
 

Instructions for use

Title DUALITY OF (2,3,5)-DISTRIBUTIONS AND LAGRANGIAN CONE STRUCTURES

Author(s) Ishikawa, Goo; Kitagawa, Yumiko; Tsuchida, Asahi; Yukuno, Wataru

Citation Nagoya mathematical journal, 243, 303-315
https://doi.org/10.1017/nmj.2019.46

Issue Date 2021-09

Doc URL http://hdl.handle.net/2115/84205

Rights(URL) https://creativecommons.org/licenses/by-nc-nd/4.0/

Type article (author version)

File Information Nagoya Math. J. 243_303 - 315.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


G. Ishikawa, Y. Kitagawa, A. Tsuchida and W. Yukuno
Nagoya Math. J.
Vol. *** (****), 1–13

SUBMIT

Duality of (2,3,5)-distributions and Lagrangian cone structures

GOO ISHIKAWA, YUMIKO KITAGAWA, ASAHI TSUCHIDA AND WATARU YUKUNO

Abstract. As was shown by a part of the authors, for a given (2,3,5)-distribution D
on a 5-dimensional manifold Y , there is, locally, a Lagrangian cone structure C on an-
other 5-dimensional manifold X which consists of abnormal or singular paths of (Y,D).
We give a characterization of the class of Lagrangian cone structures corresponding to
(2,3,5)-distributions. Thus we complete the duality between (2,3,5)-distributions and
Lagrangian cone structures via pseudo-product structures of type G2. A local example
of non-flat perturbations of the global model of flat Lagrangian cone structure which
corresponds to (2,3,5)-distributions is given.

§1. Introduction

A distribution D on a 5-dimensional manifold Y is called a (2,3,5)-distribution if there is a
local section η1,η2 of D such that

η1, η2, [η1,η2], [η1, [η1,η2]], [η2, [η1,η2]]

form a local frame of the tangent bundle to Y , in other words, if D has the weak growth (2,3,5),
namely, if rank(∂D) = 3 and rank(∂ (2)D) = 5, where ∂D := [D ,D ] (= D +[D ,D ]), the derived
system, and ∂ (2)D := [D ,∂D ] (= D +∂D +[D ,∂D ]) for the sheaf D of section-germs to D.

The geometry and classification problem of (2,3,5)-distributions are studied after E. Cartan
([13]), related to the simple Lie group G2, by many mathematicians ([5][8][19][26][27][28][29][30]).
The (2,3,5)-distributions are related to many problems, for instance, to the problem of “rolling
balls” ([1][11][7][6]), to indefinite conformal metrics ([21][19]), to non-linear differential equa-
tions ([22]), and so on.

In [17][16][18], we studied the global duality of G2-homogeneous (flat) (2,3,5)-distribution
and a Lagrangian cone structure from Cayley’s split Octonions and classified the related generic sin-
gularities. In [15], we associated locally with any given (2,3,5)-distribution D on a 5-dimensional
manifold Y , a Lagrangian cone structure C on another 5-dimensional manifold X , which consists of
abnormal or singular paths of (Y,D), in the sense of sub-Riemannian geometry or geometric control
theory (see [20][2]). Moreover it was shown in [15] that the original space Y turns to be the totality
of singular paths of the “Lagrangian cone structure” (X ,C), when the cone field C is regarded as a
control system on X .

In this paper, we give the characterization of the class of Lagrangian cone structures corre-
sponding to (2,3,5)-distributions, and thus we complete the duality between (2,3,5)-distributions
and Lagrangian cone structures (Theorem 3.1). The duality is actually understood via pseudo-
product structure of G2-type E = K⊕L on a 6-dimensional manifold Z (§2), which is regarded both
as the prolongation of (Y,D) and (X ,C) in the sense of Bryant ([9][8]), via the double fibration

(Y,D)
πY←−− (Z,E) πX−−→ (X ,C).
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We realize, for the characterization a class of Lagrangian cone structures, that the language of
cone structures is actually lacking: We introduce, regarding the cone structures as control systems,
the notions of linear approximations and osculating bundles of cone structures, as well as the exact
definition of non-degenerate Lagrangian cone structures (Definition 2.3).

We remark that our correspondence is purely local in nature: It is “spatially” local for (Z,E)
while “spatially and directionally” local for (Y,D) and for (X ,C). Moreover the “directional local-
ity” for the distribution (Y,D) is resolved by taking linear hull, however it is not the case for the
cone structure (X ,C). This fact makes our duality delicate.

It is clear that (2,3,5)-distributions form an open set, for Whitney C∞-topology, in the space of
all distributions of rank 2 on a 5-dimensional manifold. In particular a (2,3,5)-distribution remains
a (2,3,5)-distribution by sufficiently small perturbations with compact supports. However it is not
clear such a stability for cone structures corresponding to (2,3,5)-distributions via the duality. We
give a local example of non-flat perturbations of the global model of flat Lagrangian cone structure
([16]), which corresponds to (2,3,5)-distributions (Example 4.3). It is open the existence of non-flat
global perturbations of Lagrangian cone structures which correspond to (2,3,5)-distributions. The
classification of non-degenerate Lagrangian cone structures based on their symmetries is an inter-
esting open problem, regarded our duality and the studies on G2-contact structures ([12][19][26]).
It should be desirable the direct study on symmetries of non-degenerate Lagrangian cone structures.

The cone structure was first given in [5] by a foliation on the space P((∂D)⊥) ⊂ P(T ∗Y ) for
the derived system ∂D of a (2,3,5)-distribution D, which is an essentially same foliation in the
space P(D) ⊂ P(TY ) of [15]. See also [5][14]. In fact there exists the natural fiber-preserving
diffeomorphism P(D)→ P((∂D)⊥) which preserves also the foliation induced from singular paths
of D. Moreover the Lagrangian cone structure C ⊂ T X , which is contained in a contact structure
D′ ⊂ T X on X , has the essentially same information with the Jacobi curves introduced in [3][4]. In
fact each cone Cx ⊂ D′x,(x ∈ X) gives the (reduced) Jacobi curve associated to the singular path x
of D in Lagrangian Grassmannian of D′x by taking tangent planes to Cx.

In [29], it was shown that the Cartan tensor of any (2,3,5)-distribution is given by the fun-
damental invariant of Jacobi curves of singular paths and, in particular, the Cartan tensor is de-
termined by the projective equivalence classes of the point-wise curves P(Cx),x ∈ X of the cor-
responding Lagrangian cone structure (X ,C). We give a short proof (Proposition 4.1), related to
the study on G2-contact structures ([12][19]), that the (2,3,5)-distribution which corresponds to a
cubic Lagrangian cone structure via our duality is necessarily flat, by using Zelenko’s theorem [29]
(Proposition 4.1). Since the degrees of cone structures are invariant under isomorphisms of cone
structures and by Theorem 3.1 of the present paper, we see that any cone structure which corre-
sponds to a flat (2,3,5) structure must be cubic. Then we can say that, to check the flatness of a
(2,3,5)-distribution is easier, if it is given by a corresponding Lagrangian cone structure. In fact the
condition ∂ (TsC)⊂ O(2)

s C of Theorem 3.1 is checked by straightforward computations of differen-
tials and then it is sufficient to see the degree of the cone is cubic or not. However it is a difficult
task, given a (2,3,5)-distribution, to get the corresponding Lagrangian cone structure concretely.

In §2, we review the results given in the previous paper [15] with additional explanations. In
particular we give the exact definition of (non-degenerate) Lagrangian cone structures (Definition
2.3).

In §3, we complete the duality between (2,3,5)-distributions and non-degenerate Lagrangian
cone structures with an additional condition via pseudo-product structures of type G2.

We conclude this paper by several remarks related to the duality in §4.
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All manifolds and mappings are supposed to be of class C∞ unless otherwise stated.
The authors are grateful to Professor Hajime Sato for valuable comments. They are grateful

also to an anonymous referee for his/her helpful suggestions to improve the paper.

§2. Pseudo-product structures of G2-type

Let D be a (2,3,5)-distribution on a 5-dimensional manifold Y . Let Z := P(D) = (D−0)/R×
be the space of tangential lines in D, Z := {(y, ℓ) | y ∈ Y, ℓ ⊂ Dy(⊂ TyY ), dim(ℓ) = 1}. Then
dim(Z) = 6 and the projection πY : Z→ Y is an RP1-bundle.

We define a subbundle E ⊂ T Z of rank 2, Cartan prolongation of D ⊂ TY , by setting for
each (y, ℓ) ∈ Z, ℓ ⊂ Dy, E(y,ℓ) := π−1

Y∗ (ℓ) (⊂ T(y,ℓ)Z). Then E is a distribution with (weak) growth
(2,3,4,5,6): rank(E) = 2, rank(∂E) = 3, rank(∂ (2)E) = 4, rank(∂ (3)E) = 5, rank(∂ (4)E) = 6.

Then we see that there exists an intrinsic decomposition

E = K⊕L

of E with L := Ker(πY∗)⊂ E and a complementary line subbundle K of E, a pseudo-product struc-
ture in the sense of N. Tanaka [24][25].

We will explain this in terms of “geometric control theory” ([2][20]).
A control system C : U

F−→ T M → M on a manifold M is given by a locally trivial fibration
πU : U →M over M and a map F : U → T M such that the following diagram commutes:

U
F−−→ T M

πU ↘ ↙ πT M

M

Any section s : M→U defines a vector field F ◦ s : M→ T M over M. Via a local triviality on
M, a control system is given by a family of vector fields fu(x) = F(x,u) over M, (x,u) ∈U ,x ∈M.

A distribution D⊂ T M is regarded as a control system D : D ↪→ T M −→M, by the inclusion.

Two control systems C : U F−→ T M πT M−−→M and C′ : U ′ F ′−→ T M′
πT M′−−→M′ are called isomorphic

if the diagram
U

F−−→ T M πT M−−→ M
ψ ↓ φ∗ ↓ ↓ φ
U ′ F ′−−→ T M′

πT M′−−→ M′

commutes for some diffeomorphisms ψ and φ . Here φ∗ is the differential of φ .
The pair (ψ,φ) of diffeomorphisms is called an isomorphism of the control systems C and C′.
Given a control system C : U

F−→ T M → M, an L∞ (measurable, essentially bounded) map
c : [a,b]→U is called an admissible control if the curve

γ := πU ◦ c : [a,b]→M

satisfies the differential equation

γ̇(t) = F(c(t)) (a.e. t ∈ [a,b]).

Then the Lipschitz curve γ is called a trajectory. If we write c(t) = (x(t),u(t)), then x(t) = γ(t) and

ẋ(t) = F(x(t),u(t)), (a.e. t ∈ [a,b]).
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We use the term “path” for a smooth (C∞) immersive trajectory regarded up to parametrisation.
The totality C of admissible controls c : [a,b]→U with a given initial point q0 ∈M is a Banach

manifold. The endpoint mapping End : C →M is defined by

End(c) := πU ◦ c(b).

An admissible control c : [a,b]→ U with the initial point πU (c(a)) = q0 is called singular or
abnormal, if c ∈ C is a singular point of End, namely if the differential End∗ : TcC → TEnd(c)M is
not surjective. If c is a singular control, then the trajectory γ = πU ◦c is called a singular trajectory
or an abnormal extremal.

Let D ⊂ TY be a (2,3,5)-distribution. Then, it can be shown that for any point y of Y and for
any direction ℓ⊂ Dy, there exists uniquely a singular D-path (an immersed abnormal extremal for
D) through y with the given direction ℓ. Thus the singular D-paths form another five dimensional
manifold X .

Let Z = P(D) = (D− 0)/R× be the space of tangential lines in D, dim(Z) = 6. Then Z is
naturally foliated by the liftings of singular D-paths, and we have locally double fibrations:

Y πY←−− Z πX−−→ X .

If we put L=Ker(πY∗),K =Ker(πX∗), then we have a decomposition E =K⊕L by sub-bundles
of rank 1.

We denote, for any distribution E, by E the sheaf of local sections to E. We set

∂E := [E ,E ] = E +[E ,E ], ∂ (2)E := [E ,∂E ] = E +∂E +[E ,∂E ]

and so on. If ∂E is generated by a local sections of a distribution, then we denote it by ∂E.

DEFINITION 2.1. A distribution (Z,E) of rank 2 on a 6-dimensional manifold Z with a decom-
position E = K⊕L by subbundles K,L of rank 1 is called a pseudo-product structures of G2-type if
E has small growth (2,3,4,5,6) and moreover satisfies that

[K ,L ] = ∂E , [K ,∂E ] = ∂ (2)E , [L ,∂E ] = ∂E ,

[ K ,∂ (2)E ] = ∂ (3)E , [ L ,∂ (2)E ] = ∂ (2)E , [ K ,∂ (3)E ] = ∂ (3)E , [ L ,∂ (3)E ] = ∂ (4)E .

Then, by taking the gradation of the filtration

E ⊂ ∂E ⊂ ∂ (2)E ⊂ ∂ (3)E ⊂ ∂ (4)E ,

we have, at each point z ∈ Z, the symbol algebra:

m= g−5⊕g−4⊕g−3⊕g−2⊕g−1 = ⟨e6⟩⊕⟨e5⟩⊕⟨e4⟩⊕⟨e3⟩⊕⟨e1,e2⟩,

[e1,e2] = e3, [e1,e3] = e4, [e2,e3] = 0, [e1,e4] = e5, [e2,e4] = 0, [e1,e5] = 0, [e2,e5] = e6,

with the decomposition g−1 = k⊕ l= ⟨e1⟩⊕⟨e2⟩.

Then we have
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THEOREM 2.2. There exists a natural bijective correspondence of local isomorphism classes
between (2,3,5)-distributions and pseudo-product structures of G2-type.

Proof : First let us make sure that the prolongation E of a (2,3,5)-distribution D on a 5-dimensional
manifold Y has small growth (2,3,4,5,6).

Let η1,η2 be a local frame of D. Then, setting

η3 := [η1,η2], η4 := [η1,η3], η5 := [η2,η3],

we have a a local frame η1,η2,η3,η4,η5 of TY . For each y ∈ Y , directions in Dy are, locally,
parametrized via η1(y)+tη2(y) (t ∈R). Then, for any system of local coordinates y=(y1,y2,y3,y4,y5)

of Y centered at base point of Y , (y, t) form a system of local coordinates of Z such that πY is ex-
pressed by (y, t) 7→ y. We regard η1,η2,η3,η4,η5 as vector-fields over Z. Then

ζ1 := η1 + tη2 ζ2 :=
∂
∂ t

,

form a local frame of E, and η1,η2,η3,η4,η5,ζ2 of T Z.
Since [ζ1,ζ2] = [η1 + tη2,ζ2] =−η2, we have

∂E = ⟨ζ1,ζ2,η2⟩= ⟨η1,η2,ζ2⟩,

which is of rank 3. Here ⟨ζ1,ζ2,η2⟩ means the distribution generated by ζ1,ζ2,η2. Since [ζ1,η2] =

[η1 + tη2,η2] = η3 and [ζ2,η2] = 0, we have

∂ (2)E = ⟨η1,η2,η3,ζ2⟩,

which is of rank 4. Since [ζ1,η3] = [η1 + tη2,η3] = η4 + tη5 and [ζ2,η3] = 0, we have

∂ (3)E = ⟨η1,η2,η3,η4 + tη5,ζ2⟩,

that is of rank 5. Since [ζ2,η4 + tη5] = η5, we have ∂ (4)E = T Z. Therefore E has small growth
(2,3,4,5,6).

Note that L is generated by ζ2. Moreover there exists a generator of K of form ζ1+e(y, t)ζ2.
In fact the function e(y, t) is uniquely determined by the condition [ K ,∂ (3)E ] = ∂ (3)E , which is
equivalent to the condition

eη5 +[η1,η4]+ t[η1,η5]+ t[η2,η4]+ t2[η1,η5]≡ 0, mod. ∂ (3)E .

Then other remaining conditions that E = K⊕L is a pseudo-product structure of type G2 follow.
Conversely suppose E = K⊕L is a pseudo-product structure of type G2. Then L is the Cauchy

characteristic of ∂E (see [10]). Let Y be the leaf space of L, which is locally defined 5 dimensional
manifold. Moreover Z has a system of local coordinates (y, t) centered at the base point such that
πY is given by (y, t) 7→ y. Let D be the reduction of ∂E by L. Take a local frame η1,η2 of D
such that, regarded as vector fields over Z, η1 generates the quotient bundle (∂E)/E. Moreover
ζ1 = η1 +φ(y, t)η2 and ζ2 = ∂/∂ t generates K and L respectively for some function φ(y, t) with
φ(0,0) = 0. Since

[ζ1,ζ2] = [η1 +φη2,ζ2] =−(∂φ/∂ t)η2,

we have that ∂φ/∂ t ̸= 0. Set ζ3 := η2. Then

[ζ1,ζ3] = [η1,η2]+η2(φ)η2 ≡ [η1,η2] mod.∂E .
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Therefore η1,η2, [η1,η2] are linearly independent point-wise on Y . We set ζ4 := η3 = [η1,η2] as a
vector field over Z. Then

[ζ1,ζ4] = [η1,η3]+φ[η2,η3]−η3(φ)η2 ≡ [η1,η3]+φ[η2,η3] mod.∂ (2)E ,

and [ζ2,ζ4] = [∂/∂ t,η3] = 0. Set η4 = [η1,η3],η5 = [η2,η3] and ζ5 = η4 +φη5. Then η4(0) ∈
(∂ (3)E)0 \ (∂ (2)E)0. Then we have that [ζ2,ζ5](0) ̸∈ (∂ (3)E)0, while [ζ2,ζ5] = (∂φ/∂ t)η5(0).
Therefore η5(0) ̸∈ (∂ (3)E)0. Therefore η1,η2,η3,η4,η5 are linearly independent point-wise. Thus
we see that D is a (2,3,5)-distribution.

These correspondences induce the bijection between local isomorphism classes of (2,3,5)-
distributions and pseudo-product structures of G2-type on a 5-manifold.

Note that the original (2,3,5)-distribution D is obtained as the linear hull of the cone field
(“bowtie”) induced from K:

Dy = linear hull

 ∪
z∈π−1

Y (y)

πY∗(Kz)⊂ TyY

 .

Also, the (2,3,5)-distribution D is obtained as the reduction of ∂E by Cauchy characteristic L =

Ker(πY∗).
On the other hand we obtain a cone field C ⊂ T X on X by setting, for each x ∈ X ,

Cx :=
∪

z∈π−1
X (x)

πX∗(Lz)⊂ TxX . (△)

Now, to make sure, we formulate exactly the notion of Lagrangian cone structures (see [12]):

DEFINITION 2.3. (1) Let X be a manifold of dimension m. A subset C ⊂ T X is called a cone
structure if there is an R×-invariant subset C ⊂ Rm, a model cone, such that, for any x ∈ X , there
exist an open neighborhood U of x and a local triviality Φ : π−1(U)→U×Rm of π : T X → X over
U satisfying Φ(π−1(U)∩C) =U×C.

(2) Suppose that the model cone C is non-singular away from the origin in Rm. Then P(C) is
a submanifold of P(T X). For each section s : X → P(C) for the projection P(C)→ X , we have the
subbundle TsC ⊂ T X by taking tangent planes of Cx along the direction s(x) at every point x ∈ X .
We call the distribution TsC the linear approximation of C along s.

(3) A cone structure C ⊂ T X is called a Lagrangian cone structure if there exists a contact
structure D′ on X such that C⊂D′ and, for any section s : X→ P(C), TsC is a Lagrangian subbundle
of D′. The last condition is equivalent to that, for any x ∈ X , Cx \{0} is a Lagrangian submanifold
of the linear symplectic manifold D′x, or equivalently, P(Cx) is a Legendrian submanifold of the
contact manifold P(D′x) induced from the conformal symplectic vector space D′x.

(4) Let dim(X) = 5. A Lagrangian cone structure C ⊂ T X for a contact structure D′ ⊂ T X is
called non-degenerate if the spatial projective curve segment P(Cx)⊂P(D′x)∼=P3 is non-degenerate,
i.e. the first, second and third derivatives of a parametrization of P(Cx) are linearly independent.

From the condition (4), for each direction field s of C, we define osculating bundles O(2)
s C ⊂

T X of rank 3 and O(3)
s C ⊂ T X of rank 4, generated by osculating planes O2 and 3-dimensional

osculating spaces O3 to P(Cx) with direction s. Then the contact structure D′ coincides with O(3)
s C

which is independent of s.
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Because distributions are regarded as cone structures of special type, the notion of Lagrangian
cone structures is a natural generalization for that of Lagrangian subbundle of the tangent bundle
over a contact manifold.

LEMMA 2.4. In our case, the above C ⊂ T X defined as (△) corresponding to a (2,3,5)-
distribution D⊂ TY is a non-degenerate Lagrangian cone structure in the sense of Definition 2.3.

Proof : By the condition [ K ,∂E ] = ∂ (2)E , C satisfies the conditions (1)(2) of Definition 2.3. By
the condition [ K ,∂ (3)E ] = ∂ (3)E , K is the Cauchy characteristic of ∂ (3)E . Then the distribution
D′⊂ T X induced from ∂ (3)E is a contact structure by the condition [ L ,∂ (3)E ] = ∂ (4)E . Moreover
∂ (2)E projects to tangent spaces to Cx along π−1

X (x). For any section s : X → L, s(x) ̸= 0, we have
that the linear approximation TsC is a Lagrangian subbundle of D′ by the condition [ L ,∂ (3)E ] =

∂ (3)E . Therefore C satisfies also the condition (3) of Definition 2.3. Thus (X ,C) is a Lagrangian
cone structure. Moreover by the condition [ K ,∂ (2)E ] = ∂ (3)E , the condition (4) of Definition 2.3
is satisfied. Therefore (X ,C) is a non-degenerate Lagrangian cone structure. 2

Now, we regard the cone field C ⊂ T X as a control system over X :

C : L
πX∗|L−−−→ T X → X ,

for the subbundle L of T Z. Then we have shown in [15] the following theorem:

THEOREM 2.5. (Duality Theorem [15]) Singular paths of the control system

C : L
πX∗|L−−−→ T X → X

are given by πX -images of πY -fibers.
Therefore, for any x ∈ X and for any direction ℓ⊂Cx, there exists uniquely a singular C-paths

passing through x with the direction ℓ at x.
Thus the original space Y is identified with the space of singular paths for (X ,C), while X is

the space of singular paths for (Y,D).

We recall the local characterization of singular controls.
For a control system C : U

F−→ T M → M on a manifold M, we consider the fibre-product
U ×M T ∗M, and define the Hamiltonian function H : U ×M T ∗M→ R of the control system F :
U → T M by

H(x, p,u) := ⟨p,F(x,u)⟩, ((x,u),(x, p)) ∈U ×M T ∗M.

A singular control (x(t),u(t)) is characterized by the liftability to an abnormal bi-extremal
(x(t), p(t),u(t)) satisfying the constrained Hamiltonian equation

ẋi(t) =
∂H
∂ pi

(x(t), p(t),u(t)), (1≤ i≤ m)

ṗi(t) =−
∂H
∂xi

(x(t), p(t),u(t)), (1≤ i≤ m)

∂H
∂u j

(x(t), p(t),u(t)) = 0, (1≤ j ≤ r), p(t) ̸= 0.
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Let E ⊂ T Z be a distribution on a manifold Z regarded as a control system. A singular
path x(t) for E ⊂ T Z is called regular singular if it is associated with an abnormal bi-extremal
(x(t), p(t),u(t)) such that p(t) ∈ (∂E)⊥ \ (∂ (2)E)⊥ ⊂ T ∗Z. A singular path x(t) for E ⊂ T Z is
called totally irregular singular if any associated abnormal bi-extremals (x(t), p(t),u(t)) satisfies
that p(t) ∈ (∂ (2)E)⊥ ⊂ T ∗Z.

From the pseudo-product structure on E ⊂ T Z, we have

THEOREM 2.6. (Asymmetry Theorem [15]) A singular path for E ↪→ T Z → Z is either a
πY -fibre or a πX -fibre. Each πY -fibre is regular singular, while each πX -fibre is totally irregular
singular.

§3. Complete duality

The description of the duality on (2,3,5)-distributions (Y,D) and non-degenerate Lagrangian
cone structures (X ,C) via (Z,E) which is given in §2 should be completed by answering the ques-
tion: What kinds of non-degenerate Lagrangian cone structures do they correspond to (2,3,5)-
distributions ?

Then we have

THEOREM 3.1. There exist natural bijective correspondences of isomorphism classes:

{(2,3,5)-distributions (Y,D)}/∼=←→



pseudo-product structures of G2-type (Z, E):
(2,3,4,5,6)-distributions E with a decomposition

E = K⊕L, rank(K) = rank(L) = 1,
[K ,L ] = ∂E (:= [E ,E ] = E +[E ,E ]),

[ K ,∂E ] = ∂ (2)E , [ L ,∂E ] = ∂E ,

[ K ,∂ (2)E ] = ∂ (3)E , [ L ,∂ (2)E ] = ∂ (2)E ,

[ K ,∂ (3)E ] = ∂ (3)E , [ L ,∂ (3)E ] = ∂ (4)E .


/∼=

←→


non-degenerate Lagrangian cone structures (X ,C)
on 5-dimensional manifolds X with the condition

∂ (TsC)⊂ O(2)
s C, for any direction field s of C.

/∼=

Proof of Theorem 3.1.
Let X be a 5-dimensional manifold and C ⊂ T X a non-degenerate Lagrangian cone structure

(Definition 2.3). Then Z = P(C) := (C \ (zero-section))/R× is a 6-dimensional manifold and that
πX : Z→ X is a C∞-fibration with projective curves P(Cx)⊂ P(TxX)∼= P4 as fibers.

By the non-degeneracy condition, we have that the first, second and third derivatives are lin-
early independent everywhere on P(Cx), for any x ∈ X .

Then we define a subbundle E ⊂ T Z of rank 2 by setting

E(x,ℓ) := (πX)
−1
∗ (ℓ),

for each (x, ℓ) ∈ Z as the prolongation of the cone structure C ∈ T X . We set K = Ker((πX)∗).
Let x = (x1,x2,x3,x4,x5) be a system of local coordinates of X and x,θ that of Z such that

πX : Z→ X is given by (x,θ) 7→ x and E is generated by ζ1 =
∂

∂θ and a vector field ζ2(x,θ) of form

ζ2(x,θ) =
∂

∂x1
+A

∂
∂x2

+B
∂

∂x3
+S

∂
∂x4

+T
∂

∂x5
,
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where A,B,S,T are function-germs of x,θ . The projective curve Cx ⊂ P(TxX) is given by

θ 7→ [1 : A(x,θ) : B(x,θ) : S(x,θ) : T (x,θ)]

in homogeneous coordinates, for each x ∈ X .
We have, on Z,

[ζ1,ζ2](x,θ) =
∂ζ2

∂θ
(x,θ) =: ζ3,

and

[ζ1,ζ3](x,θ) =
∂ 2ζ2

∂θ 2 (x,θ) =: ζ4.

In local coordinates,

ζ3 = Aθ
∂

∂x2
+Bθ

∂
∂x3

+Sθ
∂

∂x4
+Tθ

∂
∂x5

, ζ4 = Aθθ
∂

∂x2
+Bθθ

∂
∂x3

+Sθθ
∂

∂x4
+Tθθ

∂
∂x5

,

and

ζ5 = Aθθθ
∂

∂x2
+Bθθθ

∂
∂x3

+Sθθθ
∂

∂x4
+Tθθθ

∂
∂x5

.

Any direction field s of C is given by x 7→ (x,θ(x)) for some functions θ(x) of x and the lin-
ear approximation TsC of C along the direction field s is generated by by ζ2(x,θ(x)), ∂ζ2

∂θ (x,θ(x)).
Moreover the osculating bundles O(2)

s C and O(3)
s C are generated by ζ2(x,θ(x)), ∂ζ2

∂θ (x,θ(x)), ∂ 2ζ2
∂θ 2 (x,θ(x))

and by ζ2(x,θ(x)), ∂ζ2
∂θ (x,θ(x)), ∂ 2ζ2

∂θ 2 (x,θ(x)), ∂ 3ζ2
∂θ 3 (x,θ(x)) respectively.

By the condition ∂ (TsC) ⊂ O(2)
s C, we have that [ζ2,ζ3] ≡ 0,mod. ⟨ζ1,ζ2,ζ3,ζ4⟩. Then there

exists uniquely a function U(x,θ) such that ζ̃2 = ζ2 +Uζ1 is the Cauchy characteristic vector field
of ∂E, so that [ζ̃2,ζ3]≡ 0, ⟨mod. ζ1,ζ2,ζ3⟩.

Taking the subbundle L ⊂ E generated by ζ̃2, we have a pseudo-product structure E = K⊕L
on Z satisfying the conditions

[K ,L ] = ∂E , [K ,∂E ] = ∂ (2)E , [L ,∂E ] = ∂E , [ K ,∂ (2)E ] = ∂ (3)E .

By Jacobi identity, [ζ̃2, [ζ1,ζ3]]+ [ζ1, [ζ3, ζ̃2]+ [ζ3, [ζ̃2,ζ1]] = 0, we have that

[ζ̃2,ζ4]≡ [ζ1, [ζ̃2,ζ3]]≡ 0, mod. ⟨ζ1,ζ2,ζ3,ζ4⟩.

Therefore the condition [ L ,∂ (2)E ] = ∂ (2)E is satisfied. Since O(3)
s C⊂ T X is independent of s and

is a contact structure on X , we have that [ K ,∂ (3)E ] = ∂ (3)E and that [ L ,∂ (3)E ] generates the
total tangent bundle T Z. Thus the last condition [ L ,∂ (3)E ] = ∂ (4)E holds.

Consequently, if C is a non-degenerate Lagrangian cone structure with the condition that
∂ (TsC) ⊂ O(2)

s C for any direction field s of C, then E = K ⊕ L is a pseudo-product structure of
G2-type.

This completes the proof of Theorem 3.1. 2

REMARK 3.2. The cone structure C ⊂ T X is regarded as the control system over X ,

C : L→ T X → X , L ∋ ((x, ℓ),v) 7→ (x,v) 7→ x,

with 2-control parameters. In local coordinates, the control system C is given by

F(x;r,θ) := r
(

∂
∂x1

+A(x,θ)
∂

∂x2
+B(x,θ)

∂
∂x3

+S(x,θ)
∂

∂x4
+T (x,θ)

∂
∂x5

)
,

with the control parameters r,θ .
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§4. (2,3,5)-distributions and cubic Lagrangian cone structures

Let us denote by G′2 the automorphism group of the split octonion algebra O′. Then for a Borel
group subgroup B and parabolic subgroups P1,P2 containing B of G′2, we have a double fibration

Y = G′2/P1
πY←−− Z = G′2/B πX−−→ X = G′2/P2,

a (2,3,5)-distribution D⊂ TY on Y , a pseudo-product structure of type G2 as E = K⊕L⊂ T Z on
Z and a non-degenerate Lagrangian cubic cone structure C ⊂ T X (see [16]). It is known also that Y
is diffeomorphic to S3×S2 (resp. Z to S3×S3, X to S2×S3). On each of three places, there exists
Cartan’s parabolic geometry as a natural non-flat geometry modeled on the homogeneous space. On
Y it is the geometry of (2,3,5)-distributions. On Z it is the geometry of pseudo-product structures
of type G2. On X it is G2-contact structures ([12][19]). Moreover any G2-contact structure is
accompanied with and is recovered from a non-degenerate Lagrangian cubic cone structure.

Hajime Sato [23] has suggested to the first author that any G2-contact structure corresponding
to a (2,3,5)-distribution should be flat, from the exact comparison of curvatures for associated
Cartan connections on pseudo-product G2-structure and on G2-contact structures ([24][27]). Here
we would like to provide alternative proof for the fact. In fact we have:

PROPOSITION 4.1. Any (2,3,5)-distribution (Y,D) which corresponds to a cubic cone struc-
ture (X ,C) must be flat. Any Lagrangian cone structure which corresponds to a flat (2,3,5)-
distributions must be cubic.

Proof of Proposition 4.1. For each x ∈ X , the cone Cx ⊂ D′x(⊂ TxX) gives the (reduced) “Jacobi
curve” in the sense of Agrachev and Zelenko [3][4][29][5]. Then, in [29], it is proved that “Cartan
tensor” of D is recovered by a projective invariant, the fundamental invariant, a kind of cross ratio,
of P(Cx) point-wise. In fact, for the cone Cx ⊂ Dx ∼= R4, there is associated a curve P(Cx) in
Grassmannian Gr(2,R4), and the fundamental invariants is calculated from P(Cx) in projective
invariant way.

Suppose a (2,3,5)-distribution D corresponds to a cubic cone structure C⊂D′ ⊂ T X . Then the
cone structure is non-degenerate. Since all non-degenerate cubic cones are projectively equivalent
point-wise, the Cartan tensor of D coincides with the flat (2,3,5)-distribution. Therefore D must be
flat.

Suppose a Lagrangian cone structure (X ,C) corresponds to a flat (2,3,5)-distribution (Y,D).
The flat model (Y0,D0) has the standard cubic dual (X0,C0) as in [16]. Since (Y,D)≡ (Y0,D0), we
see (X ,C) ≡ (X0,C0) by Theorem 3.1. Then C is cubic, because the degree is invariant under the
isomorphism of cone structures. 2

EXAMPLE 4.2. (Cubic Lagrangian cone structures not corresponding to (2,3,5)-distributions.)
Consider a cubic cone structure C on (R5,0) around the direction θ = 0,

F(x;r,θ) = r
(

∂
∂x1

+θ ∂
∂x2

+(θ 2 +a) ∂
∂x3

+(θ 3−3θa) ∂
∂x4

+{x3θ −2x2(θ 2 +a)+ x1(θ 3−3θa)} ∂
∂x5

)
,

defined by a C∞ function a(x1) with a(0) = 0.
Then C is a non-degenerate Lagrangian cone structure for the contact structure D′ : dx5 −

x3dx2 + 2x2dx3− x1dx4 = 0. Moreover C satisfies the condition ∂ (TsC) ⊂ O(2)
s C for any s : X →

L\{0}, to correspond to a (2,3,5)-distribution, if and only if a ̸≡ 0. The case a≡ 0 corresponds to
the G2-homogeneous flat case ([16]).
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The following gives examples of non-degenerate Lagrangian non-cubic cone structures which
correspond to (2,3,5)-distributions and shows the necessity of the additional condition ∂ (TsC) ⊂
O(2)

s C of Theorem 3.1.

EXAMPLE 4.3. (Non-cubic Lagrangian cone structures corresponding to (2,3,5)-distributions.)
Consider a cone structure on (R5,0) around the direction θ = 0,

F(x;r,θ) = r
(

∂
∂x1

+θ ∂
∂x2

+(θ 2 +b) ∂
∂x3

+(θ 3 + c) ∂
∂x4

+{x3θ −2x2(θ 2 +b)+ x1(θ 3 + c)} ∂
∂x5

)
,

where b = b(θ),c = c(θ), with ord0b(θ)≥ 3, ord0c(θ)≥ 4.
Then F is a non-degenerate Lagrangian cone structure, for the contact structure D′ : dx5−

x3dx2 +2x2dx3− x1dx4 = 0. Moreover F satisfies the condition ∂ (TsC)⊂ O(2)
s C, for any direction

field s, to correspond to a (2,3,5)-distribution, if and only if cθ = 3θbθ −3b.
If bθθθθ ̸= 0, for example, if b = θ 4,c = 9

5 θ 5, then C is not cubic. Therefore the corresponding
(2,3,5)-distribution is never flat.

Here we present the computation of the prolongation (Z,E) from the above example of cone
structures. The bundle E is generated by{

ζ1 = ∂
∂θ ,

ζ2 = ∂
∂x1

+θ ∂
∂x2

+(θ 2 +b) ∂
∂x3

+(θ 3 + c) ∂
∂x4

+{x3θ −2x2(θ 2 +b)+ x1(θ 3 + c)} ∂
∂x5

.

on the space Z with coordinates θ ,x1,x2,x3,x4,x5. Then we have over Z,

ζ3 := [ζ1,ζ2] =
∂

∂x2
+(2θ +bθ )

∂
∂x3

+(3θ 2 + cθ )
∂

∂x4
+{x3−2x2(2θ +bθ )+ x1(3θ 2 + cθ )} ∂

∂x5
,

ζ4 := [ζ1,ζ3] = (2+bθθ )
∂

∂x3
+(6θ + cθθ )

∂
∂x4

+{−2x2(2+bθθ )+ x1(6θ + cθθ )} ∂
∂x5

,

[ζ2,ζ3] = (cθ −3θbθ +3b) ∂
∂x5

= 0,
ζ5 = [ζ1,ζ4] = bθθθ

∂
∂x3

+(6+ cθθθ )
∂

∂x4
+{−2x2bθθθ + x1(6+ cθθθ )} ∂

∂x5
,

[ζ2,ζ4] = (cθθ −3θbθθ )
∂

∂x5
= 0,

[ζ1,ζ5] = bθθθθ
∂

∂x3
+ cθθθθ

∂
∂x4

+(−2x2bθθθθ + x1cθθθθ )
∂

∂x5
,

ζ6 := [ζ2,ζ5] = 3(2+aθθ )
∂

∂x5
.

We have that ∂E = ⟨ζ1,ζ2,ζ3⟩,∂ (2)E = ⟨ζ1,ζ2,ζ3,ζ4⟩,∂ (3)E = ⟨ζ1,ζ2,ζ3,ζ4,ζ5⟩, and ∂ (4)E =

⟨ζ1,ζ2,ζ3,ζ4,ζ5,ζ6⟩. Then E has the pseudo-product structure of G2-type given by K = ⟨ζ1⟩,L =

⟨ζ2⟩ and it descends to a non-flat (2,3,5)-distribution.

REFERENCES

[1] A.A. Agrachev, Rolling balls and octonions, Proceedings Steklov Math. Inst. 258 (2007), 13–22.
[2] A.A. Agrachev, Y.L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sci-

ences, 87, Control Theory and Optimization, II. Springer-Verlag, Berlin, (2004).
[3] A.A. Agrachev, I. Zelenko, Geometry of Jacobi curves, I, Journal of Dynamical and Control Systems, 8–1 (2002),

93–140.
[4] A.A. Agrachev, I. Zelenko, Geometry of Jacobi curves, II, Journal of Dynamical and Control Systems, 8–2 (2002),

167–215.
[5] A.A. Agrachev, I. Zelenko, Nurowski’s conformal structures for (2,5)-distributions via dynamics of abnormal

extremals, Proceedings of RIMS symposium on developments of Cartan geometry and related mathematical prob-
lems, RIMS Kokyuroku, 1502 (2006), 204–218.



12 G. ISHIKAWA, Y. KITAGAWA, A. TSUCHIDA AND W. YUKUNO

SUBMIT

[6] D. An, P. Nurowski, Twistor space for rolling bodies, Comm. Math. Phys., 326-2 (2014), 393–414
[7] J. C. Baez, J. Huerta, G2 and the rolling ball, Trans. Amer. Math. Soc., 366-10 (2014), 5257–5293.
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[9] R.L. Bryant, L. Hsu, Rigidity of integral curves of rank 2 distributions, Inventiones mathematicae, 114-1 (1993),

435–461.
[10] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, P.A. Griffiths, Exterior Differential Systems, Springer-

Verlag (1991).
[11] G. Bor, R. Montgomery, G2 and the rolling distributions, Enseign. Math. 55 (2009), 157–196.
[12] A. C̆ap, J. Slovák, Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Mono-

graphs, Amer. Math. Soc., (2009).
[13] E. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann.

Sci. Ecole Norm. Sup. (3), 27 (1910), 109–192.
[14] B. Doubrov, I. Zelenko, Equivalence of variational problems of higher order, Diff. Geom. Appl., 29 (2011), 255–

270.
[15] G. Ishikawa, Y. Kitagawa, W, Yukuno, Duality of singular paths for (2,3,5)-distributions, J. Dyn. Control Syst.,

21 (2015), 155–171.
[16] G. Ishikawa, Y. Machida, M. Takahashi, Singularities of tangent surfaces in Cartan’s split G2-geometry, Asian

Journal of Mathematics, 20–2, (2016), 353–382.
[17] Y. Kitagawa, The Infinitesimal automorphisms of a homogeneous subriemannian contact manifold,

Thesis, Nara Women’s Univ. (2005).
[18] Y. Kitagawa, The duality of abnormal extremals on subriemannian Cartan structures, RIMS Kôkyûroku Bessatsu,
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