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Comparison of volcanic explosions in Japan 
using impulsive ionospheric disturbances
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Abstract 

Using the ionospheric total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) 
receivers in Japan, we compared ionospheric responses to five explosive volcanic eruptions 2004–2015 of the Asama, 
Shin-Moe, Sakurajima, and Kuchinoerabu-jima volcanoes. The TEC records show N-shaped disturbances with a period 
~ 80 s propagating outward with the acoustic wave speed in the F region of the ionosphere. The amplitudes of these 
TEC disturbances are a few percent of the background absolute vertical TEC. We propose to use such relative ampli-
tudes as a new index for the intensity of volcanic explosions.
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Introduction
The Earth’s ionosphere ranges from ~ 60 to > 800  km 
in altitude and is characterized by large number of 
free electrons. Ionospheric conditions are controlled 
by solar radiation and often disturbed by geomagnetic 
activities. In addition to such disturbances caused by 
space weather, the ionosphere is disturbed by events 
below (Blanc 1985), such as earthquakes (Heki 2021), 
tsunami (Occhipinti et al. 2013), human-induced explo-
sions (Kundu et al. 2021), and volcanic eruptions.

Ionospheric total electron content (TEC) can be eas-
ily measured by comparing the phases of two micro-
wave carriers from global navigation satellite system 
(GNSS) satellites, such as Global Positioning System 
(GPS) (e.g., Hofmann-Wellenhof et  al. 2008). Ground 
GNSS networks have been deployed to monitor crustal 
movements, and these networks were found useful to 
study ionospheric disturbances by volcanic eruptions. 
There are two types of ionospheric TEC responses to 
volcanic eruptions.

The first type is the long-lasting harmonic TEC oscil-
lations (Fig.  1). They are atmospheric modes excited by 
continuous acoustic waves generated typically by Plin-
ian eruptions. The interference of upward and downward 
acoustic waves between the ground surface and the mes-
opause causes resonant oscillation of atmosphere. They 
have prescribed frequencies reflecting the vertical atmos-
pheric structure (Tahira 1995). It was found after the 13 
July 2003 eruption of the Soufrière Hills volcano, Mont-
serrat, in the Lesser Antilles (Dautermann et al. 2009a, b).

This type of disturbance also occurred after the Feb-
ruary 2014 eruption of the Kelud volcano, eastern Java 
Island, Indonesia (Nakashima et al. 2016). They reported 
that harmonic oscillations caused by atmospheric reso-
nance excited by the Plinian eruption of the Kelud vol-
cano lasted for ~ 2.5 h after the eruption started. Shults 
et al. (2016) found similar TEC oscillations after the 2015 
April Plinian eruption of the Calbuco volcano, Chile. 
Cahyadi et  al. (2020) also found such harmonic TEC 
oscillations lasting ~ 20 min following the 2010 Novem-
ber 5 eruption of the Merapi volcano, central Java Island. 
Although the onsets of these continuous eruptions are 
not always clear, the TEC oscillations emerge 20–30 min 
after the eruptions started. Cahyadi et  al. (2020) also 
suggested that the TEC oscillation amplitudes relative 
to background TEC represent the mass eruption rate, 
and the products of such amplitudes and the duration 
provides a new index for the total amount of the ejecta. 
Recently, Shestakov et al. (2021) reported the TEC oscil-
lations lasting for an hour during the 2009 eruption of 
the Sarychev Peak volcano, Kuril Islands, Russia.

The second type of disturbances occur 8–10 min after 
volcanic explosions by short pulses of acoustic waves 

propagating upward from the surface to the ionospheric 
F region (Fig. 1). They make short-term N-shaped impul-
sive TEC responses as Heki (2006) observed with the 
GPS-TEC method after the Vulcanian explosive erup-
tion of the Asama volcano, Central Japan, on September 
1, 2004. Despite many reports of the first type of distur-
bances, this second type of disturbances have not been 
reported since the Asama eruption. In this study, we 
report four new examples of this type and compare their 
amplitudes together with the 2004 Asama case.

Intensity of a volcanic explosion has been studied 
by atmospheric pressure changes associated with the 
airwave (infrasound) generated by the eruption (e.g., 
Matoza et al. 2019). However, geometric settings of such 
sensors relative to volcanoes are diverse, and ampli-
tudes of such airwaves are difficult to serve as a univer-
sal index to describe the explosion intensity. Volcanic 
explosivity index (VEI) is used to describe the intensity 
of the eruptions (Newhall and Self 1982). However, this 
index is determined by the amount of ejecta and does 
not directly indicate the explosion intensities. In this 
study, we explore the possibility to use the amplitude of 
ionospheric disturbance that occur ~ 10 min after a large 
explosion as the new index. For this purpose, we com-
pare ionospheric TEC responses to five recent explosive 
volcanic eruptions of four volcanoes in Japan 2004–2015 
comparing the GNSS-TEC data from GEONET (GNSS 
Earth Observation Network), a continuous GNSS net-
work in Japan.

GNSS data
We calculated TEC by multiplying a certain factor to 
the phase difference of the microwave signals in two fre-
quencies, L1 (~ 1.5 GHz) and L2 (~ 1.2 GHz), from GNSS 
receivers in the Japanese GEONET (here we use only GPS 
satellites). TEC indicates number of electrons integrated 
along the line-of-sight (LoS) connecting the ground sta-
tions and GNSS satellites. We often represent the point 
of observation using the latitude and longitude of iono-
spheric piercing point (IPP). It represents the point 
of intersection of LoS with the hypothetical thin layer 
within the F region at the altitude of the highest electron 
density, assumed as ~ 300 km based on routine observa-
tions of ionosonde (https:// wdc. nict. go. jp). We plot their 
surface projections, often called sub-ionospheric points 
(SIP), on the map.

We downloaded the raw GEONET GNSS data on 
the days of the eruptions from Geospatial Information 
Authority of Japan (https:// terras. gsi. go. jp). We use the 
phase differences between L1 and L2 microwave car-
rier phases and converted them to TEC. Such slant 
TEC (STEC) values are often converted to vertical TEC 
(VTEC) after removing inter-frequency biases in GNSS 

https://wdc.nict.go.jp
https://terras.gsi.go.jp
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receivers and satellites. Here, however, we use STEC 
throughout the study to capture TEC signatures from LoS 
penetrating the wavefront with shallow angles (Fig.  1). 
We use VTEC calculated from Global Ionospheric Map 
(GIM; Mannucci et al. 1998) only to normalize the ampli-
tudes of the STEC changes with the background VTEC. 
The details of the GNSS-TEC technique to study lith-
ospheric phenomena are available in the book chapter by 
Heki (2021).

Interaction of the electron movement with geomag-
netic fields allows us to observe such TEC disturbances 
from stations located to the south/north of volcanoes in 
mid-latitude regions of northern/southern hemispheres 
(Heki and Ping 2005; Heki 2006; Rolland et  al. 2013; 
Kundu et  al. 2021). Figure  2 shows an example of the 
STEC change time series before and after the 2011 Feb-
ruary 11 eruption of the Shin-Moe volcano in Kyushu, 
SW Japan, observed at the station 0729 located in a small 
island to the south of Kyushu. We cannot take advantage 
of the dense network, because the volcano is located near 
the southern edge of SW Japan, and the TEC signatures 
are visible only at the southern side. We isolated the 
short-term signals by fitting the polynomials (with degree 
7) to STEC time series and showing residuals from 
such reference curves. The degree of the polynomials is 
tuned so that the long-period fluctuations are effectively 
removed. The short-period TEC signatures made by 

volcanic eruptions are insensitive to the selection of the 
polynomial degree as demonstrated in Additional file 1: 
Fig. S1.

Small pulses occurring ~ 10 min after the eruption (Sat-
ellites 4, 10, 13) are caused by acoustic waves propagating 
from the volcano to the ionosphere. Incessant small fluc-
tuations of TEC observed by Satellites 7, 8, 12, 17, and 26 
are natural variabilities of TEC intrinsic for low elevation 
satellites. The Dst index time series shows that geomag-
netic activity is low on 2011 Feb. 11 and on the other 
eruption days (Additional file 1: Fig. S2). Additional file 1: 
Fig. S3 compares the TEC data in Fig. 2 with those on the 
previous (2011 Feb. 10) and the next (2011 Feb. 12) days 
of the eruption.

Five volcanic explosions of four volcanoes in Japan
We selected five recent explosive volcanic eruptions in 
Japan with clear TEC disturbance signals. The Asama vol-
cano, central Japan, started eruptive activity at 11:02 UT 
on September 1, 2004, with a Vulcanian explosion associ-
ated with strong airwaves (Nakada et  al. 2005). For this 
eruption, there have been reports of ionospheric distur-
bance using GNSS-TEC by Heki (2006) and by HF-Dop-
pler measurements by Chonan et al. (2018). Plume height 
was unknown due to cloudy weather, and they detected 
the atmospheric pressure change exceeding 205  Pa at a 
sensor located ~ 8  km to the south (Yokoo et  al. 2005). 

Fig. 1 Ionospheric disturbance caused by continuous (Type 1 left) and explosive (Type 2 right) volcanic eruptions can be detected by differential 
ionospheric delays of microwave signals of two carrier frequencies (L1 and L2) from GNSS satellites. Strong continuous eruptions sometimes excite 
atmospheric modes and long-term oscillatory disturbances in ionosphere. For explosive eruptions, we often find short-term impulsive disturbances 
in ionosphere 8–10 min after eruptions, the time required for acoustic waves to reach the ionospheric F region. The acoustic wave makes electron 
density anomalies (pairs of positive and negative anomalies as shown with red and blue colors in the figure) on the southern side of the volcano 
(for northern hemisphere cases) due to interaction with geomagnetic field (blue arrow)
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VEI of this eruption is reported as 2 according to Global 
Volcanism Program (2013) (same source for VEIs of the 
other eruptions).

Sakurajima is an active stratovolcano in the Kagoshima 
Prefecture, Kyushu, and is one of the most active vol-
canoes in SW Japan. Since 2009, several hundreds of 
explosions occur every year in the volcano. There were 
125 eruptions in 2009 October, in which 101 were explo-
sive. The explosion of Minamidake, Sakurajima, at 07:45 
UT on October 3, 2009, was one of the strongest erup-
tions in its activity since 2009. Plume reached the height 
~ 3000  m above the caldera rim, and the atmospheric 
pressure change exceeding 294.5  Pa was detected at a 
sensor ~ 5  km southeastward. At another observatory, 
~ 11 km to the west of the vent, pressure change of 74 Pa 
was observed (JMA 2010).

Shin-Moe Volcano is also located in the Kagoshima 
Prefecture, Kyushu. We studied two VEI 2 explosive 
eruptions in 2011. In the first eruption (Jan. 31 22:54 UT), 
the plume reached the height of ~ 2000 m above the cal-
dera rim, and the atmospheric pressure change exceeding 
458.5  Pa was observed at a sensor ~ 2.6  km southwest-
ward. In the second eruption (Feb. 11, 02:36 UT), the 
plume reached the height of ~ 2500 m above the caldera 
rim, and the atmospheric pressure change exceeding 
244.3 Pa was observed at the same sensor (JMA 2013).

The last volcanic eruption was Kuchinoerabu-jima 
volcano, located at a tiny island Kuchinoerabu-jima 
~ 100  km to the south of Kyushu. A VEI 3 eruption 
occurred on 29 May 2015 (00:59 UT). The plume height 
was ~ 9000 m, and pyroclastic flow reached the ocean. An 
atmospheric pressure of 62.2 Pa was observed at a sensor 

located ~ 2.3 km northeastward (JMA 2015). Nakashima 
(2018) studied ionospheric disturbances caused by this 
eruption using 1 Hz high-rate GNSS data.

Comparison of ionospheric disturbances 
by the five volcanic explosions
Figure 3 compares the impulsive TEC changes with peri-
ods of 1–2  min, ~ 10  min after the explosion. They are 
all STEC and the time series show the residual from the 
best-fit polynomials with degrees 7–9. We also see faint 
harmonic oscillations (similar to Type 1 disturbance in 
Fig.  1) sometimes follow the eruptions, e.g., the 2015 
Kuchinoerabu-jima eruption. Here, we focus on the 
N-shaped TEC disturbances.

Strong disturbances can be seen only from GNSS 
stations located to the south of the volcano due to the 
interaction with geomagnetic fields (Heki 2006). There-
fore, we could not fully take advantage of the dense 
GNSS network, because the Sakurajima, Shin-Moe and 
Kuchinoerabu-jima volcanoes are all located in south-
ern Kyushu and GNSS stations are sparse to their south.

Following Heki (2006), we try to adjust a simple 
function

made of a set of positive and negative pulses, to the dis-
turbances observed by five eruptions (Fig. 4). This func-
tion has a maximum and minimum at t = − σ and t = σ, 
respectively (drawn as a smooth curve in red in Fig.  4). 
The two parameters a and σ representing the amplitude 

(1)f (t) = −at exp

(

−t2

2σ 2

)

,

Fig. 2 STEC changes observed at the GNSS station 0729 (square in the map) over 2.4–3.2 UT, February 11, 2011. An explosive eruption of the 
Shin-Moe volcano (star in the map) occurred at 2:36 UT (solid vertical line), and small ionospheric observations are seen to occur in signals with GPS 
satellites 4, 10, and 13 around 10 min after the eruption (dashed vertical line). In the map, we show the trajectory of SIPs with solid circles and red 
stars indicating the 3:00 UT and 2:36 UT, respectively. The same data on the previous and the next days are shown in Additional file 1: Fig. S3
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and period, respectively, were tuned to minimize the 
root-mean-squares (rms) of differences between the syn-
thesized and the observed disturbances.

We also move this function in time to find the opti-
mal arrival time of the disturbance with the time step 
of 2.5  s. This procedure minimizes the influence from 
the temporally sparse data (30  s sampling). The val-
ues σ = 19.5 resulted in good fits to the majority of 
time series, which corresponds to 78 s (1.3 min) as the 
approximate period (i.e., 4 × σ) of the disturbance. This 
is consistent with the period inferred form the 1  Hz 
data for the Kuchinoerabu-jima eruption (Nakashima 
2018). From the adjusted values of a, we obtained the 
peak-to-peak amplitude, i.e., f(− σ) − f(σ), as summa-
rized in Fig. 5. Here we focus on the amplitudes of the 

Fig. 3 (Top) Geometry of volcanoes (large stars), SIP tracks (gray curves) and SIP positions at the time of the eruptions (small yellow stars), and 
GNSS stations (squares). We show the STEC time series for the three pairs of stations and satellites (three satellites from one station for the second 
Shin-Moe eruption, and one satellite from three stations for the rest) for each of the five examples of explosive eruptions in Japan. (bottom) STEC 
changes after removing the long-period changes over 45 min periods (from 15 min before eruption to 30 min after eruption) for the five cases 
studied here. Small disturbances can be seen ~ 10 min after the eruptions

Fig. 4 Fit of the model function (shown as a red curve in the middle) 
to one of the STEC curves in Fig. 3 for each eruption. The period of 
the TEC fluctuation (Heki 2006) is fixed to 1.3 min, and adjusted the 
amplitudes and time lags to minimize the difference between the 
model function and the observed TEC
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observed disturbances, and we do not discuss their 
propagation velocity (~ 0.8  km/s). The same calcula-
tion has been done for all the three examples from each 
eruption and the average peak-to-peak amplitudes are 
compared in Fig. 5.

Volcanic eruptions excite acoustic waves in neu-
tral atmosphere layer and ionospheric electrons move 
together with such neutral atmospheric molecules. Nat-
urally, the strength of the TEC disturbances is largely 
influenced by the electron density in the F region of the 
ionosphere. As the index for the explosion intensity, it 
will be reasonable to normalize the amplitudes of STEC 
changes with background electron densities in the F 
region. Here we used background VTEC to normalize 
such amplitudes and express the TEC amplitudes rela-
tive to them (dark blue squares in Fig. 5). VTEC values 
at the time and location of eruptions are obtained from 
GIM.

Another important factor is the geometric condition 
of line-of-sight with the acoustic wavefront. Additional 
file  1: Fig. S4 shows the propagation of an N-shaped 
acoustic pulse in the standard atmosphere (Kundu et al. 
2021). Additional file  1: Fig. S5 compares the synthe-
sized STEC waveforms at various distances from the 

volcano with various elevation angles of satellites. The 
amplitude is not so sensitive to the distance from the 
volcano for the distance range studied here. However, 
different elevation angles cause different incidence 
angles of line-of-sight with the wavefronts, and change 
the disturbance amplitudes up to a few tens of percents. 
We corrected for such geometric factors for the five 
eruption cases by converting to an arbitrary standard 
geometry and plotted the disturbance amplitudes after 
correction with light blue squares in Fig. 5.

Discussion
To compare intensities of volcanic explosions, we often 
use VEI. They are either 3 (2015 Kuchinoerabu) or 2 
(other 4 eruptions) for those studied here. VEI does not 
have finer scales and is not useful to compare intensities 
of explosive volcanic eruptions of this class. Intensities 
of volcanic explosions can be studied also by measuring 
amplitudes of airwaves (atmospheric pressure changes). 
However, different distance of the ground sensors from 
the volcanoes and different topographic and vegetation 
conditions makes it difficult to compare such intensities 
for different volcanoes.

In Fig. 5, we compare atmospheric pressure changes by 
the airwaves for the January 31 and February 11 explo-
sions of the Shin-Moe volcano detected using the same 
sensor at the YNN station (JMA 2013). These two erup-
tions show similar amplitudes of STEC changes. How-
ever, the background VTEC at the time of the February 
eruption was more than twice as strong as those in the 
January eruption. Hence, relative amplitude of the Janu-
ary eruption becomes more than twice as large as the 

Fig. 5 Comparison of the TECs (shown in Fig. 3) in absolute 
amplitudes (red). The yellow circles show VTEC values at the time 
and place of the eruptions calculated using GIM, and dark blue 
squares indicate disturbance amplitudes relative to the background 
VTEC. These amplitudes were further corrected for geometry factors 
(distance from the volcano and incidence angle of line-of-sight with 
wavefront) and shown in light blue squares. For the two eruptions 
of the Shin-Moe volcano, we compare amplitudes of atmospheric 
pressure changes detected by the same sensor ~ 2.6 km from the 
volcano caused by airwaves of the explosions. VTEC and airwave 
amplitudes for the three additional eruption cases of the Shin-moe 
volcano shown in Additional file 1: Fig. S6 are given as A (Feb. 1, 1st), B 
(Feb. 1, 2nd), and C (Feb. 13)

Fig. 6 Frequency (~ 12.8 mHz) and period (~ 1.3 min) of TEC 
oscillations by explosive volcanic eruptions (vertical dashed line) 
drawn over the figure by Blanc (1985) showing the attenuation 
of airwaves in the Earth’s atmosphere. The frequency 12.8 mHz 
corresponds to the higher end of the atmospheric bandpass filter
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February eruption. After correcting for geometric fac-
tors, the ratio becomes slightly less than twofold. This is 
in agreement with the difference of the pressure changes 
for these two eruptions (458.5 Pa for the January 31 erup-
tion, and 244.3 Pa for the February 11 eruption).

This suggests the validity of using the relative ampli-
tudes of the ionospheric STEC changes as the new index 
to describe the intensities (explosion energies) of volcanic 
explosions for different volcanoes. Its benefit is that we 
do not rely on the deployment of infrasound sensors, i.e., 
we can use this index whenever permanent GNSS net-
works are available on the southern/northern side of the 
volcano in northern/southern hemisphere.

Its drawback is that this index can be used only for 
strong volcanic explosions occurring when number of 
ionospheric electrons are sufficient (e.g., during day-
times). In fact, there were two explosions of the Shin-
Moe volcano (Feb. 1 20:25 UT, and Feb. 13 20:07 UT) 
with stronger airwaves than the February 11 02:36 UT 
eruption. However, we cannot find ionospheric distur-
bances for these explosions because of small background 
VTEC early in the morning (Additional file 1: Fig. S6).

We also looked for such TEC signatures outside Japan. 
However, we failed to add more cases due to the lack of 
GNSS stations in appropriate places or to the insufficient 
intensities of the explosions. The only exception is the 
TEC signatures made by the human-induced explosion in 
2020 August in Lebanon (Kundu et al. 2021).

As shown in Fig.  3, TEC changes by the five different 
volcanic explosions have similar periods of ~ 1.3  min. 
Such a uniformity suggests its origin in the atmospheric 
structure rather than characteristics of the volcanic erup-
tions. In Fig.  6, we compare this period with the dia-
gram of atmospheric attenuation of acoustic waves with 
various periods at different altitudes (Blanc 1985). There, 
1.3  min corresponds to the shortest period of the air-
waves that can reach the altitude of ionospheric F region 
(~ 300 km) without large attenuations, i.e., 12.8 mHz cor-
responds to the high end frequency of the atmospheric 
bandpass filter. Infrasound records observed at ground 
sensors associated with explosive volcanic eruptions have 
stronger powers in periods much shorter than 1.3  min 
(e.g., Matoza et al. 2019). However, only those with peri-
ods 1.3–4.0 min can reach the ionospheric F region with-
out strong attenuation. Because the original spectrum 
had larger powers for higher frequencies, we would have 
detected the 12.8 mHz component as the TEC changes at 
the F region altitude.

Conclusion
We conclude this study as follows;

1. We detected impulsive TEC changes 8–10 min after 
five volcanic explosions 2004–2015 in Japan using 
ground GNSS receivers.

2. We compared their amplitudes after correcting for 
differences in the background numbers of electrons 
and in the incidence angles of line-of-sight with 
wavefronts.

3. Such corrected amplitudes might be useful to quan-
tify volcanic explosion intensities.
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