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FINITE VOLUME METHOD ON THE UNSTRUCTURED GRID SYSTEM 

Nobuyuki TANIGUCHI and Toshio KOBAYASHI 

Institute of Industrial Science 

University of Tokyo, Tokyo, 106 Japan 

Abstract 

Applying the Voronoi diagram to the cell system for the 

finite volume method, a new method on the unstructural grid 

is constructed for the incompressible steady flow 

simulation. In this method, the SIMPLE algorithm can be 

applied with little expansion. The turbulent flow around the 

two-dimensional vehicle model is simulated with the k-e 

turbulence model by this method. Comparing the calculation 

result with another result by the structural grid system and 

the experimental data, the new method is confirmed to be 

available for the simulation of the complex flow fields. 
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l. Introduction 

Flow simulation techniques on the general coordinate system, based 

on the finite difference method (FDM) or the finite volume method (FVM), 

have been expanding the applications of Computational Fluid Dynamics. 

The grid generation, however, becomes a serious problem in these 

simulations. It is often difficult to define the appropriate grid 

systems, not only in the realistic simulations but also in the simple 

and basic ones. 

Otherwise, unstructural grid systems will be available for the flow 

simulations of complex geometries. Though the finite element method 

(FEM) has been applied to them [ref.l], it generally needs more 

computational time or memory size than the FDM or the FVM, especially in 

steady flow simulations. The calculation with the time-averaged 

turbulence model such as k- e model or Reynolds stress model is a major 

problem in the recent applications of the flow simulation [ref.2]. Most 

of them were performed by the FDM or the FVM on the structural grids. 

In -this study, we propose a new conceptual method based on the FVM 

[ref.3], where much of the previous research using the structural grids 

can be directly introduced, especially in the case of the turbulent flow 

simulations. In this new method, a Voronoi diagram is adopted to divide 

the calculation domain into the control cells for the FVM, where the 

discretized forms are derived in the same way as the previous method on 

the structural grid system. Therefore, most of the concepts of 

algorithms or boundary conditions can be also available in the 

unstructural grid systems. 

The above concept of the discretization has been researched in 

simulating heat transfer [ref.4,5] though there are few application to 

high Reynolds number flows. 

2. Discretization on a Voronoi Diagram 
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A successful method based on the FVM was proposed by Patankar 

[ref.6] on the Cartesian coordinates and some researchers expanded it 

for the grid system along the general coordinates (7-10]. According to 

these methods, the basic equations are integrated in each control cell 

to derive the discretized equations from them. In the simulations of the 

incompressible flow, the basic equations are generally expressed as the 

conservation of physical values, such as mass or momenta. The integrated 

form for a general variable is, 

ill:~ dV=JjJ·dn+ills dV (1) 

¢ a general variable or a component of vector, 

J ( = v ¢ - r V ¢) : total flux of ¢ through the faces, 

v velocity vector, 

S source of ¢ in the cell. r : diffusive coefficient, 

jj d n surface integration by the normal vector, 

ill d V volume integration in the cell. 

It can be indicated that a new cell generation technique may 

produce a new discretization method because the above equation does not 

restrict the shapes of cells. We consider that the control cells must 

satisfy the following conditions in order to apply the basic concepts of 

the above methods. 

1) The cells fill the whole of the calculation domain and are never 

superimposed. 

2) Each cell has one calculation point. 

Also, it is better to add the next conditions to keep the simplicity of 

the discretized form. 

3) Each cell can be approximated to the convex domain . 
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4) Cells are automatically defined by the general algorithm. 

The Voronoi diagram can be adopted on the unstructural grid systems 

under these conditions. The Voronoi diagram which expresses a concept in 

Computational Geometry defines the governing domains of the mother 

points distributed in the space [ref.11]. As Fig.l shows, the face "a" is 

the perpendicular bisector of the line segment joining XO to XL In a 

two-dimensional case, an intersection of the surfaces of three 

neighboring cells is defined as the center of the circumscribed circle 

for their mother points. 

Concerning the surface integrations of the Eq.(1), the discretized 

form in this method is derived as easily as in the method on the 

Cartesian coordinate system by Patankar because this cell system has the 

same local geometry in the respect to the neighboring mother points and 

their cell boundary face. Fo.r example, the total flux J through the face 

"a" can- be estimated in the local coordinates as follows. 

(2) 

JM (= u a) , JD (=r /dx) : convective and diffusive flux factors, 

¢ 1 , ¢ 0 : values at X1 and X0, ¢up: up-wind value, 

u a normal velocity component on face a • 

dx distance between X1 and X0. 
f( ) scheme function [ref. 4]. 

Central dif. f (P) = 1 - 0. 5* IP I 

Up Wind f (P) = 1 

Hybrid 

Power Law 

f (P) = max (0 ,1- .5* IP I) 

f (P) = max (0 ,(1- .l*I PI ) 5 ) 

In the same manner, the flux on each face can be estimated in its local 

coordinates. 

The volume integrations are calculated by the values at the mother 
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points. The weighted average techniques are adopted when estimating the 

gradient values. Finally, the discretized equation is written in the 

linearized form, that is, 

a O ¢ 0 = I a NB ¢ NB+ b ' (3) 

a, b : coefficients and constant term, 

0, NB (subscripts) indeces of the center and neiboring 

points. (Suming symbol refers to NB.) 

It is noted that the number of neighboring points depends on the shape 

of each cell, because it is defined by the Voronoi diagram instead of 

using any coordinate systems. 

3. SIMPLE Algorithm and Calculating Procedures 

The algorithm linking the continuity equation with the momentum 

equations has an influence on the calculation efficiency of the flow 

simulation method. Concerning the steady flow simulations, the SIMPLE 

algorithm by Patankar [ref.6] is successful in the structural grid 

system. The modified method for the non-staggered grid system was 

proposed by Rhie and Chow [ref.9]. It can be applied to the discretized 

equation (3) with little expansion. 

The continuity equation is also discretized by the above-mentioned 

method on the Voronoi cell system. 

[: JMnb = 0 • 

JM: the same definition as in the equation (2) on the 

cell surfaces nb. (Suming symbol refers to nb.) 

(4) 

In the SIMPLE method, an equation for the corrective pressure p' is 

derived from Eq.(4). According to the method by Rhie and Chow, the 
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contribution of the pressure to the mass flux JM on the face "a" is 

estimated directly by the values of the two points XO and Xl. The 

equation of p' is also written in the form (3). The iterative procedure 

of the SIMPLE algorithm can be applied without any corrections, and the 

relaxation factors are also the same values [ref.4]. 

The systems of equations expressed in the form (3) are able to be 

solved by the point-iterative procedure. The successive over relaxation 

(SOR) method is also effective by the optimization of the tracing order 

of the points for the parallel computations. In this case, the 

multicolors technique is adopted for ordering points [ref.12], in the 

concept of which the points are divided into some groups (namely colors) 

so that the points are not directly related each other; in other words, 

each point has a different color from its neighboring points in Eq.(3). 

As the points of each color are calculated in a step, the procedure of 

the SOR can be parallelized. 

The whole procedure for this method is as follows. 

1) Defining the calculation points 

2) Creating the cell system by the Voronoi diagram 

3) Calculating the geometry factors 

4) Setting the list-vectors for the array processing 

5) Iterative procedure of SIMPLE 

The fourth process arranges the list-vectors for optimizing the last 

process on the multi-colors technique. 

4. Applications 

Based on the above considerations, we have constructed a simulation 

method on the unstructural grid system for two-dimensional, 

incompressible, and viscous flow. For the stability of calculation, the 
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hybrid scheme [ref.6] is adopted, the form of which is identified with 

the second order central scheme or the first order upwind scheme 

according to the cell Pecret number. It can be applied to the 

simulations of the laminar and turbulent flow fields. In the turbulent 

flow cases of the present research, the standard k- e model [ ref .2] is 

adopted. The basic equations are shown as follows. 

a 

a xj 
( u. 

J 

a 
( u. 

ax. J 
J 

2,1 t 

a 1\ 
k)=--(-

a xj (\ 

a vt 
e)=--(-

ax. a 
J 

au __ l 

ax. 
J 

E: 

a k 

ax. 
J 

) + G - e 

a e 
)+ s e 

a X. k 
J 

where the five constants are fixed as 

2 
G- Cz e 

k 

(5) 

The differential equations of the turbulence energy k and the energy 

dissipation e can be discretized by the method mentioned in this paper. 

Concerning the wall boundary condition, the wall function based on the 

universal velocity law can be applied in the same manner as the previous 

FVM on the structural grid system. 

First in the laminar case, the flow in the square cavity with the 

driving wall is simulated. Two types of grids are adopted, one of which 

is a structural grid along the Cartesian coordinates (Fig.2a) and the 

other is unstructural (Fig.2b). The number of points is 1600 in both 

grids. In this simulation the Reynolds number is fixed as 1000 based on 

the width of the cavity and the wall-driving velocity. 
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Figures 3 and 4 are the stream lines and the velocity distributions 

in the center vertical section. They confirm the good agreement of the 

calculation results between the structured and unstructured grids. It 

can be supposed that the grid effects are comparably small in the 

present method. These results satisfactorily agree with those by the 

previous method based on the Cartesian grid using the same scheme and 

the same grid (Fig.2a) [ref.13], though the numerical diffusion may in

fluence the calculation results in such high Reynolds number flows. We 

can estimate the numerical errors according to the previous method. 

Next is the simulation of a more complicated flow field, which is 

the turbulent flow around a two-dimensional vehicle model. Composite 

grid techniques are more useful in such complex fields, because it is 

not easy to generate the appropriate grids in the whole region. They are 

easily applied when the unstructural grid system is permitted. In this 

case, the calculation grids are individually defined in the two regions, 

which are illustrated in Fig.5. The two grids are simply merged 

without the special techniques. The fields near the joint of the regions 

are also automatically divided into the control cells by the Voronoi 

diagram (Fig.6). 

-fig.5 

-fig.6 

-fig.7 

Figures 7 and 8 are the velocity field and the pressure contours, 

which indicate that the smooth solution is calculated by this method. 

The Reynolds number is adjusted to the experiment [ref.14], 2.1 millions 

based on the free stream velocity and the body length. In Fig.9, the 

pressure distribution predicted by the present method, is compared with 

that by the method on the general coordinates [ref.10], where the 
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calculation points near the vehicle body are identified in both methods. 

They agree sufficiently with each other and also with the experimental 

data [ref.11], at least in the forward half of the body. Because the 

disagreement in the backward half between the calculation and the 

experiment is supposed to depend mainly on the turbulence model and its 

boundary conditions, the present method, we consider, is available for 

the turbulent simulation as well as the structural grid method. In 

addition, it should be noted that the structured grid method predicts 

the pseudo peek at the front corner, otherwise the present methods is 

free from the grid singularity problems. 

-fig.9 

Concerning the convergence speed, the iteration numbers in the 

SIMPLE algorithm and the CPU times are compared in the table l. These 

calculations are performed on the high speed computer with the array 

processors, S820/80 produced by Hitachi, which has 2 GFLOPS maximum 

performance. For the method with the Voronoi diagram, the CPU time of 

the last process is displayed because the pre-processes (1-4) take only 

small computational time, less than 10 presents of the total CPU time on 

the scalar computation but can not be parallelized effectively. The last 

process was highly accelerated by the parallel computation with the 

multicolors technique. 

For the cavity flow, we refer the data of the previous method on 

the Cartesian grid [ref.12]. which adopted the same grid as A and the 

SIMPLE algorithm on the staggered system. In both simulations, the 

criterion of convergence is when the residuals of the momentum and mass 

equations (Eqs.(3),(4) in the present method) becomes less than 10-3. 

This. data indicates the new method requires only the same iterations as 

the reference methods. 

For the vehicle flow, the calculation time is compared with the 
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data of the reference method on the general coordinate system [ref.12], 

which also adopted the SIMPLE. Both simulation were performed by 500 

iterations of the SIMPLE algorithm, when the above criterion was almost 

satisfied in both cases. Considering the easiness of grid generation, 

the present method can be satisfactorily effective in calculational 

speed though it is lower than the general coordinate method. In the 

unstructured grid, the slowness of the data access with the list-vectors 

is suspected to cause the lower speed of calculation. It is noted that 

the present method has almost the same performance as the structured 

grid method in the convergence ratio to iterations. 

5. Con cl us ion 

Using the Voronoi diagram for the cell generation of the FVM, we 

derived the new simulation method on the unstructural grid system for 

incompressible steady flow. It is confirmed by the computations with the 

present method that it can be easily applied to the turbulent flow with 

complicated geometries. Its performance with regard to the convergence 

speed is as high as the previous methods on the structural grid. It is 

expected to expand the applications of the large scale and complex flow 

simulations by this method. 
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Figure 1 A concept of Voronoi diagram 
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Figure 2 Calculation grids for the square cavity flow 

(grid a :structural (40x40), grid b :unstructural) 
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unstructural(b) grids. (driving velocity = 1., 

cavity size = 1., increment per line = 0.0025) 
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calculated on the structural(a) and unstructural(b) 

grids. (driving velocity =l.) 
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Figure 5 An ilustration of the composite grid technique for 

the flow field around a vehicle model. 
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Figure 6 The cell system near the joint of grids by the Voronoi 

diagram. 
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Figure 7 Velocity field around a vehicle model calculated by 

the present method. 
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Figure 8 Contours of the pressure coefficient around a vehicle 

model calculated by the present method. 



Table 1 The iteration numbers of SIMPLE algorithm and the CPU 

times in the present calculations. 

Cavity Flow Vehicle flow 

A B Ref. Voronoi Ref. (BFC) 

Iteration No. 188 174 218 50 0 500 

CPU time(sec) 4. 2 - - 69 12 
No. of points 1600 1600 1600 6726 9375 

CPU time on the HITAC-S320/30 




