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Introduction 

Reaction path concept has played a significant 
role in the theoretical study of chemical 
reactions. As a representative reaction path, 
Fukui introduced the intrinsic reaction 
coordinate (IRC),1,2 which is defined as the 
steepest descent path from the transition state 
(TS) geometry to the reactant and product 
minima on the potential energy surface (PES) in 
mass-weighted Cartesian coordinates. An option 
to calculate the IRC has been implemented in 
many quantum chemical program packages and 
utilized in many applications. Recent 
developments in the IRC approach can be found 
in the literature.3  

The IRC calculation requires the location of the 
TS geometry beforehand. The TS geometry 
corresponds to a first-order saddle point on the 
PES, and thus, TS geometry optimization has 
been more challenging than the geometry 
optimization of the minima. A number of TS 

optimization methods have ever been 
proposed.4 Double-ended methods such as the 
nudged elastic band (NEB) method5 require a 
pair of reactant and product geometries to 
locate TS, while there are several single-ended 
constrained optimization methods which require 
only reactant geometry. In the distinguished 
coordinate or coordinate driving methods,6-10 
one coordinate is chosen to drive the reactant 
into the product, and constraint optimization is 
performed with the selected coordinate fixed, 
resulting in the energy profile for the reaction 
process. The gradient extremals following (GEF) 
method searches TS by following stationary 
points of gradient norm on iso-potential 
surface.11-21 The reduced gradient following 
(RGF) method22-26 and the Newton trajectories 
(NTs)27-31 are related to the distinguished 
coordinate method which requires choosing a 
coordinate. RGF and NTs, however, continuously 
trace the curve on which stationary (not 
necessarily minimum) condition of energy holds, 

ABSTRACT 

A mathematical aspect of the anharmonic downward distortion following (ADDF) path is discussed. 
The ADDF method is utilized as an automated reaction path search method, which can explore 
transition state geometries on a potential energy surface from a potential minimum. We show that 
the maximum number of the ADD stationary paths intersecting the potential minimum is 2𝑓𝑓+1 − 2, 
where 𝑓𝑓 denotes the degree of freedom of the system. We also show that the bifurcation of the ADD 
stationary path is essential to detect all the transition states connected from a given minimum. The 
ADDF computation is demonstrated for a H2O molecule in which pitchfork bifurcation is observed.  
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except for the selected direction. This procedure 
allows RGF and NTs to improve the problems8-10 
of the distinguished coordinate method.22  

The anharmonic downward distortion (ADDF) 
method32,33 is also one of the constrained 
optimization methods. In the ADDF method, the 
normal coordinates are scaled by square root of 
their corresponding eigenvalues for a given 
equilibrium structure (EQ). ADDF basically steps 
in the radial direction of the hypersphere 
centered at the EQ and minimizes energy on the 
hypersphere; non-minimum points are 
additionally traced in practice.33 Similar to the 
distinguished coordinate method, ADDF uses a 
predictor-corrector procedure, but it does not 
require choosing any direction because the step 
direction at every step is uniquely determined as 
the radial direction of the hypersphere.  

The ADDF method has shown its efficiency in 
many applications.34-38 Very recently, Mitsuta 
and coworkers formulated a methodology to 
determine the reaction path network on a free 
energy surface using the ADDF concept.39,40 
However, only a few papers empirically argue 
the behavior of the ADDF path.32,33 This is in 
contrast to the cases of GEF17,20,21 and RGF (or 
NTs).23,24 To better understand the performance 
of ADDF, the mathematical aspects of the ADDF 
path need to be examined in detail. 

In this paper, we attempt to grasp the 
geometrical feature of the ADDF path by 
mathematical analysis. We first show that the 
number of the ADD stationary paths (= traces of 
the ADD stationary points on a hypersphere) 
intersecting the potential minimum is strictly 
determined by the third-order terms of the 
Taylor expansion of the PES at minimum; as an 
example, the ADD stationary paths are 
determined for the H2O molecule. Next, we 
confirm that the overlooking of TSs by the ADDF 
method is caused essentially by the bifurcation 
feature of the ADD stationary paths. Though 
overlooking of TSs by the ADDF method was 
already discussed from empirical viewpoint,33,36 
the relation between overlooking TSs and 
bifurcation has not been discussed from 
mathematical viewpoint. Third, we discuss the 

approach to tracking the ADD inflection point in 
addition to the ADD maximum point in the ADDF 
method. Finally, we discuss the completeness of 
the ADDF method to explore all the TS 
geometries from the potential minimum. 

ADDF Method  

The geometrical structure of an 𝑁𝑁 -atomic 
molecule is specified with vector 𝒙𝒙 =
(𝒙𝒙1, … , 𝒙𝒙𝑁𝑁) , where 𝒙𝒙𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3)  denotes 
the ith nuclear Cartesian coordinates. The mass-
weighted coordinates are defined by 𝒒𝒒 = 𝑴𝑴1 2⁄ 𝒙𝒙 
in which the ijth element of 𝑴𝑴 is given by 𝑀𝑀𝑖𝑖𝑖𝑖 =
𝑚𝑚�𝑖𝑖+23 �𝛿𝛿𝑖𝑖𝑖𝑖, where 𝑚𝑚𝑘𝑘  is the 𝑘𝑘th nuclear mass and 

symbols [ ]  and 𝛿𝛿𝑖𝑖𝑖𝑖  are Gauss symbol and 
Kronecker delta, respectively. In mass-weighted 
coordinates, differential operator ∇ =
� 𝜕𝜕
𝜕𝜕𝒙𝒙1

, … , 𝜕𝜕
𝜕𝜕𝒙𝒙𝑁𝑁

� is transformed into 𝑴𝑴−1 2⁄ ∇, and 

the Hessian matrix is given by 
𝑴𝑴−1 2⁄ ∇∇𝑉𝑉(𝒙𝒙)𝑴𝑴−1 2⁄ , where 𝑉𝑉(𝒙𝒙)  is potential 
energy at 𝒙𝒙. The normal mode vectors, {𝑳𝑳𝑖𝑖 (𝑖𝑖 =
1, … ,𝑓𝑓)}, are the normalized eigenvectors of the 
mass-weighted Hessian matrix with nonzero 
eigenvalues, {𝜆𝜆𝑖𝑖 (𝑖𝑖 = 1, … ,𝑓𝑓)},  which 
correspond to force constants. Hence, 𝑓𝑓 denotes 
the degree of freedom of the system (𝑓𝑓 = 3𝑁𝑁 −
6). 

The ADD function around the EQ, 𝑉𝑉ADD , is 
defined by 

𝑉𝑉ADD(𝑸𝑸) =
1
2
�𝜆𝜆𝑖𝑖𝑄𝑄𝑖𝑖2
𝑓𝑓

𝑖𝑖=1

− 𝑉𝑉(𝑸𝑸), (1) 

 
where 𝑸𝑸 = ∑ 𝑄𝑄𝑖𝑖

𝑓𝑓
𝑖𝑖=1 𝑳𝑳𝑖𝑖  are normal coordinates 

and 𝑉𝑉  at the EQ is set to be zero (𝑉𝑉(𝟎𝟎) = 0). 
𝑉𝑉ADD  is the difference between the harmonic 
potential energy and real potential energy and is 
schematically illustrated in Fig. 1. By introducing 
the scaled normal coordinates, 
 

𝑄𝑄�𝑖𝑖 = �𝜆𝜆𝑖𝑖𝑄𝑄𝑖𝑖  (𝑖𝑖 = 1, … ,𝑓𝑓), (2) 
 
𝑉𝑉ADD  on a hypersphere 𝑆𝑆(𝑅𝑅)  of radius 𝑅𝑅 
centered at the origin is rewritten as follows: 
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Figure 1. Schematic of ADD and ADD maximum path. Left panel: Harmonic PES and real PES around the 
EQ are shown as the transparent surface and iridescent surface, respectively. Right panel: Two-
dimensional map of the real PES in the left panel. Black lines and white lines are contours of the real PES 
and the harmonic PES, respectively. The ADD maximum path follows ADD maximum points (= minimum 
energy points) on the circles centered at the EQ, shown by white arrows from the EQ. 

 

𝑉𝑉ADD(𝑸𝑸�) =
𝑅𝑅2

2
− 𝑉𝑉(𝑸𝑸�), (3) 

 
where 𝑅𝑅2 = ∑ 𝑄𝑄�𝑖𝑖2

𝑓𝑓
𝑖𝑖=1 . Then, the local maxima of 

𝑉𝑉ADD on 𝑆𝑆(𝑅𝑅) are equivalent to the local minima 
of the real potential energy on 𝑆𝑆(𝑅𝑅). 

Here, we briefly explain the procedure of the 
ADDF method. 
 
STEP 1. Let 𝑖𝑖 be equal to 0. Search all the ADD 
maxima on hypersphere 𝑆𝑆𝑖𝑖  of radius 𝑅𝑅𝑖𝑖(> 0) 
centered at the origin (EQ). Let 𝑸𝑸�𝑖𝑖,𝑘𝑘  be the k-th 
ADD maximum point on 𝑆𝑆𝑖𝑖.  
STEP 2. Let 𝑖𝑖  increase by one. Project 𝑸𝑸�𝑖𝑖−1,𝑘𝑘 
onto a new hypersphere 𝑆𝑆𝑖𝑖  of radius 𝑅𝑅𝑖𝑖 (>
𝑅𝑅𝑖𝑖−1). Then, search the local ADD maxima from 
the projected points. 
STEP 3. If the energy at 𝑸𝑸�𝑖𝑖,𝑘𝑘  is higher than that 
at 𝑸𝑸�𝑖𝑖−1,𝑘𝑘 , return to STEP 2. Otherwise, go to 
STEP 4. 
STEP 4. Search the TS geometry from 𝑸𝑸�𝑖𝑖,𝑘𝑘. 
 

Following the above procedure, one can locate 
the TS geometries connected to the EQ. The 
initial radius R0 is determined so that the 
displacement along the normal mode with the 
largest force constant becomes 0.03 Å, while the 
radius of the 𝑖𝑖th hypersphere is given by 𝑅𝑅𝑖𝑖 =
𝑖𝑖2𝜀𝜀 , where 𝜀𝜀  (= R1) is determined so that the 
displacement along the normal mode with the 
largest force constant becomes 0.1 Å.36 In the 
ADDF method implemented in the GRRM14 
program,41 the search for the local minima on 
the initial hypersphere (in STEP 1) is conducted 
by the iterative optimization and elimination 
(IOE) method.33 The procedure of the IOE 
method on the initial hypersphere is as follows:  
 
STEP A. Locate the ADD maxima on the initial 
hypersphere 𝑆𝑆0  starting from 2𝑓𝑓  points at the 
intersections of 𝑆𝑆0  with the respective normal 
coordinate directions. Let the located maxima 
denoted by 𝑸𝑸�0,1, … ,𝑸𝑸�0,𝑚𝑚.  
STEP B. Eliminate the located ADD maxima by 
adding the shape functions 𝐺𝐺1(𝑸𝑸�0,1), …, 
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𝐺𝐺𝑚𝑚(𝑸𝑸�0,𝑚𝑚) to potential energy V. Let the 
potential energy after the elimination denoted 
by 𝑉𝑉𝑎𝑎 (𝑎𝑎 = 𝑚𝑚).  
STEP C. Locate another ADD maximum of 𝑉𝑉𝑎𝑎 on 
𝑆𝑆0  and let the located maximum denoted by 
𝑸𝑸�0,𝑎𝑎+1.  
STEP D. Eliminate the located ADD maximum by 
adding shape function 𝐺𝐺𝑎𝑎+1(𝑸𝑸�0,𝑎𝑎+1) to 𝑉𝑉𝑎𝑎 , and 
let the potential energy after the elimination 
denoted by 𝑉𝑉𝑎𝑎+1. Let 𝑎𝑎 increase by 1 and return 
to STEP C.  
 
STEP C and STEP D are repeated until no new 
ADD maximum point with ADD larger than a 
given threshold is found anymore. The IOE 
attempts to find all the ADD maximum points on 
the initial hypersphere. Additionally, the IOE 
method is expected to reveal the ADD maxima 
hidden by other large ADD maxima.33 Here, it 
must be emphasized that the ADDF method 
traces not only ADD maximum points but also 
ADD non-maximum points. Except for the ADD 
maxima located at STEP A, located points are not 
necessarily ADD maximum points on the original 
potential 𝑉𝑉 due to the added shape functions. If 
the ratio of ADD to the amplitude of shape 
function at a located point is smaller than 
threshold, the point is discarded and not traced 
anymore.33 As far as the ratio is larger than the 
threshold, any located point will be traced even 
if it is not close to any ADD maximum points on 
the original potential. While this seems wasteful, 
it has a merit for global reaction path search 
because trace of such artificial maximum points 
sometimes leads to new ADD maximum points.33 
Except for the initial hypersphere, a computation 
of ADD maxima on a hypersphere is conducted 
by the predictor-corrector IOE (PC-IOE) 
method,33 in which the ADD maxima on the last 
hypersphere are projected onto the current 
hypersphere, and then, STEP A is conducted 
starting from the projected points. A 
computation of the ADD maximum point and 
elimination of the maximum are performed in a 
descending order of the magnitude of the ADD 
on the last hypersphere.  

As described above, the ADDF method follows 
not only the ADD maximum points but also some 
additional points. The paths followed by the 
ADDF method are called ADDF paths. Because 
the behavior of ADDF paths depends on the form 
of the shape function, we first analyze the 
behavior of ADD maximum paths. Then, we 
compare the ADD maximum paths and the ADDF 
paths, taking the case of a H2O molecule as an 
example. 

Maximum Number of ADD Stationary 
Paths Intersecting EQ 

The ADD maximum path traces the ADD 
maximum point on 𝑆𝑆(𝑅𝑅)  by sequentially 
expanding radius 𝑅𝑅. The ADD maxima on 𝑆𝑆(𝑅𝑅) 
can be located by the Lagrange multiplier 
method. First, we introduce the following 
function, 
 

Φ(𝑸𝑸� , 𝜇𝜇) = 𝑉𝑉ADD(𝑸𝑸�) −
𝜇𝜇
2
��𝑄𝑄�𝑖𝑖2

𝑓𝑓

𝑖𝑖=1

− 𝑅𝑅2� . (4) 

 
If 𝑸𝑸�  corresponds to a stationary point of 𝑉𝑉ADD 
on 𝑆𝑆(𝑅𝑅), the following equations hold: 
 

∂
∂𝑄𝑄�𝑖𝑖

Φ(𝑸𝑸� , 𝜇𝜇) = 0   (𝑖𝑖 = 1, … ,𝑓𝑓), (5) 

∂
∂𝜇𝜇

Φ(𝑸𝑸� , 𝜇𝜇) = 0. (6) 

 
The stationary points can be classified into 
maximum, minimum, and saddle points based 
on the Hessian matrix of potential energy on the 
hypersphere. The solutions of Eqs. (5) and (6) are 
called the ADD stationary path in this paper. 

To understand the law that determines the 
number of the ADD stationary paths that 
intersects the EQ, the behavior of the ADD 
stationary paths near the EQ should be analyzed.  
Since Eqs. (5) and (6) must hold identically along 
the ADD stationary paths, the derivatives of the 
left-hand sides of Eqs. (5) and (6) are also zero 
along the ADD stationary paths. Generally, 
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𝑑𝑑𝑟𝑟
∂
∂𝑄𝑄�𝑖𝑖

Φ(𝑸𝑸� , 𝜇𝜇) = 0   (𝑖𝑖 = 1, … ,𝑓𝑓), (7) 

𝑑𝑑𝑟𝑟
∂
∂𝜇𝜇

Φ(𝑸𝑸� , 𝜇𝜇) = 0, (8) 

 
hold along the ADD stationary paths for any 
nonnegative integer 𝑟𝑟. Eqs. (7) and (8) may be 
considered as 𝑟𝑟-th order perturbation equation, 
with the radius of hypersphere being the 
perturbation parameter. When 𝑟𝑟 = 1 , Eqs. (7) 
and (8) can be written as follows: 
 

�
∂2𝑉𝑉ADD(𝑸𝑸�)
∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑖𝑖

𝑑𝑑𝑄𝑄�𝑖𝑖

𝑓𝑓

𝑖𝑖=1

− 𝑄𝑄�𝑖𝑖𝑑𝑑𝜇𝜇 − 𝜇𝜇𝑑𝑑𝑄𝑄�𝑖𝑖 

= 0   (𝑖𝑖 = 1, … ,𝑓𝑓), (9) 
 

�𝑄𝑄�𝑖𝑖𝑑𝑑𝑄𝑄�𝑖𝑖

𝑓𝑓

𝑖𝑖=1

− 𝑅𝑅𝑑𝑑𝑅𝑅 = 0. (10) 

 
At the EQ, Eq. (10) clearly holds. Since 𝑉𝑉ADD does 
not include monomials of 𝑄𝑄�𝑖𝑖s with a total degree 

lower than 3 (see Eq. (1)), ∂
2𝑉𝑉ADD(𝟎𝟎)
∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑗𝑗

= 0. Thus, at 

the EQ, 
 

𝜇𝜇 = 0 (11) 
 
holds. Note that if 𝑉𝑉ADD included quadratic term, 
Eq. (9) gives a linear eigenvalue equation. 
However, because there is no quadratic term in 
𝑉𝑉ADD, the problem becomes nonlinear as shown 
below. When 𝑟𝑟 = 2 , Eqs. (7) and (8) can be 
written as follows: 
 

��
∂3𝑉𝑉ADD(𝑸𝑸�)
∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑘𝑘

𝑑𝑑𝑄𝑄�𝑖𝑖𝑑𝑑𝑄𝑄�𝑘𝑘

𝑓𝑓

𝑘𝑘=1

𝑓𝑓

𝑖𝑖=1

− 2𝑑𝑑𝑄𝑄�𝑖𝑖𝑑𝑑𝜇𝜇 

+�
∂2𝑉𝑉ADD(𝑸𝑸�)
∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑖𝑖

𝑑𝑑2𝑄𝑄�𝑖𝑖

𝑓𝑓

𝑖𝑖=1

− 𝑄𝑄�𝑖𝑖𝑑𝑑2𝜇𝜇 − 𝜇𝜇𝑑𝑑2𝑄𝑄�𝑖𝑖 

= 0   (𝑖𝑖 = 1, … ,𝑓𝑓), (12) 
 

�(𝑑𝑑𝑄𝑄�𝑖𝑖)2
𝑓𝑓

𝑖𝑖=1

− (𝑑𝑑𝑅𝑅)2 

+�𝑄𝑄�𝑖𝑖𝑑𝑑2𝑄𝑄�𝑖𝑖

𝑓𝑓

𝑖𝑖=1

− 𝑅𝑅𝑑𝑑2𝑅𝑅 = 0. (13) 

 

Using Eq. (11), ∂
2𝑉𝑉ADD(𝟎𝟎)
∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑗𝑗

= 0, and ∂
3𝑉𝑉ADD(𝑸𝑸�)

∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑗𝑗 ∂𝑄𝑄�𝑘𝑘
=

− ∂3𝑉𝑉(𝑸𝑸�)
∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑗𝑗 ∂𝑄𝑄�𝑘𝑘

, Eqs. (12) and (13) can be written as 

follows: 
 

−��
∂3𝑉𝑉(𝟎𝟎)

∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑖𝑖 ∂𝑄𝑄�𝑘𝑘
𝑑𝑑𝑄𝑄�𝑖𝑖𝑑𝑑𝑄𝑄�𝑘𝑘

𝑓𝑓

𝑘𝑘=1

𝑓𝑓

𝑖𝑖=1

− 2𝑑𝑑𝑄𝑄�𝑖𝑖𝑑𝑑𝜇𝜇 

= 0   (𝑖𝑖 = 1, … ,𝑓𝑓), (14) 
 

�(𝑑𝑑𝑄𝑄�𝑖𝑖)2
𝑓𝑓

𝑖𝑖=1

− (𝑑𝑑𝑅𝑅)2 = 0. (15) 

 
Eqs. (14) and (15) can be regarded as 𝑓𝑓 + 1 
homogeneous polynomial equations with 
variables 𝑑𝑑𝑄𝑄�1, … ,𝑑𝑑𝑄𝑄�𝑓𝑓 ,𝑑𝑑𝜇𝜇 , and 𝑑𝑑𝑅𝑅 . Thus, the 
ratio of these variables can be obtained by 
solving Eqs. (14) and (15). Since the absolute 
values of these infinitesimal variables are trivial, 
we identify �𝑐𝑐𝑑𝑑𝑄𝑄�1, … , 𝑐𝑐𝑑𝑑𝑄𝑄�𝑓𝑓 , 𝑐𝑐𝑑𝑑𝜇𝜇, 𝑐𝑐𝑑𝑑𝑅𝑅�  with 
�𝑑𝑑𝑄𝑄�1, … ,𝑑𝑑𝑄𝑄�𝑓𝑓 ,𝑑𝑑𝜇𝜇,𝑑𝑑𝑅𝑅� , where 𝑐𝑐  is an arbitrary 
nonzero complex number, and regard the ratio 
as a root of Eqs. (14) and (15). The independent 
real roots of Eqs. (14) and (15) correspond to the 
directions of the ADD stationary paths 
intersecting the EQ. One can see that Eqs. (5) and 
(6) with 𝑉𝑉ADD(𝑸𝑸�)  truncated at the third-order 
Taylor expansion are equivalent to Eqs. (14) and 
(15), respectively. Thus, the problem to 
determine the number of the ADD stationary 
paths intersecting the EQ is reduced to 
determine the number of stationary points of 
the third-order terms of the Taylor expansion of 
the ADD function around the EQ (denoted as 
𝑉𝑉ADD

(3)  below) on a hypersphere with any radius 
other than zero. A three-dimensional version of 
this problem was solved by Kuznetsov and 
Kholshevnikov.42 Ni, Qi, Wang, and Wang solved 
the problem in the case of an even degree,43 and 
later, Cartwright and Sturmfels generalized the 
result to the case of an odd degree.44 According 
to the work by Cartwright and Sturmfels, the 
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maximum number of stationary points of 
homogeneous polynomial of 𝑛𝑛 variables with a 
degree of 𝑚𝑚(≥ 3) on a hypersphere centered at 
the origin is given by 2 {(𝑚𝑚− 1)𝑛𝑛 − 1} (𝑚𝑚− 2)⁄  
when the number of the stationary point is finite. 
Thus, the possible maximum number of the ADD 
stationary paths intersecting the EQ (= the 
maximum number of real roots of Eq. (14)) is 
given by  
 

2𝑓𝑓+1 − 2. (16) 
 
This number is not deterministic because of the 
nonlinearity of Eq. (14), and is larger than the 
number of the gradient extremal paths 2𝑓𝑓.21  

As a demonstration, we carried out reaction 
path search calculations for H2O.45 Hence, we 
adopt an algebraic geometry method that is a 
partial modification of Auzinger’s algorithm46 to 
compute all common roots of multivariate 
polynomials by which all the ADD stationary 
points on this sphere could be computed 
noniteratively. The rank of saddle points does 
not affect the difficulty to locate them because 
Auzienger’s algorithm computes stationary 
points as eigenvectors of a linear eigenvalue 
problem, which are easily obtained by various 
diagonalization codes. The electronic structure 
computations were carried out by the spin-
restricted Hartree-Fock (RHF) method with a 6-
31G(d,p) basis set using Gaussian09.47 The PES 
around the EQ was approximated by the fourth-
order Taylor expansion in terms of normal 
coordinates, where the second-, third-, and 
fourth-order derivatives were computed using 
an option of anharmonic frequency calculations 
implemented in Gaussian09. By using the scaled 
normal coordinates defined by Eq. (2), an 
isosurface of the harmonic potential becomes 
the sphere centered at the EQ. Figure 2 shows 
the ADD contour diagram of the H2O molecule 
on a sphere of radius 0.3 hartree1/2 viewed from 
six directions, where red indicates a large ADD 
and low-potential-energy region, while blue 
indicates a small ADD and high-potential-energy 

region. The number of the ADD stationary points 
on the sphere is 14, comprising four maxima 
(Max1-Max4), six saddle points (S1-S6), and four 
minima (Min1-Min4)). This number 14 is equal to 
the upper limit, 2𝑓𝑓+1 − 2 (𝑓𝑓 = 3),  calculated 
using Eq. (16). 

Figure 3 shows the ADD stationary paths 
determined by tracing the ADD stationary points 
while increasing the sphere radius as (a) R = 0 to 
1.0 hartree1/2 and (b) R = 0 to 0.3 hartree1/2. The 
number of ADD stationary points on the sphere 
varies with the sphere radius, as shown in Fig. 3a. 
One ADD saddle path (= a trail of ADD saddle 
points) changes into an ADD maximum path 
(path 5) with two new ADD saddle paths at a 
radius of 0.66 hartree1/2 (called pitchfork 
bifurcation23,48). Because of the bifurcation, the 
number of ADD stationary paths increases to 20 
on a sphere of radius 1.0 hartree1/2. In the vicinity 
of the EQ, the opposite direction of each ADD 
maximum path corresponds to the ADD 
minimum path, and the opposite direction of 
each ADD saddle path corresponds to another 
ADD saddle path. This behavior is understood by 
the parity of 𝑉𝑉ADD

(3) . Since 𝑉𝑉ADD
(3)  is the third-order 

homogeneous polynomial, 𝑉𝑉ADD
(3) (−𝑑𝑑𝑸𝑸�) =

−𝑉𝑉ADD
(3) (𝑑𝑑𝑸𝑸�) holds and the opposite point of the 

ADD stationary point also corresponds to the 
ADD stationary point. Moreover, the opposite 
point of the 𝑙𝑙-th order ADD saddle point (0 ≤
𝑙𝑙 < 𝑓𝑓 − 1 ) corresponds to the (𝑓𝑓 − 1 − 𝑙𝑙) -th 
order ADD saddle point because the Hessian 
matrix of 𝑉𝑉ADD

(3)  on a sphere (see Eq. (21)) is also 
antisymmetric with respect to a spatial inversion. 
Figure 3c shows the other characteristic 
bifurcation in the case of H2O, which are 
transcritical bifurcation and hysteresis loop.48 At 
the transcritical bifurcation point, the ADD 
saddle path and the ADD minimum path 
intersect and the nature of the path is swapped. 
In the hysteresis loop, the ADD saddle path 
changes first into the ADD maximum path and 
then changes into the ADD saddle path again. 
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Figure 2. ADD contour diagram of the H2O molecule on a sphere of radius 0.3 hartree1/2 centered at the 
EQ. Each panel shows a bird's-eye view from the direction of (a) +𝑄𝑄�1, (b) −𝑄𝑄�1, (c) +𝑄𝑄�2, (d) −𝑄𝑄�2, (e) +𝑄𝑄�3, 
and (f) −𝑄𝑄�3, where 𝑄𝑄�1, 𝑄𝑄�2, and 𝑄𝑄�3 are scaled normal coordinates for OH symmetric stretching (A1), H-O-
H bending (A1), and OH antisymmetric stretching (B2) vibrational modes, respectively. The ADD function 
is approximated by the fourth-order polynomials (denoted as 𝑉𝑉ADD

(4) ), where white lines are the contours 
of 𝑉𝑉ADD

(4) . The value of 𝑉𝑉ADD
(4)  is shown by color (blue ~ red), and the red points (Max1-Max4), yellow points 

(S1-S6), and cyan points (Min1-Min4) denote ADD maxima, ADD saddles, and ADD minima, respectively. 
Ball-stick models beside the ADD maxima show the corresponding H2O geometries. 
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Figure 3. ADD stationary paths of H2O determined by tracing the stationary points of 𝑉𝑉ADD
(4)  while 

increasing the sphere radius as (a) R = 0 to 1.0 hartree1/2 and (b) R = 0 to 0.3 hartree1/2. Red, yellow, and 
cyan points correspond to the ADD maxima, ADD saddle points, and ADD minima, respectively. The 
transparent sphere is the same as that shown in Fig. 2. In (a), pitchfork bifurcation of the ADD saddle path 
occurs at R = 0.66 hartree1/2, resulting in one ADD maximum and two ADD saddle paths. The other 
characteristic bifurcation is shown in (c). 
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Bifurcation of ADD Stationary Path 

As shown in the case of H2O, the number of ADD 
maxima on the sphere may change due to the 
bifurcation of the ADD stationary paths. ADD 
maximum path 5 in Fig. 3a appears owing to 
pitchfork bifurcation at R = 0.66 hartree1/2. To 
confirm that this bifurcation is not an artifact 
caused by an approximation to the PES, we also 
performed the ADD maximum path search for 
H2O based on the real PES by the spin-
unrestricted Hartree-Fock (UHF) method with 6-
31G(d,p) basis sets, using our own ADD 
stationary path search program. The UHF 
method was employed with the option, 
Stable=Opt, in Gaussian09, to describe the 
dissociation pathway into two fragments of 
doublet spin multiplicity. The calculated ADD 
maximum paths are shown in the Supporting 
Information, which are basically the same as 
those obtained with the fourth-order Taylor 
expansion PES. It was shown that the pitchfork 
bifurcation point appears on a sphere of radius R 
= 0.78 hartree1/2 on the real PES, and ADD 
maximum path 5 caused by bifurcation leads to 
TS in the dissociation to O + H2.  

We also performed the ADD maximum path 
search for H2O based on the real PES by UHF/6-
31G(d,p) using the GRRM14 program41 with the 
options MO GUESS, Opt=Tight, and Stable=Opt. 
In the GRRM program, the IOE method was 
originally introduced to detect the direction of 
the hidden ADD maxima on the initial 
hypersphere,32,33 but it does not always work as 
expected. Figure 4 shows the ADDF paths (shown 
by orange dots) computed by GRRM14.41 Dots on 
the floor are projected points of the ADDF paths. 
Five ADDF paths were obtained, but one was 
discarded in the very early step of the ADDF 
procedure. Thus, only four ADDF paths are 
shown in Fig. 4, almost coinciding with the ADD 
maximum paths near the EQ. This means that 
the IOE method merely located the ADD maxima 
of the original PES, and the direction of the 
pitchfork bifurcation on the initial sphere 
(hidden ADD maximum) could not be detected. 

One ADDF path leads to the linear structure (H-
O-H) of the second-order saddle point (SOSP), 
while two ADDF paths lead to the dissociation 
channels (DC) to OH + H.49 The rest leads to X''' 
via geometries X, X', and X''. Around X, the ADD 
maximum turns into an ADD saddle. Without the 
IOE technique, the optimization on the next 
sphere converges to either of the two DCs. 
However, with the IOE technique, X' was located 
instead of a geometry on either of the DCs, 
because ADD maximum basins around DCs are 
blocked by the shape function.50 Then, the ADD 
path continues till X'', but in the next sphere, it 
falls in the basin of the ADD maximum around X'''. 
At X''', the potential energy starts decreasing 
along the ADDF path. Then, the ADDF method is 
stopped, and TS(guess) is located as the energy-
top point along the ADDF path. The TS 
optimization from TS(guess) led to TS1 (linear 
HH…O), which connects O + H2 and OH + H. In 
fact, the TS obtained by the ADDF method is 
sensitive to any change in the step size when 
expanding the sphere radius. When 𝜀𝜀  is 
determined so that the displacement becomes 
0.02 Å (the default is 0.1 Å), the located TS was 
not TS1 but TS2 that connects the EQ and O + H2 
keeping the C2v symmetry. When the 
displacement was set to 0.09 Å, both structures 
were not found. 

Ohno and Maeda discussed overlooking of the 
TSs in ADDF computations from empirical view.33 
They claimed that this is because small ADD is 
covered by large ADDs and cannot be detected 
by the IOE method due to its fitting error in 
shape functions.33 In the H2O case, the ADD in 
the direction of H2 dissociation channel (via TS2) 
is small and covered by the large ADDs of H atom 
dissociation channels. This explanation is true, 
but overlooking of TSs can be understood more 
clearly in terms of bifurcation. It is important to 
understand the bifurcation of the ADD stationary 
path to determine whether the ADDF method is 
able to locate all TSs. In the following section, we 
derive the conditions necessary for the ADD 
stationary path to bifurcate and investigate the 
typical bifurcation pattern.  
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Figure 4. ADDF paths (orange dots) of the H2O molecule computed by GRRM14. Dots on the floor are the 
projected points of ADDF paths and TS geometries, and the two orthogonal lines on the floor denote the 
𝑄𝑄�1  and 𝑄𝑄�3  axes. The transparent sphere is the same as that shown in Fig. 2. Four ADDF paths were 
obtained: one leads to SOSP, two lead to DC to OH + H, and the remaining leads to X''' via geometries X, 
X', and X''. Starting from the TS(guess), the top of the ADDF path, the TS with the linear structure (TS1) 
was obtained, but the TS with the C2v symmetry (TS2) was overlooked. 
 

The necessary condition for the ADD 
stationary path to bifurcate is the singularity of 
the Hessian matrix of the ADD function on the 
hypersphere. First, we derive the Hessian matrix 
of the ADD function at a point on the 
hypersphere. Let the scalar product of two 
vectors 𝒂𝒂 and 𝒃𝒃 be denoted by 〈𝒂𝒂,𝒃𝒃〉 and 𝑸𝑸�  be a 
point on the hypersphere 𝑆𝑆(𝑅𝑅) = �𝑸𝑸�|〈𝑸𝑸� ,𝑸𝑸�〉 =
𝑅𝑅2,𝑅𝑅 ∈ �0,∞��.  There are 𝑓𝑓 − 1  orthonormal 
vectors 𝒆𝒆1(𝑸𝑸�), … , 𝒆𝒆𝑓𝑓−1(𝑸𝑸�) tangent to 𝑆𝑆(𝑅𝑅) and 
one outward normal vector 𝒏𝒏(𝑸𝑸�) . On the 
hypersphere 𝑆𝑆(𝑅𝑅),  𝒏𝒏(𝑸𝑸�) = 𝑸𝑸� �〈𝑸𝑸� ,𝑸𝑸�〉⁄  holds. 
We omit the dependent variables of 
𝒆𝒆1(𝑸𝑸�), … , 𝒆𝒆𝑓𝑓−1(𝑸𝑸�)  and 𝒏𝒏(𝑸𝑸�)  in the discussion 
below. The Hessian matrix of the ADD function 
𝑉𝑉ADD(𝑸𝑸�) is given by 
 

〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 〈𝒆𝒆𝜈𝜈 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD 

= 〈𝒆𝒆𝜇𝜇 , 〈𝒆𝒆𝜈𝜈 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD 

+ 〈〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 𝒆𝒆𝜈𝜈,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD    

(𝜇𝜇, 𝜈𝜈 = 1, … ,𝑓𝑓 − 1). (17) 
 
Here, 〈𝒆𝒆𝜇𝜇 , 𝜕𝜕

𝜕𝜕𝑸𝑸�
〉 𝒆𝒆𝜈𝜈 in the 𝑓𝑓 dimensional Euclidean 

space ℝ𝑓𝑓  can be written as the linear 
combination of 𝒆𝒆1, … , 𝒆𝒆𝑓𝑓−1 and 𝒏𝒏: 
  

〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 𝒆𝒆𝜈𝜈 = �� 𝜆𝜆𝜇𝜇𝜈𝜈� 𝒆𝒆𝜆𝜆

𝑓𝑓−1

𝜆𝜆=1

+ Ω𝜇𝜇𝜈𝜈𝒏𝒏, (18) 

 

where � 𝜆𝜆𝜇𝜇𝜈𝜈� and Ω𝜇𝜇𝜈𝜈  are the Christoffel symbols 

and the Euler-Schouten tensor, respectively. 
According to Riemannian geometry, by choosing 
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𝒆𝒆1, … , 𝒆𝒆𝑓𝑓−1 as the basis of a geodesic coordinate 
system at 𝑸𝑸� , 
 

� 𝜆𝜆𝜇𝜇𝜈𝜈� = 0 (19) 

 
holds.51 The Euler-Schouten tensor of the 
hypersphere is given by 
 
Ω𝜇𝜇𝜈𝜈  

= 〈𝒏𝒏, 〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 𝒆𝒆𝜈𝜈〉 

= − 〈〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝒏𝒏,𝒆𝒆𝜈𝜈〉   (∵ 〈𝒏𝒏, 𝒆𝒆𝜈𝜈〉 = 0) 

= − 〈〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉
𝑸𝑸�

�(𝑸𝑸� ,𝑸𝑸�)
, 𝒆𝒆𝜈𝜈〉    �∵ 𝒏𝒏 =

𝑸𝑸�

�〈𝑸𝑸� ,𝑸𝑸�〉
� 

= − 〈
1

�〈𝑸𝑸� ,𝑸𝑸�〉
𝒆𝒆𝜇𝜇 −

〈𝒆𝒆𝜇𝜇 ,𝑸𝑸�〉
〈𝑸𝑸� ,𝑸𝑸�〉

𝒏𝒏,𝒆𝒆𝜈𝜈〉 

= −
𝛿𝛿𝜇𝜇𝜈𝜈
𝑅𝑅

. (20) 

 
Thus, using Eqs. (18), (19), and (20), Eq. (17) is 
rewritten as 
 

〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 〈𝒆𝒆𝜈𝜈 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD 

= 〈𝒆𝒆𝜇𝜇 , 〈𝒆𝒆𝜈𝜈 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD 

−
𝛿𝛿𝜇𝜇𝜈𝜈
𝑅𝑅
〈𝒏𝒏,

𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD. (21) 

 
Eq. (21) is the Hessian matrix of the ADD function 
on 𝑆𝑆(𝑅𝑅). The first term is the Hessian matrix of 
the ADD function on the hyperplane tangent to 
𝑆𝑆(𝑅𝑅) . The second term originates from the 
curvature of 𝑆𝑆(𝑅𝑅). Note that the Hessian matrix 
of the ADD function on 𝑆𝑆(𝑅𝑅) is not equal to that 
on the hyperplane normal to the ADD stationary 
path.  

Next, we derive the necessary conditions for 
the ADD stationary path to bifurcate. Bifurcation 
of the ADD stationary path occurs where its 
tangent vector is either tangent to the 
hypersphere or is not uniquely determined. Let 
𝑸𝑸�  be an ADD stationary point so that 
〈𝒆𝒆𝜇𝜇 , 𝜕𝜕

𝜕𝜕𝑸𝑸�
〉 𝑉𝑉ADD = 0 (𝜇𝜇 = 1, … ,𝑓𝑓 − 1) at 𝑸𝑸� . Since 

these equations hold identically on the ADD 
stationary path, their derivatives also hold along 
the ADD stationary path. The first-order 
derivative along the ADD stationary path is given 
by 
 

𝑑𝑑 �〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD� 

= 〈𝑑𝑑𝑸𝑸� ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 �〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD� 

= 0   (𝜇𝜇 = 1, … ,𝑓𝑓 − 1). (22) 
 
The infinitesimal displacement 𝑑𝑑𝑸𝑸�  is tangent to 
the ADD stationary path. Since 𝑑𝑑𝑸𝑸�  is an 𝑓𝑓 -
dimensional vector, it can be written as the 
linear combination of 𝒆𝒆1, … , 𝒆𝒆𝑓𝑓−1,𝒏𝒏: 
 

𝑑𝑑𝑸𝑸� = �〈𝒆𝒆𝜈𝜈 ,𝑑𝑑𝑸𝑸�〉𝒆𝒆𝜈𝜈

𝑓𝑓−1

𝜈𝜈=1

+ 〈𝒏𝒏,𝑑𝑑𝑸𝑸�〉𝒏𝒏. (23) 

 
By substituting Eq. (23) into Eq. (22), 
 

�〈𝒆𝒆𝜈𝜈,𝑑𝑑𝑸𝑸�〉 〈𝒆𝒆𝜈𝜈,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD

𝑓𝑓−1

𝜈𝜈=1

 

+〈𝒏𝒏,𝑑𝑑𝑸𝑸�〉 〈𝒏𝒏,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD 

= 0   (𝜇𝜇 = 1, … ,𝑓𝑓 − 1) (24) 
 
We introduce 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 , 𝒃𝒃 , and 𝐴𝐴  with the 
components shown below: 
 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝜇𝜇𝜈𝜈 = 〈𝒆𝒆𝜈𝜈,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD 

(𝜇𝜇, 𝜈𝜈 = 1, … ,𝑓𝑓 − 1), (25) 
 

𝑏𝑏𝜇𝜇 = 〈𝒏𝒏,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 〈𝒆𝒆𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD 

(𝜇𝜇 = 1, … ,𝑓𝑓 − 1), (26) 
 

𝐴𝐴𝜇𝜇𝜈𝜈 = �
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝜇𝜇𝜈𝜈    (𝜈𝜈 = 1, … ,𝑓𝑓 − 1)

𝑏𝑏𝜇𝜇  (𝜈𝜈 = 𝑓𝑓)  

(𝜇𝜇 = 1, … ,𝑓𝑓 − 1). (27) 
 
Then, Eq. (24) can be rewritten as 
 

𝐴𝐴𝑑𝑑𝑸𝑸� = 𝟎𝟎. (28) 
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In particular, by choosing the orthonormalized 
eigenvectors of 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝒍𝒍1(𝑸𝑸�), … , 𝒍𝒍𝑓𝑓−1(𝑸𝑸�), as the 
basis, Eqs. (25)–(27) are written as 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝜇𝜇𝜈𝜈 = ℎ𝜇𝜇𝛿𝛿𝜇𝜇𝜈𝜈    (𝜇𝜇, 𝜈𝜈 = 1, … ,𝑓𝑓 − 1), (29) 

 

𝑏𝑏𝜇𝜇 = 〈𝒏𝒏,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉 〈𝒍𝒍𝜇𝜇 ,
𝜕𝜕
𝜕𝜕𝑸𝑸�

〉𝑉𝑉ADD 

(𝜇𝜇 = 1, … ,𝑓𝑓 − 1), (30) 
 

𝐴𝐴𝜇𝜇𝜈𝜈 = �
ℎ𝜇𝜇𝛿𝛿𝜇𝜇𝜈𝜈    (𝜈𝜈 = 1, … ,𝑓𝑓 − 1)

𝑏𝑏𝜇𝜇  (𝜈𝜈 = 𝑓𝑓)  

(𝜇𝜇 = 1, … ,𝑓𝑓 − 1), (31) 
 
and Eq. (28) is written as  
 
ℎ𝜇𝜇〈𝒍𝒍𝜇𝜇 ,𝑑𝑑𝑸𝑸�〉 = −𝑏𝑏𝜇𝜇〈𝒏𝒏,𝑑𝑑𝑸𝑸�〉 

(𝜇𝜇 = 1, … ,𝑓𝑓 − 1). (32) 
 
Eq. (32) is a set of 𝑓𝑓 − 1 linear equations with 𝑓𝑓 
variables, 〈𝒍𝒍1,𝑑𝑑𝑸𝑸�〉, … , 〈𝒍𝒍𝑓𝑓−1,𝑑𝑑𝑸𝑸�〉, 〈𝒏𝒏,𝑑𝑑𝑸𝑸�〉 . The 
nontrivial solution of Eq. (32) is the tangent 
vector of an ADD stationary path, and it is 
classified into four cases. In the first case, the 
solution of Eq. (32) is unique and there is no 
bifurcation. In the second case, the solution is 
unique and the tangent vector of the ADD 
stationary path is also tangent to the 
hypersphere. In spite of the uniqueness of the 
solution, there is a possibility of bifurcation in 
this case. In the third case, there are some 
solutions. If there are more than one real 
solution, the stationary paths intersect. In the 
fourth case, there are some solutions and all the 
tangent vector of the stationary paths are also 
tangent to the hypersphere. These four cases are 
shown in detail as follows. 
 
(CASE 1) No bifurcation: ℎ𝜇𝜇 ≠ 0 (𝜇𝜇 = 1, … ,𝑓𝑓 −
1):  
 
In this case, the solution of Eq. (32) is determined 
uniquely and given by  
 

�
〈𝒍𝒍𝜇𝜇 ,𝑑𝑑𝑸𝑸�〉 = −𝑐𝑐

𝑏𝑏𝜇𝜇
ℎ𝜇𝜇

   (𝜇𝜇 = 1, … ,𝑓𝑓 − 1)

〈𝒏𝒏,𝑑𝑑𝑸𝑸�〉 = 𝑐𝑐
, (33) 

 
where 𝑐𝑐 is an arbitrary constant. Thus, there is 
only one ADD stationary path with its tangent 
vector given by Eq. (33), which intersects point 
𝑸𝑸� . If the sign of 〈𝒏𝒏,𝑑𝑑𝑸𝑸�〉 is positive, the radius of 
the hypersphere increases in the direction of 𝑑𝑑𝑸𝑸�  
and decreases in the direction of −𝑑𝑑𝑸𝑸� . Since the 
ADDF method follows the ADD maximum paths 
with the expansion of the hypersphere radius, 
the ADD maximum path is followed in the 
direction of 𝑑𝑑𝑸𝑸� . Thus, the direction of the ADD 
stationary path to be followed is unique in this 
case, i.e., there is no bifurcation.  
 
(CASE 2) Bifurcations without crossing of paths: 
ℎ1 = 0, ℎ𝜇𝜇 ≠ 0 (𝜇𝜇 = 2, … , 𝑓𝑓 − 1) and 𝑏𝑏1 ≠ 0  
 
In this case, the solution of Eq. (32) is determined 
uniquely and given by  
 

�
〈𝒍𝒍𝜇𝜇 ,𝑑𝑑𝑸𝑸�〉 = 𝑐𝑐𝛿𝛿𝜇𝜇1   (𝜇𝜇 = 1, … ,𝑓𝑓 − 1)

〈𝒏𝒏,𝑑𝑑𝑸𝑸�〉 = 0
, (34) 

 
where 𝑐𝑐  is an arbitrary constant. Although the 
solution is determined uniquely, there is a 
possibility of bifurcation in this case. The tangent 
vector of the ADD stationary path at 𝑸𝑸�  given by 
Eq. (34), 𝑑𝑑𝑸𝑸� , is also tangent to the hypersphere 
𝑆𝑆(𝑅𝑅). Thus, here, the ADD stationary path does 
not intersect 𝑆𝑆(𝑅𝑅), i.e., the ADD stationary path 
is not transverse to 𝑆𝑆(𝑅𝑅). In this case, along the 
radial direction, a couple of ADD stationary paths 
emerge or disappear at 𝑸𝑸� . Saddle-node 
bifurcation48 is one such bifurcation (see Fig. 5). 
Note that there is no ADD stationary path 
connecting the saddle-node bifurcation point 
and EQ (the origin). Thus, if only ADD stationary 
paths intersecting the EQ are followed, the TS 
located at (𝑥𝑥,𝑦𝑦) = (−3.035,−10.776)  should 
be overlooked. Saddle-node bifurcation in the 
GEF method, which is also unfavorable for 
reaction path search, was also reported.52,53 
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Hysteresis loop shown in Fig. 3c is also 
categorized into this type of bifurcation.  
 

 

Figure 5. Saddle-node bifurcation: Model 
potential is given by 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 𝑦𝑦2 +
0.1(𝑥𝑥3 − 3𝑥𝑥𝑦𝑦2) + 0.04(𝑥𝑥3𝑦𝑦 − 𝑥𝑥𝑦𝑦3). The origin 
is the minimum (EQ). The black solid curves and 
white circles represent the contours of 𝑓𝑓(𝑥𝑥,𝑦𝑦) 
and those of the harmonic potential. TSs are 
shown by black circles, located at (x, y) = (5.960, 
-4.715), (1.951, 3.870), (-3.035, -10.776), (-5.022, 
0.911). The ADD maximum and minimum paths 
are shown by red and blue dashed curves, 
respectively. A pair of ADD stationary paths 
emerge at the saddle-node bifurcation point, 
shown by a black square located at (𝑥𝑥,𝑦𝑦) =
(0,−7.5). 
 
(CASE 3) Crossing point of paths:  ℎ𝜇𝜇 , 𝑏𝑏𝜇𝜇 ≠
0 (𝜇𝜇 = 1, … , 𝑟𝑟)  and ℎ𝜇𝜇 , 𝑏𝑏𝜇𝜇 = 0 (𝜇𝜇 = 𝑟𝑟 +
1, … ,𝑓𝑓 − 1)  
 
In this case, Eq. (28) or Eq. (22) is not sufficient 
to determine 𝑑𝑑𝑸𝑸� . Let rank𝐴𝐴 = 𝑟𝑟 (< 𝑓𝑓 − 1) . 
Then, by applying Gaussian elimination to Eq. 
(28), Eq. (28) can be rewritten as 
 

�
𝐷𝐷𝑟𝑟

𝑂𝑂𝑓𝑓−1−𝑟𝑟�
𝑑𝑑𝑸𝑸� = 𝟎𝟎, (35) 

 

where 𝐷𝐷𝑟𝑟  is 𝑟𝑟 × 𝑓𝑓  matrix with rank 𝐷𝐷𝑟𝑟 = 𝑟𝑟 . 
𝑂𝑂𝑓𝑓−1−𝑟𝑟  is (𝑓𝑓 − 1 − 𝑟𝑟) × 𝑓𝑓  zero matrix. The 
general solution of Eq. (35) is given by 
 

𝑑𝑑𝑸𝑸� = �𝑐𝑐𝑖𝑖𝒗𝒗𝑖𝑖

𝑓𝑓−𝑟𝑟

𝑖𝑖=1

, (36) 

 
where 𝒗𝒗𝑖𝑖 (𝑖𝑖 = 1, … ,𝑓𝑓 − 𝑟𝑟)  are orthonormal 
vectors that satisfy 𝐷𝐷𝑟𝑟𝒗𝒗𝑖𝑖 = 𝟎𝟎  and 𝑐𝑐𝑖𝑖 (𝑖𝑖 =
1, … ,𝑓𝑓 − 𝑟𝑟) are coefficients. To determine the 
direction of 𝑑𝑑𝑸𝑸� , i.e., to determine the ratio of 𝑐𝑐𝑖𝑖, 
higher-order derivatives of Eq. (22) or Eq. (28) 
are necessary. The second-order derivative of Eq. 
(22), i.e., the first-order derivative of Eq. (28), is 
given by 
  

𝑑𝑑(𝐴𝐴𝑑𝑑𝑸𝑸�) = 𝐴𝐴𝑑𝑑2𝑸𝑸� + 〈𝑑𝑑𝑸𝑸� ,
𝜕𝜕𝐴𝐴
𝜕𝜕𝑸𝑸�

〉 𝑑𝑑𝑸𝑸� = 𝟎𝟎. (37) 

 
By Gaussian elimination of 𝐴𝐴 in Eq. (37), Eq. (37) 
can be rewritten as 
 

�
𝐷𝐷𝑟𝑟

𝑂𝑂𝑓𝑓−1−𝑟𝑟�
𝑑𝑑2𝑸𝑸� + �

𝐸𝐸𝑟𝑟(𝑑𝑑𝑸𝑸�)
𝐹𝐹𝑓𝑓−1−𝑟𝑟(𝑑𝑑𝑸𝑸�)� 𝑑𝑑𝑸𝑸

� = 𝟎𝟎, (38) 

 
where 𝐸𝐸𝑟𝑟(𝑑𝑑𝑸𝑸�)  and 𝐹𝐹𝑓𝑓−1−𝑟𝑟(𝑑𝑑𝑸𝑸�)  are 𝑟𝑟 × 𝑓𝑓 
matrix and (𝑓𝑓 − 1 − 𝑟𝑟) × 𝑓𝑓  matrix, the 
elements of which are all linear in 𝑑𝑑𝑸𝑸� . The 
direction of 𝑑𝑑𝑸𝑸�  might be determined by 
 

�
𝐷𝐷𝑟𝑟𝑑𝑑𝑸𝑸� = 𝟎𝟎

𝐹𝐹𝑓𝑓−1−𝑟𝑟(𝑑𝑑𝑸𝑸�)𝑑𝑑𝑸𝑸� = 𝟎𝟎 . (39) 

 
However, there might be a case in which even 
higher-order derivatives of Eq. (28) are 
necessary to determine the direction of 𝑑𝑑𝑸𝑸� . 
Since Eq. (39) are nonlinear equations, there 
may be more than one solution. Each real 
solution corresponds to a tangent vector of the 
ADD stationary path intersecting 𝑸𝑸� . Thus, when 
there are more than one real solutions, 𝑸𝑸�  is a 
bifurcation point and some ADD stationary paths 
intersect. Pitchfork bifurcation and transcritical 
bifurcation shown in Fig. 3 are categorized into 
this type of bifurcation. Pitchfork bifurcation is 
an example of bifurcation described in CASE 3 
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(see Fig. 6). Pitchfork bifurcation points can be 
found by following the ADD saddle paths 
intersecting the EQ. As shown in Fig. 4, the ADDF 
method does not necessarily follow the ADD 
saddle path leading to the pitchfork bifurcation 
point. Thus, the ADD maximum path caused by 
pitchfork bifurcation might be overlooked. 
 

 

Figure 6. Pitchfork bifurcation: Model potentials 
are given by 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 𝑦𝑦2 − 0.1(𝑥𝑥3 −
3𝑥𝑥𝑦𝑦2) − 0.01(𝑥𝑥4 − 6𝑥𝑥2𝑦𝑦2 + 𝑦𝑦4). The origin is 
the minimum (EQ). The black curves represent 
the contours of 𝑓𝑓(𝑥𝑥,𝑦𝑦). TSs are shown by black 
circles, located at (𝑥𝑥,𝑦𝑦) =
(4.254,0), (−1.577, ±5.814), (−11.754,0).  At 
the pitchfork bifurcation point, shown by a black 
square located at (𝑥𝑥,𝑦𝑦) = (−5.625,0), the ADD 
maximum path bifurcates, resulting in one 
minimum path and two maximum paths. 
 
(CASE 4) Crossing of all paths tangent to the 
hypersphere: rank(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) < rank(𝐴𝐴),
rank(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) ≤ 𝑓𝑓 − 3  
 
In this case, 〈𝒏𝒏,𝑑𝑑𝑸𝑸�〉 = 0  and some ADD 
stationary paths intersect at 𝑸𝑸� . Eventually, the 
necessary condition for 𝑸𝑸�  to be a bifurcation 
point of the ADD stationary path is given by 
 

det(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) = 0. (40) 
 

This condition is the singularity of the Hessian 
matrix given by Eq. (21). Thus, bifurcation of ADD 
stationary paths occurs at the ADD stationary 
inflection point. It is obvious that CASE 2–CASE 4 
satisfy Eq. (40).  

Notably, bifurcation of the ADD stationary 
path and that of the gradient extremal path are 
essentially the same phenomenon. The gradient 
extremal path is the curve connecting the 
stationary points of the norm of the energy 
gradient on the potential energy isosurfaces. 
Similarly, the ADD stationary paths are curves 
connecting the stationary points of ADD on the 
harmonic potential isosurfaces. As shown above, 
bifurcation of the ADD stationary path occurs 
only at the nonregular point of the Hessian 
matrix of the ADD function on the harmonic 
potential isosurfaces. In fact, the bifurcation of 
the gradient extremal path occurs at the 
nonregular point of the Hessian matrix of the 
energy gradient norm on the potential energy 
isosurfaces.17,21  

The relation between ADDF and the 
distinguished coordinate method should be 
noted.  The distinguished coordinate method 
follows only minimum energy point on the 
hyperplane perpendicular to the selected 
direction (see “Introduction”), and other 
stationary points are not followed. If the 
harmonic potential isosurface is used for 
constraint instead of the hyperplane, only ADD 
maximum paths are followed in the procedure of 
the distinguished coordinate. This is almost the 
same to ADDF, although the IOE technique 
follows some additional points other than ADD 
maxima. Thus, as RGF or NTs improved the 
distinguished coordinate, continuous trace of 
ADD stationary points, not only ADD maxima, 
seems to improve ADDF. At least, overlooking by 
bifurcation will be prevented, to some extent. 
This requires additional computational cost, of 
course.  
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ADD Inflection Paths 

As discussed above, the ADD stationary paths 
bifurcate at the nonregular point of the Hessian 
matrix on hyperspheres, and thus, some of 
bifurcation points may be found by following the 
ADD inflection points. The IOE method follows 
not only ADD maxima but also ADD inflection-
like points.36,50 When only ADD maxima are 
followed, bifurcation of the ADD stationary paths 
is sometimes overlooked. Thus, following the 
ADD inflection points is important to reduce the 
risk of overlooking of the TSs. In this section, we 
show that the saddle-node bifurcation point 
shown in Fig. 5 can be found by following the 
ADD inflection paths, which are the curves 
generated by connecting the ADD inflection 
points.  

First, we define the ADD inflection paths. Let 
𝑸𝑸�  be an ADD non-stationary inflection point. 
Then, there is a zero eigenvalue of the Hessian 
matrix: 
 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑸𝑸�)𝒍𝒍1 = 𝟎𝟎, (41) 
 
and 
 

��𝒍𝒍𝜇𝜇 ⊗ 𝒍𝒍𝜇𝜇�
𝑓𝑓−1

𝜇𝜇=1

𝜕𝜕𝑉𝑉ADD
𝜕𝜕𝑸𝑸�

(𝑸𝑸�) 

= 〈𝒍𝒍1,
𝜕𝜕𝑉𝑉ADD
𝜕𝜕𝑸𝑸�

(𝑸𝑸�)〉 𝒍𝒍1 (42) 

 
hold. When 𝑸𝑸�  is an ADD stationary inflection 
point, Eq. (38) becomes obvious because 
〈𝒍𝒍𝜇𝜇 , 𝜕𝜕𝑉𝑉ADD

𝜕𝜕𝑸𝑸�
(𝑸𝑸�)〉 = 0   (𝜇𝜇 = 1, … ,𝑓𝑓 − 1).  The 

curves that satisfy Eqs. (41) and (42) identically 
are called ADD inflection paths. Figure 7 shows 
the ADD inflection paths of the same potential as 
that shown in Fig. 5. Since there is no ADD 
maximum path that connects the saddle-node 
bifurcation point and EQ, it seems difficult to find 
the ADD maximum path appearing at the 
bifurcation point. However, if the ADD inflection 
path given by 𝑥𝑥 = 0  is followed, the ADD 
maximum path could be found. Although what 
the IOE method follows in addition to the ADD 

maximum point is not an accurate ADD inflection 
point, the possibility to find the saddle-node 
bifurcation point might be enhanced. Accurate 
ADD inflection points defined by Eqs. (41) and 
(42) can be obtained by computing the 
stationary points of the norm of tangential 
components of ADD gradient on hyperspheres. 
This is related to the fact that gradient 
minimization affords not only stationary points 
but also minima of the gradient norm with a 
nonzero value.4,52-56 The nonzero gradient 
minima satisfy only Eqs. (41) and (42). However, 
it is not practical to trace all the ADD inflection 
paths. Similar to the above discussion of the 
maximum number of ADD stationary paths, the 
maximum number of ADD inflection paths and 
ADD stationary paths is given by �5𝑓𝑓 − 1� 2⁄ . 
This is confirmed as follows. The norm of the 
tangential components of ADD gradient on 
hyperspheres is given by 𝑔𝑔 = 〈𝜕𝜕𝑉𝑉ADD

𝜕𝜕𝑸𝑸�
(𝑸𝑸�), �𝐼𝐼 −

𝑸𝑸�⊗𝑸𝑸�
〈𝑸𝑸� ,𝑸𝑸�〉

� 𝜕𝜕𝑉𝑉ADD
𝜕𝜕𝑸𝑸�

(𝑸𝑸�)〉. Since 〈𝑸𝑸� ,𝑸𝑸�〉 is constant on a 
hypersphere, the stationary point of 𝑔𝑔  is 
identical to that of 〈𝑸𝑸� ,𝑸𝑸�〉 〈𝜕𝜕𝑉𝑉ADD

𝜕𝜕𝑸𝑸�
(𝑸𝑸�), �𝐼𝐼 −

𝑸𝑸�⊗𝑸𝑸�
〈𝑸𝑸� ,𝑸𝑸�〉

� 𝜕𝜕𝑉𝑉ADD
𝜕𝜕𝑸𝑸�

(𝑸𝑸�)〉 . The lowest degree of the 

Taylor expansion of 〈𝑸𝑸� ,𝑸𝑸�〉𝑔𝑔 is 6. The maximum 
number of stationary points of homogeneous 
polynomial of 𝑛𝑛  variables with a degree of 
𝑚𝑚(≥ 3) on a hypersphere centered at the origin 
is given by 2 {(𝑚𝑚− 1)𝑛𝑛 − 1} (𝑚𝑚− 2)⁄  when the 
number of stationary points is finite.44 Thus, the 
maximum number of ADD inflection paths and 
stationary paths given above is obtained.  
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Figure 7. ADD inflection paths (green dot-dash 
curves) determined on the model potential (the 
same as in Fig. 5). The saddle-node bifurcation 
point and the origin (EQ) are connected by the 
ADD inflection path given by 𝑥𝑥 = 0. 
 

Completeness of TS Search by ADDF 
Method 

As discussed in the section “ADDF Method”, the 
ADDF method seems to be able to find all the TSs 
from the minimum if all the ADD stationary paths 
and ADD inflection paths were followed. Figure 
8 shows the schematic of typical bifurcations of 
ADD stationary paths. All the TSs shown in the 
four panels can be located by tracing ADD 
stationary paths and inflection paths. However, 
there is a different type of bifurcation of the ADD 
stationary path at which all the ADD stationary 
paths and ADD inflection paths are tangent to 
the hypersphere. This indicates that, there is a 
type of bifurcation point at which the tangent 
vectors of ADD stationary paths and ADD 
inflection paths are all tangent to the 
hypersphere and none of these paths intersects 
any EQ. ADD maximum paths generated by this 
bifurcation may not be found even if all the ADD 
stationary paths and ADD inflection paths 
intersecting the EQ are followed. The proof for 

the existence of such a type of bifurcation is 
given in Supporting Information. 
 
 

 
 
Figure 8. Schematic of typical bifurcations of 
ADD stationary paths. The red curves and the 
yellow dashed curves denote the ADD maximum 
paths and ADD saddle paths, respectively, while 
the green dot-dash line denotes the ADD 
inflection path. Black crosses and circles indicate 
EQs and TSs, and the circles around the EQs show 
the initial hyperspheres of the ADDF method. (a) 
Both of the two ADD maximum paths intersect 
with the initial hypersphere; (b) the ADD 
maximum path intersecting with the initial 
hypersphere bifurcates at the pitchfork (PF) 
bifurcation point; (c) the ADD maximum path 
appears at the PF bifurcation point; and (d) the 
ADD maximum path appears at the saddle-node 
(SN) bifurcation point. 
 
 

Conclusions 

In this paper, we report a detailed investigation 
of the mathematical aspect of the ADD 
stationary path. We first confirmed that the 
maximum number of the ADD stationary paths 
intersecting the EQ is given by 2𝑓𝑓+1 − 2, where f 
is the degree of freedom of the system. Next, the 
bifurcation of the ADD stationary path was 
discussed. Typical bifurcations like saddle-node 
bifurcation and pitchfork bifurcation are possible. 
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Although the IOE method was originally 
introduced to detect the ADD maximum 
direction on the initial hypersphere even for 
bifurcation, it does not always work as expected. 
We showed the case in which only ADD maxima 
of the original potential are followed and the 
technique fails to detect the bifurcation. 
However, the idea to follow not only ADD 
maxima but also ADD inflection points is 
important to reduce the risk of overlooking of 
the bifurcation. We demonstrated a case where 
following the ADD inflection points leads to 
finding the ADD maxima generated on the way 
by saddle-node bifurcation. However, 
unfortunately, the ADDF method cannot ensure 
that all the TSs will be found because there is 
another type of bifurcation in which the tangent 
vectors of all the ADD stationary paths and ADD 
inflection paths are tangent to the hypersphere 
and none of these paths intersects any EQ point. 
To improve the completeness of the reaction 
path search by the ADDF method, management 
of the bifurcation of the ADD stationary path is 
essential. 
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GRAPHICAL ABSTRACT 

The anharmonic downward distortion following (ADDF) method explores transition states from potential 
minimum by tracing ADD maximum points on the hypersphere centered at the minimum. This paper 
clarified the maximum number of ADD stationary paths intersecting the minimum and the necessary 
condition for the bifurcation of ADD stationary paths. The ADDF computations were demonstrated for a 
H2O molecule. 

 

 

 


