue Date	2020-12
Doc URL	http://hdl.handle.net/2115/83415
Rights	© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	Yoshizawa_JOB_manuscript_revise.pdf

1	Effects of methyl methacrylate on the excitability of the area postrema
2	neurons in rats
3	
4	Tomohiko Yoshizawa ^{1,2} and Makoto Funahashi ²
5	
6	¹ Department of Physiology and Cell Biology, Graduate School of Medical and Dental
7	Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo
8	113-8510, Japan
9	
10	² Oral Physiology, Department of Oral Functional Science, Division of Oral Medical
11	Science, Faculty of Dental Medicine and Graduate School of Dental Medicine,
12	Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
13	
14	Corresponding author: Tomohiko Yoshizawa
15	Department of Physiology and Cell Biology, Graduate School of Medical and Dental
16	Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo
17	113-8510, Japan
18	Tel: +81-3-5803-5156, E-mail: tomohiko.yoshizawa@gmail.com
19	

21	Objectives
22	The aim of the present study is to demonstrate the effects of inhaled methyl
23	methacrylate (MMA) on the excitability of neurons in the area postrema (AP). We also
24	investigated the relation between vagal afferent inputs and responding cells in the AP.
25	Methods
26	We set up two groups of experimental animals, such as rats inhaling MMA and rats
27	inhaling room air. To visualize the changes of AP neuron excitability after inhalation of
28	MMA for 90 min, c-Fos protein expression was identified and quantified by
29	immunohistochemical analysis. Some rats receiving ventral gastric branch vagotomy
30	were also subjected to the abovementioned experiment.
31	Results
32	The number of c-Fos-immunoreactive (Fos-ir) cells in the MMA group was more than
33	six times greater than that of the control group (statistically significant, p<0.01). In
34	vagotomized rats inhaling MMA, markedly smaller number of Fos-ir cells was
35	identified in the AP compared to that of rats inhaling MMA without vagotomy.
36	Conclusions

Abstract

20

37 These results indicate that inhalation of MMA increases neuronal excitability in the AP,

- 38 suggesting that vagal afferent inputs are involved in the induction mechanism of Fos-ir
- cells by MMA.
- 40
- 41 Keywords: area postrema, methyl methacrylate, c-Fos, vagotomy
- 42
- 43

1. Introduction

45	The area postrema (AP) lacks the blood-brain barrier and is well known as the
46	chemoreceptor trigger zone for emesis [1]. Previous studies have revealed the
47	receptivity of the AP neurons to many chemical substances; however, the effects of
48	methyl methacrylate (MMA) remained to be determined. Therefore, we hypothesized
49	that MMA inhalation increases the excitability of AP neurons triggering nausea and/or
50	emesis.
51	The MMA is a major component in some popular dental resin that is often used
52	in dental medicine, such as dental composite resins, dentures, temporary crowns, etc. As
53	the MMA vaporizes easily at room temperature, dentists or patients possibly inhale a
54	small amount of MMA during dental treatment. Although safety has been established
55	for small amounts of MMA inhalation, health hazards such as nausea and vomiting are a
56	concern if inhaled in large quantities [2]. For example, toluene, an organic solvent,
57	vaporizes easily and excites the AP neurons [3]. We also investigated the role of vagal
58	afferent inputs in the effects of inhaled MMA on the excitability of AP neurons, because
59	a previous study has reported that the vagal afferent inputs are involved in the induction
60	mechanism of cisplatin-induced emesis [4].
61	The present study demonstrated the MMA-induced upregulation of the AP

62	neuronal excitability using immunohistochemical analysis of c-Fos expression and the
63	possible role of abdominal vagal afferent inputs in the effects of MMA on AP neurons.
64	
65	2. Materials and Methods
66	2.1. Subjects
67	The Hokkaido University Animal Use Committee approved this study. Adult
68	male Wister or SD rats (MMA, 5 rats; control, 5 rats; vagotomy, 3 rats; 150-600 g body
69	weight) were housed individually under a 12/12 h light/dark cycle (lights on at 7 AM;
70	off at 7 PM). Experiments were performed during the light phase.
71	
72	2.2 Ventral gastric branch vagotomy
73	Ventral gastric branch vagotomy was performed as reported previously [5].
74	Briefly, rats were anesthetized and incised in the middle of the abdomen. The stomach
75	was gently manipulated to pick out the ventral gastric branch of the subdiaphragmatic
76	vagus. The ventral branch of the vagal nerve was transected, and pyloroplasty was
77	performed to prevent pyloric stenosis. The pyloric sphincter was incised longitudinally
78	(0.5–0.7 mm), and the incised part was sutured with silk sutures. After 10–14 days of
79	recovery, the rats were subjected to the MMA inhalation experiment.

80

81 2.3 Administration of MMA

82	A rat was moved from the breeding cage to a desiccator and was habituated for
83	4 h before starting each experiment (Fig. 1). The rats without vagotomy were divided
84	into two experimental groups: one group breathes MMA for 90 min ($n = 5$), and the
85	other group breathes room air ($n = 5$). MMA liquid (3 mL) was dropped and volatilized
86	in the desiccator at room temperature (approximately 25±3°C). Three rats that
87	underwent vagotomy inhaled the MMA in the same manner as above. Immediately after
88	inhalation of MMA or room air for 90 min, animals were deeply anesthetized with
89	urethane and then perfused with 4% paraformaldehyde (PFA). Brains were carefully
90	removed from the skull and fixed in 4% PFA at 4°C overnight, and then transferred to a
91	30% sucrose/PBS solution at 4°C until the brains sank to the bottom.
92	
93	2.4 Immunohistochemical analysis
94	Coronal sections including the AP (Fig. 2A) [6] were cut at a thickness of
95	$50 \ \mu m$ in the freezing microtome (FX-801; Yamato, Saitama, Japan) and kept in wells
96	containing PBS at 4°C. Each section was rinsed thrice in PBS for 5 min, and sections
97	were immersed in 80% methanol containing 0.3% hydrogen peroxide (H_2O_2) for 1 h at

98	room temperature. After three rinses in PBS for 10 min and immersion in blocking
99	buffer (1.5% normal goat serum and 0.4% Triton X-100 in PBS) for 1 h at room
100	temperature, sections were incubated in primary rabbit anti-cFos antibody (sc-52; Santa
101	Cruz, Dallas, United States) diluted 1:5000 in blocking buffer at room temperature
102	overnight or at 4°C for 3–5 days. Each section was rinsed thrice in PBS for 10 min and
103	incubated in biotinylated anti-rabbit secondary antibody (VECTASTAIN Elite ABC kit,
104	Vector Laboratories, Burlingame, United States) for 1 h at room temperature. Sections
105	were rinsed twice in PBS for 10 min and rinsed twice in TBS for 10 min and then
106	immersed in TBS containing 0.01% DAB and 0.05% nickel ammonium sulfate for 10
107	min at room temperature. Each section was treated with 0.0006% H_2O_2 for 7 min, and
108	then sections were rinsed in TBS for 5 min and in PBS for 10 min and mounted on glass
109	slides and coverslipped with Entellan (Merck, Darmstadt, Germany). Microscopic
110	images of each section were analyzed on a personal computer using the Cell Counter
111	plugin of ImageJ (NIH, Bethesda, United States). The average value of Fos-ir cells was
112	determined by counting the number of cells from three sections in each animal, which
113	was used for analysis as a representative value.
114	

115 2.5 Statistical analysis

116	Using MATLAB (Mathworks, Statistics and Machine Learning Toolbox,
117	Natick, United States), the number of Fos-ir cells between each experimental group was
118	statistically analyzed by Wilcoxon signed-rank tests. Data were represented by means \pm
119	SEM.
120	
121	3. Results
122	3.1 c-Fos expression in the AP through MMA inhalation
123	As shown in Figure 2A and 2B, many Fos-ir cells were found in the AP of the
124	MMA group compared to the control group. The number of Fos-ir cells in the MMA
125	group (168 \pm 46 cells, n = 5 rats) was more than six times greater than that in the control
126	group (26 \pm 3, n = 5, p = 0.0079, Wilcoxon signed-rank tests, Fig. 2C). This result
127	indicates that MMA inhalation increases neuronal excitability in the AP.
128	
129	3.2 Effects of vagotomy on the expression of c-Fos in the AP
130	In vagotomized rats (n = 3), the average number of Fos-ir cells in the AP was 37 ± 1 (Fig.
131	3A, B). This value was markedly smaller than that of the MMA group (168 \pm 46, n = 5).
132	This result suggests that vagal afferent inputs are involved in MMA-induced c-Fos
133	expression of the AP neurons.

135	4. Discussion
-----	---------------

136	In the present study, we investigated the effects of MMA on the excitability of
137	neurons in the AP. The major findings in the present study were (1) MMA inhalation
138	induced c-Fos expression in the AP, and 2) ventral gastric branch vagotomy suppressed
139	c-Fos expression in the AP. These results revealed the sensitivity of AP neurons to
140	MMA, suggested that vagal afferent inputs are involved in MMA-induced upregulation
141	of neuronal excitability in the AP.
142	The c-Fos protein is often used as a marker of neuronal activity [7-10], because
143	its expression indicates the facilitation of neuronal activity associated with the
144	depolarization of membrane potentials, reaching a peak after 1.5–2 h from excitation of
145	the neuron [11]. Some studies have reported that administration of cisplatin, which is an
146	anticancer drug that causes nausea and vomiting as a side effect, introduces expression
147	of the c-Fos protein in the AP of rodents [12, 13]. Another study has examined that c-
148	Fos protein expression is related with the intake of kaolin, which is a measurement of
149	nausea [14].
150	Two possible pathways of the effects of MMA on AP neuronal excitability are

151 (1) circulating MMA induced upregulation of the vagal afferent inputs to AP neurons,

152	and 2) AP neurons may directly respond to circulating MMA. There are vagal afferent
153	nerves that show the direct projection to AP neurons [15] and the indirect projection to
154	AP neurons via the nucleus tractus solitarius (NTS) [16].
155	The present study suggests that vagal afferent inputs are involved in the
156	excitation of the AP neurons by the MMA. Whether the MMA in the blood directly
157	excites the AP neurons remains unexplained. To answer this question, we will perform
158	another experiment using electrophysiological methods [17-24].
159	Considering the functional role of AP in triggering nausea and/or emesis,
160	animals may feel nauseous during exposure to MMA in the present study. A study on
161	humans has reported that inhalation of MMA caused respiratory tract irritation,
162	weakness, fever, dizziness, nausea, headache, and sleepiness [2]. An animal study using
163	rats has reported that the main clinical signs of acute MMA inhalation were depression,
164	ataxia, and excessive salivation [25]. Some previous studies have reported MMA
165	toxicity to nasal mucosal epithelial cells in rats [26, 27]. Raje et al. have subjected rats
166	to MMA inhalation (100 ppm) for up to 4 hours, and they have reported several
167	symptoms such as interalveolar congestion/hemorrhage, pulmonary vasodilatation, and
168	edema; however, no histopathologic change was seen in the brain [28]. When rats
169	inhaled a relatively high concentration of MMA (3000 ppm), extensive cerebellar

170	congestion and hemorrhage occurred in the cerebellar peduncles [29]. Increase of Fos-ir
171	cells in the AP after MMA inhalation may occur because of MMA toxicity; however,
172	further work is required for its elucidation.
173	Some previous studies have reported that intestinal motor activities and smooth
174	muscle tonus were reduced by MMA inhalation (116 ppm) [30, 31]. In the present
175	study, MMA-induced gastrointestinal motility disorder possibly increased afferent vagal
176	nerve activity, resulting in the increased number of Fos-ir cells in the AP.
177	
178	5. Conclusion
179	The present study revealed that AP neurons could respond to the inhalation of
180	extreme amounts of MMA. Increases in the vagal nerve activity by MMA are possibly
181	involved in the upregulation of neuronal excitability in the AP.
182	
183	Ethical statement
184	The Hokkaido University Animal Use Committee approved this study.
185	
186	Conflicts of interest
187	The authors declare no competing financial interests.

189	CRediT authorship contribution statement
190	Tomohiko Yoshizawa: conceptualization, methodology, validation, formal
191	analysis, investigation, data curation, writing (original draft), writing (review and
192	editing), and visualization. Makoto Funahashi: conceptualization, methodology,
193	investigation, resources, writing (original draft), writing (review and editing),
194	visualization, and funding acquisition.
195	
196	Funding
197	This work was supported by the JSPS KAKENHI Grant Numbers JP19K10039
198	and JP19K16299 and by generous research support of Hokkaido University for Oral
199	Physiology.
200	
201	Acknowledgements
202	We thank the members of the Oral Physiology laboratory in Hokkaido
203	University for helpful comments and discussion.
204	

206 **References**

- 207 [1] Borison HL, Wang SC. Physiology and pharmacology of vomiting. Pharmacol
 208 Rev 1953;5:193-230.
- [2] Karpov B. Methyl methacrylate from the viewpoint of labor hygiene. Gig Sanit
 1954;10:25-8.
- 211 [3] Perit KE, Gmaz JM, Caleb Browne JD, Matthews BA, Dunn MB, Yang L, et
- al. Distribution of c-Fos immunoreactivity in the rat brain following abuse-like toluene
- 213 vapor inhalation. Neurotoxicol Teratol 2012;34:37-46.
- [4] Endo T, Nemoto M, Minami M, Yoshioka M, Saito H. Changes in the afferent
- abdominal vagal nerve activity induced by cisplatin and copper sulfate in the ferret.
- 216 Biogenic Amines. 1995;11:399-407.
- 217 [5] Okusha Y, Hirai Y, Maezawa H, Hisadome K, Inoue N, Yamazaki Y, et al.
- 218 Effects of intraperitoneally administered L-histidine on food intake, taste, and visceral
- sensation in rats. J Physiol Sci 2017;67:467-74.
- 220 [6] Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover
- edition: Elsevier; 2006.
- 222 [7] Morgan JI, Cohen DR, Hempstead JL, Curran T. Mapping patterns of c-fos
- expression in the central nervous system after seizure. Science 1987;237:192-7.

224	[8]	Sheng M, Greenberg ME. The regulation and function of c-fos and other
225	immedi	ate early genes in the nervous system. Neuron 1990;4:477-85.
226	[9]	Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific
227	express	ion of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat
228	Neuros	ci 1999;2:1120-4.
229	[10]	Okuno H. Regulation and function of immediate-early genes in the brain:
230	beyond	neuronal activity markers. Neurosci Res 2011;69:175-86.
231	[11]	Yamamoto T, Sawa K. c-Fos-like immunoreactivity in the brainstem following
232	gastric	loads of various chemical solutions in rats. Brain Res 2000;866:135-43.
233	[12]	Horn CC, Ciucci M, Chaudhury A. Brain Fos expression during 48 h after
234	cisplati	n treatment: neural pathways for acute and delayed visceral sickness. Auton
235	Neuros	ci. 2007;132:44-51.
236	[13]	Horn CC. Brain Fos expression induced by the chemotherapy agent cisplatin in
237	the rat i	is partially dependent on an intact abdominal vagus. Auton Neurosci
238	2009;14	48:76-82.
239	[14]	Horn CC, De Jonghe BC, Matyas K, Norgren R. Chemotherapy-induced kaolin
240	intake i	s increased by lesion of the lateral parabrachial nucleus of the rat. Am J Physiol
241	Regul I	ntegr Comp Physiol 2009;297:R1375-82.

242	[15]	Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR. Viscerotopic
243	represe	ntation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the
244	solitary	and spinal trigeminal tracts. J Comp Neurol 1989;283:248-68.
245	[16]	van der Kooy D, Koda LY. Organization of the projections of a
246	circum	ventricular organ: the area postrema in the rat. J Comp Neurol 1983;219:328-38.
247	[17]	Hay M, Lindsley KA. Membrane properties of area postrema neurons. Brain
248	Res 199	95;705:199-208.
249	[18]	Jahn K, Bufler J, Weindl A, Arzberger T, Hatt H. Patch-clamp study on
250	membra	ane properties and transmitter activated currents of rabbit area postrema neurons.
251	J Comp	Physiol A. 1996;178:771-8.
252	[19]	Funahashi M, Mitoh Y, Matsuo R. Two distinct types of transient outward
253	currents	s in area postrema neurons in rat brain slices. Brain Res 2002;942:31-45.
254	[20]	Funahashi M, Mitoh Y, Matsuo R. Electrophysiological properties of the rat
255	area po	strema neurons displaying both the transient outward current and the
256	hyperpo	plarization-activated inward current. Brain Res Bull 2002;58:337-43.
257	[21]	Funahashi M, Mitoh Y, Kohjitani A, Matsuo R. Role of the hyperpolarization-
258	activate	ed cation current (Ih) in pacemaker activity in area postrema neurons of rat brain
259	slices. J	Physiol 2003;552:135-48.

[22] Shinpo K, Hirai Y, Maezawa H, Totsuka Y, Funahashi M. The role of area
 postrema neurons expressing H-channels in the induction mechanism of nausea and

- 262 vomiting. Physiol Behav 2012;107:98-103.
- 263 [23] Fukuda T, Hirai Y, Maezawa H, Kitagawa Y, Funahashi M.
- 264 Electrophysiologically identified presynaptic mechanisms underlying amylinergic
- 265 modulation of area postrema neuronal excitability in rat brain slices. Brain Res
- 266 2013;1494:9-16.
- 267 [24] Sugeta S, Hirai Y, Maezawa H, Inoue N, Yamazaki Y, Funahashi M.
- 268 Presynaptically mediated effects of cholecystokinin-8 on the excitability of area
- 269 postrema neurons in rat brain slices. Brain Res 2015;1618:83-90.
- 270 [25] Spealman C, Main R, Haag H, Larson P. Monomeric Methyl Methacrylate-
- 271 Studies on Toxicity. Ind Med Surg 1945;14:292-8.
- 272 [26] Lomax L, Krivanek N, Frame S. Chronic inhalation toxicity and oncogenicity
- of methyl methacrylate in rats and hamsters. Food Chem Toxicol 1997;35:393-407.
- 274 [27] Chan PC, Eustis SL, Huff JE, Haseman JK, Ragan H. Two-year inhalation
- 275 carcinogenesis studies of methyl methacrylate in rats and mice: inflammation and
- degeneration of nasal epithelium. Toxicology. 1988;52:237-52.
- 277 [28] Raje RR, Ahmad S, Weisbroth SH. Methylmethacrylate: tissue distribution and

278	pulmonary damage in rats following acute inhalation. Res Commun in Chem Pathol
279	Pharmacol 1985;50:151-4.
280	[29] Program NT. Toxicology and carcinogenesis studies of methyl methacrylate in
281	F344/N rats and B6C3F1 mice (Inhalation studies). NIH Publ; 1986.
282	[30] Tansy MF, Kendall FM, Benhayem S, Hohenleitner FJ, Landin WE, Gold M.
283	Chronic biological effects of methyl methacrylate vapor: I. Body and tissue weights,
284	blood chemistries, and intestinal transit in the rat. Environ Res 1976;11:66-77.
285	[31] Tansy M, Landin W, Perrong H, Kendall F. Acute and chronic intestinal motor
286	effects of methyl-methacrylate vapor. J Dent Res 1976;55:B240.
287	
288	Figure legends
289	Fig. 1. Experimental design
290	Immediately after administration of MMA or room air for 90 min in the desiccator, rats
291	are fixed with 4% paraformaldehyde (PFA)
292	

- 293Fig. 2. Fos-ir cells in the AP after MMA inhalation
- A, A schematic diagram of the coronal section of the AP. The AP is located at the
- bottom of the fourth ventricle and lacks the blood-brain barrier, called the
- 296 chemoreceptor trigger zone
- B, Example photomicrographs of a coronal section of the area postrema region. Each
- lower panel is an enlarged view of the part surrounded by a solid line in the upper panel.

300	whereas few cells in the control group rats. Scale bar: 100 μm (upper) and 50 μm
301	(lower)
302	C, The average number of Fos-ir cells in the MMA group is significantly larger than that
303	in the control group. **: $p < 0.01$, Wilcoxon signed-rank tests
304	
305	Fig. 3. Effects of vagotomy on the c-Fos expression of the AP neurons
306	A, An example photomicrograph of a coronal section of the area postrema region in
307	vagotomized rats. Scale bar: 100 µm
308	B, The average number of Fos-ir cells in the vagotomy group $(n = 3)$ is markedly
309	smaller than that in the MMA group ($n = 5$, same value as shown in Fig. 2C)
310	
311	Fig.4. Schematic illustration of the possible mechanism of the MMA effects on the AP
312	neurons
313	The present study suggests that MMA absorbed into the blood from the lungs increases
314	abdominal vagal nerve activity, and the excitability of the AP neurons receiving
315	synaptic inputs from the vagus nerve increased (solid arrows). Further, MMA may
316	directly affect the AP neurons; however, it remains to be determined (dotted arrow)

A lot of Fos-ir cells (white arrows) were found in the AP of the MMA group rats,

Fig. 1

Fig. 3

Fig. 4

