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Cross-validation strategies in QSPR modelling of chemical reactions 

In this article, we consider cross-validation of the quantitative structure-property 

relationship models for reactions and show that the conventional k-fold cross-

validation (CV) procedure gives an ‘optimistically’ biased assessment of 

prediction performance. To address this issue, we suggest two strategies of model 

cross-validation, ‘transformation-out’ CV, and ‘solvent-out’ CV. Unlike the 

conventional k-fold cross-validation approach that does not consider the nature of 

objects, the proposed procedures provide an unbiased estimation of the predictive 

performance of the models for novel types of structural transformations in 

chemical reactions and reactions going under new conditions. Both the suggested 

strategies have been applied to predict the rate constants of bimolecular elimination 

and nucleophilic substitution reactions, and Diels-Alder cycloaddition. All 

suggested cross-validation methodologies and tutorial are implemented in the 

open-source software package CIMtools (https://github.com/cimm-

kzn/CIMtools). 

Keywords: validation; QSPR; chemical reactions; rate constant prediction; 

reaction rate; structure-reactivity modelling 

 

Introduction 

Nowadays the external validation is considered as an integral component of any 

Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) model, 

irrespective of the nature of the chemical objects under investigation [1–10]. It was 

several times pointed out that the correct validation of QSAR/QSPR models is essential 

[1–3,5,6,11]. It is common to distinguish internal validation, which is used for model 

selection, and external validation, used for the quality assessment [12]. In most cases, 

external validation is performed on a dedicated test set [2,11]. Its drawback is possible to 

bias due to random fluctuations, arbitrary or unfair selection of molecules to test set, 

which can be overcome by the rational division of the data set into training and test sets 
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[13–18]. Tetko et al [3] proposed external cross-validation as a more stable alternative to 

single the external test set. In this procedure, a part of the parent dataset is randomly 

placed to the external (outer) set used for assessing the predictive performance of the 

approach, while remaining objects are used for the model building including 

hyperparameters selection based on internal cross-validation. Outer set loops over the 

whole data set guarantee involvement of all data points in external prediction. In machine-

learning, this technique is also known as a nested cross-validation. Since an external 

(outer) test set is by no means used for model building, it is free from model selection 

bias [3,19] and, hence, can be used for assessment of model performance. 

Data sets of complex chemical objects, such as chemical reactions, polymers, 

compounds’ mixtures often include similar elements (e.g., the same reactant participating 

in different reactions).  Therefore, correct external validation of QSPR models for these 

objects is much less straightforward compared to ‘classical’ QSAR/QSPR models for 

individual molecules [7–9,20,21]. Each of these cases requires designing a specific 

validation strategy. For the models predicting properties of binary mixtures, ‘Mixtures 

Out’, ‘Compounds Out’, ‘Points Out’, ‘Everything Out’ cross-validation strategies have 

been suggested [7,8]. The ‘Donor Out’, ‘Acceptor Out’, and ‘Both out’ strategies have 

been successfully applied to validate QSPR models for dissociation free energy of H-

bond donor-acceptor complexes [9]. 

Nowadays, the growing attention is attracted to statistical models predicting the kinetic 

or thermodynamic properties of chemical reactions [22–24]. Chemical reactions represent 

a complex object because they involve several molecular species of two types (reactants 

and products) and their properties depend on experimental conditions (solvent, catalyst, 

temperature, etc). In most of the studies, a random split or cross-validation (CV) 

techniques were used for the validation of models for chemical reactions [25–33]. 
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However, recently we published some studies demonstrating the flaws of conventional 

validations techniques for reaction characteristics modelling [20,21]. We demonstrated 

on the bimolecular rate constant data set that the error estimated in conventional CV 

(RMSE = 0.3 logk units) was lower than both estimated experimental error (about 0.5-

1.0 logk units) and that computed for the external test set [20]. This can be explained by 

the fact that the data set included the same structural transformations of reactants to 

products studied under slightly different conditions. Since the reaction rate values of these 

reactions were often very close, they behaved as duplicates. Their presence in both 

training and test sets in CV loops inevitably leads to very optimistic estimates of 

predictive ability [20,21]. To overcome this problem, the model’s performance was 

assessed using a subset of reactions studied under one sole condition (called unique data 

points, UDP) for which such kind of bias is not possible [20]. However, such validation 

is not a panacea: its results strongly depend on the fraction of UDP in the data set, which 

can potentially vary from 0 (all reactions were studied at different conditions) to 100 

percent (all reactions were studied at one condition only). Thus, such type of validation 

has limited applicability. 

Polishchuk et al. [21] suggested the ‘product-out’ cross-validation strategy in which all 

reactions with the same main product are placed either in the training or test set for a 

particular fold. It has been shown that the ranking of models on different descriptors based 

on “product-out” validation is significantly different in comparison with conventional 

cross-validation called ‘reaction-out’ CV. 

Validation for QSAR modelling means the assessment of the predictive power of the 

model on novel datapoints. For molecular QSAR/QSPR studies, a test set on each cross-

validation fold consists of molecules absent in the training set. However, the novelty issue 

is more complex in the case of reactions modelling and should account for both either 
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chemical transformation or experimental conditions. Therefore, here we propose two 

validation strategies that assess predictive performance for a particular novelty type: 

- “transformation-out” which estimates the ability to predict characteristics of chemical 

reactions with a novel reactant-product pair (hereafter we call it transformation), 

- “solvent-out” which assesses the quality of prediction for reactions proceeding in a new 

solvent. 

Note that in “transformation-out” validation reactions of the test set proceed under the 

same conditions the reactions of the training set. In “solvent-out” validation, the test set 

includes chemical transformations present in the training set, but solvents are different. 

The presence of completely new reactions, having both new transformations and solvents 

is more challenging for the model. In principle, such data points can be used for “both-

out” validation. However, they were very scarce or absent in the considered data sets. 

As reactions rates are often measured under several conditions and at several temperatures 

and the number of unique transformations is much lower than the number of reactions 

(see <Place for Table ), in conventional cross-validation, the test set reactions may have 

close neighbors in the training set which explains its higher Q2 and lower RMSE 

compared to “transformation-out” and “solvent-out” validation. 

Proposed validation methodologies have been applied to the modelling of the logarithm 

of SN2, E2, and Diels-Alder reactions rate constants (logk). They have been implemented 

in the open-source CIMtools software package (https://github.com/cimm-kzn/CIMtools) 

developed for reaction modelling. 
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Materials and methods 

Data set and descriptors 

Three data sets for the following types of reactions were used in this study: bimolecular 

nucleophilic substitution (SN2), bimolecular elimination (E2), Diels-Alder reactions 

(DA). These data sets were collected in our previous studies [20,30,31]. An external data 

set of 90 Menshutkin reactions (SN2) were also used. The data set was collected and 

curated in our previous study [20]. Note that this data set comprised novel transformations 

and the same solvents as in the training set. Thus, it corresponds closely to 

“transformation-out” validation strategy. The data sets characteristics are presented in 

<Place for Table . 

<Place for Table 1> 

 

Descriptors of the reactions. The descriptor vector for each reaction was resulted from a 

concatenation of structural descriptors and parameters describing experimental 

conditions (solvent and temperature) as proposed in paper [34]. The chemical 

transformations were encoded by Condensed Graph of Reaction (CGR). In CGR 

approach, a reaction is represented by a single 2D graph, some sort of pseudomolecule 

that contains both conventional chemical bonds and so-called dynamic bonds 

characterizing changed/broken/formed chemical bonds [35,36]. Thus, CGR represents 

the whole transformation, i.e. reactant-product pair, as a single molecular graph. 

CGRtools library was used to generate CGRs [37]. ISIDA fragment descriptors were 

computed for CGR using the ISIDA Fragmentor [38] program. They represent the 

subgraphs of different topologies and sizes. Each subgraph is considered as a descriptor 

type whereas its occurrence in a molecule is the descriptor value. In this study, sequences 
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of atoms and bonds containing from 2 to 4 atoms were considered. This fragmentation 

was successfully used in our previous modelling studies [20,30,31,33]. 

Descriptors of the reaction conditions. Each solvent was described by 15 descriptors that 

represent polarity, polarizability, H-acidity, and basicity: Catalan SPP [39], SA [40], and 

SB constants [39], Camlet–Taft constants α [41], β [42], and π* [43], four functions 

depending on the dielectric constant, three functions depending on the refractive index as 

shown in paper [34]. The latter 7 descriptors reflect the polarity and polarizability of the 

bulk of the solvent. The inverse absolute temperature, 1/T (in Kelvin degrees) was also 

used as a descriptor of temperature influence. Since some of the solvents were a water-

organic mixture, the molar ratio of organic solvent was used as a descriptor as well (100% 

for pure solvent). 

Model building and validation 

The general procedure of modelling. The models were built using Random Forest 

(denoted as RF) approach implemented in the scikit-learn library [44]. The number of 

trees was equal to 500 in all cases, the optimized hyperparameter was the values of 

features selected upon tree branching (option max_features). The rest parameters were 

set to their default values. 

The predictive performance of the best models was estimated using the nested cross-

validation technique. In this approach, an outer (external validation) loop split the initial 

data set into an external test set (used for assessment of the model performance) and 

modelling set (used for the model building including internal cross-validation). Here, 

three strategies of such split have been tested: conventional random 5-fold cross-

validation (denoted as ‘reaction-out’ CV), ‘transformation-out’ CV, and ‘solvent-out’ CV 
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(see below). A hyperparameter (the number of features to consider when looking for the 

best split) of the Random Forest regression was optimized on modelling set in the 

conventional 5-fold cross-validation using grid search. Its best value found in internal 

cross-validation was used to build a model on the whole modelling set, followed by the 

application of resulting models to the external test set. Predictions for the objects in the 

external test set folds were merged and then performance metrics (determination 

coefficient, R2, corresponding to Q2
F2 formulae in [5], and RMSE) were calculated. 

Notice, that performance on ‘reaction-out’ CV, ‘transformation-out’ CV, and ‘solvent-

out’ CV reflects predictive ability on the external test set. 

Strategies for Model External Validation in QSPR for reaction datasets. Three types of 

cross-validation strategies were applied. In the cross-validation procedure, the initial data 

set was divided into a given number of subsets, corresponding to the desired number of 

folds. Each subset was sequentially considered as an external test set, while the rest was 

used as the modelling set. The schematic representation of ‘reaction-out’, 

‘transformation-out’, and ‘solvent-out’ CV is shown in  

<Place for Figure 1> 

. 

‘Reaction-out’ CV approach was simply a regular five times repeated five-fold CV. The 

sizes of test sets in it are almost equal. 

‘Transformation-out’ CV approach was implemented as a k-fold cross-validation ( 

<Place for Figure 1> 
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). In the ‘transformation-out’ procedure, all reactions having the same CGR were placed 

into the same fold (different shapes in  

<Place for Figure 1> 

). The implemented splitting algorithm tried to make the folds approximately equal in 

size. Therefore, a fold might contain a group of several CGRs (as presented in fold 2,  

<Place for Figure 1> 

). Moreover, the test set contained reactions proceeding in the solvents presented also in 

the training set, see  

<Place for Figure 1> 

. This allowed to avoid a bias due to the presence of new solvents in the test set. Thus, 

unique reactions (corresponding to a unique combination of transformation and solvent) 

were always placed into the training set, see  

<Place for Figure 1> 

. Since in ‘transformation-out’ validation all reactions having the same reactants and 

products were placed into the same subset ( 

<Place for Figure 1> 

), this only showed how well reactions with new reactants and products, i.e. CGRs, were 

predicted. 
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<Place for Figure 1> 

‘Solvent-out’ validation approach was implemented as a leave-one-solvent-out ( 

<Place for Figure 1> 

), as the number of solvent types is usually low (less than 50). An additional hurdle to the 

application of k-fold validation was caused by a great imbalance in the number of 

reactions corresponding to one solvent. In ‘solvent-out’ validation, all reactions carried 

out in the same solvent were placed into the same subset which is sequentially used as 

the test set. Each reaction in the test set should have a counterpart in the training set with 

the same CGR but proceed in a different solvent. Unique reactions (in this case, reactions 

measured in a single solvent) were always included in the training set and never used in 

the test set. This method avoids underestimating of the model performance, because such 

reactions represent new CGR and new solvent for the trained model. It is worth noting 

that in this study we have grouped the folds by solvents only, but the developed algorithm 

can group following several conditions. 

Results and discussion 

The models were built using Random Forest and fragment descriptors of CGRs and 

validated using three strategies described above, i.e., ‘reaction-out’ CV, ‘transformation-

out’ CV, and ‘solvent-out’ CV. The performance of models for three data sets obtained 

using ‘reaction-out’ CV, ‘transformation-out’ CV, and ‘solvent-out’ CV strategies are 

shown in Erreur ! Source du renvoi introuvable.. In all three cases, the prediction 

performance metrics for ‘reaction-out’ CV validation were better than for 

‘transformation-out’ CV. In ‘reaction-out’ CV strategy reactions having the same 

reactants and products were simultaneously present in both training and test set. Two 

reactions with very similar conditions can be present in the training and test set, and thus 
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the prediction performance is overoptimistic. In ‘transformation-out’ CV strategy, all 

reactions with the same structural transformation were present in either the training or the 

test sets, but not both simultaneously. Therefore, RMSE values are bigger than for 

‘reaction-out’ CV strategy (Erreur ! Source du renvoi introuvable.), but they remain 

on the acceptable levels. 

<Place for Table 2> 

 

The independent external set consisting of Menshutkin reactions (SN2) was then used for 

model validation as well. Prediction on the external set of reactions was used for 

comparison with ‘reaction-out’ and ‘transformation-out’ validation strategies. The data 

set contained 48 Menshutkin reactions which had new transformations in comparison 

with the training set, but were carried out in known solvents (corresponding to the training 

set). As expected, the results on the ‘transformation-out’ validation are close to the one 

of external validation (R2 = 0.51, RMSE = 0.99 logk units on the external test set), 

confirming that ‘transformation-out’ validation is a more rigorous and unbiased approach 

for validating QSPR models of reactions, and, therefore, reliably assesses the accuracy of 

predictions for novel structural transformations of reactions. 

The prediction performance metrics in ‘solvent-out’ validation were quite different in all 

three cases. Reasonable statistical parameters were observed for the Diels-Alder reactions 

data set (R2 = 0.76 and RMSE = 0.94 logk units, respectively). Surprisingly, 'solvent-out' 

validation for bimolecular nucleophilic substitution reaction and bimolecular elimination 

reaction data sets led to much worse statistical parameters than for DA data set. We 

suggest that such results in the case of Diels-Alder reactions are due to the fact that most 

of the reactions in the data set (86%) were carried out in non-polar solvents, moreover, 

74% of the reactions were carried out in toluene, benzene, and chlorobenzene (53%, 11%, 
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and 10%, respectively). In the remaining data sets, the reactions were carried out in 

various solvents of different nature. Moreover, since these reactions have a non-polar 

transition state, the solvent effect should affect its rate much. 

The obtained results in ‘solvent-out’ external validation on the bimolecular nucleophilic 

substitution reaction data set are discussed in more detail. The data set of SN2 reactions 

consists of 43 different solvents where the most popular solvents were ethanol (17.9%), 

methanol (15.4%), nitrobenzene (13.7%), acetone (12.7%) often used in mixtures with 

water - more than half the database (59.7%), Figure 2. The total percentage of all reactions 

carried out in the rest 31 solvents that aren’t shown in the diagram (Figure 2) was only 

9.1%. 

<Place for Figure 2> 

The number of reactions carried out in particular solvents, which were used as a test set 

in ‘solvent-out’ validation, ranged from 1 to 422. Note that in ‘solvent-out’ validation the 

reactions are not included in the test set if there is no data on rate constant for the same 

transformations in other solvents. The values of RMSE for all solvents (folds of ‘leave-

one-solvent-out’ external CV) are given in Erreur ! Source du renvoi introuvable. and 

discussed below. The same tables for DA and E2 data sets are given in Supplementary 

Materials (see Tables S1 and S2 in Supplementary materials). 

<Place for Table 3> 

Generally, we found no clear dependence between solvent type, use of water-organic 

mixtures as a solvent, size of the data set, and the prediction of RMSE for SN2 reactions. 

Solvents, for which a lot of rate data exist, are characterized by a larger RMSE (from 0.59 

to 1.52). At the same time, a poor prediction is common also for the least popular solvents. 

Among 8 solvents that are often used in mixtures with water 5 (methanol, ethanol, 



 
13

dimethyl sulfoxide, acetone, acetonitrile) are poorly predicted but 3 (dioxane, sulfolane, 

oxolane) are predicted well. Prediction error in alcohols has some trend: heavy alcohols 

(more than 2 carbons) have low values of RMSE (from 0.09 to 0.45), ethanol has a greater 

error (0.590) and methanol have the greatest (0.82). It is worth noting that water has an 

even greater error (about 1.02). 

We hypothesize that such specificity of ‘solvent-out’ validation can be explained by 

insufficient generalization ability of the RF approach, probably due to the application of 

a large number of weakly informative structural descriptors and a few highly informative 

solvent descriptors. To support this hypothesis, the descriptors used for trees’ branching 

were analysed, Figure 3. One can see that RF pays a lot of attention to solvent descriptors: 

they are selected for branching in about 20-30% of trees, depending on the level of the 

tree (Figure 3), while solvent descriptors constitute only 5% of the descriptor set. So, poor 

prediction of solvents cannot be explained by ignorance of solvent features by the model. 

It can be seen from Figure 3 that RF is more likely to select solvent descriptors as 

branching criteria at first and second level of tree (i.e., at the root node of the decision 

tree or right after it) and to use fragment descriptors more frequently in levels 3 and lower 

(Figure 3). 

<Place for Figure 3> 

We believe such a selection of descriptors can be explained as RF tends to internally find 

correlations within a particular solvent type based on structural descriptors of 

transformation, creating a kind of family of submodels for each particular solvent type(s). 

Thus, model does not try to generalize solvent influence, and RF predicts reactions in 

new solvents poorer than with new transformations. It also explains the mentioned 

specificity of alcohols prediction. Heavy alcohols are predicted similarly by the same 
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implicit RF submodel based on the rest of alcohols but since methanol and ethanol are 

quite different from the rest, their prediction is poorer. 

Our test on other machine-learning methods (support vector machines, neural nets) and 

other fragment descriptors showed similar results: models had a rather poor ‘solvent-out’ 

validation performance. It seems that the problem lies mainly in the application of 

fragment descriptors, but it would be a subject of specific research. 

Conclusion 

Validation of QSPR models is a very important aspect to understand the reliability of the 

models for the prediction of new objects not present in the data set. In the case of chemical 

reactions, test set objects can have new structural transformations or proceed under new 

conditions (new solvents, new additives, new catalysts, etc.). Thus, different types of 

novelties can be considered. Model performance on conventional cross-validation that 

does not have control over the constitution of the test set has unclear meaning in the case 

of chemical reaction modelling. To evaluate the ability of the model predicting property 

of chemical reaction, two strategies of model validation, ‘transformation-out’ and 

‘solvent-out’, have been suggested. ‘Transformation-out’ validation provides an 

estimation of the predictive performance of the models for novel types of structural 

transformations in chemical reactions and ‘solvent-out’ CV – for reactions going under 

new solvents. It is worth noting that ‘solvent-out’ validation is a special case of 'condition-

out' validation, i.e., we can group folds not only by solvents but also by other conditions 

(new additives, new catalysts, a combination of several conditions). It has been shown 

that performance on ‘transformation-out’ validation is similar to the external set one 

containing new transformations. Thus, the proposed two validation strategies are 

recommended to be used for an unbiased evaluation of reaction-property models. 
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On bimolecular nucleophilic substitution reaction and bimolecular elimination reaction 

data sets, we revealed that the reaction-property models better predict the rate constant 

for new structural transformations than the rate constants for reactions occurring in novel 

solvents. It was explained by the inability of applied machine learning methods (RF, 

support vector machines, neural nets) and different fragment descriptors to correctly 

generalize dependency of the reaction rate for wide solvent types. But it will require 

specific research that we plan to be done in the nearest future. 

Proposed validation strategies and tutorial are implemented into open-source CIMtools 

library for structure-property modelling available on GitHub (https://github.com/cimm-

kzn/CIMtools). 
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Table 1. The data sets characteristics 

Data set 
Number of 

reactions 

Number of unique 

transformations 

Number of unique 

solvents 
Ref. 

SN2 4830 1382 43 [20] 

E2 1820 934 21 [30] 

DA 1866 812 21 [31] 

SN2 (external) 90 48 3 [20] 
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Table 2. Coefficient of determination (R2) and RMSE for different external validation 

strategies of QSPR for three reaction data sets 

Data set 

Strategy of validation 

‘Reaction-out’ ‘Transformation-out’ ‘Solvent-out’ 

R2 

RMSE, 

logk units 

R2 

RMSE, 

logk units 

R2 

RMSE, 

logk units 

SN2 0.83 0.48 0.58 0.76 0.39 0.98 

E2 0.73 0.77 0.56 0.98 0.14 1.29 

DA 0.85 0.73 0.71 1.04 0.76 0.94 
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Table 3. Results of external ‘solvent-out’ validation of developed QSPR models. Each 

fold is characterized by one solvent. Only solvents used in 10+ reactions were shown 

folds/solvents 

number of 

reactions in the 

test set 

number of unique 

transformations 
R2 

RMSE, 

logk units 

methanol* 422 167 0.406 0.847 

acetone* 327 84 0.540 0.854 

ethanol* 305 89 0.676 0.593 

nitrobenzene 284 87 -0.644 1.481 

dimethyl sulfoxide * 173 25 -0.380 1.371 

benzene 137 53 0.520 0.745 

water 113 36 -0.146 1.039 

1,4-dioxane* 80 27 0.632 0.542 

dimethylformamide 74 36 0.518 1.206 

acetonitrile* 56 41 -0.193 0.973 

nitromethane 40 14 0.140 0.617 

oxolane* 34 14 0.741 0.415 

phenylmethanol 28 12 0.481 0.434 

chlorobenzene 26 15 0.658 0.507 

butan-1-ol 26 11 0.819 0.331 

propan-2-ol 23 16 0.788 0.431 

propan-1-ol 17 9 0.828 0.318 

bromobenzene 16 10 0.645 0.442 

butan-2-one 15 7 0.725 0.194 

toluene 15 9 0.250 0.623 
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folds/solvents 

number of 

reactions in the 

test set 

number of unique 

transformations 
R2 

RMSE, 

logk units 

cyclohexane 14 12 -2.215 1.491 

sulfolane* 14 5 0.175 0.231 

anisole 11 7 0.699 0.186 

heptan-1-ol 11 4 0.851 0.177 

3-methylbutan-1-ol 10 6 0.126 0.538 

*mixtures with water 
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Figure 1. The schematic representation of ‘reaction-out’, ‘transformation out’, and 

‘solvent out’ cross-validation. Each shape characterizes a CGR, and different colours 

indicate the solvent used. The red star is a unique reaction. The unique reactions are 

excluded from the test set and always complement the training set 
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Figure 2. The percentage of reactions carried out in the most popular solvents for the SN2 

data set 
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Figure 3. The percentage of solvent and fragment descriptors used for branching at 

particular depth levels in decision trees inside trained on SN2 reactions RF model. The 

root node in the decision tree was considered as having depth 0. Notice that only a few 

trees had depth greater than 40 which caused spurious fluctuations. Temperature 

descriptor was ignored 

 


