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THE MOTION OF WEAKLY INTERACTING LOCALIZED PATTERNS
FOR REACTION-DIFFUSION SYSTEMS WITH NONLOCAL EFFECT

SHIN-ICHIRO EI AND HIROSHI ISHII

Abstract. In this paper, we analyze the interaction of localized patterns such as trav-
eling wave solutions for reaction-diffusion systems with nonlocal effect in one space di-
mension. We consider the case that a nonlocal effect is given by the convolution with
a suitable integral kernel. At first, we deduce the equation describing the movement
of interacting localized patterns in a mathematically rigorous way, assuming that there
exists a linearly stable localized solution for general reaction-diffusion systems with non-
local effect. When the distances between localized patterns are sufficiently large, the
motion of localized patterns can be reduced to the equation for the distances between
them. Finally, using this equation, we analyze the interaction of front solutions to some
nonlocal scalar equation. Under some assumptions, we can show that the front solutions
are interacting attractively for a large class of integral kernels.

1. Introduction

Pattern formation problem is one of the most interesting and attractive topics in nat-
ural science. There have been many mathematical models proposed for the theoretical
understanding of the mechanisms. Among them, mathematical models in the type of
reaction-diffusion systems have been proposed in order to describe spatio-temporal pat-
terns in dissipative systems such as biology and chemistry [23, 25, 32]. In fact, reaction-
diffusion type model equations are nicely fit to express Turing instability, which gives one
of the most basic theoretical concepts as the mechanism of a spatial pattern formation in
biology. Nowadays, reaction-diffusion type model equations are applied to so many kinds
of phenomena arising in dissipative systems (e.g. [18, 20, 23, 24, 26]).

While reaction-diffusion systems can describe the structure with diffusive motions and
local reactions, it has been known that there are nonlocal interactions e.g. by cell projec-
tions [27], contact inhibitions [7, 29] and so on. Such mechanisms with nonlocal interac-
tions are described by the convolutions with suitable integral kernels.

On the other hand, as stated in [15, 22], some mechanisms which have been described
by reaction-diffusion systems can be expressed by equations with nonlocal terms of con-
volution types. In [15], it was shown that activator-inhibitor systems written in reaction-
diffusion systems which possess the mechanism of Turing instability are essentially reduced
to the type of the equation

(1.1) ut = duxx + f(u,K ∗ u)
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2 S.-I. EI AND H. ISHII

Figure 1. Integral kernel K with the Mexican hat profile on R.

with an integral kernel K(x) of the Mexican hat profile (Figure 1) and a function f(u, v),

where K ∗ u denotes the convolution defined by (K ∗ u)(t, x) :=

∫
R
K(x − y)u(t, y)dy.

This means (1.1) includes the mechanism of the Turing instability. Kondo [22] also showed
that more complicated patterns which cannot be reproduced by two component reaction-
diffusion systems can be easily done by the equations of the type of (1.1) with suitable
kernels. In [15, 22, 28, 30], they pointed out that the mechanism of Turing instability
related to the kernel with the Mexican hat profile. Furthermore, it is known that the
diffusion itself can be expressed by the convolution [1, 5]. Thus, equations as (1.1) are
the generalizations of reaction-diffusion equations in some sense.

In this paper, the equation in the type of

(1.2) ut = duxx +K ∗ u+ f(u)

is mainly treated as one kind of equations (1.1), which appears in many fields such as
neuro-science [25], dispersal motion of cells and organisms [19], optical illusion [31] and
so on.

For the analysis of the equation (1.2), there have been many works [3, 4, 5, 6, 8, 9,
10, 11, 14, 28, 34]. In particular, the existence and the stability of pulses and fronts
as localized solutions have been extensively investigated [3, 4, 5, 6, 8, 9, 10]. In their
works, a single pulse and/or a single front solution were constructed together with the
consideration of their stability.

From the pattern formation point of view, not only single localized patterns but also
their interactions are important. For example, it is shown in Section 3 that multiple single
front solutions of (1.2) are interacting attractively for a large class of integral kernels,
which means the coarsening process of front localized patterns in time.

In this paper, we treat the following more general reaction-diffusion systems with non-
local terms than (1.2):

(1.3) ut = Duxx +K ∗ u+ F (u), t > 0, x ∈ R,
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where u = u(t, x) = t(u1(t, x), u2(t, x), · · · , un(t, x)) ∈ Rn,D = diag(d1, d2, ..., dn) (dj ≥ 0),
F : Rn → Rn is a smooth nonlinear function, K = K(x) ∈ Rn×n,

(K ∗ u)(t, x) :=


K1,1 K1,2 · · · · · · K1,n

K2,1 K2,2 · · · · · · K2,n
...

...
. . .

...
...

...
. . .

...
Kn,1 Kn,2 · · · · · · Kn,n

 ∗


u1

u2
...
...
un

 (t, x)

=



n∑
k=1

(K1,k ∗ uk)(t, x)

n∑
k=1

(K2,k ∗ uk)(t, x)

...

...
n∑

k=1

(Kn,k ∗ uk)(t, x)


,

the ∗ denotes the convolution with respect to the spatial variable, in which the integral
kernels Kj,k are the functions satisfying

(1.4)

{
Kj,k ∈ C(R) ∩ L1(R), Kj,k(x) = Kj,k(−x) (x ∈ R),
∀λ ∈ R,

∫
R |Kj,k(y)|eλydy < ∞.

A typical example of Kj,k is Kj,k(x) = e−x2
. The purpose of this paper is to give a

mathematical criteria for the interaction between multiple single pulse or single front
solutions for (1.3).

We set

A(λ) :=


K̃1,1(λ) K̃1,2(λ) · · · · · · K̃1,n(λ)

K̃2,1(λ) K̃2,2(λ) · · · · · · K̃2,n(λ)
...

...
. . .

...
...

...
. . .

...

K̃n,1(λ) K̃n,2(λ) · · · · · · K̃n,n(λ)

 ,

where K̃j,k(λ) :=
∫
R Kj,k(y)e

λydy for j, k = 1, 2, . . . , N .

Hypothesis 1.1. We suppose for (1.3) that:

H1) [Existence of stable equilibria]
There exist linearly stable equilibria P− and P+ in the ODE

ut = A(0)u+ F (u).
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H2) [Existence of traveling wave solution]
There exist a constant θ, positive constants α, β and a function P (z) satisfying
the equation

(1.5)


0 = DPzz − θPz +K ∗ P + F (P ) (z ∈ R),
|P (z)− P+| ≤ O(e−αz) (z → +∞),

|P (z)− P−| ≤ O(eβz) (z → −∞).

H3) [Linearized stability of traveling wave solution]
Let a differential operator L be

Lv = Dvzz − θvz +K ∗ v + F ′(P (z))v,

for v ∈ {H2(R)}n, where the domain D(L) is defined as

D(L) = {v = t(v1, v2, · · · , vn) ∈ {L2(R)}n | θv ∈ {H1(R)}n, Dv ∈ {H2(R)}n}.

This means

vj ∈


H2(R) (if dj > 0),

H1(R) (if dj = 0 and θ ̸= 0),

L2(R) (if dj = 0 and θ = 0)

for any j = 1, 2, . . . , n, when v ∈ D(L). Then, the spectrum Σ(L) of L is given
by Σ(L) = Σ0 ∪ {0}, where 0 is a simple eigenvalue with a eigenfunction Pz and
there exists a positive constant ρ0 > 0 such that Σ0 ⊂ {z ∈ C | ℜ(z) < −ρ0}.
Here, ℜ(z) denotes the real part of z.

We call P (z) satisfying the Hypothesis 1.1 for a constant θ “(linearly) stable traveling
wave solution with velocity θ”. Many models of reaction-diffusion systems and nonlocal
equations have linearly stable traveling wave solutions in this sense [4, 12, 17, 21, 33, 34].

Transforming (1.3) by z := x+ θt, we have

(1.6) ut = Duzz − θuz +K ∗ u+ F (u) =: L(u).

We note that the stable traveling wave solution P (z) is a stable stationary solution of
(1.6). Throughout this paper, we call P (z) “pulse solution” when P− = P+ and “front
solution” when P− ̸= P+, respectively.

The purpose of this paper is to give a general criterion for (1.3) to analyze their inter-
action together with applications under the above assumptions about the existence and
the stability of a single traveling wave solution.

The organization of the paper as follows: in Section 2, we will state main results and its
proofs for (1.3). An application of it to a nonlocal scalar equation (1.2) will be in Section
3, in which it is shown that front solutions interact attractively for fairly wide class of
integral kernels. Finally, in Section 4, we will state future works related to the results of
this paper.
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Figure 2. The image of localized pattern. (a) Pulse solution when P+ =
P− = 0. (b) Front solution.

2. Main results

2.1. Interaction of pulse solutions. In this subsection, we consider the interaction of
pulse solutions. Suppose that P (z) is a stable pulse solution of (1.3) with velocity θ. Then,
we can assume that P− = P+ = 0 = t(0, 0, · · · , 0) ∈ Rn without loss of generality. Fixing
an arbitrarily natural number N?詣 e consider the interaction of N + 1 pulse solutions.
We define

P (z;h) := P (z) + P (z − z1) + · · ·+ P (z − zN),

where h = (h1, h2, ..., hN) for hj > 0, z0 = 0 and

zj = zj(h) = zj−1 + hj (j = 1, 2, ..., N).

Define the set

M(h∗) = {Ξ(l)P (z;h) | l ∈ R, minh > h∗},
where Ξ(l) is translation operator defined as (Ξ(l)v)(z) = v(z − l) for v ∈ {L2(R)}n.

Moreover, we set the quantity

δ(h) = sup
z∈R

|L(P (z;h))|.

We note that δ(h) is sufficiently small as long as minh is large enough. In fact, δ(h)
satisfies δ(h) → 0 as minh → +∞, since L(P (z − zj)) = 0 and L(0) = 0 for j =
0, 1, . . . , N .

Furthermore, define functions

Hj(h) = ⟨ L(P (·+ zj;h)),Φ
∗(·) ⟩L2

for j = 0, 1, ..., N , where Φ∗ is an eigenfunction corresponding to 0 eigenvalue of the
adjoint operator L∗ of L and normalized by ⟨ Pz,Φ

∗ ⟩L2 = 1. We note that the domain
D(L∗) is equal to D(L) and Φ∗ satisfies

(2.1) L∗Φ∗ := DΦ∗
zz + θΦ∗

z +
tK ∗ Φ∗ + tF ′(P (z))Φ∗ = 0.

By applying the same line of argument in [13] based on the theory of infinite dimensional
dynamical systems, we can obtain the following results.
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Figure 3. The image of P (z;h) when N = 2.

Theorem 2.1. [13]
There exist positive constants h∗, C0 and a neighborhood U = U(h∗) of M(h∗) in {H2(R)}n
such that if u(0, ·) ∈ U , then there exist functions l(t) ∈ R and h(t) ∈ RN such that

(2.2) ∥u(t, ·)− Ξ(l(t))P (·;h(t))∥∞ ≤ C0δ(h(t))

holds as long as minh(t) > h∗, where u(t, z) is a solution of (1.6) and ∥ · ∥∞ is the
sup-norm on R. Functions l(t) ∈ R and h(t) ∈ RN satisfy

ḣ = H(h) +O(δ2),(2.3)

l̇ = −H0(h) +O(δ2),(2.4)

where δ = δ(h(t)) and H = (H0 −H1, H1 −H2, · · · , HN−1 −HN).

Theorem 2.2. [13]
Suppose all of the elements dj of D are positive. Then, there exist positive constants
C0, C1 and h∗ such that if

(2.5) ḣ = H(h)

has an equilblium h satisfying minh > h∗ and the set of eigenvalues Σ(H ′(h)) ⊂ {z ∈
C | ℜ(z) < −C0δ(h)}, there exists a stable traveling wave solution P (z+θt) of (1.3) such
that

∥P (·)− P (·;h)∥∞ ≤ C1δ(h)

and θ = H0(h) +O(δ2(h)). Here, H ′(h) denotes the linearized matrix of H with respect
to h.

If (2.5) has an equilblium h such that minh > h∗ and the set of eigenvalues Σ(H ′(h)) ⊂
{z ∈ C | ℜ(z) < −C0δ(h)} ∪ {z ∈ C | ℜ(z) > C0δ(h)} and at least one eigenvalue of
H ′(h) is in {z ∈ C | ℜ(z) > C0δ(h)}, there exists an unstable traveling wave solution
P (z + θt) of (1.3) such that

∥P (·)− P (·;h)∥∞ ≤ C1δ(h)

and θ = H0(h) +O(δ2(h)).
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In [13], he constructed an attractive local invariant manifold giving the dynamics of
interacting localized patterns in the case of Reaction-diffusion systems. In its proof, he
used integral manifold theory. The proof of [13] can be also applied to reaction diffusion
systems with perturbations given by bounded operators of {L2(R)}n. Now, the nonlocal
term K ∗u is bounded operator in {L2(R)}n. Therefore, we can extend theorems in [13].

From Theorem 2.1, when the distances between localized patterns are sufficiently large,
the motion of localized patterns can be reduced to the equation (2.3) for the distances
between them. However, it is difficult to analyze Hj(h) directly. When the pulse solution
P (z) converges 0 in an exponentially monotone way, Hj(h) can be represented by the
explicit form approximately.

Theorem 2.3. Suppose P (z) converges 0 satisfying

P (z) = e−αz(a+ +O(e−γz)) (z → +∞),

P (z) = eβz(a− +O(eγz)) (z → −∞)

for positive constants α, β and γ and non-zero constant vectors a± ∈ Rn, and suppose Φ∗

also converges 0 in an exponentially monotone way such that

Φ∗(z) = e−βz(b+ +O(e−γz)) (z → +∞),

Φ∗(z) = eαz(b− +O(eγz)) (z → −∞)

for non-zero constant vectors b± ∈ Rn. Then, functions Hj(h) are represented by

Hj(h) = (Mβe
−βhj+1 +Mαe

−αhj)(1 +O(e−γ′ minh)) (j = 1, 2, · · · , N − 1),(2.6)

H0(h) = Mβe
−βh1(1 +O(e−γ′ minh)),(2.7)

HN(h) = Mαe
−αhN (1 +O(e−γ′ minh)),(2.8)

for a constant γ′ > 0 and the constants Mα,Mβ are given by

Mα = ⟨(2αD + θI + A′(α))a+, b−⟩,(2.9)

Mβ = ⟨(2βD − θI + A′(β))a−, b+⟩,(2.10)

where ⟨·, ·⟩ stands for the inner product in Rn, I ∈ Rn×n is identity matrix and A′(λ) ∈
Rn×n is the function with respect to λ defined by

A′(λ) :=


K̃ ′

1,1(λ) K̃ ′
1,2(λ) · · · · · · K̃ ′

1,n(λ)

K̃ ′
2,1(λ) K̃ ′

2,2(λ) · · · · · · K̃ ′
2,n(λ)

...
...

. . .
...

...
...

. . .
...

K̃ ′
n,1(λ) K̃ ′

n,2(λ) · · · · · · K̃ ′
n,n(λ)


in which

K̃ ′
j,k(λ) :=

∫
R
yKj,k(y)e

λydy, (j, k = 1, 2, . . . n).

Remark 2.4. Given a function G(z) : R → Rn, we write

G(z) = e−αz(a+O(e−γz) (z → +∞)
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for some positive constants α, γ and a nonzero constant vector a ∈ Rn if there exists a
positive real number C0 and a real number C1 such that

|eαzG(z)− a| ≤ C0e
−γz (∀z ≥ C1).

We also write

G(z) = eαz(a+O(eγz)) (z → −∞)

if there exists a positive real number C0 and a real number C1 such that

|e−αzP (z)− a| ≤ C0e
γz (∀z ≤ C1).

proof of Theorem 2.3. From the same calculation in [13], we can gain (2.6), (2.7) and
(2.8), where

Mα =

∫
R
e−αz⟨{F ′(P (z))− F ′(0)}a+,Φ∗(z)⟩dz,

Mβ =

∫
R
eβz⟨{F ′(P (z))− F ′(0)}a−,Φ∗(z)⟩dz.

First, we consider Mα. Since positive constants α, β and non-zero vectors a± ∈ Rn satisfy{
0 = α2Da+ + αθa+ + A(α)a+ + F ′(0)a+,

0 = β2Da− − βθa− + A(β)a− + F ′(0)a−,

we obtain

⟨F ′(0)a+,Φ∗(z)⟩ = −⟨{α2D + αθI + A(α)}a+,Φ∗(z)⟩
= −⟨a+, {α2D + αθI + tA(α)}Φ∗(z)⟩.

From the equation (2.1), we have

⟨F ′(P (z))a+,Φ∗(z)⟩ = ⟨a+, tF ′(P (z))Φ∗(z)⟩
= −⟨a+, DΦ∗

zz + θΦ∗
z +

tK ∗ Φ∗⟩.
Therefore, Mα is represented as

Mα =

∫
R
e−αz⟨a+, D{α2Φ∗(z)− Φ∗

zz(z)}⟩dz +
∫
R
e−αz⟨a+, θ{αΦ∗(z)− Φ∗

z(z)}⟩dz

+

∫
R
e−αz⟨a+, {tA(α)Φ∗(z)− tK ∗ Φ∗}⟩dz =: I1 + I2 + I3.

Since we have

lim
z→+∞

eβzDΦ∗
z(z) = βDb+, lim

z→−∞
e−αzDΦ∗

z(z) = αDb−

from the lemma in Appendix A, we have

I1 =

∫
R
e−αz⟨a+, D{α2Φ∗(z)− Φ∗

zz(z)}⟩dz

= −
∫
R

d

dz

[
e−αz⟨a+, DΦ∗

z(z) + αDΦ∗(z)⟩
]
dz

= 2α⟨a+, Db−⟩ = 2α⟨Da+, b−⟩.
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Similary, we obtain

I2 =

∫
R
e−αz⟨a+, θ{αΦ∗(z)− Φ∗

z(z)}⟩dz

= −θ

∫
R

d

dz

[
e−αz⟨a+,Φ∗(z)⟩

]
dz

= θ⟨a+, b−⟩.

Finally, to compute I3, we consider
∫
R e

−αz{K̃k,j(α)φ
∗
k(z)− (Kk,j ∗φ∗

k)(z)}dz for j, k =

1, 2, · · · , n, where Φ∗ = t(φ∗
1, φ

∗
2, . . . , φ

∗
n). Since K̃k,j is the even function, the integrand

can be rewritten as

e−αz{K̃k,j(α)φ
∗
k(z)− (Kk,j ∗ φ∗

k)(z)}
= e−αz{K̃k,j(−α)φ∗

k(z)− (Kk,j ∗ φ∗
k)(z)}

=

∫
R
Kk,j(y)

{
e−α(z+y)φ∗

k(z)− e−αzφ∗
k(z − y)

}
dy

=

∫
R
Kk,j(y)

∫ y

0

d

ds

[
e−α(z+s)φ∗

k(z − y + s)
]
dsdy.

Notice that

d

ds

[
e−α(z+s)φ∗

k(z − y + s)
]
=

d

dz

[
e−α(z+s)φ∗

k(z − y + s)
]
,

so we obtain ∫
R
e−αz{K̃k,j(α)φ

∗
k(z)− (Kk,j ∗ φ∗

k)(z)}dz

=

∫
R
Kk,j(y)

∫ y

0

∫
R

d

dz

[
e−α(z+s)φ∗

k(z − y + s)
]
dzdsdy

= −b−k

∫
R
yKk,j(y)e

−αydy = b−k K̃
′
k,j(α),

where b− = t(b−1 , b
−
2 , . . . , b

−
n ). Therefore,

I3 =

∫
R
e−αz

〈
a+, {tA(α)Φ∗(z)− tK ∗ Φ∗}

〉
dz = ⟨a+, tA′(α)b−⟩ = ⟨A′(α)a+, b−⟩.

From above calculation, we can gain (2.9). We can also obtain (2.10) by same argument.
□

2.2. Interaction of fronts. In this subsection, let us consider the interaction of front
solutions. We can consider only the case of the velocity θ = 0. We use x as the space
variable instead of z because x = z in this case. Basically, we use the same notations as
in the previous subsection with θ = 0.

Suppose that P (x) is a stable front solution of (1.3) with θ = 0. We note that P (−x)
is also a stable front solution of (1.3) connecting from P+ to P−. We define the number
of front solutions as N + 1 = N+ + N−, where N+ and N− are the numbers of front
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Figure 4. The image of P (z;h). (a) (N+, N−) = (1, 1). (b) (N+, N−) =
(2, 1).

solutions of the shapes P (x) and P (−x), respectively. We note that either N+ = N− or
N+ − 1 = N− holds. Then, N + 1 front solutions P (x;h) are defined as

P (x;h) = P (x) + P (−(x− x1)) + P (x− x2) + · · ·
+P ((−1)N(x− xN))− {N+P+ + (N− − 1)P−}

if N+ = N−,

P (x;h) = P (x) + P (−(x− x1)) + P (x− x2) + · · ·
+P ((−1)N(x− xN))− {(N+ − 1)P+ +N−P−}

if N+− 1 = N−, where h = (h1, h2, · · · , hN) ∈ RN , xj =
∑k=j

k=1 hk for j = 1, 2, · · · , N and
x0 = 0. Moreover, we define functions Hj(h) (j = 0, 1, · · · , N) by

Hj(h) = ⟨L(P (x+ xj;h)),Φ
∗((−1)jx)⟩L2 .

By applying the same line of argument in [13], we can also obtain the following result.

Theorem 2.5. [13] Theorems 2.1 and 2.2 hold in the same statements but

ḣj = (−1)j+1(Hj−1(h) +Hj(h)) +O(δ2) (j = 1, 2, · · · , N),(2.11)

l̇ = −H0(h) +O(δ2),(2.12)

and

H = (H0 +H1,−(H1 +H2), · · · , (−1)N+1(HN−1 +HN)).

Just like Theorem 2.3, Hj(h) can be represented by the explicit form approximately,
when the front solution P (z) converges P± in an exponentially monotone way.

Theorem 2.6. Suppose P (x) converges P± as

P (x)− P+ = e−αx(a+ +O(e−γx)) (x → +∞),

P (x)− P− = eβx(a− +O(eγx)) (x → −∞)
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for positive constants α, β and γ and non-zero constant vectors a± ∈ Rn, and suppose Φ∗

converges 0 in an exponentially monotone way such that

Φ∗(x) = e−αx(b+ +O(e−γx)) (x → +∞),

Φ∗(x) = eβx(b− +O(eγx)) (x → ∞)

for non-zero constant vectors b± ∈ Rn. Then, functions Hj(h) are represented by

H2j−1(h) = (M+e−αh2j−1 −M−e−βh2j)(1 +O(e−γ′ minh))(2.13)

(j = 1, 2, · · · , N+),

H2j(h) = (M+e−αh2j+1 −M−e−βh2j)(1 +O(e−γ′ minh))(2.14)

(j = 1, 2, · · · , N−),

H0(h) = M+e−αh1(1 +O(e−γ′ minh)),(2.15)

HN(h) =

{
M+e−αhN (1 +O(e−γ′ minh)) (if N+ = N−),

M−e−βhN (1 +O(e−γ′ minh)) (if N+ − 1 = N−)
(2.16)

for a constant γ′ > 0 and the constants M± are given by

M+ = ⟨(2αD + A′(α))a+, b+⟩,(2.17)

M− = ⟨(2βD + A′(β))a−, b−⟩.(2.18)

Proof. From the same calculation in [13], we can gain (2.13), (2.14), (2.15) and (2.16),
where

M+ =

∫
R
eαx⟨{F ′(P (x))− F ′(P+)}a+,Φ∗(x)⟩dx,

M− =

∫
R
e−βx⟨{F ′(P (x))− F ′(P−)}a−,Φ∗(x)⟩dx.

By the argument similar to Theorem 2.3, we can obtain (2.17) and (2.18). □

3. Applications

In this section, we consider the interaction of two standing front solutions to the nonlocal
scalar equation (1.2), where d > 0, K ∈ C1(R), K ′ ∈ L1(R), κ :=

∫
R K(y)dy and

g(u) := f(u) + κu satisfies
g ∈ C3(R), g(±1) = g(a) = 0, g′(±1) < 0 < g′(a),

∫ 1

−1
g(u)du = 0,

g < 0 in (−1, a) ∪ (1,∞), g > 0 in (−∞, 0) ∪ (a, 1),

g′ ≥ 0 in [r1, r2], g′ ≤ 0 in [−1, 1]\[r1, r2]

for some constants a, r1, r2 ∈ (−1, 1) with r1 < r2. A typical example of g is g(u) =
u(1− u2).



12 S.-I. EI AND H. ISHII

Figure 5. The image of the interaction of two standing fronts, when the
kernel is non-negative function.

3.1. Case of non-negative integral kernel. In this subsection, we consider the inter-
action of two standing front solutions when K(x) ≥ 0. In this case, (1.2) admits a strictly
increasing stable standing front solution satisfying P (±∞) = ±1 [4, 9, 34]. Furthermore,
when K satisfies

∀λ > 0, A(λ) = K̃(λ) =

∫
R
K(y)eλydy < ∞,

P (x) converges ±1 in an exponentially monotone way [34]. Thus, suppose P (x) converges
1 as

(3.1) P (x)− 1 = e−αx(a+ +O(e−γx)) (x → +∞)

for some positive constant α and a non-zero constant a+. Then α is a positive solution of

G(λ) := dλ2 + A(λ) + g′(1) = 0.

It is easy to see that G(λ) is strictly monotone increasing function for λ > 0, since K ≥ 0.
Therefore, we obtain G′(λ) = 2dλ+ A′(λ) > 0 for λ > 0. Now, Φ∗ is represented as

Φ∗(x) =
1

∥Px∥2L2

Px(x) → − αa+

∥Px∥2L2

e−αx (x → +∞)

and we have

(3.2) M+ =
−α(a+)2

∥Px∥2L2

G′(α) < 0.

Therefore, the equation for l and the front distance h is{
l̇ = −H0(h) +O(δ2) ∼ −M+e−αh > 0,

ḣ = H0(h) +H1(h) +O(δ2) ∼ 2M+e−αh < 0.

This means the attractivity of two front solutions (Figure 5).
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3.2. Interaction of very slow front solutions. In this subsection, we consider the
interaction of two front solutions with very slow wave speed when K(x) ≥ 0. We consider
the equation (1.2) with small perturbation like

(3.3) ut = duxx +K ∗ u+ f(u) + ϵf1(u,K1 ∗ u),
where ϵ is a sufficiently small constant, K1 : R → R belongs to C(R) ∩ L1(R), and
f1(u, v) : R2 → R is a smooth function satisfying

f(±1,±
∫
R
K1(y)dy) = 0.

Let us consider the solution (3.3) with the initial function u(0, x) close to P (x −
l(0), h(0)) for sufficiently large h(0). By a quite similar argument in [13, 16], if ϵ is
sufficiently small, then we can show that the solution u(t, x) is close to P (x − l(t), h(t))
and

(3.4)

{
l̇ = −M+e−αh − ϵCf +O(δ2 + ϵ2),

ḣ = 2M+e−αh + 2ϵCf +O(δ2 + ϵ2)

holds as long as h(t) is sufficiently large, where M+ is the constant given by (3.2) and
Cf = ⟨ f1(P,K1 ∗ P ), Px ⟩L2 . When ϵCf > 0, we can understand the attractivity of two
front solutions. If ϵCf < 0, then (3.4) has a unstable equilibrium. Therefore, in this case,
we can find a unstable stationary solution by a quite similar way to the proof of theorem
2.5.

For example, we consider the case that f1(u, v) = v and K1(x) is a odd function
satisfying

K1 < 0 in (0,∞).

Then, Cf = ⟨ K1 ∗ P, Px ⟩L2 . Since P (x) is monotone increasing function, we obtain

K1 ∗ P (x) =

∫
R
K1(y)P (x− y)dy =

∫ ∞

0

K1(y)(P (x− y)− P (x+ y))dy > 0.

Thus, Cf > 0. From this, we can show that the existence of a unstable stationary solution
for (3.3) if ϵ is a sufficiently small negative constant.

3.3. Case of sign changing integral kernel. When the integral kernel has negative
parts, few have been known about the results of front solutions to (1.2). In the case that
d = 0, the existence of standing front solutions to (1.2) with sign changing integral kernel
was proved in [5] using variational method under the assumptions that K satisfies κ > 0,

K̂(ξ) =
∫
R K(x)e−ixξdx ≤ K̂(0) = κ for all ξ ∈ R and some conditions. However, there

have been no results about the linearized stability of the front solutions to the best of our
knowledge.

On the other hand, in numerical simulations, J. Siebert and E. Schöll [30] reported that
the front solution of (1.2) has oscillatory tails when the integral kernel is Mexican hat
profile as in Figure 1. From the result, it is natural to expect that there are cases when
the front solutions of (1.2) with sign changing integral kernels have oscillatory tails while
we were unfortunately unable to reveal the stability of front solutions in the case of sign
changing integral kernels. We leave it as an open problem for a future day.
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In the rest of this subsection, we assume that the existence of a stable single standing
front solution for (1.2) with a sign changing integral kernel and consider the interaction
of two single standing front solutions.

At first, we consider the interaction of two standing front solutions with exponentially
decaying oscillatory tails. Suppose that there exists a stable standing front solution of
(1.2) with an oscillatory tail such that

P (x)− 1 → ℜ(eλ+xa+(1 +O(e−γx))) (x → +∞),

where a+ ∈ C\{0} and λ+ = −α + iν+ for constants α > 0 and ν+ ̸= 0. Then, the
equation for the distance h between front solutions is given by

ḣ = H0 +H1

as in Theorem 2.5. From the definition of Hj(h) (j = 0, 1), we can show H0(h) = H1(h).

Since Φ∗ =
1

∥Px∥2
Px and P (±x) are front solutions to (1.2), we can calculate as

H0(h) =
1

∥Px∥2
⟨ L(P (·;h)), Px ⟩L2

=
1

∥Px∥2
⟨ f(P (·;h))− f(P (·))− f(P (−(· − h))), Px ⟩L2

By a quite similar way to Subsection 4.5 in [13], we can show

H0(h) = H1(h) = ℜ(M+eλ
+h(1 +O(e−γ′h)))

for a constant γ′ > 0 as long as h is sufficiently large, where

M+ =
a+

∥Px∥2

∫ ∞

−∞
e−λ+xPx(x){f ′(P (x))− f ′(1)}dx.

The constant M+ is well-defined because the integral is given as the Fourier transforma-
tion because of the form of λ+. Let M+ = A+ + iB+. Then, we have

H0(h) = H1(h) ∼ e−αh(A+ cos(ν+h) +B+ sin(ν+h)).

Therefore, the equation on h is

(3.5) ḣ = H0 +H1 +O(δ2(h)) ∼ 2e−αh(A+ cos(ν+h) +B+ sin(ν+h))

for sufficiently large h. From (3.5), we easily find that stable and unstable equilibria
appear alternatively in (3.5). Thus, if there exists a stable standing front with oscillatory
tails satisfying Hypothesis 1.1, we can easily give the proof on the existence and the
stability for multiple front solutions from Theorem 2.5.

Secondly, we consider the interaction of two standing front solutions with exponentially
monotone decaying tails. Suppose that there exists a stable standing front solution of (1.2)
satisfying (3.1). By following the same line of arguments in Subsection 3.1, the equation
of h is

ḣ ∼ 2M+e−αh,
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Figure 6. (a) The graph of (3.6) when ϵ = 0.01, q1 = 1.0, q2 = 2.0. (b) The
graph of G(λ) when d = 1.0, g′(1) = −1 and the integral kernel is same as Figure
6 (a).

where

M+ =
−α(a+)2

∥Px∥2L2

G′(α).

To reveal the sign of M+, we consider G′(α). We note that α satisfies G(α) = 0. In
the case of a sign changing integral kernel, G(λ) is not always monotone increasing. For
example, when we consider the case that

(3.6) K(x) =
ϵ√
4π

{
1

√
q1
e
− x2

4q1 − 1
√
q2
e
− x2

4q2

}
(ϵ, q1, q2 > 0),

then A(λ) is represented as

A(λ) = ϵ
{
eq1λ

2 − eq2λ
2
}
.

Therefore, we have

G(λ) = dλ2 + ϵ
{
eq1λ

2 − eq2λ
2
}
+ g′(1).

When d = 1.0, ϵ = 0.01, q1 = 1.0, q2 = 2.0, g′(1) = −1, it is observed that there exist
two positive solutions α1 and α2 of G(λ) = 0 (Figure 6 (b)), where α1 and α2 denote the
first and second positive root of G(λ) = 0, respectively. When α = α1, we see

M+ =
−α(a+)2

∥Px∥2L2

G′(α) < 0

by G′(α1) > 0, which means the attractivity of two front solutions. When α = α2, we see

M+ =
−α(a+)2

∥Px∥2L2

G′(α) > 0

by G′(α2) < 0. This means the repulsiveness of two front solutions.
In numerical calculations, α1, α2 can be computed approximately as α1 = 1.0264 . . .

and α2 = 1.6022 . . .. When we solve (1.2) numerically on the interval (0, 40) in the same
parameters as Figure 6, we can observe the stable standing front solution (Figure 7 (a))
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Figure 7. (a) The numerical solution of (1.2) on the interval (0, 40) when
t = 100.0, where g(u) = 1

2u(1−u2) and the other parameters are same as that in
Figure 6. (b) The graph of log |u(t, x)−1| on the interval (20, 35) when t = 100.0,
where u(t, x) is the numerical solution of (1.2).

with the exponent α1 as the exponential decay rate. In fact, Figure 7 (b) is a graph of
log |u(t, x)− 1.0| at the place where u(t, x) is close to 1, which shows that the numerical
solution converges to 1 in an exponentially monotone way with the decay exponent α =
1.0260 . . . at x = 32.0. The value α is calculated as follows: Since log |u(t, x)− 1.0| looks
like linear, the decay exponent at x = a is calculated as

α ∼ − ∂

∂x
(log |u(t, x)− 1.0|)

∣∣∣∣
x=a

∼ − log |u(t, a+ η)− 1.0| − log |u(t, a)− 1.0|
η

,

in which η is a sufficiently small constant. Therefore, we expect that the front solution
with the exponential decay rate α1 is a stable one. Hence, we think that two stable front
solutions are interacting attractively in the case of this example.

In general, if there exists a stable front solution of (1.2) satisfying (3.1), we expect that
the decay rate α is generically given by α = min{λ > 0 | G(λ) = 0}. Then, G′(α) ≥ 0
always holds by the property of G(0) = g′(1) < 0. Thus, we find that the attractive
motion will generically appear and suspect that the repulsive motion will not in most
case.

4. Discussion

In this section, we will state two future works related to the results of this paper.
First, we assume that an integral kernel decays faster than any exponential functions

throughout this paper. An integral kernel satisfying this assumption is often appeared
in the field of pattern formation problems, since many papers only concern effects of
the shape of an integral kernel [15, 22, 30]. Thus, our results include the important
case from the pattern formation point of view. Of course, we think that the condition
(1.4) is technical and it might be replace this condition by some more general conditions.
However, our results rely heavily on the condition (1.4). It would be interesting either to
remove the condition (1.4) or to replace it by some more general conditions. We try to
study as a future work.
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Second, we only give the example of the nonlocal scalar equation in Section 3. To ana-
lyze the movement of traveling wave solutions, we need the property of the eigenfunction
of L∗ corresponding to eigenvalue 0. However, in general, it is difficult to analyze to the
eigenfunction of L∗ when L is not self-adjoint. Basically, L is not self-adjoint in the case
of the n-component system with n ≥ 2. Therefore, the example of this case is our future
works.

Appendix A

In this appendix, we prove the following lemma:

Lemma A.1. Let Φ∗(z) be an eigenfunction corresponding to 0 eigenvalue of the adjoint
operator L∗ and normalized by ⟨ Pz,Φ

∗ ⟩L2 = 1. If Φ∗ converges 0 in an exponentially
monotone way such that

Φ∗(z) = e−βz(b+ +O(e−γz)) (z → +∞),

Φ∗(z) = eαz(b− +O(eγz)) (z → −∞)

for positive constants α, β and γ and non-zero constant vectors b± ∈ Rn, then

lim
z→+∞

eβzDΦ∗
z(z) = βDb+,(A1)

lim
z→−∞

e−αzDΦ∗
z(z) = αDb−(A2)

holds.

We will only show the proof of (A2). When D = 0 ∈ Rn×n, (A2) is trivial. We consider
the case that D ̸= 0 ∈ Rn×n. We multiply (2.1) by e−αz, then we get

e−αz(DΦ∗
zz + θΦ∗

z +
tK ∗ Φ∗ + tF ′(P (z))Φ∗) = 0.

Since we have

lim
z→−∞

e−αz( tK ∗ Φ∗) = tA(α)b−

by Lebesgue dominated convergence, we obtain

(A3) lim
z→−∞

e−αz(DΦ∗
zz + θΦ∗

z) + b̃ = 0,

where b̃ := (tA(α) + tF ′(0))b−.

Lemma A.2. lim
z→−∞

e−αzDΦ∗
z(z) exists.

Proof. We fix j ∈ N satisfying 1 ≤ j ≤ n and dj > 0. We write b̃ = t(b̃1, b̃2, . . . , b̃n) and
Φ∗ = t(φ∗

1, φ
∗
2, . . . , φ

∗
n), then φ∗

j satisfies

lim
z→−∞

e−αz{dj(φ∗
j)zz(z) + θ(φ∗

j)z(z)}+ b̃j = 0

from (A3). Thus, for any ϵ > 0, there exists C0 ∈ R such that

(A4) −(ϵ+ b̃j)e
αz ≤ dj(φ

∗
j)zz(z) + θ(φ∗

j)z(z) ≤ (ϵ− b̃j)e
αz

for all z ≤ C0.
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Notice that φ∗
j ∈ H2(R) from the definition of D(L∗), φ∗

j is uniform continuos function
from Morrey’s inequality. This implies

lim
z→−∞

φ∗
j(z) = 0.

Integrating (A4) from −∞ to z < C0, we obtain

−ϵ+ b̃j
α

eαz ≤ dj(φ
∗
j)z(z) + θφ∗

j(z) ≤
ϵ− b̃j
α

eαz

for all z ≤ C0. We multiply this inequality by αeαz and then take lower limit and upper
limit as z → −∞, we can deduce

−ϵ− b̃j ≤ αdj

(
lim inf
z→−∞

e−αz(φ∗
j)z(z)

)
+ αθb−j ≤ αdj

(
lim inf
z→−∞

e−αz(φ∗
j)z(z)

)
+ αθb−j ≤ ϵ− b̃j

where b− = t(b−1 , b
−
2 , . . . , b

−
n ). Since ϵ is an arbitrary positive constant, we can show that

αdj

(
lim

z→−∞
e−αz(φ∗

j)z(z)

)
+ αθb−j + b̃j = 0.

This implies

α lim
z→−∞

e−αzDΦ∗
z(z) + (θb− + tA(α)b− + tF ′(0)b−) = 0.

Therefore, we obtain the existence of lim
z→−∞

e−αzDΦ∗(z). □

From above lemma, we know that lim
z→−∞

e−αzDΦ∗(z) and lim
z→−∞

e−αzDΦ∗
z(z) exist. On

the other hand, since

(A5)
d

dz
(e−αzDΦ∗(z)) = e−αzD(Φz(z)− αΦ(z)),

lim
z→−∞

d

dz
(e−αzDΦ∗(z)) exists. Furthermore,

lim
z→−∞

d

dz
(e−αzDΦ∗(z)) = 0,

from the existence of lim
z→−∞

e−αzDΦ∗(z). Taking a limit of (A5) as z → −∞, we obtain

(A2).
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