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Development and Accuracy Analysis of a Human Motion

Capturing Method Using a Single IR Camera∗

Alireza Bilesan

Abstract

Motion capture systems are used to measure the kinematic features of motion in

numerous fields of research. Despite the high accuracy of commercial systems,

these systems are costly and used in limited conditions. Kinect has been proposed

as a low-cost markerless motion capture sensor, and its accuracy has been assessed

compared to previous motion capture systems like Vicon and OptiTrack. Kinect

comes with a software development kit (SDK) that helps determine the human

skeleton structure from the point cloud of the body using machine learning algo-

rithms. Since the Kinect skeleton model detected by the SDK is different from

the skeleton model estimated by the traditional motion capture systems, the in-

compatibilities in determining the human joint angles in different motion capture

systems can cause imprecision in the accuracy assessment results reported in previ-

ous researches. To achieve a proper accuracy evaluation of the Kinect as a motion

capture camera, we applied the inverse kinematics techniques in both skeleton

models represented by Kinect and a traditional system (Vicon) to estimate lower

body joint angles of a human during gait. The results indicated acceptable accu-

racy for Kinect in tracking knee and hip flex-extension angles using Vicon data

as the true value. However, Kinect showed major errors in capturing delicate

motions like ankle and pelvic joint angles. We developed a marker-based motion

capture system using the Kinect IR camera to overcome these inaccuracies in hu-

man motion capture using Kinect skeleton. We introduced joint use of the Kinect

∗Doctoral Thesis, Division of Systems Science and Informatics, Graduate School of

Information Science and Technology, Hokkaido University, SSI-DT79165206, September

24, 2021.
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IR camera as a pinhole camera model and its depth data in order to determine

the 3-dimensional coordinates of retroreflective markers placed on the leg of a hu-

manoid robot. This method helped us estimate the ankle joint angle of the robot

accurately, which paved the way for a breakthrough in capturing other delicate

joint angles.

Due to the limited number of detected joints by the Kinect algorithm and the

inaccuracy in estimating the 3D position of the joints’ centers, Kinect could not

achieve the same level of accuracy as traditional systems. Joint use of the Kinect

skeleton algorithm and Kinect-based marker tracking method was developed to

track the 3D coordinates of multiple landmarks on human subjects using a single

Kinect. By applying the joint constraints and inverse kinematics techniques on

the acquired landmarks’ 3D positions, the motion’s kinematic parameters of five

human subjects and a humanoid robot were calculated during gait trails. The hu-

manoid robot test was used to evaluate the accuracy of the proposed method and

a traditional system (OptiTrack) compared to the robot data used as true value.

The results of the robot test assured the high-level accuracy of the OptiTrack sys-

tem. Furthermore, the advantage of applying joint constraints on the captured

data by the Kinect was demonstrated. Finally, the full accuracy assessment of the

proposed method was done in capturing lower-body joint angles of five healthy

subjects during ten gait trials for each subject. The OptiTrack data were used as

ground-truth while the accuracy of the proposed Kinect-base system was compared

to the Kinect skeleton model used in previous researches and an IMU-based system

(Perception Neuron). The absolute agreement and consistency between each opti-

cal system and the robot data in the robot test and between each motion capture

system and OptiTrack data in the human gait test were determined using intr-

aclass correlations coefficients (ICC3). The reproducibility between systems was

evaluated using Lin’s concordance correlation coefficient (CCC). The correlation

coefficients with 95% confidence intervals (95%CI) were interpreted substantial

for both OptiTrack and the proposed method (ICC>0.75 and CCC>0.95) in the

humanoid test. The results of the human gait experiments demonstrated the ad-

vantage of the proposed method (ICC>0.75 and RMSE=1.1460◦) over the Kinect

skeleton model (ICC<0.4 and RMSE=6.5843◦) and Perception Neuron (ICC<0.4
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and RMSE=4.2396◦).

Keywords:motion capture systems, accuracy assessment, Kinect, humanoid robot,

gait analysis, joint angles
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Chapter 1. Introduction

1.1 Background

Human motion data are used in a wide range of applications, including motion

analysis, disability recognition, and rehabilitation in biomechanics [1]. Further-

more, these data are conveyed to graphical models and robots to generate human-

like motions [2, 3, 4], and to teach new skills to robots as in imitation learning [5].

A common approach to obtain human motion data is by using marker-based mo-

tion capture systems, which are highly accurate, such as OptiTrack (NaturalPoint

Inc., USA), a research-grade motion capture system [6]. However, these systems

are expensive, require a highly trained operator, and their use is limited to lab-

oratory settings. By improvement in camera and sensor technologies, markerless

motion capture systems emerged as publicly available, cost-efficient motion cap-

ture cameras. Kanko et al. [7] developed a markerless motion capture system using

multiple 2D cameras and a deep learning algorithm to estimate the 3D skeleton of

humans and assessed their system’s accuracy in gait experiments (commercialized

as Theia3D). Microsoft Kinect, which was developed as an accessory for the Xbox

video game console, attracted the research community in order to capture human

motion data without using markers. Kinect version 2 (Kinect v2) was released in

2014 as an RGB-D camera with improved RGB and infrared (IR) camera resolu-

tions compared to Kinect version 1 (Kinect v1). Moreover, the Kinect v2 came

with a software development kit (Kinect SDK), which could create a 3D skeletal

model of the human body with 25 estimated joint centers. The Kinect SDK uti-

lizes a machine-learning algorithm to recognize different parts of the human body.

Each part of the body is estimated with a connecting line as a bone, and the

points which connect two adjacent bones are estimated as the joint centers. The

achieved human skeleton using the Kinect SDK is called Kinect skeleton model
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Chapter 1. Introduction

(Fig. 4.1a) [8]. Thanks to these technical improvements, Kinect v2 was introduced

to research society as a low-cost motion capture sensor [9, 10].

Optitrack Cameras

Markers

Kinect v2

Walking Path

Figure 1.1: Human motion capture using motion capture cameras.

In order to use Kinect as a motion capture camera, the accuracy of such a

system needs to be evaluated compared to traditional motion capture systems,

which their high accuracy has been proved (see Fig. 1.1). Due to the limitation
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1.2. Previous Works

in the identification of specific joint centers, and inaccuracy in estimating the

position of the joint centers, further development in motion capturing using Kinect

is needed in order to improve the accuracy.

1.1.1 Accuracy assessment of the Kinect

Most of previous studies evaluate the accuracy of Kinect in capturing joint

angles in the anatomical plane which is beneficial in biomechanical applications.

They use the Kinect skeleton model data to estimate the human joint angles and

compare the results to traditional motion capture systems, which uses different

methods to calculate these joint angles. The first goal of this thesis is to achieve

a better assessment of the Kinect in detecting kinematic parameters of a human

in a motion. Evaluating the accuracy of Kinect in capturing spatial joint angles

compared to traditional systems can pave the way for further uses of Kinect in

imitation learning and motion recognition applications.

1.1.2 Improving the accuracy of the Kinect

The limited number of identified joints and the error in the position estimation

of the joint centers could result in inaccuracies in the joint angles measurement

using Kinect skeletal data. By using the Kinect IR sensor data and the skeleton

model detected by the Kinect algorithm, further improvement in capturing the

positions of multiple landmarks on human body using a single Kinect can help to

improve the motion capturing capability of this sensor. Moreover, by implementing

anatomical constraints on the data we could achieve a high-level accuracy of human

motion capture using Kinect. Finally, the advantage of such a system needs to be

assessed in capturing human and a humanoid robot in several dynamic tests.

1.2 Previous Works

The previous studies focused on evaluating the accuracy of the Kinect in cap-

turing human motion, by comparing the results to the traditional motion capture

3



Chapter 1. Introduction

systems. Moreover, some researches tried to improve the motion capturing accu-

racy of Kinect by using several methods.

1.2.1 Kinect v2 accuracy assessment

Th accuracy of Kinect in estimating the joint positions of the lower limbs was

shown to be lower than the accuracy of estimating the positions of the upper limbs’

joins [11]. Additionally, using the Kinect skeletal data to track 3D kinematics

of lower body in a dynamic test could result in significant errors compared to

traditional systems [12]. Vilas-Boas et al. investigated the accuracy of Kinect v1

and v2 in capturing spatial joint angles of the whole body in a walking test. Their

results showed a poor correlation between the Kinect and a traditional optical

system for most joint angles, except for knee angles [13]. Other studies indicated

fair accuracy for the Kinect skeletal model in capturing knee joint angles in the

sagittal plane during gait. However, they reported imprecision in capturing hip

and ankle joint angles and did not investigate joint angles in other anatomical

planes [14, 15, 16]. A review on validity of the Kinect for gait assessment also

attested poor performance of the Kinect skeleton tracking algorithm in estimating

most kinematic variables. Although, Kinect could estimate some spatiotemporal

factors such as step width and step length accurately detectable [17]. The Kinect

accuracy has been evaluated using optoelectronic motion capture systems or IMU

sensors (such as Perception Neuron (Noitom Ltd., China)) as the ground truth,

ignoring the fact that these commercial systems have imprecisions. Similar to

Kinect, the Perception Neuron system was developed for gaming applications, and

its validation for human motion capture purposes is still under study.

1.2.2 Improving Kinect motion capture accuracy

The limited number of identified joints and the error in the position estimation

of the joint centers could result in inaccuracies in the joint angles measurement

using Kinect skeletal data. In order to improve the Kinect skeleton accuracy, multi-

camera and data fusion systems came to attention. There are several benefits for

human motion assessment using multiple depth cameras since it would reduce

4



1.3. Research Purpose and Contribution

occlusion, increase accuracy by fusing data, and extend the field of view [18, 19].

However, there are some limitations in using multi-camera systems like complexity

in the setup, which is similar to commercial motion capture systems. Additionally,

extra hardware requirements could add to the cost of the system, and the use of

different depth cameras in an overlapped field of view would negatively affect the

results. Contrary to the setup complexity, these systems could not always provide

superior results compared to single-eye RGB-D camera systems [20]. Some of

these limitations can be solved by merging the Kinect skeleton data with an IMU

wearable motion capture data. This method would improve the accuracy of the

human motion assessment; however, the complexity and costs of such systems

would likely top multi-camera systems [21].

Tracking 3D coordinates of colored markers using Kinect RGB camera and

depth sensor was performed to capture lower-body joint angles in a gait test [22].

This method showed good agreement with a traditional motion capture system.

However, this method cannot be implemented in many environments since the color

of the background objects would affect the results; hence, excessive considerations

are necessary before each test.

1.3 Research Purpose and Contribution

1.3.1 Research purpose

Firstly, the accuracy of the Kinect v2 is evaluated in capturing the kinematic

parameters of multiple human subjects during gait using the Kinect skeleton model

provided by the Kinect SDK. Since the previous studies had reported poor results

in lower limb results, we focused on capturing the lower body joint angles of the

subjects. Most of these studies evaluate the Kinect accuracy in capturing joint

angles in the anatomical plane, which is beneficial in biomechanical applications.

This study aims to better assess the Kinect spatial joint angles detection, which

can be valuable in imitation learning and motion recognition applications.

Secondly, in order to improve the motion capturing using a single Kinect cam-

era, a marker-based motion capture system using a single Kinect v2 is introduced

to overcome the previous limitations of using the Kinect skeleton model. Image
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Chapter 1. Introduction

processing of the data collected by the Kinect sensor is used to track the ankle

joint angle of a humanoid robot, and the accuracy of the proposed method and a

commercial motion capture system is compared to the robot data as the definite

ground-truth.

Lastly, the proposed marker-based human motion capturing using Kinect v2 is

developed to capture the kinematic parameters of lower body during a dynamic

motion. Primarily, the significant advantage of a commercial motion capture sys-

tem over Kinect needs to be evaluated in estimating the 3D kinematics of a hu-

manoid robot, where the robot data could be used as the ground truth. Also, the

effectiveness of kinematic constraints on the Kinect data needs to be studied by

analyzing the accuracy improvement of Kinect data after applying the constraints.

Importantly, the accuracy of the proposed system needs to be evaluated in cap-

turing kinematic variables of the lower body of various subjects in dynamic tests,

where the commercial motion capture system can be used as the ground truth.

1.3.2 Contribution

The contributions of this thesis are as follows.

Contribution in the accuracy assessment of the Kinect

1. Using inverse kinematics to calculate the lower body joint angles

of the Kinect skeleton model

Despite previous studies which used the anatomical planes to estimate the joint

angles in the Kinect skeleton model, we used inverse kinematics in order to estimate

the 3D joint angles of the lower body using the Kinect skeleton model. Therefore,

we could reach a better evaluation of the Kinect accuracy in capturing human joint

angles. The same method is implemented in commercial motion capture systems;

hence, the comparison of the results of the two systems would present better

assessment of the Kinect as a motion capture camera. Moreover, the relation of

the position of the Kinect and the accuracy of this method was evaluated in this

part to determine the most optimized position for the Kinect to achieve the best

accuracy in human motion capture. Lastly, the relation of the Kinect accuracy and
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the subject speed was evaluated to provide a recommendation for the movement

speed in motion capturing using Kinect.

Contribution in the improvement of the motion capturing using a single

Kinect

1. Marker-based motion capturing using Kinect IR sensor

In this thesis, we proposed a marker-tracking method using Kinect’s RGB-

D camera. By performing single-eye camera calibration, and utilization of the

Kinect’s image and depth data, a marker-based motion capture using single Kinect

was developed. Tracking the position of retroreflective markers placed on a hu-

manoid robot during a flexion/extension motion demonstrated the accuracy of the

proposed technique compared to a commercial motion capture system.

2. Accuracy assessment of the proposed method in capturing the

kinematic parameters of multiple human subjects and a humanoid robot

The advantage of the proposed motion capture system was assessed in estimat-

ing the joint angles of multiple human subjects and a humanoid robot during gait.

By utilizing the Kinect skeleton model and IR camera to detect and track multiple

retroreflective markers placed on a human or a humanoid robot, the joint angles of

lower part of the tracking subject was estimated and compared to a ground-truth.

The motion capturing systems’ statistical analysis provides an accurate assessment

of the proposed method compared to other traditional motion capture systems.

1.4 Outline of the Thesis

The thesis consists of five chapters.

Chapter 1 is an introduction of this thesis and the reason why the single-eye

motion capturing using Kinect is selected and improved.

In Chapter 2, the accuracy of the skeleton model provided by the Kinect soft-

ware is evaluated in capturing multiple human subjects. Despite previous re-

searches, we use inverse kinematics to calculate the lower body joint angles of the

subjects during gait, which is similar to the technique used in commercial sys-

tems. The results of a commercial motion capture system is used as ground-truth.

7
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The accuracy assessment results indicates the need for further improvement in the

accuracy of motion capturing using Kinect.

In Chapter 3, a marker-based motion capturing using single Kinect is presented

in order to improve the motion capturing accuracy. Kinect IR camera as a single-

hole camera is calibrated and the Kinect depth data were used to estimate the

3D coordinates of three retroreflective markers placed on a leg of a humanoid

robot. The accuracy of the marker-based motion capture system is evaluated

by comparing the Kinect data and a commercial system to the robot’s data as

ground-truth.

In Chapter 4, the motion capturing method using a single Kinect is expanded to

detect several reflective markers place on different human and humanoid subjects.

Capturing the 3D position of the markers placed on the humanoid robot using

the proposed method and a commercial system is performed, the robot’s joint

angles were estimated using the inverse kinematics. In the second experiment,

lower body joint angles of five human subjects were estimated using Kinect and

other traditional motion capture systems in order to evaluate the accuracy of the

proposed method. The statistical analysis are done in this section to prove the

advantage of the proposed method over the other commercial systems.

Chapter 5 summarizes the thesis and suggests future works.

8



Chapter 2. Markerless human

motion tracking

using Kinect skeleton

model

2.1 Introduction

In order to reconstruct and transfer human intentions into a robot, motion cap-

ture systems are employed. Many researchers have employed human motions in

robot imitation learning and human-like motion generation [23][24][25]. For better

imitation, human and humanoid walking patterns are analyzed to apply the human

walking functions to the humanoid robots [2, 3]. Despite high accuracy, commercial

motion capture systems are high-priced and difficult to use. The data collecting is

restricted to special settings and conditions since several cameras are required to

capture one motion. For example, operating multi-camera calibration is essential

before each experiment. Commercial systems are mainly used in indoor environ-

ments due to the stated restrictions. Markerless motion capture systems were

proposed to overcome the previous issues [26]. These motion analysis technologies

enabled researchers to assess movement characteristics as more cost-effective and

straightforward. Despite the benefits of these new systems, systematic limitations

restrain their functionality. For example, wearable electromagnetic sensors are

affected by gravity noise and signal drift [27]. Moreover, these sensors are still

high-priced and require a skillful data analyzer to post-process the data.

Microsoft released Kinect version 1 (Kinect v1) as an accessory for the Xbox

360 video game platform in 2010, designed for gaming purposes. Still, it was

also used as a markerless, affordable, and portable motion capture sensor by the
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Vicon 
Camera

Kinect v2

Walking Path

Subject with 
Plug-in-Gait Marker set

xy

z

Vicon World Coordinate

Kinect World 
Coordinate

Figure 2.1: Human motion capture using Kinect v2 and Vicon. The Kinect ac-

curacy is evaluated by comparing the results to the Vicon system as the gold

standard. The Kinect world coordinate is located on its IR camera, and the Vicon

world coordinate is set on the floor. The plug-in-gait marker set is utilized in the

Vicon system to capture human motion.
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research society. The Kinect v1 consists of one IR emitter, one IR camera, and

one RGB camera, which acquires depth and color images of the scene. The depth

of the scene is estimated employing speckle pattern technology. In 2014, Microsoft

released the second version of the Kinect (Kinect v2) with enhanced RGB and

IR camera resolution and a broader field of view (see Fig. 3.1). In Kinect v2,

Microsoft used a different technology called time-of-flight (TOF) to measure the

depth of the scene [28]. The speckle pattern of the Kinect v1 was shown to be

remarkably affected by the sunlight. However, the TOF technology assisted the

Kinect v2 in outdoor motion capture measurements. Still, the quality of the

captured data strongly depends on the incidence angle of the rays in both versions

of the Kinect when direct emission of infrared light is hitting the sensor [29].

With the help of the Kinect software development kit (SDK), the Kinect v2

provides a model of a three-dimensional skeleton with 25 joints of the human

whose full body is placed within the field of view of the Kinect IR camera (see

Fig. 2.2). The Kinect skeleton model has been used in various applications such

as biomechanics [10], robotics [30], and computer vision [31]. Poor correlation

between Kinect v1 skeleton data and commercial motion capture systems has

been reported during lower extremity motion assessment in [16] and [32]. Due to

the low technological specs of the Kinect v1, these deficient performances were

not unforeseen. Furthermore, previous studies have shown that the Kinect is more

capable of detecting spatiotemporal parameters compared to kinematic variables

[17]. Thanks to the technological improvement of the Kinect v2, some researches

have been able to track the sagittal plane joint angles of the human motion during

functional movements [15][33][14].

Most of these studies evaluate the Kinect accuracy in capturing joint angles in

the anatomical plane which is beneficial in biomechanical applications. The goal

of this study is to achieve a better assessment of the Kinect spatial joint angles

detection, which can be valuable in imitation learning and motion recognition

applications. In addition, the relation of the Kinect accuracy with the subject

position and movement speed is evaluated.
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Figure 2.2: Kinect v2 skeleton model with 25 estimated joints.

2.2 Setup of the experiment

Five healthy adults (males, 24 years, height 175±5 cm, weight 75±10 kg) were

selected to perform a normal gait motion at different speeds while motion capture

systems were recording their movements. The subjects were asked to warm-up for

five minutes before each test with different walking speeds (slow: 0.5 ± 0.1m/s,

moderate: 1.0 ± 0.1m/s, and fast: 1.4 ± 0.1m/s). Every trial was repeated 10

times for each subject, and the collected data were averaged before the statistical

analysis. The motion capture systems were recording the human gait motion,

simultaneously.

Kinematic data were captured simultaneously using a six-camera Vicon motion

capture system (Vicon, Oxford, UK), sampled at 120 Hz using Vicon Nexus 2.1

software, and a Kinect v2 (Microsoft, Redmond, WA), sampled at 30 Hz using

Kinect SDK 2.0. The Kinect was positioned in three different locations from the

subject’s walking path (0 degree: in front of the path, 45 degree: right side at a

45◦ angle to the path, and 90 degree: right side at a 90◦ angle to the path), (see

Fig. 2.3A). Moreover, The walking path started from a distance of 3m and ended

at 1m from the Kinect (see Fig. 2.3B). In order to capture full-body motion, the
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Figure 2.3: Experimental setup, (A) a Kinect sensor is placed in three different

positions (0 degree, 45 degree, and 90 degree) to capture a walking motion. Con-

currently, six Vicon motion capture cameras record the same motion. (B) walking

path is located at a distance of 1m to 3m from the Kinect.

Kinect was located at the height of 0.75m with 0.01◦ tilt angle (see Fig. 3.1).

The reflective markers were placed on each subject using the Vicon Plug-in-Gait

marker set and modeled as previously described in [34]. The Subject was asked

to perform a T-pose for 2 seconds to calibrate the two motion capture systems.

Afterward, he started a normal walking motion through the designated path (see

Fig. 3.1). The 3D model of the human body was created and captured in the

Vicon Nexus software. Concurrently, the 3D skeleton model of the subject was

generated, and the 3D positions of the body joint centers were recorded using the

Kinect SDK.

2.3 Joint angles’ definition

For the hip joint angles, the Vicon software uses the Plug-in-Gait kinematic

calculations to determine the hip joint angles. The waist markers are used to

determine an imaginary coordinate system located on the pelvis segment. An-
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other coordinate system is defined on the femur segment using the thigh markers

and the estimated hip and knee joint centers, which are calculated using the Vi-

con software. Eventually, the hip joint angles are distinguished using the Euler

(Cardan) angles in rotation order of YXZ (see Fig. 2.5). The same method used

in the Plug-in-Gait model was implemented to determine the hip joint angles in

the Kinect model (see Fig. 2.2 and Fig. 2.4). The Hip Right, Spine Base, and

Hip Left joint centers are used to define a plane on the pelvis segment in the

Kinect skeleton model. The vector connecting the Hip Right to the Hip Left is

assumed as ypelvic and the normal vector of the pelvic plane is defined as zpelvic.

subsequently, xpelvic is the cross product of the two previous vectors. The same

method is used to determine the left femur plane using the Hip Left, Knee Left,

and the Ankle Left joint centers in the Kinect model. The vector connecting the

Knee Left to the Hip Left is defined as zfemur, the normal vector of the femur

plane is yfemur, and the cross product of the two previous vectors is xfemur. Simi-

larly, the right femur coordinate system is defined. It is worth remarking that the

y−axis of the coordinate systems should be directed to the left side of the body

and the z−axis should be directed upward (see Fig. 2.4).

The Euler rotation angles between the world coordinate and the pelvic coor-

dinate frames are used to determine the pelvic angles in the Vicon model (see

Fig. 2.5). The Vicon world coordinate system is set on the floor using a Vicon

calibration wand at the beginning of the calibration procedure. Furthermore, the

world coordinate system of the Kinect is located on its IR camera with the demon-

strated coordinate axes shown in Fig. 3.1. To attain the Euler angles which rep-

resent the pelvic angles, it is required to permute the world coordinate system in

the Kinect environment. The coordinate axes of the permuted Kinect coordinate

system are parallel to the axes of the initial Kinect world coordinate. However,

the x, y, and z axes of the permuted Kinect coordinate system have changed to

the new axes shown in Fig. 2.4, where the x−axis is parallel to the walking path,

the y−axis is toward the left side of the body, and the z−axis is directed upward.

The Euler rotation angles between the permuted Kinect coordinate and the pelvic

coordinate systems indicate the pelvic angles.

Eventually, the spatial angles between the two vectors passing through the

lower body links and crossed at each joint centers were used to calculate the ankle

14
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and the knee joint angles in the Kinect model (see Fig. 2.4). The same method

was used in the Vicon model. Although these spatial angles were calculated in

two different models with separate coordinate systems, we can still compare the

Kinect data to the Vicon data to assess the Kinect accuracy in capturing these

joint angles.

The coordinate systems definition of the body segments, in both Kinect and

Vicon models, was compatible with the International Society of Biomechanics

recommendations [35]. Moreover, the mathematical definitions of the joint angles

in the Kinect and the Vicon model correspond as closely as possible to the existing

clinical terminology.

2.4 Pelvic and hip joint angles estimation using

inverse kinematics

To determine the hip joint angles, in both Kinect and Vicon models, the Eu-

ler (Cardan) rotation angles, which rotate the pelvic coordinate into the femur

coordinate system, need to be calculated.

Equation (2.1) demonstrates the YXZ order Euler rotation matrix (Eyxz) which

rotates the pelvic frame (wFpelvic) into the femur (wFfemur) frame:

wFfemur = Eyxz ·w Fpelvic , (2.1)

where Eyxz is:

Eyxz =

[
c(ψ)c(φ)+s(θ)s(ψ)s(φ) −c(ψ)s(φ)+s(θ)s(ψ)c(φ) c(θ)s(ψ)

c(θ)s(φ) c(θ)c(φ) −s(θ)
−s(ψ)c(φ)+s(θ)c(ψ)s(φ) s(ψ)s(φ)+s(θ)c(ψ)c(φ) c(θ)c(ψ)

]
,

wFpelvic = [xpelvic|ypelvic|zpelvic] and wFfemur = [xfemur|yfemur|zfemur] are the pro-

jected femur and pelvic coordinate frames on the world frames, calculated using

joint positions estimated by Kinect SDK. In Eyxz, s(.) and c(.) stand for sin(.)

and cos(.), respectively. The rotation angles ψ, θ, and φ represents the rotations

applied in x−, y−, and z−directions, respectively. Since wFpelvic and
wFfemur are

orthogonal matrices, the (2.1) can be written as:
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Figure 2.4: Definition of the pelvic and the femur coordinate systems in the Kinect

model. The hip joint angles are determined as the Euler rotation angles between

the pelvic and femur coordinate systems. The pelvic angles are identified as the

Euler rotation angles between the permuted Kinect coordinate and the pelvic

coordinate frame. The spatial angles between the two vectors crossed at the knee

and the ankle joint centers are considered as the knee and ankle joint angles,

respectively.
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Eyxz =
w Ffemur ·w F T

pelvic =


e11 e12 e13

e21 e22 e23

e31 e32 e33

 , (2.2)

where wF T
pelvic is the transpose matrix of wFpelvic, and eij represents the elements

of matrices wFfemur ·w F T
pelvic. Eventually, the Euler rotation angles are attained

using (2.2):

ψ = tan−1(e13/e33)

θ = sin−1(−e23)
φ = tan−1(e21/e22).

(2.3)

These Euler rotation angles indicate the hip joint angles. ψ represents the hip

flexion/extension, θ represents the hip abduction/adduction, and φ represents the

hip rotation angles.

The same method is used to calculate the pelvic angles in the Kinect and

Vicon models. However, The pelvic angles are calculated using the Euler rotation

angles between the world and pelvic coordinate frames. As previously stated, the

initial world coordinate of the Kinect requires rotations to the permuted Kinect

coordinate system:

wKp =


0 −1 0

0 0 1

−1 0 0

 , (2.4)

where wKp indicates the projection of the permuted Kinect coordinate frames on

the initial world frames (see Fig. 2.4). The pelvic joint angles are calculated using

(2.4) as the permuted world coordinate frame in the Kinect environment. However,

this rotation is not required in the Vicon environment. In pelvis, ψ represents the

pelvic tilt, θ represents the pelvic obliquity, and φ represents the pelvic rotation

angles.

2.5 Experiment’s results

To minimize any fluctuations in the Kinect data, a 5th-order low pass filter

with a cut-off frequency of 4 Hz, was applied to the Kinect data [16]. The results
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of the comparison between the two motion capture systems for a single trial, when

the Kinect is located in front of the path and the subject walks slowly, are shown

in Fig. 2.6. The red-line indicates the angles captured by Vicon cameras and the

black dotted line indicates the Kinect captured data for a normal gait motion.

Fig. 2.6 illustrates the capability of the Kinect in tracking the lower body joint

angles. However, there are extreme differences between the Kinect and Vicon data

in the hip rotation and ankle joint angles. Even though the range of the motions in

the pelvic angles are notably low, these angles and their changes could be captured

appropriately.

The average RMSE error of the captured joint angles, associated with the Kinect

position and the walking speed, is shown in Fig. 2.7. Fig. 2.7(A) and Fig. 2.7(B)

indicate the relation of the RMSE error with the Kinect position, while Fig. 2.7(C)

and Fig. 2.7(D) indicate the effects of the walking speed on the Kinect accuracy.

The best position for the Kinect is in front of the walking path. In this case,

the Kinect can estimate the skeleton of the human more precisely. Furthermore,

by increasing the movement speed, the RMSE increases in the ankle and pelvic

angles. However, this effect is not reflected on the knee and hip joint angles.

The average value of the joint angles correlation (µr), its standard deviation

(SD), and the root-mean-square-error (RMSE) derived from the Kinect and Vicon

data are shown in table 2.1. The correlation coefficients and RMSE error of the

pelvic rotation, hip ab/adduction, hip flex/extension, and knee flexion are within

an acceptable range which indicates our method validity. However, the correlation

coefficients of the pelvic obliquity, pelvic tilt, and hip rotation are considerably

low, and further improvements are required in these parts. Moreover, the RMSE

error in most joint angles are substantially small, and the Kinect data values are

close to the Vicon data. The hip rotation angle is an internal rotation occurring

over femur bone. The Kinect has extreme difficulties in estimating this joint angle.

This can also be another research domain which requires further studies.

In table 2.2, the accuracy of the proposed method in capturing human gait using

Kinect v2 is compared to similar Kinect validation studies. Kharazi et al. [15] and

Xu et al. [36] used Kinect v2 and v1 to capture the lower body joint angles in the

sagittal plane, respectively. Importantly, Guess et al. [12] calculated the relative

Cardan rotation angles of the hip and knee using the joint orientations of the
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Kinect SDK 2.0 model. They compared the Kinect data to the Vicon plug-in-gait

model which is similar to our method. However, our method demonstrates better

accuracy in capturing the hip and knee joint angles. The ankle joint angle captured

in our method indicates the Kinect inability in tracking the foot segment. The

results illustrate the feasibility of the proposed motion capture system in capturing

knee and hip flexion/extension joint angles using the Kinect v2.

Table 2.1: Mean correlation, standard deviation (SD), and RMSE error between

the motion capture systems data in the moderate speed motion test. Kinect is

positioned in front of subject.

System µr ± SD RMSE (degree)

Pelvic Obliquity 0.6641 ± 0.1204 2.288

Pelvic Tilt 0.2679 ± 0.1140 1.699

Pelvic Rotation 0.9502 ± 0.0321 7.233

Hip Ab/Adduction 0.7562 ± 0.1739 3.240

Hip Flex/Extension 0.9779 ± 0.0113 3.914

Hip Rotation 0.3592 ± 0.0663 53.996

Knee Flexion 09834 ± 0.0314 3.247

Ankle Dorsi/PlantarFlexion 0.7196 ± 0.1944 30.079

Table 2.2: Error comparison between our method and previous studies.

Method Hip RMSE Knee RMSE Ankle RMSE

(degree) (degree) (degree)

Xu et al. [36] 11.9 29.0 -

Guess et al. [12] 12 11 -

Kharazi et al. [15] 5.9 6.3 23.3

Our Method 3.9 3.2 30.0
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2.6 Summary

Capturing human joint angles using the Kinect sensor has attracted much at-

tention with the applications in robotics, computer vision, and biomedical engi-

neering. In this work, a markerless human motion tracking system was introduced

using Kinect v2. The pelvic and hip joint angles were determined in the Kinect

skeleton model using the inverse kinematics techniques. Moreover, for the knee

and ankle joints, the spatial angles were determined. The same method was im-

plemented in the skeleton model calculated in the Vicon software. Eventually, the

Kinect accuracy was evaluated by comparing data obtained from the Kinect and

Vicon. The mean correlation, standard deviation, and RMSE of the Kinect data

were reported for the joint angles in table 2.1, and the accuracy of our motion

capture system was compared to the previous researches in table 2.2. In order to

reduce the RMSE error of the proposed motion capture system, the Kinect should

be placed in front of the motion path. This indicates that the Kinect SDK have a

better estimation of the human skeleton when the camera captures the whole front

of the human body. Moreover, the subject would be better to perform motions

with slower speed considering the Kinect low sampling time (30 Hz) (Fig. 2.7).

The Kinect v2 is identified as a noisy sensor and its accuracy relies on its environ-

mental situations. However, it managed to operate simultaneously with the Vicon

cameras. The results illustrate the possibility of using Kinect in both human-body

motion analysis and human-robot imitation tasks. However, further studies are

required to improve the Kinect accuracy in estimating the ankle joint and hip

rotation angles (table 2.1).
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Figure 2.6: Comparison of the captured joint angles using Kinect and Vicon, (A)

rotation about x−axis (ψ), (B) rotation about y−axis (θ), (C) rotation about

z−axis (φ), and (D) spatial angles. Black dotted lines: Kinect data, red solid

lines: Vicon data.
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2.6. Summary

Figure 2.7: RMSE of Kinect data compared to Vicon data, (A) pelvic angles

measurement error related to the Kinect position, (B) lower body joint angles

measurement error related to the Kinect position, (C) pelvic angles measurement

error related to the motion speed, and (D) lower body joint angles measurement

error related to the motion speed.
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tracking using Kinect

IR camera

3.1 Introduction

In chapter 2, Kinect v2’s accuracy in capturing lower body joint angles of a

human subject was studied. Jebeli et al. [10] evaluated Kinect’s accuracy in de-

tecting the positions of the human’s center of mass using the length of body links in

the Kinect skeleton model. According to Jebeli’s research, when measuring short

parts of the body like the foot, Kinect suffers inaccuracy in recognizing the center

of joints for that part. Kinect v1 and v2 accuracy in gait analysis was studied

further in [16] and [15], where the commercial motion capture systems were used

as the gold standard. The results indicated considerable errors in tracking an-

kle joint angles using both versions of Kinect. Despite providing valuable insights

into Kinect as a capturing motion system, these previous researches do not provide

information on the accuracy of the commercial systems. A landmark identifica-

tion method used for hand kinematics as ground-truth measures and fabricated

model of the upper body to evaluate the skeleton tracking capability of Kinect v1

in upper-body rehabilitation applications was done by [37] and [38], accordingly.

However, the accuracy assessment of Kinect as a motion capture system with a

ground-truth measure and how it compares to commercial motion capture systems

to measure lower-extremity kinematics remains understudied. A digital inclinome-

ter was employed to measure the angles of a ball-and-socket joint as ground-truth

by [39]. The accuracy and repeatability of Kinect v1 in capturing static postures

of the joint were qualified, and the performance was compared with a marker-

based motion capture system. Due to the low sampling rate of Kinect compared
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to commercial cameras, blurring or aliasing in data occurs during dynamic tests,

such as walking or running.

This chapter introduces a new method to enable ankle joint angle measurement

using Kinect v2 as a single motion capture camera in a dynamic test. Image

processing of the data collected by the Kinect sensor was used to track the joint

positions instead of using the Kinect skeleton data. In addition, the accuracy of

the proposed method was quantified compared to a commercial motion capture

system and a definite ground truth.

3.2 Tracking retroreflective markers using Kinect

IR camera

3.2.1 Detecting the markers using IR image data

A Kinect v2 sensor was used to record a scene using its infrared (IR) camera

(see Fig. 3.1). The IR image and the depth data were collected in real-time to be

utilized later. The data above were employed to track the depth position of each

marker in world coordination. For this purpose, each infrared frame was converted

into a binary image, assuming that the intensity of the markers’ reflection is beyond

a certain threshold (α > 0.5). In order to remove noises from the foreground,

an erosion transformation, followed by a dilation was applied to the raw data.

Connected pixels in the resulting binary image (blobs) were labeled based on the

center of the nearest identified marker in the previous frame (see Fig. 4.7). The

average value of depth in a circle with a radius of 3 pixels around each marker

center was used to find the Z coordinate of each marker in meters. In contrast, X

and Y components (in pixels) were assumed to be the same as the blob area center.

There was no need for mapping the pixels of one onto another since both depth

and infrared images are the Kinect IR sensor’s output. Moreover, the time-of-flight

technology used in this system estimated markers’ depth, which was impossible

by the Light Coding technology of the first version of Kinect.
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RGB camera

IR camera IR projector

Figure 3.1: Kinect v2 sensor.

Detected marker

Figure 3.2: A reflective marker detected by Kinect IR camera.
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Figure 3.3: Sample calibration image captured by Kinect IR camera showing the

chessboard.

3.2.2 Calculating the 3D positions of the markers

Kinect depth sensor was employed to capture the retroreflective markers’ posi-

tion data. Therefore, the markers’ 2D position data were estimated in the Kinect

IR camera image. By using the Kinect depth sensor, the corresponding depth (Zc)

parameter was determined. A camera calibration using an undistorted pinhole

camera model is required to determine the intrinsic parameters and the lens dis-

tortion coefficients (the principal point, the focal lengths, the skew coefficient, the

radial distortion, and the tangential distortion) [40], [41]. To calibrate the Kinect

IR camera, a chessboard with 80mm diameters squares was employed (Fig. 3.3).

The camera parameters were calculated using MATLAB calibration toolbox [42].

The projection of a point from the image coordinates pi = [ui, vi]
T in pixels to

the camera coordinates Pc = [Xc, Yc, Zc]
T in meters is obtained through the follow-

ing equations. First, the coordinates of the point were shifted by the coordinates
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of the projection center shown in (3.1):

[
xi

yi

]
=

[
ui

vi

]
−

[
u0i

v0i

]
, (3.1)

where p0i = [u0i, v0i]
T is the principal point in pixels. Then, by using (3.2),

distortion is corrected:

[
xcorrectedi

ycorrectedi

]
= (1 + k1r

2 + k2r
4 + k3r

6)

[
xi

yi

]

+

[
2p1xiyi + p2(r

2 + 2x2i )

p1(r
2 + 2y2i ) + 2p2xiyi)

] , (3.2)

where fx and fy are the focal lengths in pixels and r2 = (xi/fx)
2 + (yi/fy)

2.

Moreover, k1, k2, and k3 are the radial distortion coefficients and p1, p2, and p3

are the tangential distortion coefficients of the lens. Finally, by using (3.3), the

2D parameters of the camera coordinates are calculated:

[
Xc

Yc

]
= Zc ·

[
fx 0

s fy

]−1

·

[
xcorrectedi

ycorrectedi

]
, (3.3)

where s is the skew coefficient. In table 3.1, The results of the estimated intrinsic

and distortion parameters are demonstrated.

Table 3.1: The Kinect IR camera’s estimated intrinsic and distortion parameters.

Intrinsic Values Distortion Values

parameters (pixels) coefficients

fx 377.5511 k1 0.2093

fy 377.6204 k2 −0.4019

u0i 258.6627 k3 −0.1426

v0i 203.2391 p1 0

- - p2 0

- - p3 0
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3.3 Accuracy assessment of the proposed marker

tracking system

3.3.1 Static wand test

Firstly, in a static wand test shown in Fig. 3.4, the validity of the proposed

method was evaluated. A wand with two retroreflective markers placed on it at an

exact interval of 240mm was set in front of a Kinect v2 at seven specific distances.

The Kinect was set at the height of 60 cm and its tilt angle was set to 0 degrees.

The connecting line of the two markers was set parallel to the Kinect. In order

to measure the markers’ distance from the Kinect, a measuring tape was used

to mark the seven positions of the wand (Fig. 3.4). A calibration procedure was

necessary to relate the tape measurements to the Kinect depth data; therefore, the

zero position of the Kinect depth sensor could be roughly estimated to place the

zero point of the tape. Hence, the tape was placed on the ground and a marker

was pasted on it at a specific position (e.g., at the amount of 200 cm). Afterward,

the tape was moved forward and backward till the depth sensor could measure the

same amount. In order to evaluate the accuracy of the motion capture system, the

tape measurements and the markers’ absolute interval were used as true values.

The wand was first placed at an interval of 100 cm from the Kinect, and then we

increased the distance to 400 cm with six stops at every 50 cm intervals. The test

was repeated ten times, and the positions of the markers were measured by the

tape and Kinect. Finally, a fifth-order low pass Butterworth filter with a cut-off

frequency of 3 Hz was employed to filter the data and minimize any fluctuations

in the Kinect data. Following presents the calculated error:

Error = Absolutedata −Kinectdata . (3.4)

In table 3.2, the errors’ mean value and standard deviation (SD) are presented.

According to the results, The average error of the markers’ distance from the

sensor (µdepth) and the average error of the markers’ relative interval (µrelative)

depend on the wand position. As the wand’s distance from the Kinect increased,

µrelative reduced, but then it increased after the distance reached the amount of

200 cm. This pattern also occurred in the depth measurement, but the error started
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to increase after the distance of 150 cm. These results matched with [43] which

indicated by increasing the distance from the sensor, Kinect depth measurement

accuracy decreases. Nevertheless, there is an optimum interval range (from 150 cm

to 200 cm) in which the error is minimum. When the markers were placed closer

than this range to the sensor, Kinect depth sensor error increased. This error could

be caused by the experiment’s situation where the Kinect is placed on a specific

height (60 cm), and detecting the markers close to the ground could have been dif-

ficult for the sensor. In addition, the error in the relative interval (µrelative) might

be caused by the IR camera calibration technique, too, since the focal lengths

and the distortion coefficients measured by the toolbox are assumptions and these

estimated intrinsic values include error. As the wand distance from the sensor

increased, the µrelative increased too which indicates that the calibration technique

was not effective enough to reduce the potent lens distortion effects ultimately. A

minus value for the error indicates that the intervals measured by the Kinect are

larger than the true values measured by the tape and vise versa. The results repre-

sent the feasibility of the proposed method to measure markers’ positions with an

appropriate error. However, to achieve the optimum accuracy, it is recommended

to place the markers within the range of 150 cm to 250 cm from the sensor (see

table 3.2).

Table 3.2: Mean errors of distance measurement using the Kinect in the static

wand test.
Distance from µdepth ± SD µrelative ± SD

Kinect (cm) (mm) (mm)

100 6.3 ± 1.7 −4.8 ± 0.9

150 1.1 ± 2.1 −2.1 ± 0.7

200 3.6 ± 2.5 −0.4 ± 0.9

250 7.9 ± 2.7 2.5 ± 1.4

300 26.6 ± 8.3 2.9 ± 1.1

350 26.9 ± 7.0 3.5 ± 2.6

400 89.0 ± 17.2 6.7 ± 4.6
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Figure 3.4: A wand with two markers placed at 240mm interval. The wand was

also placed at seven specific distances from the Kinect.

3.3.2 Dynamic humanoid test

Eventually, The accuracy of the proposed motion capture system was evaluated

in a humanoid robot ankle flexion/extension test. The motion was captured by a

Kinect v2 and a commercial motion capture system (Optitrack prime 41 cameras).

The accuracy was assessed by using the humanoid joint data as the ground truth.

Our setup consisted of a Kinect v2 sensor and three reflective markers with

12.7mm diameter placed on an HRP-2 humanoid robot lower-body links. The size

and shape of the HRP-2 lower body make this robot a proper option to achieve

a better human-like motion (see Fig. 4.6). Two markers were placed on the knee

and foot segments of the humanoid. The third marker was set on the estimated

pitch rotation center of the ankle joint. The Kinect was set in front of the robot

at a height of 60 cm while four Optitrack cameras were placed around the robot

to capture the same motion at the same time. The layout of the experiment is

shown in Fig. 4.8. The humanoid was placed at the distance of 2m from the

Kinect, which is within the appropriate interval according to the static wand test
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results. The robot performed a sinusoidal ankle flexion/extension motion from

an initial position shown in Fig. 4.6. The only active degree of freedom of the

robot was the ankle pitch motion, and all other joints were locked. Moreover, the

robot was hanged for being enabled to perform the motion. The action started

with a 30 degree flexion followed by a 60 degree extension and, finally, a 30 degree

flexion to reach the initial position. The whole motion was performed in 8 seconds

and was repeated ten times. By using the three markers’ positions, the ankle

joint angle captured by the Kinect and the Optitrack was determined. In order

to define the 0 degree, the imaginary line perpendicular to the connecting line of

the ankle and the knee markers was employed as the zero position. Consequently,

the angle between this line and the connecting line of the foot and ankle markers

was defined as the ankle joint angle. The initial ankle joint angle was measured

by the Optitrack when the robot was not moving (−45.8 degree). The positive

and negative directions shown in Fig. 4.6 were utilized to differentiate between the

flexion and extension motions, respectively.

The average value of the ankle joint angle’s correlation (µr), standard deviation

(SD), and the root-mean-square error (RMSE) derived from the Kinect and the

HRP-2 data, and also from the OptiTrack and the HRP-2 are presented in table 3.3.

Plots of the ankle joint angle captured by the two motion capture systems are

illustrated along with the robot’s generated angles in Fig. 3.7. The Kinetc’s average

correlation coefficient and RMSE error indicate notable improvement in motion

capturing using the proposed method compared to the previous researches[16],

[15]. It is worth mentioning that the OptiTrack still has higher accuracy compared

to the Kinect. The results illustrate the feasibility of developing a marker-based

motion capture system using the Kinect depth sensor in order to overcome the

Kinect skeleton’s limits, such as estimating the ankle joint angles.

3.4 Summary

Capturing ankle joint angles using a Kinect sensor was known as a challenging

task since the range of the motion is small and the shortness of the foot segment

increases the sensor inaccuracy in gauging this delicate motion. In order to capture
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Figure 3.5: Reflective markers placed on the HRP-2 knee, ankle, and foot segments.

The 3D positions of the markers were used to determine the ankle joint angle.
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Figure 3.6: Layout of the Kinect, HRP-2, and four Optitrack cameras.

humanoid ankle joint angles, we introduced a novel marker-based motion tracking

system with joint use of Kinect IR camera and its depth sensor data. By employing

the humanoid data as ground truth, the accuracy of the novel motion capture

system was evaluated. The mean correlation, standard deviation, and RMSE

between the Kinect and the humanoid data were reported 0.8899, 0.0952, and

5.579, respectively. The results indicate remarkable improvement in capturing

ankle joint angles using Kinect v2 by applying the proposed method. However,

Table 3.3: Mean correlation, standard deviation (SD), and RMSE error of the

motion capture systems in the dynamic humanoid test.

System µr ± SD RMSE (degree)

Jamali et al. - 32.410

Kharazi et al. 0.0956 ± 0.2919 22.161

Our Method 0.8899 ± 0.0952 5.579

OptiTrack 0.9832 ± 0.0130 5.598

35



Chapter 3. Marker-based motion tracking using Kinect IR camera

0 1 2 3 4 5 6 7 8

Time (sec.)

-80

-70

-60

-50

-40

-30

-20

-10

A
nk

le
 a

ng
le

 (
de

g.
)

Ankle flexion/extension
Kinect
Optitrack
HRP-2

Figure 3.7: Ankle joint angle captured by the Kinect and Optitrack in a sinusoidal

flexion/extension test. Humanoid data was used as ground-truth.
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markers should be placed in a range between 150 cm and 200 cm from the Kinect

IR camera in order to minimize the error.

Moreover, the calculated mean correlation, standard deviation, and RMSE of

the OptiTrack motion capturing results gave 0.9832, 0.0130, and 5.598, support-

ing the superiority of this commercial motion capture system over the Kinect v2.

Although Kinect v2 is identified as a noisy sensor and its accuracy relies on its

environmental situations, it was able to estimate the markers’ positions placed on

the humanoid robot’s surface (HRP-2). The results show the possibility of using

the proposed method to capture dynamic motions in human motion analysis and

robot telemanipulation tasks. Although, the Kinect data comes noisy and un-

stable, which becomes more significant in the forward dynamics-based simulation

when the second-order differential of the joint trajectory is needed (Fig. 3.7. In

order to overcome the instability of the Kinect data due to the noisiness, more

research is required to improve the smoothness of the Kinect data so that the

proposed method could be used in robotics applications.
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Kinect skeleton and

depth sensor

4.1 Introduction

A common approach to obtain human motion data is by using marker-based

motion capture systems, which are highly accurate, such as OptiTrack (Natural-

Point Inc., USA), a research-grade motion capture system [6]. However, these

systems are expensive, require a highly trained operator, and their use is limited

to laboratory settings. By improvement in camera and sensor technologies, mark-

erless motion capture systems emerged as publicly available, cost-efficient motion

capture cameras.

In chapter 2, Kinect v2 showed capability in capturing knee joint angles, im-

precision exists in capturing hip and ankle joint angles. A review on validity

of the Kinect for gait assessment also attested poor performance of the Kinect

skeleton tracking algorithm in estimating most kinematic variables, and only some

spatiotemporal factors such as step width and step length were accurately de-

tectable [17]. In order to improve the Kinect skeleton accuracy, multi-camera

and data fusion systems came to attention. There are several benefits for human

motion assessment using multiple depth cameras since it would reduce occlusion,

increase accuracy by fusing data, and extend the field of view [18, 19]. However,

there are some limitations in using multi-camera systems like complexity in the

setup, which is similar to commercial motion capture systems. Additionally, ex-

tra hardware requirements could add to the cost of the system, and the use of
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different depth cameras in an overlapped field of view would negatively affect the

results. Contrary to the setup complexity, these systems could not always pro-

vide superior results compared to single-eye RGB-D camera systems [20]. Some

of these limitations can be solved by merging the Kinect skeleton data with an

IMU wearable motion capture data. This method would improve the accuracy of

the human motion assessment; however, the complexity and costs of such systems

would likely top multi-camera systems [21].

In chapter 2, the limits of the Kinect skeleton in estimating the lower body

was indicated. The proposed marker-based motion capture technique presented

in chapter 3 indicated better accuracy in capturing the ankle joint angle of a

humanoid robot in a flexion/extension test. In this chapter, we extend the devel-

opment of the marker-based motion capturing using Kinect IR camera to track

multiple landmarks of human subjects in order to estimate the lower body joint

angles in dynamic tests. In order to determine the positions and orientations of the

lower body segments more precisely, a global optimization method (GOM) [44] is

applied to the 3D positions of the markers detected by the Kinect. Moreover, the

GOM method also imposes joint constraints to the achieved Kinect model, which

eliminates joint dislocations and gives better positions and orientation estimations

for the model.

In order to evaluate a commercial motion capture system and the proposed

method in estimating the 3D kinematics of a subject, a humanoid robot was used

where the robot data could be used as the ground truth. The effectiveness of the

kinematic constraints on the Kinect data needs to be studied by analyzing the

accuracy improvement of Kinect data after applying the constraints. Importantly,

the accuracy of the suggested system needs to be assessed in capturing kinematic

variables of various subjects during gait, where the commercial motion capture

system can be used as the ground truth.
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4.2 Lower body motion capturing using Kinect

skeleton and depth sensor

4.2.1 Concept

Fig. 4.1 shows the concept of the proposed marker-based motion capture using

Kinect v2. Firstly, the joint centers (green dots) were detected using the Kinect

skeleton model (Fig. 4.1a). The Kinect skeleton is obtained from a built-in al-

gorithm that enables Kinect to detect human joint centers’ positions. Secondly,

search domains were defined to detect the IR markers (red dots) placed on the

subject using the joint centers’ positions (Fig. 4.1b). Thanks to the specific search

domains, multiple IR markers could be detected using a single Kinect. More-

over, this method increases the algorithm’s speed to search and recognize the

high contrast pixels on the IR images to detect the virtual markers. The 3D

positions of each marker were estimated using the Kinect depth sensor (chapter

3). The utilized technique in chapter 3 indicated the advantage of tracking IR

markers using Kinect depth sensor; therefore, we extended this method to track

multiple IR markers placed on the human subject to capture the kinematic pa-

rameters of the lower body. The name of each marker is chosen the same as the

Plug-in-Gait landmarks (Fig. 4.1b). Since the Kinect camera could not detect the

markers placed on the backside of the subject, SACR’s (Sacral) position (blue dot)

was estimated using the SPB (Spine Base) joint’s position (Fig. 4.1c). The detec-

tion of the SACR was necessary in order to create the Pelvic plane, using SACR,

RASI (Right Anterior Superior Iliac), and LASI (Left Anterior Superior Iliac). Fi-

nally, a new skeleton model was attained using the detected markers similar to the

International Society Biomechanics (ISB) model (Fig. 4.1c) [35]. The joint centers’

positions of the new skeleton (ISB) model were calculated from the Plug-in-Gait

landmarks using Kadaba et al.’s method [45].

Calculating joint angles using inverse kinematics on the Kinect skeleton model

presented in chapter 2 provided better accuracy in capturing human joint angles.

However, The Kinect skeleton suffers from technical errors in estimating the join

centers’ positions [11]. In this paper, we replaced the Kinect skeleton with the cal-

culated ISB model to improve the estimation of the human skeleton using a single
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Figure 4.1: Concept of the proposed marker-based motion capture using Kinect

v2.

Kinect camera. By applying the inverse kinematics on the attained ISB skeleton

model, lower body joint angles were calculated in a dynamic test (Fig. 4.10). The

advantage of the proposed marker-based motion capture was shown in human gait

tests.

4.2.2 Tracking human motions

In the human gait test (Fig. 4.2), Plug-in-Gait lower body marker set was em-

ployed to analyze the gait kinematics of the subjects. Since the Time-Of-Flight sen-

sor of the Kinect cannot estimate the depth of reflective markers directly [46], two

adjacent markers were placed near each other. The midpoint of the adjacent mark-

ers was assumed as a virtual marker, and the Kinect depth sensor will estimate the

virtual marker’s depth. This technique would help to improve the reliability of the

markers’ depth estimation using the Kinect IR camera [47]. Two adjacent markers

were placed around each front lower body landmark of the Plug-in-Gait, in a way

that the midpoint of each adjacent markers would indicate the Plug-in-Gait land-

marks (Fig. 4.3). A Kinect v2 was employed to record the IR images of the walking

scene using its IR camera. A reliable threshold (α > 0.5, where 1 > α > 0 denotes

the brightness of each pixel in the Kinect IR image, as α = 0 the darkest and α = 1

the brightest pixel) was applied to each IR image to identify high-contrast mark-
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ers. The two adjacent markers were employed to estimate a circle with a radius of

3 pixels in an area centered in the midpoint of the two markers. The new imag-

inary blob was assumed as a virtual marker in the Kinect IR camera (Fig. 4.4),

and its depth data was recorded and used to calculate the 3D coordinates of

the Plug-in-Gait landmarks by applying the pinhole camera calibration (chapter

3). Tracking virtual markers using Kinect IR camera was presented in [47] and

expected to improve the reliability of the recorded depth data compared to the

direct tracking of the retroreflective markers (chapter 3). Since the Kinect camera

could not detect the landmarks located on the human’s backside, only one marker

was placed on each of these landmarks (RPSI (Right Posterior Superior Iliac),

LPSI (Left Posterior Superior Iliac), RHEE (Right Heel), and LHEE (Left Heel)

in Fig. 4.2), and these markers were used to detect the human skeleton in the

OptiTrack model. In total, 28 retroreflective markers (24 markers on the front

and 4 markers on the back) were placed on each human subject.

In order to track multiple markers simultaneously and online, the Kinect skele-

ton algorithm was used to define specific search domains in the Kinect IR im-

ages, in which every two adjacent markers were detected to estimate the virtual

marker. On the right side of the pelvis, a circle search domain with a radius

of 20 pixels and centered in (xHPR, (yHPR + ySPM) /2) was determined to de-

tect the RASI landmark in the Kinect IR image (v1), where SPM (Spine Mid)

and HPR (Hip Right) indicate the joint centers in the Kinect skeleton model (see

Fig. 4.5). For the right thigh markers, a circle with a radius of 20 pixels and cen-

tered in (xKR, (yKR + yHPR) /2) was determined to detect RTHI (Right Thigh) (v2).

For the right knee markers, a circle with a radius of 15 pixels and centered in

(xKR, yKR) was determined to detect RKNE (Right Knee) (v3). For the right

tibia markers, a circle with a radius of 15 pixels and centered in (xAR, (yAR + yKR) /2)

was determined to detect RTIB (Right Tibia) (v4). For the right ankle markers,

a circle with a radius of 10 pixels and centered in (xAR, yAR) was determined

to detect RANK (Right Ankle) (v5). For the right foot markers a lower-half-

circle with a radius of 15 pixels and centered in (xFR, yFR) was determined to

detect the RTOE (Right Toe) (v6), where x: and y: indicate the 2D position of

the joint centers in the Kinect IR images which are determined by Kinect skele-

ton (KR (Knee Right), AR (Ankle Right), and FR (Foot Right)) (Fig. 4.3). The
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same method can be applied to detect the markers placed on the left side of the

human (v7–v12). This technique would increase the markers tracking algorithm’s

speed since it searches for the markers in specific domains instead of the whole

image.

The RPSI and LPSI markers could not be detected by Kinect camera which was

placed in front of the subject (Fig. 4.2); hence, to create the human skeleton the

SACR landmark (Fig. 4.2) was assumed as s = (xSPB, ySPB +D, zSPB −D) in

the Kinect skeleton model (Fig. 4.3), where D was empirically estimated 9 cm.

This assumption was based on an approximate distance measurement between the

imaginary SPB (Fig. 4.3) and SACR (Fig. 4.2) landmarks of all five subjects.

The new skeleton model (ISB model in Fig. 4.1c) can be achieved from the

markers’ positions (v1–v12) using Kadaba et al.’s method in calculating join centers’

positions from Plug-in-Gait landmarks [45]. The s, v1, and v7 markers were used

to define the 3D coordinate system located on the pelvis (chapter 2). Using the

position of s and the lower body joint centers, 3D coordinate systems located

on the pelvis, hip, and tibia were defined [45]. The lower body joint angles were

calculated using the inverse kinematics (chapter 2). However, there was no marker

assumption for the RHEE and LHEE markers (Fig. 4.2) in the Kinect model, and

the foot coordinate system could not be achieved due to the lack of landmarks

on foot. Therefore, the ankle joint angle was estimated by measuring the spatial

angle consists of the foot marker, ankle, and knee joint centers.

4.2.3 Tracking humanoid robot motions

In the proposed motion capture technique, Kinect skeleton model is used to

define specific search domains in the Kinect IR images to track multiple markers

in real-time. However, since the Kinect skeleton algorithm is designed to detect

joint centers of a human, it could not estimate a skeleton for the humanoid robot.

Hence, to track the multiple markers placed on the robot simultaneously and

online, the skeleton of the human standing beside the robot was projected on the

robot body to define ten search domains (Fig. 4.6).

In the humanoid gait test (Fig. 4.6), ten retroreflective markers were placed

on the covered surface of a humanoid robot HRP-2 [48] in order to analyze the
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kinematics of the robot. Since the robot has a reflective surface, it was covered

with black cloth to avoid any reflective noises. A Kinect v2 was employed to

record the IR images of the walking scene. A reliable threshold (α > 0.5) was

applied to each IR image to identify high-contrast markers. An imaginary blob

was defined as the marker area by estimating a circle with a radius of 3 pixels

around each detected marker’s center (Fig. 4.7). The average value of depth in

each blob was recorded as the marker’s depth, while the position of the center of

the blob was assumed as X and Y components (in pixels). By applying pinhole

camera calibration for the IR camera of the Kinect, 3D coordinates of the estimated

markers were calculated (the method introduced in chapter 3). Since the Time-

Of-Flight (TOF) sensor of the Kinect v2 is unable to estimate the depth of high

reflective surfaces [46], we recorded the depth data of the pixels adjacent to the

high contrast pixels, and determined the marker’s depth by averaging the available

depth data. We tried to use as few markers as possible attached to the robot

body to avoid further complexity; hence, instead of using redundant markers, the

reflective markers were tracked directly in the humanoid experiment (different from

the tracking virtual marker technique used in the human walking test).

In order to detect the three markers placed on the upper body of the robot (u1–

u3), three circle search domains were defined with a radius of 20 pixels and cen-

tered in ((xHTR − L1) , ySHR), (xHTR, ySHL), and ((xHTR − L2) , ySPM), where

x: and y: are the 2D position of the human joint centers in the Kinect IR images ob-

tained from the Kinect skeleton model (see Figs 4.3 and 4.6 for the joints’ names),

and L1 = xSHL − xSHR and L2 = xSHL − xSPM are the distances used to reach

the desired positions on the humanoid. To detect the markers placed on the left

leg of the humanoid (u4–u8), five circle search domains were defined with a radius

of 10 pixels and centered in (xHTR, yHPR) for the hip, (xHTR, (yKR + yHPR) /2)

for the thigh, (xHTR, yKR) for the knee, (xHTR, (yAR + yKR) /2) for the tibia,

u8 = (xHTR, yAR) for the ankle marker. The two markers placed on the left foot

of the humanoid (u9–u10) were detected by employing two search domains with

a radius of 8 pixels and centered in (xHTR, yFR), (xHTR, (yFR − L3)), where

L3 = xHPL−xHPR (HTR (Hand Tip Right), SHR (Shoulder Right), SHL (Shoul-

der Left), SPM (Spine Mid), HPR (Hip Right), HPL (Hip Left), KR (Knee Right),

AR (Ankle Right), and FR (Foot Right)) (Fig. 4.6). This technique would increase
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the speed of the markers tracking algorithm since it looks for the markers in specific

domains instead of the whole image.

A rigid body with a 3D coordinate system (xu, yu, and normal vector zu)

was determined on the humanoid’s upper body using the u1, u2, and u3 markers

(Fig. 4.6). Similarly, the upper leg coordinate system was determined using the

u4, u5, and u6 markers and the lower leg coordinate system was determined using

the u6, u7, and u8 markers. It is important to note that the u6 marker was placed

on the pitch rotation center of the robot’s knee, empirically. Since there were only

two markers placed on the foot segment, the foot’s 3D coordinate system could not

be achieved. However, the robot was programmed to walk in a way that the y–axis

of the upper body and foot would always be parallel to each other; hence, the y–

axis of the upper body’s coordinate system (yu) was used to determine the y–axis

of the foot’s 3D coordinate system (yf ) (Fig. 4.6). Finally, the humanoid’s lower

body joint angles could be calculated using the inverse kinematics in both Kinect

and OptiTrack models.

4.2.4 Kinematic analysis

The lower body joint angles were calculated using the inverse kinematics tech-

niques explained in chapter 2. A global optimization method (GOM) [44] was

applied to the 3D positions of the markers detected by the Kinect in order to

determine the positions and orientations of the lower body segments accurately.

This method also imposes joint constraints, capable of eliminating joint disloca-

tions and giving accurate model positions and orientation estimations. In order

to apply the joint constraints, there should be at least three markers placed on

each rigid body part; hence, the GOM could not be applied on the foot markers.

The GOM is expected to improve the estimation of the pelvic, hip, and knee joint

angles (MATLAB Genetic Algorithm).

The coordinate systems definition of the body segments was compatible with

the International Society of Biomechanics recommendations [35]. The calculated

joint angles for the ten trials were analyzed before the joint angles comparison and

statistical analysis.
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4.2.5 OptiTrack model

One marker from each couple markers in the human walking test was selected

to create the human skeleton in the OptiTrack software (the marker closest to the

Plug-in-Gait landmark). The OptiTrack skeleton model contains joint constraints,

and the lower body joint angles were calculated automatically by the software. In

the Kinect model, the 3D positions of the detected markers v: were employed to

estimate the lower body joint centers using David et al. method [49]. It is worth

mentioning that the SACR landmark is estimated in the middle of RPSI and LPSI

markers in the OptiTrack software, which is used to create the pelvic coordinate

system (Fig. 4.2).

In the humanoid robot test, the 3D positions of the markers u: were captured by

the OptiTrack, and the robot joint angles were calculated using inverse kinematics.

4.3 Accuracy assessment experiments

4.3.1 Humanoid robot motion capturing

In order to evaluate the accuracy of the several motion capture methods, motion

capturing experiments were performed using humanoid robot HRP-2 (Fig. 4.6).

Assuming the joint angles measured by optical encoders installed at the joints of

the HRP-2 as the ground truth, the joint angles calculated from the 3D coordi-

nates of the markers are compared with the ground truth. Three motion capturing

methods were simultaneously tested; 1) Kinect and markers with kinematic con-

straints (proposed method), 2) Kinect and markers without kinematic constraints,

and 3) OptiTrack.

Similar to the Plug-in-Gait marker set, ten markers were placed on the HRP-2

in order to calculate the kinematics of the robot (Fig. 4.6). A Kinect v2 sensor was

placed in front of the subject at the height of 75 cm in order to record a gait cycle of

the robot in a range of 1.5-2.5 meter from the Kinect camera. (Fig. 4.8). This range

was recommended by the results of experiments of chapter 3, in order to increase

the accuracy of the marker tracking method using Kinect IR camera. The robot

performed a walking motion (speed: 0.2 m/s), while the motion was recorded by the
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Kinect (sampling rate: 30 Hz, approximately) and OptiTrack cameras (sampling

rate: 120 Hz), simultaneously.

Table 4.1: Pearson correlation (r) between the motion capture systems and hu-

manoid data. r is interpreted as perfect linear correlation (r = 1), no linear

correlation (r = 0), and strong negative correlation (r = −1).

Correlation r Correlation r Correlation r

(95%CI) (95%CI) (95%CI)

OptiTrack Kinect+Markers Kinect+Markers

+Constraints

Hip Roll 0.9974 0.9685 0.9967

Hip Pitch 0.9997 0.9361 0.9765

Hip Yaw 0.4389 -0.1868 0.0985

Knee Pitch 0.9997 0.9053 0.9594

Ankle Roll 0.8921 0.9141 -

Ankle Pitch 0.9669 0.9594 -

Average 0.9712 0.9367 0.9775

(Hip Yaw excluded)∗

Table 4.2: Lin’s concordance correlation (CCC) between the motion capture sys-

tems and humanoid data. CCC is interpreted as perfect (CCC>0.99), substan-

tial (0.95−0.99), moderate (0.90−0.95), and poor (CCC<0.90).

Correlation rc Correlation rc Correlation rc

(95%CI) (95%CI) (95%CI)

OptiTrack Kinect+Markers Kinect+Markers

+Constraints

Hip Roll 0.9906 0.8110 0.9628

Hip Pitch 0.9997 0.8823 0.9512

Hip Yaw 0.0526 -0.0363 0.0670

Knee Pitch 0.9990 0.8972 0.9554

Ankle Roll 0.8919 0.8926 -

Ankle Pitch 0.9616 0.9027 -

Average 0.9686 0.8772 0.9565

(Hip Yaw excluded)∗
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Table 4.3: Absolute agreement (ICC) between the motion capture systems and

humanoid data. ICC is interpreted as excellent (ICC>0.75), good (0.6−0.75),

fair (0.4−0.6), and poor (ICC<0.4).

Agreement ICC Agreement ICC Agreement ICC

(95%CI) (95%CI) (95%CI)

OptiTrack Kinect+Markers Kinect+Markers

+Constraints

Hip Roll 0.9906 0.8117 0.9630

Hip Pitch 0.9997 0.8827 0.9514

Hip Yaw 0.0528 -0.0365 0.0673

Knee Pitch 0.9990 0.8976 0.9556

Ankle Roll 0.8923 0.8931 -

Ankle Pitch 0.9618 0.9030 -

Average 0.9687 0.8776 0.9567

(Hip Yaw excluded)∗

∗ Since Hip Yaw presents almost zero correlation.

Table 4.4: Consistency (ICC) between the motion capture systems and humanoid

data. ICC is interpreted as excellent (ICC>0.75), good (0.6−0.75), fair (0.4−0.6),

and poor (ICC<0.4).

Consistency ICC Consistency ICC Consistency ICC

(95%CI) (95%CI) (95%CI)

OptiTrack Kinect+Markers Kinect+Markers

+Constraints

Hip Roll 0.9908 0.8223 0.9650

Hip Pitch 0.9997 0.8829 0.9515

Hip Yaw 0.0543 -0.0365 0.0672

Knee Pitch 0.9995 0.9048 0.9581

Ankle Roll 0.8920 0.9120 -

Ankle Pitch 0.9622 0.9029 -

Average 0.9688 0.8850 0.9582

(Hip Yaw excluded)∗

The captured joint angles of the humanoid robot are shown in Fig. 4.9. The

thin line indicates the angles captured by the Kinect after applying the global
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Table 4.5: RMSE between the motion capture systems and humanoid data.

RMSE (◦ ) RMSE (◦ ) RMSE (◦ )

OptiTrack Kinect+Markers Kinect+Markers

+Constraints

Hip Roll 0.5178 1.9916 0.9711

Hip Pitch 0.1557 2.5701 1.7248

Hip Yaw 1.3238 0.8619 0.2190

Knee Pitch 0.3068 3.1754 2.0677

Ankle Roll 1.9219 1.8610 -

Ankle Pitch 2.1662 2.8315 -

Average 1.0137 2.4859 1.5879

(Hip Yaw excluded)∗

∗ Since Hip Yaw presents almost zero correlation.

optimization method with joint constraints, the dotted line indicates the captured

data by Kinect without the joint constraints, the dash-dotted line indicates the

OptiTrack data, and the thick line indicates the true value of the HRP-2 joint an-

gles (ground-truth). Figure 4.9 illustrates the capability of the proposed method in

tracking the lower body joint angles of the humanoid robot. Moreover, it indicates

the advantage of employing the global optimization method with joint constraints

on the captured positions of the markers to reconstruct the poses of the lower

body segments, which results in accurate joint angles estimation while using skin

markers [44].

The statistical analysis results derived from the Kinect, OptiTrack, and the

HRP-2 data are shown in Tables 4.1-4.5. Table 4.1 presents the Pearson correla-

tion, Table 4.2 presents Lin’s correlation, Table 4.3 presents the Absolute agree-

ment, and Table 4.4 presents the Consistency between the motion capture and

robot data (ground truth) (see Appendix for the details of correlation coefficients).

The Root-Mean-Square-Error (RMSE) of the different methods are shown in Ta-

ble 4.5. In each Table, the OptiTrack results indicate the best results (except

the Hip Yaw) which attests the high performance of OptiTrack. The correlation

coefficients and RMSE of the captured Hip Roll, Hip Pitch, Knee Pitch, Ankle

Roll, and Ankle Pitch using Kinect remains in an acceptable range. Furthermore,

accuracy of the captured joint angles improved by applying the joint constraints
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to the Kinect data. In all systems, the correlation coefficients of Hip Yaw indicates

no correlation between the robot and motion capture data. The robot data shows

zero changes in the Hip Yaw; however, the motion capture systems detect a slight

changes in the Hip Yaw angles (Fig. 4.9). This error could be caused by a slight

rotational slip of the robot’s standing foot on the carpet during the gait; therefore,

although the robot does not perform any Hip Yaw motion, the motion capture sys-

tems record a small degree Hip Yaw rotation. An approximate zero correlation

between the motion capture systems and robot data was detected for Hip Yaw

angles. In order to have a better comparison between different motion capture

techniques, the arithmetic average of the results for each system was calculated

and demonstrated in Tables 4.1-4.5. Capturing the Hip Yaw was not successful

for Kinect and OptiTrack due to the slight rotational slip of the robot’s standing

foot; hence, the averages were calculated excluding Hip Yaw in the humanoid ex-

periment. The results indicate adequate accuracy for the Kinect method and the

best performance for the OptiTrack.

In the humanoid robot test, the comparison between the OptiTrack and the

ground truth (robot data) was implemented to assess the accuracy of OptiTrack

system in order to use OptiTrack data as the approximate ground truth in the

human test (section 5).

4.3.2 Human motion capturing

As shown in Table 4.5, RMSEs between the OptiTrack data and the ground

truth are relatively small. Since, there are no ground truth in the human motion

capture test, the motion data captured by the OptiTrack are considered as the

approximated ground truth in this section. Four motion capturing methods were

simultaneously tested; 1) Kinect and markers with kinematic constraints (pro-

posed method), 2) Kinect and markers without kinematic constraints, 3) Kinect

skeleton (SDK), and 4) Perception Neuron.

Twenty-eight retroreflective markers were placed on the lower extremity of a

subject similar to the conventional Plug-in-Gait marker set. The four markers

placed on the back side of the human cannot be detected by the Kinect. These

markers were used to complete the human skeleton model in the OptiTrack motion
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capture system (six prime 41 cameras) (Fig. 4.2). To compare the results of the

proposed method to an IMU based motion capture system, a full body Perception

Neuron was placed on the body segments of each subject to record the motion

with sampling rate of 120 Hz.

A Kinect v2 sensor was placed in front of the subject at the height of 75 cm in

order to record a gait cycle of each subject in a range of 1.5-2.5 meter from the

Kinect camera. (Fig. 4.8). This range was reach from the results of the chapter

3 experiments, in order to increase the accuracy of the marker tracking method

using Kinect IR camera.

Five healthy adult (male) were selected to perform a normal gait (speed: 0.8 m/s, ap-

proximately) toward the Kinect camera while the motion was captured by the

Kinect and OptiTrack cameras, simultaneously. The walking test was repeated

ten times for each trail.

Table 4.6: Pearson correlation (r) between the low-cost motion capture systems

and OptiTrack data. r is interpreted as perfect linear correlation (r = 1), no linear

correlation (r = 0), and strong negative correlation (r = −1).

Correlation r Correlation r Correlation r Correlation r

(95%CI) (95%CI) (95%CI) (95%CI)

Perception Neuron Kinect SDK Kinect+Markers Kinect+Markers

+Constraints

Pelvic Tilt -0.5268 0.5574 0.1816 0.7675

Pelvic Obliquity -0.0396 -0.2601 -0.2901 0.5512

Pelvic Rotation -0.2693 0.2669 0.8833 0.9600

Hip Flex/Ext 0.9056 0.9622 0.9991 0.9996

Hip Ad/Ab -0.1870 -0.6944 0.3843 0.5942

Hip Rotation 0.0989 -0.7276 0.8066 0.9692

Knee Flex 0.9804 0.9900 0.9998 0.9999

Knee Ad/Ab 0.8698 - 0.9882 0.9983

Knee Rotation 0.9708 - 0.8429 0.9573

Ankle Flex/Ext 0.7166 -0.0201 0.9909 -

Average 0.3519 0.3074 0.6787 0.8797

The definition of the lower body joint angles based on the Euler rotation an-

gles of the segment coordinate systems is shown in Fig. 4.10. The average of
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Table 4.7: Lin’s concordance correlation (CCC) between the low-cost motion cap-

ture systems and OptiTrack data. CCC is interpreted as perfect (CCC>0.99),

substantial (0.95−0.99), moderate (0.90−0.95), and poor (CCC<0.90).

Correlation rc Correlation rc Correlation rc Correlation rc

(95%CI) (95%CI) (95%CI) (95%CI)

Perception Neuron Kinect SDK Kinect+Markers Kinect+Markers

+Constraints

Pelvic Tilt -0.3359 0.0199 0.0710 0.4145

Pelvic Obliquity -0.0053 -0.0436 -0.0666 0.1097

Pelvic Rotation -0.0739 0.0087 0.6572 0.8532

Hip Flex/Ext 0.8657 0.9615 0.9837 0.9927

Hip Ad/Ab -0.1501 -0.0723 0.2229 0.4450

Hip Rotation 0.0297 -0.1270 0.5237 0.8638

Knee Flex 0.9731 0.8495 0.9988 0.9997

Knee Ad/Ab 0.8650 - 0.8788 0.9747

Knee Rotation 0.5930 - 0.6632 0.8928

Ankle Flex/Ext 0.4425 -0.0181 0.9551 -

Average 0.3204 0.3579 0.5888 0.7546

the captured lower body joint angles of ten trials of all five subjects are shown

in Figs 4.11 and 4.12. Also, a single trial of a random subject is shown in

Figs 4.13 and 4.14. The thin line indicates the angles captured by the Kinect

after applying the global optimization method with joint constraints, the dotted

line indicates the Kinect captured data without the joint constraints, the dash-

dotted line indicates the estimated joint angles using the Kinect SDK (chapter

2), and the thick line indicates the OptiTrack data (approximated ground-truth).

Figures 4.11 and 4.13 illustrate the capability of the proposed method in tracking

the lower body joint angles. Moreover, it indicates the advantage of employing

the global optimization method with joint constraints on the captured positions

of the markers to reconstruct the poses of the lower body segments, which results

in accurate joint angles estimation while using skin markers [44].

The statistical analysis results derived from the Kinect, Perception Neuron,

and OptiTrack data are shown in Tables 4.6-4.10. Table 4.6 presents the Pearson

correlation, Table 4.7 presents Lin’s correlation, Table 4.8 presents the Absolute
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Table 4.8: Absolute agreement (ICC) between the low-cost motion capture systems

and OptiTrack data. ICC is interpreted as excellent (ICC>0.75), good (0.6−0.75),

fair (0.4−0.6), and poor (ICC<0.4).

Agreement ICC Agreement ICC Agreement ICC Agreement ICC

(95%CI) (95%CI) (95%CI) (95%CI)

Perception Neuron Kinect SDK Kinect+Markers Kinect+Markers

+Constraints

Pelvic Tilt -0.3450 0.0203 0.0723 0.4193

Pelvic Obliquity -0.0054 -0.0445 -0.0681 0.1117

Pelvic Rotation -0.0755 0.0088 0.6617 0.8557

Hip Flex/Ext 0.8680 0.9623 0.9841 0.9929

Hip Ad/Ab -0.1535 -0.0738 0.2264 0.4499

Hip Rotation 0.0303 -0.1298 0.5286 0.8661

Knee Flex 0.9736 0.8520 0.9988 0.9997

Knee Ad/Ab 0.8673 - 0.8809 0.9752

Knee Rotation 0.5978 - 0.6676 0.8947

Ankle Flex/Ext 0.4474 -0.0185 0.9559 -

Average 0.3205 0.3577 0.5908 0.7565

agreement, and Table 4.9 presents the Consistency between the motion capture

and robot data (ground truth). The Root-Mean-Square-Error (RMSE) of the

different methods are shown in Table 4.10. The correlation coefficients and RMSE

of the lower body joint angles indicate the advantage of the proposed method in

capturing lower body joint angles of human over Perception Neuron and Kinect

SDK. Furthermore, the captured joint angles’ accuracy improved by applying the

joint constraints to the Kinect data.

The study goal was to improve and examine the capability of the novel Kinect-

based motion capture system in measuring lower extremity kinematics during gait.

Our results indicate that the proposed method is an acceptable tool for capturing

the pelvic, hip, knee, and ankle joint angles across the gait cycle; however, sig-

nificant limitations existed when assessing humanoid kinematics, and the method

needs improvement. Additionally, the capacity of the Kinect to assess kinematic

variables was enhanced compared to previous motion capturing techniques. These

findings support the system’s ability to evaluate lower extremity gait patterns ob-
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Table 4.9: Consistency (ICC) between the low-cost motion capture systems and

OptiTrack data. ICC is interpreted as excellent (ICC>0.75), good (0.6−0.75),

fair (0.4−0.6), and poor (ICC<0.4).

Consistency ICC Consistency ICC Consistency ICC Consistency ICC

(95%CI) (95%CI) (95%CI) (95%CI)

Perception Neuron Kinect SDK Kinect+Markers Kinect+Markers

+Constraints

Pelvic Tilt -0.4580 0.1132 0.1319 0.5846

Pelvic Obliquity -0.0076 -0.1471 -0.2732 0.4568

Pelvic Rotation -0.1073 0.2039 0.8804 0.9571

Hip Flex/Ext 0.8904 0.9617 0.9984 0.9993

Hip Ad/Ab -0.1592 -0.3845 0.3107 0.5582

Hip Rotation 0.0399 -0.2206 0.7407 0.9428

Knee Flex 0.9800 0.8502 0.9988 0.9997

Knee Ad/Ab 0.8697 - 0.8793 0.9748

Knee Rotation 0.6646 - 0.8413 0.9573

Ankle Flex/Ext 0.4506 -0.0200 0.9659 -

Average 0.3163 0.3357 0.6474 0.8431

Table 4.10: RMSE between the low-cost motion capture systems and OptiTrack

data.

RMSE (◦ ) RMSE (◦ ) RMSE (◦ ) RMSE (◦ )

Perception Neuron Kinect SDK Kinect+Markers Kinect+Markers

+Constraints

Pelvic Tilt 1.6866 2.5628 1.5450 1.0815

Pelvic Obliquity 5.7947 2.9494 1.1894 1.9083

Pelvic Rotation 6.0919 5.2861 0.9149 0.5489

Hip Flex/Ext 4.4675 2.5233 1.6500 1.1025

Hip Ad/Ab 1.9322 7.0425 1.9566 1.2411

Hip Rotation 3.3387 26.0926 2.8100 1.4050

Knee Flex 3.1983 6.0413 0.6503 0.3251

Knee Ad/Ab 2.7713 - 2.1615 1.0808

Knee Rotation 6.7912 - 3.5339 1.7669

Ankle Flex/Ext 6.3234 11.3454 2.1570 -

Average 4.2396 6.5843 1.8569 1.1460
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jectively; however, the limitations identified in this study must be addressed before

it can be widely adopted.

4.4 Summary

Capturing 3D kinematic parameters of human body motion using Kinect SDK

was challenging for the Kinect sensor. By tracking the 3D coordinates of the area

between two adjacent reflective markers placed on the lower body’s anatomical

landmarks using Kinect IR camera, 3D kinematics of the lower body was captured

during gait. Moreover, estimating the lower body links’ optimal pose using the

global optimization method with joint constraints improved the motion capturing

accuracy.

First, the accuracy of the proposed method was assessed in a humanoid walking

test, and the results were compared with the OptiTrack’s results (humanoid data as

ground truth). The correlation coefficients with 95% confidence intervals (95%CI)

indicated excellent intraclass correlations coefficients (ICC>0.75), a substantial

concordance correlation (CCC>0.95) between OptiTrack and the humanoid data

for all join angles except for Hip Yaw and Ankle Roll. Similar results were achieved

using the proposed method; however, the OptiTrack proved to perform slightly bet-

ter by comparing the arithmetic average of the correlations excluding the Hip Yaw

data (OptiTrack’s CCC (0.9686)>proposed method’s CCC (0.9565)). Moreover,

the effectiveness of applying joint constraints to the Kinect data was demonstrated

by lightly better average correlations for the Kinect+Markers+Constraints (pro-

posed method) (Table 4.1-4.5). Furthermore, the accuracy of the proposed method

was compared with the result of other low-cost motion capture systems (Percep-

tion Neuron and Kinect SDK) in capturing the kinematic parameters of human

gait (Table 4.6-4.10). In the human gait analysis, the OptiTrack data were used

as ground truth since the OptiTrack’s capability was proved in the humanoid test.

The average of correlation results of the proposed method demonstrated the advan-

tage of proposed method over other low-cost motion capture systems (proposed

method’s ICC (0.7565)>Kinect SDK’s ICC (0.3577)>Perception Neuron’s ICC

(0.3205)). Although the intraclass correlations coefficients indicated excellent cor-
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relations between proposed method and OptiTrack (ICC>0.75), the concordance

correlation indicated poor correlation(CCC<0.90). The poor average concordance

correlation was caused mainly due to the error in estimating the Pelvic joint an-

gles. The average of the proposed method’s RMSE in capturing both human and

humanoid joint angles indicated less than 2◦ error, which is a substantial result

for a low-cost motion capture system.

Although the indicated accurate motion capturing by tracking reflective mark-

ers using Kinect depth sensor, there are limitations in this method as mentioned

in Chapter 3. Since the markers should be placed in a range between 150 cm and

200 cm from the Kinect IR camera in order to minimize the error, the motion

was only captured in this range which limits the freedom of the motion. More-

over, the motion needed to be performed slowly due to the lower sampling rate

of Kinect (30 Hz) compared to other systems. Importantly, the operators needed

to make sure that the markers were not occluded during the motion, resulting in

data loss and increases in error. It is also recommended to cover reflective surfaces

in the experiment room to reduce IR reflections that affect Kinect’s depth sensor.

In order to avoid tracking reflective surfaces like the markers directly, it is recom-

mended to use redundant markers and capture the position of the center point of

the two adjacent markers.
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Figure 4.11: Average results of the lower body joint angles of ten trials of the five

human subjects.
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subjects.
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Figure 4.13: Results of the lower body joint angles of a single trial of a random

subject.
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Figure 4.14: Results of the ankle joint angles of a single trial of a random subject.

69





Chapter 5. Conclusion

5.1 Conclusion

5.1.1 Summary

In this thesis, accuracy assessment of motion capturing using Kinect v2 is stud-

ied. In order to capture the lower body joint angles of a human, two methods

are described. One is the motion capturing using Kinect skeleton model, and the

other is marker tracking using Kinect IR sensor. In chapter 4, the accuracy of

both methods was evaluated by capturing the motions of five human subjects, and

a humanoid robot during gait experiments.

Markerless motion capturing using Kinect skeleton

The Microsoft Kinect has been implemented as a low-cost motion capture cam-

era in biomedical and robotics applications. Therefore, accuracy assessment of

Kinect as a motion capture system is required in order to provide a reference for

the future researches. The Kinect skeleton model provided by the Kinect software

gives valuable information of the human joint positions. However, calculating

kinematic parameters like joint angles needs to be done by processing the skeleton

data. Unlike previous studies, we used inverse kinematics to estimate the lower

body joint angles of five subjects, and compared the results to a commercial mo-

tion capture system (Vicon) as ground-truth. In order to determine the relation

of the Kinect’s position and the subject, we evaluated the Kinect’s accuracy in

several positions. Lastly, the correlation between the subjects’ movement speed

and the accuracy of the Kinect skeleton model in capturing human joint angles

was presented.

The results indicated good accuracy of the Kinect skeleton in capturing the knee
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flexion/extension. However, estimating lower joint angles using only the Kinect

skeleton model consists of significant errors compared to a traditional motion cap-

ture system. In these experiments, it is recommended to put the Kinect sensor in

front of the subject and it is better the subject performs the motions in low-speed

since the Kinect sampling rate is limited to 30 Hz.

Marker-based Motion capturing using Kinect skeleton and depth sensor

In order to improve the motion capturing capability of the Kinect sensor, we

introduced a marker tracking method using Kinect IR camera. The Kinect depth

data provided more accurate estimation of the landmarks compared to the Kinect

skeleton model. Using the Kinect IR camera as a pinhole camera, and combining

the depth data to achieve the 3D positions of retroreflective markers helped to

determine the markers’ positions. The Kinect skeleton model was used to help to

detect multiple markers on the subjects in the Kinect IR image and reduced the

complexity of the marker tracking.

In order to study the accuracy of the proposed method, the motion capturing

capability of the marker-based motion capture system was assessed in several hu-

man and humanoid tests. The humanoid data were used as ground-truth, where

the accuracy of the proposed method and a commercial motion capture system

(OptiTrack) could be evaluated. Statistical analysis of the captured results was

done in order to demonstrate the advantage of the proposed method over well-

known motion capture systems.

the results indicated the advantage of the proposed method over motion cap-

turing using Kinect skeleton. Moreover, the joint constraints applied to the Kinect

data helped to improve the accuracy of the proposed method. The advantage of

this method over an IMU system (Perception Neuron) was also presented. In this

method, it is recommended to put the Kinect sensor in front of the subject and the

motion be performed in a range between 150 cm and 200 cm from the Kinect IR

camera. The reflective surfaces needed to be covered so the unnecessary reflections

would not affect the Kinect’s depth sensor. Finally, The operator needed to make

sure markers’ occlusion does not occur during the motion capturing.
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5.1.2 Future work

Markerless motion capturing using Kinect skeleton

Kinect skeleton model can be used to estimate the knee and hip felxion/extension.

However, the results of the accuracy assessment of chapter 2 indicate further im-

provements in the Kinect’s technical specs are needed. Moreover, the Kinect data

are noisy and more filtering and data processing researches are required to provide

more smooth data using Kinect sensor. In recent studies, an AI-based motion

capturing technique proved to replace Kinect in markerless motion capture. How-

ever, The AI-based system requires multiple 2D cameras, and the deep learning

algorithm needs to be trained over 500,000 annotated image data [7]. Further

improvement of such algorithms to enable single-eye cameras to capture complex

motions is needed in future researches.

Marker-based Motion capturing using Kinect skeleton and depth sensor

This thesis introduced a marker tracking technique to improve joint angles

estimation using a single Kinect. However, some markers placed on the subject

could be missed due to occlusion. Using machine learning regression and sequential

data prediction algorithms to solve the occlusion issue could help achieve more

accurate results. Moreover, the improvement of estimating the Pelvic plane using

the detected markers and accuracy assessment of the proposed method in capturing

whole-body motions of various subjects remain as future work. Importantly, the

Kinect camera needed to be placed in front of the motion and the markers placed

in a range that minimizes the 3D position estimation of the markers. With the

improvement of Kinect specs in the future, these limitations would improve (such

as Azure Kinect DK).
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Appendix A Statistical analysis

In previous researches, the Pearson correlation coefficient (r) was used to assess

the correlation between two observers’ results. However, this index only measures

the linear relationship between the continuous observed data, and it does not take

agreement into account [50].

Lin’s concordance correlation coefficient (CCC) (also known as rc) was intro-

duced to assess the agreement without analysis of variance (ANOVA) assump-

tions [50]. Intraclass correlation coefficient (ICC) has been used for evaluating

agreement and reliability between multiple observers during a data collecting

task [51]. The ICC coefficient is widely used to indicate whether a new ob-

server (motion capture system) can reproduce the same results as an existing

gold-standard system in clinical researches. Extensions of ICC lead to other types

of ICCs based on ANOVA models [52]. However, choosing a specific ICC in a study

without considering the ANOVA assumptions may lead to biased correlation re-

sults. Chen et al. recommended using ICC3 to evaluate the agreement between

different observers, which is based on two-way ANOVA model with interaction

between observer and subject [52].

The two-way ANOVA model with interaction is defined as

Xijk = µ+ αi + βj + γij + eijk, (A.1)

where Xij indicates the kth replicated reading for the ith joint angle data cap-

tured by the jth motion capture system (i = 1, ..., N , j = 1, ..., J , k = 1, ..., K),

µ indicates the mean of the joint angles, αi indicates the random effect of the

ith joint angle data (independent and identically distributed (i.i.d.) with nor-

mal distribution N(0,σ2
α)), βj indicates the random effect of motion capture sys-

tem j (i.i.d. with N(0,σ2
β)), γij indicates the random effect of the observer-data in-

teraction (i.i.d. with N(0,σ2
γ)), and eij indicates the random error (i.i.d. with N(0,σ2

e)).

Since the motion capture systems are unique and they are widely used in other re-
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searches too, according to two-way ANOVA model, βj is assumed as fixed (two-way

mixed model); therefore,
∑J

j=1 βj and
∑J

j=1 γj = 0, while σ2
β =

∑J
j=1 β2

j /(J − 1).

The ICC3 with fixed observers and its estimator (ÎCC3) without replication (k = 1)

is given by

ICC3 =
σ2
α − σ2

γ/(J − 1)

σ2
α + σ2

β + σ2
γ + σ2

e

, (A.2)

ÎCC3 =
MSα −MSγ

MSα +MSγ + J(MSβ −MSγ)/N
, (A.3)

where MSα = JK
N−1

∑N
i=1(X̄i.. − X̄...)

2 is the means of the sums of squares from

the two-way ANOVA model for between subjects (joint angle data), MSβ =

NK
J−1

∑J
j=1(X̄.j.−X̄...)

2 is the means of the sums of squares for between observers (mo-

tion capture systems), and MSγ =
K

(J−1)(N−1)

∑N
i=1

∑J
j=1(X̄ij.− X̄i..− X̄.j. + X̄...)

2

is the means of the sums of squares for observer-subject interaction.

Since each motion capture system has its own sampling rate, we applied a spline

fitting over the joint angles data and extracted the data on specific times (N = 51

and N = 235 in the human and humanoid test, respectively). Also, since we

compared the results of each cost-effective system to reference system, J = 2 in

Eq. (A.1), and to assess the reliability of each system individually, ICC3 without

replication (K = 1) was chosen.

If the systematic differences are not considered in the correlation assessment,

then ICC for consistency is the main coefficient to study the correlation between

data. ICC3c which is known as ICC for consistency is similar to ICC3. However,

σ2
β) is omitted from the denominator and the result would be greater than ICC3

which is known as ICC for agreement.

Lin’s concordance correlation coefficient (CCC) which is also a measurement of

agreement has been developed and used in many researches. this coefficient takes

both precision (degree of scatter) and accuracy (scale shift) into consideration.

CCC is specially used to evaluate correlation between paired observers (J = 2) for

data without replications (K = 1).

Absolute agreement and consistency between the motion capture systems and

the ground truth were assessed using ICC3 (with 95% confidence intervals (95%CI))

as the average captured data of the subjects in human test, and one trial data in

the humanoid test were used in the statistical analysis [51].
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