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Introduction

Recent evidence from animal models indicates that the brain plays a critical role in the systemic
regulation of glucose metabolism'2. Neurons in the hypothalamus integrate hormonal and nutritional
information and maintain glucose homeostasis by controlling metabolism in peripheral tissues. The role
of hypothalamus on body condition has been observed at as early as 1940s’. In particular, the
ventromedial nucleus of the hypothalamus (VMH) and arcuate nucleus of the hypothalamus (ARC) are
critical nuclei for the glucose metabolism and body energy homeostasis. To regulate whole body energy
homeostasis, there are specialized glucose-sensing neurons to detect ambient glucose in these regions:
the glucose-excited (GE) neurons and the glucose-inhibited (GI) neurons, which are excited or inhibited
by glucose, respectively. These glucose-sensing neurons each constitutes about 10 to 15 percent of all
steroidogenic factor 1 (Sf1) neurons in the VMH®. The Sfl neurons are the majority of neurons and
constitute ~60% of total neurons in the dm/cVMH?. Activation of Sfl neurons by optogenetics increases
endogenous glucose production (EGP)° and simultaneously enhances insulin sensitivities in several
tissues such as liver, muscle and brown adipose tissue (BAT)’. Hormones, including insulin, leptin and
ghrelin, regulate glucose metabolism by changing the activities of these neurons and their gene
expression. Insulin is the major peptide to increase blood glucose clearance by promoting glucose uptake
of peripheral tissue and inhibiting gluconeogenesis. Insulin hyperpolarizes a subset of Sfl neurons
through PI3 kinase pathway®. Interestingly, although the insulin is considered to control blood glucose
and insulin resistance is the main indicator of metabolic disorders, the insulin mediated-inhibition of Sf1
neurons is one of the factors to cause high-fat-diet induced obesity™'’. Leptin is another peptide to
regulate food intake and energy homeostasis which secreted by adipose tissue''. Even though the leptin
activates or inhibits different populations of Sf1 neurons, the effect of leptin on VMH increases glucose
utilization and insulin sensitivity in peripheral tissues®'*"'*. ARC is another core region to regulate
energy homeostasis by regulating food intake and glucose metabolism'>. There are two main neuronal
populations in the ARC, the orexigenic agouti-related peptide (AgRP) neurons, which co-express
neuropeptide Y (NPY), and the anorexigenic proopiomelanocortin (POMC) neurons'®. POMC and
AgRP neurons control EGP in opposite ways, i.e., activation of POMC increases insulin sensitivity in
the liver, while AgRP activation decreases liver insulin sensitivity'"'®. Besides, subpopulations of

POMC and AgRP neurons are also GE neurons and GI neurons respectively'’.

Obesity attenuates the function of these nuclei and promotes type Il diabetes via hypothalamic
inflammation®. In line with this, the glucose sensitivity was decreased in GE neurons and augmented
in GE neurons of VMH from HFD-induced obesity mice®!, suggesting HFD impaired neuronal glucose-
sensing to disturb systemic glucose metabolism. However, the mechanism how HFD impairs these

neurons and how initiates hypothalamic inflammation remain unclear.

Fatty acids regulate the activities of hypothalamic neurons' and the lipid metabolism within the

hypothalamus plays important roles in energy balance and glucose metabolism****. Phospholipids with



biologically active polyunsaturated fatty acids (PUFAs), including phosphatidyl-inositol (PI),
phosphatidyl-ethanolamine (PE) and phosphatidyl-serine (PS), are abundantly found in the brain*.
Some membrane phospholipids generate free PUFAs to regulate physiological functions of the brain.
For example, phospholipase A2 (PLA2) preferentially generates arachidonic acid (AA) from
phospholipids®. AA plays roles in several physiological functions, including thermogenesis in BAT and
increasing blood glucose levels®®. AA is also the precursor for eicosanoids such as prostaglandin and
hydroxyeicosatetraenoic acid (HETE). Other PUFA, such as oleic acid (OA), modulates activities of
nutrient-sensing neurons to regulate insulin secretion®’, and intracerebroventricular injection of OA
enhances insulin sensitivity in the liver”®. However, the distributions of FAs, PUFAs and PUFA-
containing phospholipids in the hypothalamus and their roles in whole-body glucose metabolism are not

clearly understood.

Here, we explore hypothalamic lipid metabolism in the regulation of systemic glucose homeostasis and
its potential role in the development of diabetes using imaging mass spectrometry (IMS). We found that
glucose injection in mice fed on a regular chow diet induces a decrease in phospholipids containing AA,
which is mediated by cytosolic phospholipase A2 (cPLA2). Prostaglandins produced by phospholipids
in the hypothalamus activate VMH neurons and increases insulin sensitivity in skeletal muscles.
However, hypothalamic ¢cPLA2-mediated prostaglandin production is enhanced by high-fat-diet and

induces neuroinflammation, and blockage of this enzyme confers resistance to developing diabetes.



Materials and methods

Animals

Sfl-cre mice were purchased from the Jackson Laboratory (STOCK Tg(Nr5al-cre)7Lowl/J; Bar Harbor,
ME). For IMS and assessing the effects of inhibitors, male C57BL6J mice were purchased from Charles
River Laboratories Japan. All mice were kept at 22—24 °C with a 12-h light/12-h dark cycle and given
ad libitum food access. Animal care and experimental procedures were performed with approval from

the Animal Care and Use Committee of Hokkaido University.

Imaging mass spectrometry

Glucose (2 g/kg body weight, Sigma-Aldrich, St. Louis, MO) or saline were injected intraperitoneally
(i.p.) and the mice were sacrificed 30 min after injection. Brains were collected and were immediately
embedded in 2% sodium carboxymethyl cellulose solution and frozen with liquid nitrogen. The 10-um
brain sections were prepared by cryostat and immediately mounted onto an indium-tin-oxide-coated
glass slide (Bruker Daltonics, Bremen, Germany). The sections on the glass slides were immediately
dried and stored at —20 °C until imaging mass spectrometry analysis.

Brain slices were sprayed with 9-aminoacridine matrix (10 mg/mL in 70% ethanol, Sigma-Aldrich) and
installed into a matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/TOF system
using ultrafleXtreme (Bruker Daltonics). Brain sections were irradiated by a smart beam (Nd: Y AG laser,
355-nm wavelength); with a 25-um irradiation pitch. The laser had a repetition frequency of 2000 Hz
and mass spectra were obtained in the range of m/z 200-1200 in negative-ion mode. The m/z values
from previous reports were used to label each lipid and phospholipid (Table 1). All ion images were
reconstructed with total ion current (TIC) normalization by flexImaging (Bruker Daltonics) and
transferred to ImagelJ after modifying the grayscale. The areas of the VMH were identified by DAPI
staining in the other brain sections and the brightness of the VMH and ARC were calculated as intensity.
The intensity ratio in glucose injected mice against saline mice were statistically compared using the

Wilcoxon test.

Quantification of PGs

Glucose (2 g/kg body weight, Sigma-Aldrich) or saline were injected i.p. two times (t = 0 and t = 30
min) and mice were sacrificed at t = 60 min. A HFD (45 kcal% fat, D12451, Research Diet, NJ) was
given for 8 weeks. Hypothalamus was collected and immediately frozen in liquid nitrogen. The tissue
was homogenized with 500 ul of MeOH:formic acid (100:0.2) containing an internal standard consisting
of a mixture of deuterium-labeled PGs using microtip sonication. The samples were submitted to solid
phase extraction using an Oasis HLB cartridge (5 mg; Waters, Milford, MA) according to the method
of Kita et al”. Briefly, samples were diluted with water:formic acid (100:0.03) to give a final MeOH
concentration of ~20% by volume, applied to preconditioned cartridges, and washed serially with
water:formic acid (100:0.03), water:ethanol:formic acid (90:10:0.03), and petroleum ether. Samples
were eluted with 200 ul of MeOH:formic acid (100:0.2). The filtrate was concentrated with a vacuum



concentrator (SpeedVac, Thermo Fisher Scientific, Waltham, MA). The concentrated filtrate was
dissolved in 50 puL of methanol and used for liquid chromatography/mass spectrometry (LC-MS).

Hypothalamic PGs were quantified by modified LC-MS*’. Briefly, a triple-quadrupole mass
spectrometer equipped with an electrospray ionization (ESI) ion source (LCMS-8060; Shimadzu
Corporation, Kyoto, Kyoto, Japan) was used in the positive and negative-ESI and multiple reaction

monitoring modes.

Stereotaxic surgeries and AAYV injection

Male C57BL6J mice were anesthetized with mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg)
and were put on a stereotaxic instrument (Narishige, Tokyo, Japan). Mice were implanted with cannulae
for intracerebroventricular (i.c.v.) or intra-hypothalamic injection. The i.c.v. cannulae were implanted
in the lateral ventricle in an anterior—posterior (AP) direction: —0.3 (0.3 mm posterior to the bregma),
lateral (L): 1.0 (1.0 mm lateral to the bregma), dorsal-ventrol (DV): —2.5 (2.5 mm below the bregma on
the surface of the skull). The double-cannulae for intrahypothalamic injection had a gap of 0.8 mm
between the two cannulae and were implanted following the coordinates of the AP: —1.4, L: = 0.4, DV:
—5.6. Cannulae were secured on the skulls with cyanoacrylic glue and the exposed skulls were covered
with dental cement. To knock down expression of pla2g4a in the VMH, 6- to 8-week-old Sfl-cre mice
were injected in each side of the VMH with ~0.5 uLL AAV8-DIO-shRNA (Vigene Biosciences,
Rockville, MD) against mpla2g4 bilaterally using the following coordinates: AP: —1.4, L: + 0.4, DV:
—5.7. Open wounds were sutured after viral injection. Mice were allowed to recover for 5—7 days before

experiments were started.

Glucose and insulin tolerance tests

A glucose tolerance test was performed on ad /libitum fed or fasted mice. The ad libitum fed mice were
used for assessing the effects of inhibitors. The fasted mice were used for assessing the phenotype of
mice with knockdown of pla2g4a in Sfl-neurons (cPLA2KD’™). To assess the effects of inhibitors,
methyl arachidonyl fluorophosphonate (MAFP; 20 uM, 300 nL in each side), indomethacin (140 uM,
300 nL in each side), or vehicle were injected into both sides of the hypothalamus through a double-
cannula. Glucose solution was then injected i.p. (2 g/kg) 30 min after intrahypothalamic injection. To
assess the phenotype of cPLA2KD®" mice, animals were fasted for 16 hours and injected with glucose
(2 g/kg) i.p.. Blood glucose levels were measured by a handheld glucose meter (Nipro Free style, Nipro,
Osaka, Japan) before injecting inhibitors (—30 min) or glucose (0 min), and measured at 15, 30, 60 and
120 min after glucose injection.

An insulin tolerance test was performed in ad libitum fed mice. The mice were i.p. injected with 0.5
U/kg insulin (Novo Nordisk, Bagsveerd, Denmark). Blood glucose was measured before injecting

inhibitors (—30 min) and glucose (0 min), and measured 15, 30, 60 and 120 min after glucose injection.

Serum insulin measurement



Mice were injected with inhibitors or vehicle into the hypothalamus using the same protocol as above.
Blood from the tails was taken 30 min after intrahypothalamic injection. Then, glucose (2 g/kg) was i.p.
injected and blood was taken at 15 and 30 min after glucose injection. The serums were collected after
centrifuging for 10 min at 1000 xg and maintained at —80°C until insulin was measured. The insulin
concentration was measured with a Mouse Insulin ELISA KIT (FUJIFILM Wako, Osaka, Japan) and

all procedures were followed by the protocols provided in the kit.

Real time PCR

Total RNA was extracted from the whole hypothalamus using Trizol solution (Invitrogen). Pla2g4,
Rbfox3 and Actb mRNA levels in the hypothalamus were measured by real-time TagMan PCR. A high
capacity ¢cDNA reverse transcription kit (Thermo Fisher Scientific) was used for the reverse
transcription. Real-time PCR (LightCycler 480; Roche) was performed with diluted cDNAs in a 20-ul

reaction volume in triplicate.

Immunohistochemistry

Ad libitum fed mice were i.p. injected with either saline or glucose (3 g/kg) and perfused with
heparinized saline followed by 4% paraformaldehyde (PFA) transcardially at 30 min after injection.
Inhibitors were i.c.v. injected 30 min before glucose injection. Brain sections (50 um each) containing
the whole VMH were collected. Floating sections were incubated with rabbit-anti-cFos antibody (1:200,
Santa Cruz Biotechnology, Denton, TX) or rabbit-anti-GFP antibody (1:1000, Frontier Institute,
Hokkaido, Japan) in staining solution (0.1 M phosphate buffer (PB) containing 4% normal guinea pig
serum, 0.1% glycine, and 0.2% Triton X-100) overnight at room temperature. To assess the cell
population of astrocytes and microglia, sections were incubated with rabbit-anti-Ibal antibody (1:3000,
FUJIFILM Wako) or rabbit-anti-GFAP antibody (1:3000, Sigma-Aldrich) in staining solution overnight
at room temperature. After rinsing with PB, sections were incubated in secondary antibody (1:500,
Alexa Fluor 647 or 488 Goat Anti-Rabbit (IgG) secondary antibody, Cell Signaling Technologies,
Danvers, MA) for 2 h at room temperature. The stained sections were washed with PB three times and

mounted on glass slides with vectashield (Vector Laboratories, Burlingame, CA).

Assessment of phospholipase-A2 activity

Mice fed ad libitum were 1.p. injected with either glucose (2 g/kg) or saline. Mouse hypothalami were
collected 30 min after injection and stored at —80 °C until use. Tissues were homogenized and
centrifuged at 10,000 xg for 15 min at 4 °C and supernatants were collected. Activity of cytosolic- or
secretory-phospholipase-A2 were measured following procedures described in the kit manuals (Abcam,

Cambridge, UK).

Implantation of artery and vein catheter for clamp studies



Mice were anesthetized with pre-mixed ketamine (100 mg/kg) and xylazine (10 mg/kg). Polyethylene
catheters were implanted into right carotid arteries and jugular veins. The tubes entered subcutaneously
and protruded from the neck skin. Mice were allowed to recover for 3 to 5 days and tubes were flushed

with heparinized saline each day.

Hyperinsulinemic—euglycemic clamp and measurement of 2['*C] deoxy-D-glucose (2DG) uptake
The hyperinsulinemic—euglycemic clamp protocol was followed as described in previous papers**'. The
mice were fasted for 4 h and experiments were initiated in a free moving condition.

A 115-min clamp period (t = 0—115 min) was following a 90-min basal period (t = —90 to 0 min). A
bolus of [3-*H] glucose (5 mCi;) was injected through the jugular vein at the beginning of the basal
period (t = =90 min) and tracer was infused at a rate of 0.05 mCi for 90 min. Blood samples were
collected at t = —15 and —5 min to measure the rate of appearance (Ra). The clamp period was initiated
with continuous infusion of insulin (2.5 mU/kg/min). During the clamp period, blood was collected, and
blood glucose levels were measured from arterial blood every 5—10 min. Cold glucose was infused at a
variable rate via the jugular vein catheter to maintain a blood glucose level at 110-130 mg/dL.
Erythrocytes in withdrawn blood were suspended in sterile saline and returned to each animal.

To assess 2DG uptake, 2-['*C] DG (10 mCi) was infused at t = 70 min and blood samples were collected
at t = 75, 85, 95, 105, and 115 min. After collecting the blood sample at t = 115 min, mice were
euthanatized, and small pieces of tissue samples from the soleus, Gastro-R (red portion of
gastrocnemius), Gastro-W (white portion of gastrocnemius), BAT, heart, spleen, EWAT (epididymal
white adipose tissue), brain (cortex), and liver were rapidly collected. The rate of disappearance (Rd),
which reflects whole-body glucose utilization, rate of appearance (Ra), which mainly reflects
endogenous glucose production (EGP), and the rates of whole-body glycolysis and glycogen synthesis

were determined as described previously®'.

Statistical Analysis

Two-way or one-way ANOVA were used to determine the effect of inhibitors or knockdown of cPLA2
with the Prism 8 software (GraphPad). For repeated-measures analysis, ANOVA was used when values
over different times were analyzed, followed by the Bonferroni and Sidak multiple comparisons tests.
When only two groups were analyzed, statistical significance was determined by the unpaired Student’s

t test. A value of p<0.05 was considered statistically significant. All data are shown as mean + SEM.
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Results

Hyperglycemia decreases phospholipids and produces prostaglandins in the hypothalamus

To determine the distribution of FAs and phospholipids, hypothalamic slices were examined by IMS
(Figure 1). The signal intensities of palmitic acid (PA), stearic acid (SA), AA and docosahexaenoic acid
(DHA) were high around the third ventricle and the ventro-lateral region of the hypothalamus in
C57BL/6J mice (Figure 1a). Similar distributions of phospholipids, such as phosphatidyl-ethanolamine
(PE) (18:0/20:4), phosphatidyl-inositol (PI) (18:0/20:4) and PI (18:1/20:4) were also observed. However,
signal intensities for phosphatidyl-serine (PS) (18:0/20:4) were low around the third ventricle while PS
(18:0/22:6) distribution was ubiquitously observed (Figure 1b). We then measured hypothalamic lipids
in mice that received an intraperitoneal (i.p.) glucose injection. Signal intensities for PI (18:0/20:4), PI
(18:1/20:4) and PE (18:0/20:4) were significantly decreased in the VMH after glucose administration
(Figure 1c and 1d). Similarly, the signal intensities for PI (18:0/20:4), PI (18:1/20:4), PE (18:0/20:4)
and PS (18:0/16:0) were decreased in the ARC after glucose injection (Figure lc and 1E). Hydrolysis
of these phospholipids generates FAs, including AA (20:4), oleic acid (OA) (18:1), PA (16:0) or SA
(18:0). However, the signal intensities of the four fatty acids were not changed after glucose injection,
neither in the VMH nor ARC (Figure 1fto 1h).

AA is the source of eicosanoids and AA metabolism is catalyzed by enzymes such as cyclooxygenase
(COX), lipoxygenase and cytochrome P450. To elucidate if glucose injection increased AA metabolism,
we examined the effect of glucose injection on eicosanoid production in the whole hypothalamus using
a liquid chromatography—mass spectrometry (LC-MS). Compared with saline, glucose injection
increased COX-mediated hypothalamic production of prostaglandins, including 6-keto-PGF1a, PGD2,
13,14-dihydro-15-keto-PGF2a and PGE2 (Figure 1i to 1m). Lipoxygenase-mediated production of 12-
HETE was increased in glucose-injected mice (Figure 2a). However, most of the lipoxygenase- and
cytochrome P450-mediated production of HETEs and EETs was not detected or changed by glucose
injection (Figure 2a and 2b). Thus, the data suggest that increased glucose levels decrease AA-

containing phospholipids to produce prostaglandins.

Blocking the PLLA2-mediated pathway in the hypothalamus impairs systemic glucose metabolism
PLA2 is the primary enzyme that generates AA from phospholipids®> We then investigated the role of
PLA2-mediated phospholipid utilization in glucose metabolism during acute hyperglycemia after an
intrahypothalamic administration of methyl arachidonyl fluorophosphonate (MAFP), a PLA2 inhibitor.
MAFP-injected mice showed decreased glucose tolerance compared to vehicle-injected mice and no
changes in circulating insulin levels were observed (Figure 3a and 3b). Hypothalamic injection of
indomethacin, an inhibitor of COX1/2, also impaired glucose tolerance, suggesting that prostaglandins
regulate hypothalamic function to decrease blood glucose levels (Figure 3¢ and 3d). However, intra-
hypothalamic injection of phospholipase C (PLC) inhibitor, U73122, or IP3 receptor antagonist,
xestospondin 2, did not affect glucose tolerance (Figure 4). Thus, our results suggest that the PLA2-
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mediated AA release and production of prostaglandins by COX1/2 in the hypothalamus, but not PLC-

IP3 pathway, play a role in regulating glucose metabolism during acute hyperglycemia.

PLA2-mediated production of prostaglandin is necessary for the responsiveness of the VMH to
glucose

To understand the role of PLA2 in controlling glucose metabolism, we examined the effect of PLA2
inhibitors on hypothalamic neuronal activation by cFos expression. Vehicle, MAFP or indomethacin
were injected intracerebroventricularly (i.c.v.) 30 minutes prior to i.p. injection of either saline or
glucose in fasted mice. In i.c.v. vehicle-injected mice, glucose administration increased cFos-positive
cells in the dorsomedial (dm) and ventrolateral (vl) regions of the VMH and in the ARC (Figure 3e to
3g). In i.c.v. MAFP-injected mice, glucose did not alter the number of cFos-positive neurons in the
dmVMH (Figure 3f). An increase in cFos-positive neurons after glucose injection was still detected in
the vIVMH and ARC compared with saline injected mice (Figure 3f and 3g). Similar results were
observed in i.c.v. indomethacin-injected mice after an i.p. injection of glucose (Figure 3f and 3g). Taken
together, these data showing that both MAFP and indomethacin block neuronal activation during acute
hyperglycemia in the dmVMH, indicating that metabolites of phospholipid-derived prostaglandins
regulate glucose responsiveness of neurons in the dmVMH, while glucose activates neurons in the

vIVMH and ARC independently of PLA2 and COX1/2.

Knockdown of pla2g4a in Sf1 neurons impairs glucose metabolism in regular chow diet feeding
Next, to explore the role of PLA2 in VMH neurons, short hairpin RNA (shRNA) against pla2g4a, a
gene encoding cytosolic PLA2 (cPLA2), which has specificity for sn-2 arachidonic acid and a role in
eicosanoid production #°, was transfected to the VMH through an adeno-associated virus (AAV) cre-
recombinase (cre)-dependent in Sfl-cre mice (Figure Sa and 5b). Expression of pla2g4a mRNA was
significantly decreased in the VMH of Sfl-cre mice injected with AAV-DIO-shRNA (cPLA2KDS™)
compared with AAV-DIO-GFP (GFP%™)-injected mice (Figure 5c). Although knockdown of pla2g4a
did not influence body weight or the weight of adipose tissues, muscle and liver (Figure 5d),
cPLA2KD®S" mice displayed decreased glucose tolerance and insulin sensitivity compared with GFPS!!
mice (Figure 6a and 6b). To rule out the involvement of astrocytic cPLA2, AAV-GFAP-Cre and AAV-
DIO-shRNA against pla2g4a were co-injected into the hypothalamus to knock down the expression of
pla2g4a in hypothalamic astrocytes (Figure 7a and 7b). The knockdown of ¢cPLA?2 in astrocytes did not
alter glucose metabolism, insulin sensitivity or body weight compared with control mice (Figure 7c to
7¢). Thus, our data suggest that cPLA2 in Sfl neurons, not astrocytes, regulates peripheral glucose
metabolism.

To further investigate the role of cPLA2 in Sfl neurons in glucose metabolism, we next performed
hyperinsulinemic—euglycemic clamp studies. cPLA2KD’" mice showed a lower glucose infusion rate
(GIR) to maintain euglycemia compared with GFPS" mice (Figure 6¢ to 3e). The rate of disappearance

Rd) and glycolysis were also lower in cPLA2KD’" mice compared with GFPS" mice (Figure 6f and
glycoly
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6g). However, endogenous glucose production (EGP) was not different between the two experimental
groups (Figure 6h and 6i), suggesting that glucose utilization, rather than EGP, was impaired in
cPLA2KDS" mice. In agreement with this, cPLA2KDS" mice showed decreased 2DG uptake in the red
part of gastrocnemius muscle (GR) compared with control mice (Figure 6j). 2DG uptake in white
adipose tissue (WAT) and the brain (cortex) were similar between groups (Figure 6k and 61).

To assess changes in neuronal activation, we next analyzed cFos expression in cPLA2KD’" mice
compared with controls. Glucose-induced cFos expression in the dmVMH of cPLA2KD®" mice was
blunted compared with glucose-injected control mice (Figure 6m and 6n). The glucose-induced cFos
expression in either vVIVMH or ARC was not changed after the knockdown of cPLA2 (Figure 6m and
60).

Taken together, our data suggest that cPLA2-mediated prostaglandin production regulates glucose-

induced activation of dmVMH neurons to control insulin sensitivity in muscle.

High fat diet decreases AA-containing phospholipids and produces prostaglandins in the
hypothalamus

High-fat-diet (HFD) induces inflammation and impairs hypothalamic functions™. Long chain
fatty acyl CoA, a proinflammatory signal, accumulates in the hypothalamus during HFD feeding™. Thus,
we examined the effect of HFD on lipid distribution in the hypothalamus. In mice fed an HFD for 8
weeks, the signal intensities for FAs, including AA, were greater in the ARC but not the VMH than
those observed in control mice fed a RCD (Figure 8a to 8c). However, signal intensities for
phospholipids in the hypothalamus were lower in HFD-fed mice (Figure 8d to 8f). In both the VMH and
ARGC, the signal intensities for PI (18:0/20:4), PI (18:1/20:4), PE (18:0/20:4), PE (p18:0/20:4) and PS
(18:0/22:6) were significantly decreased in HFD-fed mice (Figure 8e and 8f). Because PLA2 generates
AA from these phospholipids to regulate cellular activities, we next analyzed the activity of
hypothalamic cPLA2 and found that cPLA2 activity was higher in HFD-fed mice compared with RCD-
fed mice (Figure 8g). However, the activity of secretory phospholipase A2 (sPLA2) remained similar
between RCD- and HFD-fed mice (Figure 8h).

We next explored the effect of HFD on the production of eicosanoids in the hypothalamus by
LC-MS (Figure 8i and Figure 9). In HFD-fed mice, COX-mediated production of prostaglandins,
including PGD2, PGF2a, PGE2, 11-beta-13,14-dihydro-15-keto-PGF2a, 13,14-dihydro-15-keto-PGD2
and 20-hydroxy-PGF2a, was increased compared with RCD-fed mice (Figure 8j to 80). Only 12-HETE,

an eicosanoid mediated by lipoxygenase, was significantly increased after HFD feeding (Figure 9).

Knockdown of pla2g4a improves HFD-induced impairment of glucose metabolism and recovers
glucose responsiveness of the viVMH and ARC to hyperglycemia.

To understand the role of HFD-induced activation of hypothalamic cPLA2, we fed cPLA2KDS"
mice with HFD and examined the role of cPLA2 on glucose metabolism. Body weight and tissue weight

of HFD-fed cPLA2KD®" mice (cPLA2KD’"-HFD) were comparable to those of HFD-fed control
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GFP5" mice (GFPS"'-HFD) (Figure 10a and Figure 11). Unlike RCD-fed mice, knockdown of cPLA2 in
Sfl neurons increased glucose tolerance (Figure 10b). However, insulin tolerance test showed no
difference between groups (Figure 10c). In GFPS"-HFD mice, no significant changes in cFos-positive
neurons in the VMH or ARC were observed after glucose injection compared with saline injection
(Figure 10d to 10f). However, in cPLA2KDS"-HFD, the number of cFos-positive neurons were
significantly higher in the vIVMH and ARC after glucose injection compared with saline injection,
suggesting that cPLA2 knockdown improved neuronal responsiveness to glucose (Figure 10d to 5f).
To understand the role of hypothalamic cPLA2 on glucose metabolism in HFD-fed mice, we
performed hyperinsulinemic—euglycemic clamping (Figure 10g to 10m). To maintain euglycemia, GIR
was significantly higher in cPLA2KD’"-HFD than in GFPS"-HFD (Figure 10g to 10i). Unlike RCD-fed
mice, glucose utilization (Rd and glycolysis) in HFD-fed mice was not altered by knocking down cPLA2
(Figure 10j and 5k). In contrast, insulin inhibition of EGP was stronger during the clamp period in
cPLA2KDS"-HFD mice than in GFPS"-HFD (Figure 101 and 5m). These results suggest that cPLA2 in
the VMH has a deteriorative role in the glucose responsiveness of the vVIVMH/ARC and attenuates
hepatic insulin sensitivity during HFD-induced obesity. These data suggest that the role of cPLA2 and
the mechanism to change glucose metabolism and neuronal activity by prostaglandins are different

between HFD and RCD.

Knockdown of cPLA2 in Sfl neurons prevents hypothalamic inflammation

We examined the effect of cPLA2 knockdown on hypothalamic inflammation, which attenuates
neuronal functions, in HFD-fed mice. The mice were fed with a RCD or HFD for 8 weeks, and
inflammation was measured by comparing the number of microglia and the astrocyte population. For
this experiment, we used Ibal and GFAP as markers of microglia and astrocytes, respectively (Figure
12). The number of Ibal cells was increased in the ARC but not in the VMH after mice were fed with
an HFD (Figure 12a to 12c¢). The numbers of Ibal cells in the ARC, but not the VMH, were significantly
decreased in a cPLA2KDS"-HFD compared with a GFPS"-HFD (Figure 12b and 12c). HFD also
increased the number of GFAP cells in the ARC, but not in the VMH, compared with mice fed a RCD
(Figure 12d to 12f). In the ARC, the number of GFAP-positive cells decreased in the cPLA2KDS"-HFD
mice compared with GFPS"-HFD mice (Figure 12e and 12f), suggesting that cPLA2 in the VMH has an

influence on inflammation in the ARC.
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Figure 1. Hyperglycemia increases prostaglandin production derived from phospholipids.
(a and b) Representative results of imaging mass spectrometry (IMS) showing distributions of
hypothalamic fatty acids (a) and phospholipids (b) from untreated RCD-fed mice. The dashed
black line shows the position of the VMH. Scale bar: 500 pm. (c to h) Distributions of
phospholipids and fatty acids in the hypothalamus 30 min after injection of saline or glucose
(2 g/kg). (c and f) Representative results of IMS on hypothalamic phosphatidylinositol (PI)
(18:1/20:4) (c) and arachidonic acid (AA) (f) from mice 1.p. injected with saline (left half) or
glucose (right half). Scale bar: 500 um. (d and e) Relative intensities of phospholipids in the
VMH (d) and ARC (e) after injection with saline (n=5) or glucose (n=4). (g and h) Relative
intensities of fatty acids in the VMH (g) and ARC (h) after injection with saline (n=5) or
glucose (n=4). (i to m) LC-MS results showing the effects of glucose injection on AA
metabolites in the whole hypothalamus. (i) Relative amounts of hypothalamic prostaglandins
mediated by cyclooxygenase. (j) 6-keto-PGF1a, (k) PGD2, (1) 13,14-dihydro-15-keto-PGF2a
and (m) PGE2 were increased by glucose injection. n=5 in each experimental group. (d) to (h)
and (j) to (1) represent the mean + SEM; * = p<0.05; ** = p<0.01; *** = p<0.001.
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Figure 2. Effects of glucose on lipoxygenase or cytochrome P450 mediated eicosanoids in
hypothalamus

Relative amounts of hypothalamic eicosanoids mediated by lipoxygenase (a) or cytochrome
P450 (b) after the injection of glucose compared with saline injected mice. n=3 in each
experimental group. Data represent the mean fold change in color.
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Figure 3. Hypothalamic PLA2- and COX-mediated AA metabolism regulates systemic
glucose tolerance and modulates glucose responsiveness in the dmVMH.

(a) Glucose tolerance test (GTT) (0—120 min) after intra-hypothalamic injection (—30 min) of
MAFP (n=7) or vehicle (n=7). (b) Blood insulin concentration of MAFP (n=7) or vehicle (n=7)
injected mice during GTT. (c) GTT (0-120 min) after intra-hypothalamic injection (—30 min)
of indomethacin (n=7) or vehicle (n=7). (d) Blood insulin concentration of indomethacin (n=7)
or saline (n=7) injected mice during GTT. (e) Representative micrographs showing
immunofluorescent cFos staining in the hypothalamus of saline (upper panels) or glucose
(lower panels) injected mice after i.c.v. injection of PBS, MAFP or indomethacin (indo). Scale
bar: 500 um. dm: dorsomedial, c: central, vl: ventrolateral part of the VMH. (f and g)
Quantification of cFos expression in the dorsomedial (dmVMH), central (cVMH) and
ventrolateral (vIVMH) subregions of the VMH (f) and ARC (g) from mice injected with saline
or glucose after i.c.v. injection of PBS, MAFP or indomethacin (n=3 in each experimental
group). All data represent the mean = SEM; * = p<0.05; ** = p<0.01; *** = p<(0.001; **** =
p<0.0001.
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Figure 4. Hypothalamic PLC-mediated-pathway does not affect systemic glucose
metabolism.

(a) Glucose tolerance test (GTT) (0—120 min) after intra-hypothalamic injection (-30 min) of
Xestospondin, an IP3 receptor antagonist, (n=7) or vehicle (n=7). (b) GTT (0-120 min) after
intra-hypothalamic injection (-30 min) of U73122, a phospholipase C (PLC) inhibitor, (n=7) or
vehicle (n=7). All data represent the mean = SEM
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Figure 5. Knockdown of cPLA2 in Sfl neurons does not affect body and tissue weight.
(a) Construct of AAV8-DIO (CreOn)-shRNA against mpla2g4, containing DIO (Double-
floxed Inverted Open reading frame) to express shRNA Cre-dependently. (b) Representative
micrographs showing virus infected (tdTomato) and shRNA expressing (GFP) Sfl-neurons.
Scale bar: 500 um. (c¢) Expression of pla2g4a mRNA in the whole hypothalamus injected
with AAV8-DIO-shRNA against mpla2g4 (cPLA2KDS™; n=3) compared with control mice
(GFPSt; n=3). (d) Body weight and tissue weight in cPLA2KDS"! mice (n=5) and GFP5! mice
(n=5). (IWAT: inguinal white adipose tissue. EWAT: epididymal white adipose tissue.
mesentWAT: mesenteric white adipose tissue. BAT: brown adipose tissue.)

All data represent the mean + SEM
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Figure 6. Knockdown of Sfl-neuronal pla2g4a impairs systemic glucose metabolism.

(a) Glucose tolerance test in cPLA2KD 5! (n=6) and GFPS!! mice (n=6). (b) Insulin tolerance
test in cPLA2KDS!! (n=6) and GFPS" mice (n=6). (C-L) Hyperinsulinemic—euglycemic
clamp studies in cPLA2KDS! and GFPS!! mice. (¢) Blood glucose levels during
hyperinsulinemic—euglycemic clamp studies in cPLA2KDS™ or GFPS™ mice. (d) The glucose
infusion rate (GIR) required to maintain euglycemia during the clamp period in cPLA2KDS!
(n=7) or GFP5" mice (n=7). (¢) The average GIR between 75 and 115 min in cPLA2KDS"
(n=7) or GFP%" mice (n=7). (f) The rate of glucose disappearance (Rd) during the clamp
period, which represents whole-body glucose utilization. (g) The rates of whole-body
glycolysis in cPLA2KDS! (n=7) or GFPS! mice (n=7). (h) Endogenous glucose production
(EGP) during both the basal and clamp periods in cPLA2KDS™ (n=7) or GFPS™ (n=7). (i)
Insulin-induced suppression of EGP in cPLA2KDS! (n=7) or GFPS!! (n=7). (j-1) Graphs
showing 2-['*C]-Deoxy-D-Glucose uptake in red portions of the gastrocnemius (GR; j), white
adipocyte (EWAT; k) and brain (cortex; 1) during the clamp period in cPLA2KDS (n=7) or
GFP®™ mice (n=7). (m) Representative micrographs showing immunofluorescent cFos
staining in the hypothalamus of cPLA2KDS! and GFPS!! mice after saline or glucose injection
(3 g/kg). Scale bar: 500 um. (n and o) Quantification of cFos expression in the dmVMH,
cVMH, vIVMH and ARC of ¢cPLA2KDS! or GFP! mice after saline (n=3) or glucose (n=3)
injection (3 g/kg). All data represent the mean + SEM; * = p<0.05; ** = p<0.01; *** =
p<0.001; *#¥* = p<0.0001.
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Figure 7. Knockdown of astrocytic cPLA2 in hypothalamus (cPLA2KDCFAP) did not
change body weight and glucose metabolism.

(a) Construct of AAV8-GFAP-Cre-mCherry and AAV8-DIO-shRNA against mpla2g4 and
representative micrographs showing virus infected (tdTomato) and shRNA expressing (GFP)
astrocytes in the ARC. Scale bar: 25 pm. (b) Relative expression of cPLA2 in the
hypothalamus of cPLA2KDSFAP and control mice. n=3 in each experimental group. (c)
Glucose tolerance test in cPLA2KDSFAP mice (n=10) and GFPSFAP mice (n=9). (d) Insulin
tolerance test in cPLA2KDSFAP mice (n=10) and GFPSFAP mice (n=9). (¢) Body weight
change in cPLA2KDSFAP mice (n=10) and GFPSFAP mice (n=9) after viral injection. All data
represent the mean + SEM.
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Figure 8. HFD feeding increases prostaglandin production derived from phospholipids.
(a—f) Distributions of fatty acids and phospholipids in the hypothalamus in RCD- or HFD-fed
mice for 8 weeks. (a and d) Representative results of IMS on hypothalamic arachidonic acid
(AA) (a) and PI (18:1/20:4) (d) from RCD-fed mice (left) or HFD-fed mice (right). Scale bar:
500 um. (b and ¢) Relative intensities of fatty acids in the VMH (b) or ARC (c¢) of RCD- (n=5)
or HFD-fed mice (n=4). (e and f) Relative intensities of phospholipids in the VMH (e) or ARC
(f) of RCD- (n=5) or HFD-fed (n=4) mice. (g and h) Enzymatic activity of hypothalamic cPLA2
(g) and sPLA (h) in RCD- (n=5) or HFD-fed (n=5) mice. (1) Relative amounts of prostaglandins
in the hypothalamus after 8 weeks in HFD-fed mice (n=3) compared with those of RCD-fed
mice (n=3). (j—o) Bar graphs showing COX-mediated production of (j) PGD2, (k) PGF2a, (1)
PGE2, (m) 11-beta-13,14-dihydro-15-keto-PGF2a, (n) 13,14-dihydro-15-keto-PGD2 and (o)
20-hydroxy-PGF2a in 8 weeks of HFD-fed mice (n=3) compared with RCD-fed mice (n=3).
All data represent the mean + SEM; * = p<0.05; ** = p<0.01; *** =p<0.001; **** =p<0.0001.
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Figure 9. Effects of HFD on lipoxygenase or cytochrome P450 mediated eicosanoids in
hypothalamus
Relative amounts of hypothalamic eicosanoids mediated by lipoxygenase (a) or cytochrome
P450 (b) in RCD or HFD fed mice. n=3 each experimental group. Data represent the mean fold
change in color.
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Figure 10. Knockdown of cPLA2 improves HFD-induced impairment of glucose
metabolism.

(a) Body weight change in ¢cPLA2KDS™ mice (n=12) and GFP5! mice (n=10). (b) Glucose
tolerance test on cPLA2KDS™! mice (n=12) and GFP5!! mice (n=10). (c) Insulin tolerance test
on cPLA2KDS" (n=8) mice and GFPS! mice (n=6) during 8 weeks of HFD feeding. (d)
Representative micrographs showing immunofluorescent cFos staining in the hypothalamus of
HFD-fed cPLA2KDS!! and GFPS! mice after saline or glucose injection. Scale bar: 500 um. (e
and f) Quantification of cFos expression in the dmVMH, cVMH, vIVMH (e), and ARC (f) of
HFD-fed cPLA2KDS!! or GFPS"! mice after saline or glucose injection (n=3-5 in each
experimental group). (g-m) Hyperinsulinemic—euglycemic clamp studies in HFD-fed
cPLA2KDS! (n=7) or GFPS!! (n=7) mice. (g) Blood glucose levels during hyperinsulinemic—
euglycemic clamp studies in HFD-fed ¢cPLA2KDS!! (n=7) or GFPS! (n=7) mice. (h) The
glucose infusion rate (GIR) required to maintain euglycemia during the clamp period in
cPLA2KDS! (n=7) or GFPS! (n=7) mice. (i) The average GIR between 75 and 115 min in
cPLA2KDSf! or GFPS! mice. (j) The rate of glucose disappearance (Rd) during the clamp
period, which represents whole body glucose utilization. (k) The rates of whole-body glycolysis
in cPLA2KDSf! or GFPS! mice. (1) Endogenous glucose production (EGP) during both basal
and clamp periods in cPLA2KDS! or GFPS™ mice. (m) The percent-suppression levels of EGP
induced by insulin infusion in cPLA2KDS!! (n=7) or GFPS!! (n=7) mice. All data represent the
mean + SEM; * = p<0.05; ** = p<0.01.
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Figure 11. Knockdown of ¢cPLA2 in Sfl neurons does not affect body and tissue weight.
Body weight and tissue weight in cPLA2KDS™ mice (n=5) and GFP5" mice (n=5) after 8
weeks of HFD feeding. (IWAT: inguinal white adipose tissue. EWAT: epididymal white
adipose tissue. mesentWAT: mesenteric white adipose tissue. BAT: brown adipose tissue.)
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Figure 12. Knockdown of cPLA2 prevents HFD-induced microgliosis and astrogliosis.
(a) Representative micrographs showing immunofluorescent Ibal staining in the hypothalamus
of RCD-fed GFP5! mice (GFPS'-RCD), HFD-fed GFP5!! mice (GFPS'-HFD) and HFD-fed
cPLA2KDS™ (¢cPLA2KD3"-HFD) mice. Scale bar: 500 um. (b and ¢) Quantification of Ibal-
positive cells in the VMH (b) or ARC (c¢) of GFPS'-RCD (n=5), GFPS"'-HFD (n=8) and
cPLA2KDS"'-HFD (n=5) mice. (d) Representative micrographs showing immunofluorescent
GFAP staining in the hypothalamus of GFPS!'-RCD, GFPS!'-HFD and ¢cPLA2KDS"-HFD mice.
Scale bar: 500 pm. (e and f) Quantification of GFAP-positive cells in the VMH (e) or ARC (f)
of GFPSTI-RCD (n=5), GFP5"'-HFD (n=8) and ¢cPLA2KD®"'-HFD (n=5) mice.

All data represent the mean + SEM; * = p<0.05; ** = p<0.01; *** =p<0.001; **** =p<0.0001.
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Table 1

Assignment to lipid molecular species by MS/MS negative ion mode.

Lipid assignment [M-H] (m/z)
Palmitic acid 255.25
Oleic acid 281.3
Stearic acid 283.35
Arachidonic acid 303.3
DHA 327.33
PE (p18:1/16:0), plasmalogen 700.6
PE (18:0/16:1) 716.6
PE (p18:0/20:4), plasmalogen 750.5
PS (18:0/16:0) 762.6
PE (18:0/20:4) 766.5
PE (18:0/22:4) 794.5
PS (18:0/20:4) 810.6
PS (18:0/22:6) 834.6
PI (16:0/20:4) 857.6
PI (18:1/20:4) 883.55
PI (18:0/20:4) 885.77
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Discussion

The roles of hypothalamic phospholipids and eicosanoids in the regulation of energy homeostasis is ill-
defined. In this study, we found that the composition of phospholipids in the hypothalamus, especially
AA attached phospholipids, are dynamically affected by blood glucose levels. cPLA2 in the VMH plays
an important role in AA metabolism to produce prostaglandins and increase insulin sensitivity in muscle
during hyperglycemia in RCD-fed mice. cPLA2-mediated phospholipid metabolism also regulates
glucose-responsiveness in the dmVMH. HFD feeding, which promotes hyperglycemia, continuously
activates cPLA2 and produces prostaglandins. The increased prostaglandins by HFD feeding could be
a reason to induces inflammation in the hypothalamus and impairs glucose-sensing, by which attenuates
insulin sensitivity in peripheral organs. Therefore, cPLA2-mediated phospholipid metabolism in the
hypothalamus is critical for the physiological and pathological control of systemic glucose homeostasis.
FAs and PUFAs are believed to be transported from the bloodstream to the hypothalamus, and
FA metabolism in the hypothalamus changes food intake and energy expenditure’***>. However, we
observed reductions in AA-containing phospholipids and increases in prostaglandins in the
hypothalamus after glucose injection. This suggests that AA is produced from intrinsic membrane
phospholipids in the hypothalamus to make eicosanoids during hyperglycemia. Interestingly, the
quantity of hypothalamic AA is not changed by hyperglycemia, suggesting production of prostaglandin
from AA is increased to respond hyperglycemia. In line with this, inhibition of prostaglandin production
by injecting COX inhibitor impaired glucose tolerance. It has been reported that FA oxidation by
carnitine palmitoyltransferase 1 in the VMH plays important roles in food intake and energy
homeostasis®®. However, our data showed that the cPLA2 in Sfl neurons has a minor effect on changes
in body weight and tissue weight. This suggests that cPLA?2 in Sf1 neurons controls glucose metabolism,
but not body weight regulation, and it is likely that FAs generated from phospholipids are utilized for
prostaglandin production.
AA exists in the sn-2 position of phospholipids, and cPLA?2 is the rate-limiting enzyme for catalyzing
AA by extracellular stimulation. cPLA2 is activated by an increase in the intracellular calcium
concentration and by the phosphorylation of 505-serine residue, which is induced by the MAP kinase
pathway®’. The mechanism that activated cPLA2 in our study remains to be elucidated. However, we
found that the glucose-induced activation of the dmVMH is dependent on prostaglandin production by
Sfl neurons. Sfl neurons exist mainly in the dmVMH and ¢VMH, and most AA-containing
phospholipids were found near the third ventricle in our study. Therefore, the hyperglycemia-induced
prostaglandin production occurs in the medial part of the hypothalamus and affects neuronal activity in
this region probably via changes in ion channel activities®®. Similarly, prostaglandins regulate glucose-
induced insulin secretion (GSIS) from pancreatic beta cells*. GSIS is the most studied mechanism of
glucose-sensing. Thus, it is possible that a similar mechanism for prostaglandins affecting GSIS may be
involved in the hypothalamic glucose sensing. Neurons in the vIVMH and ARC are also glucose sensing
neurons***'. In line with this, we showed increased c-Fos expression after glucose injection in healthy

mice. However, the both regions remained glucose responsiveness after injection of cPLA2 inhibitor,
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suggesting the prostaglandins play a minor role in glucose-sensing of vVIVMH/ARC. interestingly, the
vIVMH/ARC has different roles with dmVMH in regulating glucose metabolism: The vIVMH/ARC
regulates glucose production in liver and the dmVMH controls glucose expenditure in skeletal muscle.
These results corresponding with that chemoactivation of Sfl neurons in dmVMH increases 2DG uptake
rather than changes gluconeogenesis in liver’.

Sf1 neurons are critical for the regulation of whole body energy homeostasis™**. Activation of VMH
neurons increases glucose uptake in skeletal muscle and BAT, but not in WAT or other organs*-*,
Similar results were found in mice with intra-VMH administration of leptin'*'**_ Leptin receptors
locate in the dmVMH and is required to maintain normal glucose homeostasis®*°. Approximately half
of glucose-sensing neurons in the VMH respond to leptin*’. Although the relationship between glucose-
sensing and leptin remained blurred, glucose-sensing by Sf1 neurons via UCP2 is critical for systemic
glucose metabolism®, suggesting glucose-sensing neurons regulates glucose metabolism independent of
leptin effects. Therefore, it is plausible that activation of the GE neurons in the dmVMH regulates insulin
sensitivity in skeletal muscle through cPLA2-mediated prostaglandin production.

A HFD feeding causes diet-induced-obesity (DIO) and a state of chronic, low-grade
inflammation occurs in several tissues, including the hypothalamus®. This hypothalamic inflammation
is accompanied by an accumulation of microglia, and these changes decrease activities of POMC and
AgRP neurons in response to several endocrine signals, such as leptin and insulin**. Additionally, a HFD
feeding increases astrogliosis in the ARC, paraventrical hypothalamus and dorsomedial hypothalamus,
but not the VMH®. Consistent with this, our data show that a HFD feeding induces microgliosis and
astrogliosis in the ARC but not the VMH, which indicates that the VMH has different inflammatory
responses to obesity*’. After the mice in this study were fed with HFD, FAs such as AA, OA, PA and
SA accumulated in the hypothalamus, especially in ARC. However, AA-containing phospholipids
decreased because of an increase in hypothalamic cPLA2 activity. Prostaglandins are proinflammatory
signals in the brain®® and knockdown of cPLA2 in Sfl neurons attenuates inflammation in the

hypothalamus.

Our data suggest that the cPLA2-mediated production of prostaglandins in Sfl neurons enhances
inflammatory responses in the whole hypothalamus, including the ARC. Even though Sf1 neurons exist
dmVMH, the prostaglandin production originated from the dmVMH may enhance inflammatory
responses in the whole hypothalamus, including the ARC and vIVMH. Our results showed HFD feeding
destroyed neuronal glucose-sensing in the vVIVMH of control mice. This impairment of glucose-sensing
in vVIVMH was recovered in cPLA2KD*" mice accompany with ameliorated hypothalamic inflammation.
Therefore, the cPLA2 may serve as a deteriorative role in the glucose-sensing of the vIVMH/ARC by
inducing hypothalamic inflammation. It is likely that the long-term production of prostaglandins, which
has a physiological role in glucose metabolism in RCD-fed mice, initiates HFD-induced inflammation

and impairs glucose-sensing.

We also found that a HFD feeding abolished the increase in cFos expression induced by glucose in the

VMH and ARC, which is consistent with the report that DIO decreases glucose sensing by VMH and
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POMC neurons®"*!. In HFD fed mice, the glucose-sensing of vIVMH and ARC were improved by
knockdown of cPLA2. However, this improvement was not observed in the dmVMH, which senses
glucose through cPLA2-dependent mechanism. This indicates that the attenuation of glucose sensing
has already occurred in the dmVMH of HFD-fed mice by knockdown of cPLA2, thus the dmVMH of
cPLA2KD*" mice could not respond to the glucose injection like vIVMH after HFD feeding.

Our data suggest that inflammation of the hypothalamus contributes to attenuating glucose sensing by
the VMH and ARC. POMC and AgRP neurons are reported to regulate hepatic insulin sensitivity, but
not muscle glucose metabolism'”'®*! Therefore, the improvement of the neuronal activity in the ARC
contributes to restoring glucose metabolism by changing insulin sensitivity in the liver. Although
knockdown of cPLA2 impaired glucose-sensing of dmVMH, it is supposed that knockdown of cPLA2
recovered part of neuronal functions in dmVMH by ameliorating hypothalamic inflammation.

Aspirin, a COX inhibitor, suppresses insulin sensitivity in healthy human®*~*, but improves insulin
resistance in diabetic patients®®. Our results were in a good agreement with the human studies. The
hypothalamic prostaglandin production may be critical for the effects of aspirin on the whole body

insulin sensitivity.

In summary, our study shows that the cPLA2 is fundamental for the function of the hypothalamus in
regulating glucose homeostasis (Figure 13). In RCD fed mice, neuronal cPLA?2 is necessary for glucose-
sensing of dmVMH to control blood glucose levels. However, cPLA2 in the VMH has the critical role
in inducing hypothalamic inflammation. Mice with knockdown of cPLA2 in Sfl neurons resist diet-
induced hypothalamic inflammation and keep the function vIVMH to respond to glucose. Therefore, the
role of cPLA2-mediated eicosanoid production in the hypothalamus is different between RCD and HFD.
Our findings provide novel evidence that cPLA2-mediated phospholipid metabolism in hypothalamic

neurons plays an important role in systemic glucose metabolism.
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Figure 13. Graphic abstract
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Conclusion

The hypothalamus is the central region to regulate physiological responses such as feeding, sleeping and
thermal homeostasis. This region also plays a critical role in regulating glucose homeostasis by detecting
blood glucose level and controls peripheral glucose utilization and hepatic glucose production. Obesity
disturbs hypothalamus-regulated glucose homeostasis. Deciphering the mechanism of hypothalamic
glucose-sensing and how obesity impairs glucose-sensing will provide new strategies to develop therapy
for diabetes and obesity.

The brain is enriched with phospholipids containing poly-unsaturated fatty acids, which regulate several
physiological responses by themselves or their metabolites including prostaglandins. However, the
relationship between hypothalamic prostaglandins and systemic glucose metabolism is unclear. In
addition, whether diet-induced obesity affects production of hypothalamic prostaglandins is also
unknown. Therefore, this study aims to understand the role of hypothalamic prostaglandins in glucose-
sensing by which regulates systemic glucose metabolism.

In this study, distribution of several phospholipids includes phosphatidyl-inositol (PI), phosphatidyl-
ethanolamine (PE) phosphatidyl-serine (PS) in the hypothalamus was revealed by image mass
spectrometry. Compared to saline injection, intraperitoneal glucose injection decreased amounts of PI
(18:0/20:4), PI (18:1/20:4) and PE (18:0/20:4) in the hypothalamic ventromedial nucleus (VMH), and
PI(18:0/20:4), P1(18:1/20:4), PE (18:0/20:4) and PS (18:0/16:0) in the arcuate nucleus (ARC). Most of
these phospholipids contained a hydrophobic tail of arachidonic acid (AA), suggesting glucose injection
may enhance AA releasing form the phospholipids. Liquid chromatography—mass spectrometry (LC-
MS) revealed the amounts of metabolites of AA such as 6-keto-PGF1a, PGD2, 13,14-dihydro-15-keto-
PGF2a and PGE2 increased after glucose injection.

Pharmacological inhibition of cytosolic phospholipase A2 (cPLA2), a key enzyme for generating AA
from phospholipids, in the hypothalamus impaired systemic glucose metabolism and glucose-sensing of
VMH. The same results were observed by inhibition of cyclooxygenase 1/2 (COX1/2), enzymes for
prostaglandin production, suggesting the phospholipid-derived AA plays an important role in regulating
hypothalamic glucose-sensing by increasing hypothalamic prostaglandins. In control mice,
intraperitoneal glucose injection increased cFos expression in the VMH and ARC suggested the
existence of glucose-sensing neurons. Inhibition of hypothalamic cPLA2 or COX1/2 abolished the
glucose-induced cFos expression in the dorsomedial-VMH (dmVMH), suggesting the AA plays an
important role in glucose-sensing.

To understand the role of phospholipid-derived AA specifically in the VMH, cPLA2 was knocked down
in steroidogenic factor 1 neurons of the VMH by delivering short-hairpin RNA against plaZg4a.
Knockdown of cPLA2 in the VMH during regular chow diet (RCD) feeding did not affect body weight
and tissue weight. However, the knockdown mice had lower glucose tolerance and insulin sensitivity,
which were consistent with the results by pharmacological inhibition of cPLA2 or COXI1/2.
Hyperinsulinemia-euglycemia clamp study showed this impairment was caused by decreased glucose

utilization of skeletal muscle rather than hepatic glucose production. Glucose induced cFos expression
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was abolished by knockdown of cPLA2 in the dmVMH. Therefore, the phospholipid-derived AA in the
VMH regulated neuronal glucose-sensing.

The high fat diet (HFD) which impairs systemic glucose metabolism blunted glucose-sensing and
abolished glucose-induced cFos expression in the VMH. The amounts of PI (18:0/20:4), PI (18:1/20:4),
PE (18:0/20:4), PE (18:0/20:4) and PS (18:0/22:6) were decreased after 8 weeks of HFD feeding. The
hypothalamic cPLA2 activity was higher in HFD fed mice than in RCD fed mice. Moreover, PGD2,
PGF2a, PGE2, 11-beta-13,14-dihydro-15-213 keto-PGF2 a, 13,14-dihydro-15-keto-PGD2 and 20-
hydroxy-PGF2 a also increased after HFD feeding, suggesting the production of prostaglandins from
phospholipid-derived AA was increased.

The AA and prostaglandins are inflammatory factors. They accumulate in the hypothalamus in HFD fed
mice and result in hypothalamic inflammation and impairment of neuronal functions. The increased AA
and prostaglandins were caused by HFD induced overactivation of cPLA2, which agreed with the role
of cPLA2 in inflammatory responses. Knockdown of cPLA2 in the VMH improved the down-regulation
of hypothalamic glucose-sensing and glucose tolerance by HFD feeding. During HFD, the knockdown
mice had recovered glucose-sensing in ventrolateral-VMH (vIVMH) rather than dmVMH. The impaired
glucose-sensing of VMH was recovered in the vIVMH but not dmVMH because of a cPLA2 dependent
pathway in dmVMH. Hyperinsulinemia-euglycemia clamp indicated the improved systemic glucose
metabolism was caused by enhanced suppression of hepatic glucose production, which suggested the
hepatic insulin sensitivity was increased. Further investigation of the role of cPLA2 in the HFD fed mice
showed knockdown of cPLA2 ameliorates HFD-induced hypothalamic inflammation. Our data
suggested that cPLA2-mediated phospholipid metabolism is critical for glucose-sensing of VMH by
which controls systemic glucose metabolism during RCD. However, continuous activation of the same
cPLA2-mediated pathway produces prostaglandins during HFD by which causes hypothalamic
inflammation deteriorates glucose-sensing and systemic glucose metabolism. Moreover, we found that
the dmVMH and vIVMH have different roles in regulating glucose-metabolism: the dmVMH regulates
glucose utilization of skeletal muscle while the vIVMH control hepatic glucose production. This study
reveals a new mechanism of diet-mediated metabolic disorders and will provide a direction for

development of new therapy for diabetes.
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