In-situ activation of anodized Ni-Fe alloys for the oxygen evolution reaction in alkaline media

Naohito Yamada,† Sho Kitano,‡ Yuya Yato,† Damian Kowalski,‡ Yoshitaka Aoki,‡ Hiroki Habazaki‡,*

† Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
‡ Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

Corresponding author: Phone & Fax +81-11-706-6575, e-mail habazaki@eng.hokudai.ac.jp
ABSTRACT

A simple anodizing technique has been employed to develop highly active electrocatalysts that can be applied to the oxygen evolution reaction (OER) in alkaline media. NiFe alloys were electrodeposited and anodized to form a porous electrocatalytic layer. This approach produces highly active electrodes without the need for noble metals, binders, or conductive carbon additives. The as-anodized electrode initially exhibits poor OER activity in 1.0 mol dm\(^{-3}\) KOH; however, the effects of potential cycling improve the OER activity to the extent that an overpotential as low as 0.26 V at 10 mA cm\(^{-2}\) is observed for the anodized Ni-11.8 at% Fe electrode. Although significant in-situ activation is achieved with anodized NiFe electrodes, this activation is less significant for as-deposited NiFe or anodized Ni electrodes. Furthermore, OER activity is observed to be composition dependent, with the Ni-11.8 at% Fe electrode exhibiting the greatest activity. A porous fluoride-rich, Fe-doped Ni oxyfluoride layer produced by anodizing is converted via potential cycling to an amorphous or poorly crystalline Fe-doped Ni(OH)\(_2\) layer with a nanoflake-like morphology. The high activity is maintained even after almost removal of fluoride. Thus, the F-rich, Fe-doped Ni oxyfluoride is a promising precursor to develop a highly active OER electrode.

KEYWORDS: electrocatalysts, oxygen evolution reaction, anodizing, Ni-Fe alloy, porous anodic film
INTRODUCTION

Because of the limited availability of fossil fuels and pertinent global environmental issues, hydrogen production via electrochemical water splitting using renewable resources is an important alternative for future energy economies. Hydrogen is currently produced from oil, coal, and natural gas by processes that generate greenhouse gases as byproducts. Although hydrogen-based fuel cells are commercially available, this technology still uses fossil fuels to produce hydrogen. Thus, it is necessary to develop clean hydrogen production technologies based on renewable resources such as solar, wind, water, and biomass energies.1

An obstacle to the use of electrochemical water splitting for clean hydrogen production is the sluggish kinetics of the oxygen evolution reaction (OER). The large overpotential required to generate hydrogen and oxygen from water reduces the efficiency of converting electricity to hydrogen. Although the oxides of Ru and Ir are highly active and durable during OER,2-3 their limited availability and high costs hinder their applicability for energy conversion and storage. Thus, extensive efforts have been directed toward the development of noble-metal-free electrocatalysts for the OER.

Transition metal oxides, oxyhydroxides, and hydroxides are promising candidates as OER electrocatalysts. Several strategies including nanostructuring and electronic structure control have been explored to enhance electrocatalytic activity. For example, Co oxide nanoparticles integrated into graphene and carbon nanotubes exhibit superior OER activity.4-7 Strong coupling between transition metal oxides or hydroxides and nanocarbons in nanohybrids significantly improves electrocatalytic activity.8-12 Transition metal oxides, spinel oxides,13 and perovskite oxides14 have attracted considerable attention as OER electrocatalysts. Transition metal hydroxides, layered double hydroxides (LDHs), and oxyhydroxides comprising first-row
transition metals (Fe, Co, and Ni) have also attracted considerable interest in the last decade. A significant degree of OER activity has been demonstrated by nanosheets of Ni(OH)₂ and Co(OH)₂ and their oxyhydroxides. Zhou et al. reported greatly enhanced OER performance using Fe-doped Ni(OH)₂ as compared to those of Ni(OH)₂ and NiFe LDH. The improvement in activity is attributed to the enrichment of active surface sites, large defects, and enhanced surface wettability. Co-Fe LDH nanosheets with an increased number of defect sites and vacancies exhibit outstanding catalytic OER activity, which is characterized by an overpotential of 232 mV at 10 mA cm⁻² and a Tafel slope of 36 mV per decade.

Although highly active noble-metal-free electrocatalysts have been found for the OER, several issues must be addressed before utilizing these electrocatalysts for water splitting. Nanostructured electrocatalysts need to be coated on the current collector using polymer binders such as polytetrafluoroethylene or Nafion. Inclusion of these binders inhibits mass transport due to the burying of catalytically active sites. Transition metal oxides, hydroxides, and oxyhydroxides are typically poor conductors, and additives such as carbon black must be mixed with the electrocatalysts to impart suitable electronic conductivity. However, corrosion of the carbon additives under OER conditions degrades the performance of the oxygen-generating anode. In addition, the coated catalysts often peel off from the substrate during long-term electrolysis, particularly at high current densities. Thus, conventional nanostructured electrocatalysts coated on current collectors with polymer binders and carbon additives do not meet the requirements of a practical OER anode for hydrogen production by water splitting.

Anodizing of metals and alloys is a promising means of directly fabricating an OER electrocatalyst on a metallic current collector. Fan et al. anodized an FeCoNi alloy in a fluoride-containing organic electrolyte to produce an amorphous oxide nanosheet on the alloy surface.
They reported an extremely low overpotential of \(\sim 170 \text{ mV at } 5 \text{ mA cm}^{-2}\) for the OER using the anodized alloy. They also reported that crystallization of the amorphous oxide via heat treatment substantially increased the overpotential of the OER, thereby highlighting the importance of the amorphous nature of the oxide. Schäfer et al. employed a hard anodizing technique in KOH electrolyte to convert the surface of the AISI 304 stainless steel into a highly active NiFe-based oxide layer.\(^{30}\) They reported an overpotential of \(212 \text{ mV at } 12 \text{ mA cm}^{-2}\) in \(1.0 \text{ mol dm}^{-3}\) KOH. The same group anodized AISI Ni42 steel at a high current density in NaOH to form a 5-\(\mu\)m-thick porous oxide layer.\(^{31}\) The anodized steel proved to be a good bifunctional electrocatalyst for the OER and hydrogen evolution reactions and exhibited good durability and better OER activity than those of IrO\(_2\)-RuO\(_2\) in neutral and alkaline electrolytes. Steel-based electrocatalysts for water splitting are well summarized in a recent review.\(^{32}\)

The electrodeposition and subsequent anodizing of alloys is an important approach for the direct fabrication of electrocatalysts. Dong et al. described the roll-to-roll fabrication of electrodeposited NiFe foils and subsequent anodizing to form highly active OER catalysts in an alkaline electrolyte.\(^{33}\) These electrodes exhibited an overpotential of \(251 \text{ mV at } 10 \text{ mA cm}^{-2}\) in \(1.0 \text{ mol dm}^{-3}\) KOH and prolonged stability. A porous Ni current collector was directly anodized in an organic electrolyte containing fluoride and various concentrations of FeCl\(_2\) to form well-mixed NiFe oxides.\(^{34}\) Park et al. combined an anodized NiFe OER electrode with an H\(_2\)-evolving NiMo electrode to split water in a perovskite/Si solar cell with a solar-to-hydrogen conversion exceeding 17%.\(^{35}\) These studies suggest that anodizing is a very useful strategy for fabricating practical water-splitting anodes. However, the active species and factors that influence the activity and durability of anodically formed layers in the OER need to be further investigated.
In the present study, several compositions of NiFe alloys are electrodeposited onto a Ni substrate and anodized to form porous anodic films. The as-anodized specimens exhibit relatively low OER activity, but the activity significantly improves upon OER potential cycling. The overpotential becomes as low as 260 mV at 10 mA cm\(^{-2}\) in 1.0 mol dm\(^{-3}\) KOH after in-situ activation. Structural and compositional studies have also been conducted to characterize the active species and the activation mechanism of the anodized electrodes. Anodizing was conducted in a fluoride-containing ethylene glycol electrolyte to form a porous anodic layer. This electrolyte was selected because the formation of porous layer on Ni and Ni-base alloys was difficult in conventional aqueous electrolytes and fluoride-free organic electrolytes. Only fluoride-containing phosphoric acid or organic electrolytes have been used to form a porous anodic layer.\(^{36-39}\)

2. EXPERIMENTAL

The substrate used for electrodeposition was a 0.3-mm thick 99% pure Ni plate (Nilaco Corp., Japan). The plate was cleaned ultrasonically in acetone, ethanol, and Milli-Q water prior to electrodeposition. The electrolyte compositions used for electrodeposition are summarized in Table 1. Electrodeposition was carried out at a constant cathodic current density of 50 mA cm\(^{-2}\) for 50 min at a bath temperature of 50 °C. The counter electrode was a Ni plate, and the distance between the two electrodes was 20 mm. The specimens were washed with Milli-Q water and dried in air after deposition.
Table 1. Compositions of the electrolytes used for electrodeposition.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>NiSO₄·6H₂O</th>
<th>FeSO₄·7H₂O</th>
<th>NiCl₂</th>
<th>H₃BO₃</th>
<th>Saccharin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration (g dm⁻³)</td>
<td>43.37</td>
<td>0.46</td>
<td>42.93</td>
<td>0.92</td>
<td>42.50</td>
</tr>
<tr>
<td></td>
<td>42.93</td>
<td>0.92</td>
<td></td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.50</td>
<td>1.38</td>
<td>42.50</td>
<td>1.83</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>41.53</td>
<td>1.83</td>
<td></td>
<td>30.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

The electrodeposited specimens were oxidized at 10 V in an ethylene glycol electrolyte containing 0.2 mol dm⁻³ NH₄F and 0.1 mol dm⁻³ H₂O₂ for 12 h at room temperature to form nanoporous anodic films. A two-electrode electrochemical cell with a Pt counter electrode was used for anodizing. The specimens were washed in Milli-Q water and dried in air after anodizing.

The electrodeposited and anodized specimens were examined using a scanning electron microscope (SEM; Zeiss, Sigma-500) operating at 1.5 keV. Scanning transmission electron microscopy (STEM, JEOL, JEM-ARM200F) with EDS capability was used for cross-sectional observation and elemental analysis. Electron-transparent sections were prepared using a focused ion beam system (Hitachi, FB-2100). X-ray diffraction (XRD) measurements (Rigaku, RINT-2200) were performed to identify the phases in the electrodeposited and anodized specimens. An α-2θ mode with α = 2° and a 2θ-range of 10–90° was used to enhance the sensitivity of reflections from the thin surface layer. The surface composition and chemical state of the elements and their depth profiles were examined using X-ray photoelectron spectroscopy (XPS; JEOL, JPS9010MC) with Mg Kα radiation (hv = 1253.5 eV). The area of the specimen analyzed was 3-mm in diameter. The binding energy was calibrated using the C 1s contaminant peak at
285.0 eV. Peak deconvolution was performed using the XPSPEAK41 software. Semi-quantitative compositional analysis was performed using the SpecSurf (JEOL) software.

Electrochemical experiments were conducted with a VersaSTAT 3 (Ametec Inc.) potentiostat/galvanostat system. OER performance was evaluated by cyclic voltammetry in 1.0 mol dm⁻³ KOH at room temperature using a three-electrode electrochemical cell with a Pt counter electrode and an Hg/HgO/1 mol dm⁻³ KOH reference electrode. The potential sweep rate was 10 mV s⁻¹. Polarization curves were recorded with 95% iR compensation. The iR drop was estimated via electrochemical impedance spectroscopy conducted at the open circuit potential with an AC amplitude of 10 mV and a frequency range of 100 kHz to 0.01 Hz. Cyclic voltammograms recorded at sweep rates of 10–140 mV s⁻¹ between 0.74 and 0.88 V vs. RHE were used to estimate the electrochemical surface area (ECSA). The observed capacitance was converted to the ECSA using a specific capacitance of $C_s = 0.020 \text{ mF cm}^{-2}$.40-41

3. RESULTS AND DISCUSSION

3.1. Characterization of alloy deposits

Figure 1a shows the correlation between the composition of the electrodeposited alloy and that of the electrodeposition bath. The Fe content of the alloy increases almost linearly with the Fe²⁺ concentration in the bath producing Ni-Fe alloys with compositions of 7.2–21.1 at% Fe. All deposits show similar XRD patterns (Fig. 1b), which are consistent with the fcc structure. The intensity ratios of the 111, 200, and 220 reflections suggest a random orientation of the deposited
grains. The texture of the Ni substrate results in a very strong 200 reflection and a negligible 111 reflection, as shown in Fig. 1b. Cross-sectional SEM observations indicate the thickness of the deposits to be ~30 μm.

Figure 1. (a) Fe content of the deposit as a function of the Fe^{2+} concentration in the electrodeposition bath and (b) XRD patterns of the deposits and Ni substrate.

3.2. Characterization of anodic films

Figure 2 shows the current transients recorded during anodizing at a constant voltage of 10 V. The change in current density during anodizing is relatively small in all cases, and the current density decreases as the Fe content in the alloy increases. The current density at 16.7 at% Fe is nearly one-fifth of that of the Ni substrate. The surface changes appearance from metallic nickel to almost black after anodizing Ni and Ni-7.2 at% Fe, but Ni-11.8 at% Fe and Ni-16.7 at% Fe become gray in color after anodizing (Fig. S1). The change in color as a function of Fe content may be associated with the reduction in film thickness with greater Fe content, which is a
consequence of the decrease in current density. The surface of the Ni-21 at% Fe sample is non-uniform in appearance, which suggests heterogeneous growth of the anodic film.

Figure 2. Current transients of NiFe deposits and Ni substrate during anodizing at 10 V in ethylene glycol containing 0.2 mol dm$^{-3}$ NH$_4$F and 0.1 mol dm$^{-3}$ H$_2$O for 12 h.

The surfaces of the anodized alloy deposits were examined using SEM (Fig. 3). Porous layers appear to be formed, but the pore sizes are rather small (<20 nm). Pore size is known to depend on the anodizing voltage in the formation of porous alumina and nanotubular titania films.$^{42-43}$ The use of a relatively low anodizing voltage (10 V) likely contributes to the formation of films with small pores. The porous nature of the films is more apparent in cross-section transmission electron micrographs. As an example, cross-sectional scanning transmission electron micrographs (BF-STEM and HAADF-STEM) of anodized Ni-11.8 at% Fe are shown in **Fig. 4**. The BF-STEM image (**Fig. 4a**) reveals the formation of an anodic film on the alloy deposit,
which appears at the bottom of the micrograph. The anodic film has an irregular alloy/film interface, whereas the film surface is relatively smooth. Thus, the film thickness is not uniform. Non-uniform film growth is further evident from the lower magnification image shown in Fig. S2. Non-uniform film growth is unusual in the anodizing of metals and alloys, and further investigation is required to understand the reason for this behavior. The porous nature of the anodic film is obvious in Fig. 4, particularly from the HAADF-STEM image (Fig. 4b). The dark pores in Fig. 4b are larger in the inner part of the film as compared to those in the outer region of ~50 nm thickness. The selected area electron diffraction (SAED) pattern of the anodic film (Fig. 4c) reveals its crystalline nature and suggests the presence of a NiF2 phase with the fluorite structure. The high-resolution image in Fig. 4d reveals the presence of nanocrystals, and the lattice fringe spacing of 0.33 nm corresponds to the (111) plane of NiF2.

Figure 3. Scanning electron micrographs of (a) Ni substrate and electrodeposited (b) Ni-7.2 at% Fe, (c) Ni-11.8 at% Fe, (d) Ni-16.7 at% Fe and (e) Ni-21.1 at% Fe film surfaces prepared by 12-h anodizing at 10 V in ethylene glycol containing 0.2 mol dm⁻³ NH₄F and 0.1 mol dm⁻³ H₂O.
Figure 4. (a) BF and (b) HAADF scanning transmission electron micrographs, (c) selected-area electron diffraction pattern, and (d) high-resolution image in the anodic film region of Ni-11.8 at% Fe anodized at 10 V in ethylene glycol containing 0.2 mol dm\(^{-3}\) NH\(_4\)F and 0.1 mol dm\(^{-3}\) H\(_2\)O for 12 h.

Figure 5 shows EDS elemental mapping of anodized Ni-11.8 at% Fe. Ni and Fe are distributed uniformly throughout the film, and fluorine and oxygen are incorporated in the film. The quantitative analysis of regions 1-3 identified in Fig. 5a is summarized in Table 2. The three regions have similar compositions, and the Ni to Fe ratio is comparable to that of the alloy. The EDS analysis confirms the presence of a relatively high concentration of fluorine, which is more than twice greater than that of oxygen. Thus, the anodic films consist of fluoride-rich Ni oxyfluoride doped with Fe.
Figure 5. (a) BF-scanning transmission electron micrograph indicating the location of regions 1–3. EDS elemental mapping images of (b) Ni, (c) Fe, (d) F and (e) O in Ni-11.8 at% Fe anodized at 10 V in ethylene glycol containing 0.2 mol dm$^{-3}$ NH$_4$F and 0.1 mol dm$^{-3}$ H$_2$O for 12 h.

Table 2. Quantitative STEM-EDS analysis of regions 1–3 shown in Fig. 5a.

<table>
<thead>
<tr>
<th>Element</th>
<th>Composition (at%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Region 1</td>
</tr>
<tr>
<td>Ni</td>
<td>15.2</td>
</tr>
<tr>
<td>Fe</td>
<td>2.6</td>
</tr>
<tr>
<td>F</td>
<td>57.6</td>
</tr>
<tr>
<td>O</td>
<td>24.6</td>
</tr>
</tbody>
</table>
3.3. OER characteristics

The OER activity of the anodized alloy deposits was examined via cyclic voltammetry (CV). The CV curves of the anodized electrodes (Fig. 6) reveal that the initial OER activity of all the specimens is rather low; however, the OER current increases significantly during potential cycling. The enhancement in activity is greater for the anodized NiFe electrodes than that for the anodized Ni substrate. In contrast, the CV curves of as-deposited Ni-11.8 at% Fe (Fig. S3) show limited enhancement of OER activity during potential cycling. Thus, in-situ activation of the OER is characteristic of the anodized NiFe electrodes. A Ni$^{2+}$/Ni$^{3+}$ redox couple is observed between 1.1 and 1.5 V in the CV curves of the anodized electrodes (Fig. 6). These redox peaks increase with potential cycling, which suggests a correlation between the redox activity and OER active sites. The Ni$^{2+}$/Ni$^{3+}$ peaks are absent from the CV curves of as-deposited NiFe (Fig. S3), indicating that the redox-active sites are present in the porous anodic films.
Figure 6. CV curves in 1.0 mol dm$^{-3}$ KOH of (a) Ni substrate and electrodeposited (b) Ni-7.2 at% Fe, (c) Ni-11.8 at% Fe, and (d) Ni-16.7 at% Fe anodized at 10 V in ethylene glycol containing 0.2 mol dm$^{-3}$ NH$_4$F and 0.1 mol dm$^{-3}$ H$_2$O for 12 h.

Figure 7 compares the OER activity of the anodized electrodes after in-situ activation. The NiFe electrodes exhibit significantly greater OER activity than the Ni substrate (Fig. 7a). The addition of Fe to Ni enhances the OER performance. The best results are observed for Ni-11.8 at%
Fe, which is similar to the results of a recent study. The Tafel slopes of the activated NiFe electrodes are similar to those of the Ni substrate without anodizing (Fig. 7b). Only anodized Ni exhibits a larger Tafel slope. The Tafel slopes are summarized in Table 3. The Tafel slopes of the anodized NiFe electrodes are similar to those of the electrochemically deposited Ni-Fe oxyhydroxide. However, the absence of a composition dependence in the Tafel slopes contrasts with the results reported by Liang et al., which show the Tafel slopes of anodized NiFe electrodes to vary between 38 and 96 mV per decade as a function of alloy composition. The difference in behavior arises possibly from differences in the anodizing conditions used in the two studies. The CV curves and Tafel plots of activated Ni-11.8 at% Fe with and without anodizing are compared in Fig. S4. The much smaller overpotential produced by anodizing is evident from the CV curves. Thus, anodizing makes a very important contribution to the enhancement of OER activity in the NiFe deposits. However, the small changes in Tafel slope suggest that the rate-determining step is unchanged by anodizing. There are several reports showing the enhancing OER activity of Ni oxides, oxyhydroxides and hydroxides by the addition of Fe, but the role of Fe in enhancing the OER activity in alkaline media is still controversial; several proposed mechanisms are well summarized in a recent review.

Table 3. Electrochemical characteristics of the NiFe deposits in KOH electrolyte.

<table>
<thead>
<tr>
<th></th>
<th>Alloy</th>
<th>η_0 (V)</th>
<th>Tafel slope (mV decade$^{-1}$)</th>
<th>ECSA before activation (cm2)</th>
<th>ECSA after activation (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anodized</td>
<td>Ni</td>
<td>0.34</td>
<td>137</td>
<td>0.63</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>Ni-7.2 at% Fe</td>
<td>0.28</td>
<td>61</td>
<td>0.59</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>Ni-11.8 at% Fe</td>
<td>0.26</td>
<td>53</td>
<td>0.33</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>Ni-16.7 at% Fe</td>
<td>Ni-21.1 at% Fe</td>
<td>As-received</td>
<td>Ni-11.8 at% Fe</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Current density</td>
<td>0.29</td>
<td>0.29</td>
<td>0.35</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>iR (V vs. RHE)</td>
<td>53</td>
<td>73</td>
<td>50</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Overpotential</td>
<td>0.50</td>
<td>0.04</td>
<td>-</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>iR (mA cm⁻²)</td>
<td>1.77</td>
<td>0.71</td>
<td>-</td>
<td>2.51</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7. (a) CV curves and (b) Tafel plots of the anodized NiFe deposits and Ni substrate after in-situ activation using 50 CV cycles in 1.0 mol dm⁻³ KOH.

3.4. Mechanism of in-situ activation

To gain insights into the mechanism of in-situ OER activation on anodized NiFe electrodes, the electrochemical surface area (ECSA) was estimated from CV measurements in a potential range where no Faradaic reaction occurs. Typical CV curves at several sweep rates are shown in Fig. S5a and S5b. There is a linear correlation between the current density at 0.84 V vs. RHE and the potential sweep rate (Fig. S5c and S5d). The double layer capacitance and ECSA were determined.
from the slope. The ECSA values of anodized NiFe electrodes before and after in-situ activation are listed in Table 3. The ECSA values of the anodized NiFe electrodes before and after activation are comparable to or smaller than that of anodized Ni. Thus, the greater OER activity of the Fe-containing electrodes is not due to an increase in the active surface area.

Additional factors may contribute to the enhancement of OER activity, because in-situ activation increases the OER current by more than one order of magnitude (Fig. 6). The compositional change in the surface after activation was examined by XPS. Figure S6 shows wide-scan XPS spectra of anodized Ni-11.8 at% Fe before and after in-situ activation. Peaks for O and F are present in the as-anodized specimen in addition to the peaks for Ni and Fe. The intensity of the F 1s peak is much greater than that of the O 1s peak, which suggests that fluoride is the major anion on the anodized surface; this result is in agreement with the STEM/EDS analysis (Table 2). However, the F 1s peak disappears, and the intensity of O 1s peak increases after in-situ activation. Thus, in-situ activation significantly alters the surface composition. Figure 8 shows narrow-scan Ni 2p, Fe 2p3/2, O 1s, and F 1s XPS spectra of the same specimens. The binding energy of the Ni 2p3/2 peak shifts from 856.8 to 855.5 eV upon activation. The latter value is close to the binding energy of Ni(OH)2. The greater binding energy before activation is attributed to the presence of fluoride, because the reported NiF2 binding energy is 857.4 eV. Activation also shifts the Fe 2p3/2 peak to a more negative energy. The 711.0 eV value after activation suggests the presence of Fe3+ on the activated surface. The O 1s spectrum of the activated electrode shows a peak at 531.2 eV, which corresponds to OH-type oxygen and suggests that a metal hydroxide is the principal component after activation. The F 1s spectrum indicates the almost complete absence of fluoride at the porous electrode surface after activation. Thus, Fe-doped, F-rich Ni oxyfluoride is converted into Fe-doped Ni hydroxide on the porous electrode surface during
potential cycling in KOH electrolyte. Table 4 summarizes the surface composition of as-anodized and in-situ activated Ni-11.8 at% Fe. The Fe to Ni ratio in the as-anodized electrode is similar to that observed in the alloy, and the F/Ni ratio of ≈2 indicates a principal composition of NiF₂, which is in agreement with the SAED pattern (Fig. 3c). The Fe to Ni ratio is almost unchanged by activation, however, the high oxygen content suggests the presence of hydrated Fe-doped Ni(OH)₂ on the activated surface.

Table 4. Surface composition of as-anodized and in-situ activated Ni-11.8 at% Fe determined using XPS.

<table>
<thead>
<tr>
<th>Element</th>
<th>Composition (at%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni</td>
</tr>
<tr>
<td>As-anodized</td>
<td>29.7</td>
</tr>
<tr>
<td>In-situ activated</td>
<td>16.4</td>
</tr>
</tbody>
</table>
The in-situ activated electrode was further examined by STEM/EDS analysis and SEM observation. Figure 9 shows a scanning electron micrograph of the surface and a cross-sectional BF-STEM image of in-situ activated Ni-11.8 at% Fe. The surface appearance after activation tends to change when compared to that of the as-anodized electrode (Fig. 3), and a nanoflake-like morphology develops. The flake-like morphology is typical of Ni(OH)$_2$.

The cross-sectional scanning transmission electron micrograph reveals that the thickness of the porous layer formed by anodizing is reduced to ~50 nm via in-situ activation. Dissolution of Ni and Fe species is apparently involved in the formation of the active constituent during transformation of the F-rich Ni oxyfluoride to the Ni(OH)$_2$-based material. The selected area electron diffraction pattern of the
activated layer (Fig. 9b) reveals the absence of a highly crystalline phase. Thus, poorly crystalline or amorphous Fe-doped Ni(OH)₂ is primarily present in the activated electrode.

Figure 9. (a) Scanning electron micrograph and (b) scanning transmission electron micrograph and SAED of anodized Ni-11.8 at% Fe after in-situ activation in 1.0 mol dm⁻³ KOH via potential cycling.

STEM/EDS analysis of the cross-section of activated Ni-11.8 at% Fe (Fig. 10) shows a relatively uniform distribution of Ni and Fe in the hydroxide layer. Although fluorine is negligibly present on the surface, as shown in the XPS analysis (Table 4), it is clearly detected in the inner part of the hydroxide layer. The reduced fluorine content in the outer part of the hydroxide layer is evident upon comparing the O and Fe elemental maps (Fig. 10d and 10e). The inner part of the porous electrode (Fig. 10f) contains 14 at% fluorine. Pei et al. reported that fluoridated Fe-Ni LDH exhibits greatly enhanced OER performance compared with that of pristine Fe-Ni LDH; further, they attributed the enhanced performance to the formation of a core-shell structure of Fe-doped high-valence Ni-oxyhydroxide over Fe-Ni fluoride.⁵¹
Figure 10. (a) BF-scanning transmission electron micrograph and the corresponding EDS mapping images of (b) Ni, (c) Fe, (d) O and (e) F in anodized Ni-11.8 at% Fe after in-situ activation in 1.0 mol dm$^{-3}$ KOH via potential cycling.

Prolonged oxygen evolution was conducted at a constant current density of 50 mA cm$^{-2}$ to elucidate the role of the inner fluoride-containing layer in the OER performance. The constant potential of \sim1.55 V vs. RHE maintained for 24 h during galvanostatic polarization (Fig. 11a) demonstrates the high stability of anodized Ni-11.8 at% Fe during OER. The flake-like surface morphology remains almost unchanged even after the durability test (Fig. 11b). The change in composition of the porous film on the alloy deposit after a 24-h OER was examined via the XPS depth profile analysis (Fig. 11c–e). The as-anodized deposit is rich in fluoride throughout the film. The oxygen content is low, except at the film surface. The fluoride content is reduced from 60 to 20 at% upon in-situ activation via potential cycling and conversion to the oxide-based porous layer. The fluoride content decreases further to less than a few at% after OER at 50 mA cm$^{-3}$ for 24 h,
although the high OER activity remains unchanged. The findings suggest that fluoride-containing moieties are not the primary active species in the OER, because substantial activity remains after removal of fluorine from the porous film. The active species appears to be the amorphous or poorly crystalline Fe-doped Ni hydroxide.

Figure 11. (a) Potential change of anodized and in-situ activated Ni-11.8 at% during durability testing at 50 mA cm⁻² in 1.0 mol dm⁻³ KOH and (b) scanning electron micrograph of surface after the durability test. XPS depth profiles of Ni-11.8 at% Fe (c) as-anodized, (d) in-situ activated, and (e) after a 24-h durability test.
A substantial degree of OER activity is achieved during oxygen evolution at the anodized NiFe deposits. The activity enhancement is less significant during the potential cycling of the NiFe deposits without anodizing (Fig. S3), and the OER activity of the anodized NiFe deposit is remarkably higher than the as-anodized counterpart after potential cycling (Fig. S4a). Anodizing of the NiFe deposits forms porous F-rich oxyfluoride films, which are promising precursors of OER-active hydroxides. Such a porous hydroxide layer cannot be formed without anodizing of the NiFe deposits. Thus, only the anodized NiFe deposits exhibit marked activation for OER during potential cycling. The ejection of fluoride ions into alkaline aqueous electrolyte from the porous anodic layer promotes the formation of amorphous Fe-doped Ni hydroxide porous layer. This investigation describes a straightforward approach for fabricating highly active OER electrodes without using binder and conductive additives, via simple anodizing of electrodeposited NiFe electrodes.

4. CONCLUSIONS

The present study demonstrates the formation of highly active and durable OER electrodes via in-situ activation of anodized NiFe deposits. OER-active amorphous or poorly crystalline Fe-doped Ni hydroxide films are produced by the transformation of a porous fluoride-based layer during OER. The OER overpotential is as low as 0.26 V at 10 mA cm\(^{-2}\) in 1.0 mol dm\(^{-3}\) KOH. The fluoride content of the porous layer decreases during in-situ activation and becomes negligible after prolonged OER polarization, while the OER activity remains unchanged. Thus, fluoride-containing entities are not actively involved in the OER, but are effective precursors in the development of active species. These highly active OER electrodes are obtained via simple and
cost-effective anodizing of electrodeposited NiFe alloys in a fluoride-containing organic electrolyte. No binder or conductive additives are needed to achieve high OER activity.

ASSOCIATED CONTENT

Supporting Information

The supporting information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.1c08412

Additional characterization data (anodized specimen photographs, HAADF-STEM), additional electrochemical data (CV for OER, Tafel plots, CV for ECSA) (PDF)

AUTHOR INFORMATION

Corresponding Author

Hiroki Habazaki, Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; orcid.org/0000-0002-7172-8811; e-mail: habazaki@eng.hokudai.ac.jp

Authors

Naohito Yamada – Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

Sho Kitano – Division of Applied Chemistry, faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

Yuya Yato – Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
Damian Kowalski – Division of Applied Chemistry, faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

Yoshitaka Aoki – Division of Applied Chemistry, faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The present study was supported in part by JSPS KAKENHI (Grant Number 19H03469). A part of this work was conducted at the Promotion Office for the Nanotechnology Collaboration and Laboratory of XPS analysis, Hokkaido University, supported by “Nanotechnology Platform” Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

REFERENCES

