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HIRAKU ATOBE

ABSTRACT. In this paper, we complete Jantzen’s algorithm to compute the highest deriva-
tives of irreducible representations of p-adic odd special orthogonal groups or symplectic
groups. As an application, we give some examples of the Langlands data of the Aubert duals
of irreducible representations, which are in the integral reducibility case.
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1. INTRODUCTION

In the theory of admissible representations of p-adic groups, Jacquet modules is one of
most influential ingredients. Fix a p-adic field . When G is a split odd special orthogonal
group SOgy,+1(F'), or a symplectic group Spy, (F), the author [2] gave a description for the
semisimplifications of Jacquet modules of all irreducible tempered representations in terms of
the local Langlands correspondence established by Arthur [1]. This result would relate the
classical Moeglin—Tadi¢ classification of discrete series representations with the local Langlands
correspondence. However, even for tempered representations, to compute all Jacquet modules
is a hard work. It should be difficult to extend the result in [1] to all irreducible representations.

In this paper, we treat the notion of derivatives, which are certain partial information
of Jacquet modules of admissible representations. As before, let G be a split odd special
orthogonal group SOg,4+1(F'), or a symplectic group Sp,,(F'). Denote by P; = MyN, the
standard parabolic subgroup of G with Levi My = GL4(F) x Gy for some classical group of
the same type as G. Fix an irreducible unitary supercuspidal representation p of GLg(F').

Definition 1.1. Let 7 be a smooth admissible representation of G of finite length.
(1) If the semisimplification of the Jacquet module Jacp,(m) along Py is of the form

s.s.Jacp,(m) = @Ti X 7,
i
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2 HIRAKU ATOBE

we define the partial Jacquet module Jac,... (7) with respect to p| - |* for z € R by

Jac,.|=(7) = @ ;.

7
Ti=p|-|[*

|*-derivative D% (m) is defined by

(2) For a positive integer k, the k-th p| - ol-|7

k 1
Dﬁ‘)Pc (77) = H JanHz ©---0 JanHz(W).
k
When Df}ﬁz (m) # 0 but Dl()’ﬁ;l)(ﬂ) = 0, we say that D;()Ii)\” (m) is the highest p| - |-
derivative.

It is important that when p| - |* is not self-dual, the highest derivative Df)ﬁl (m) of an
irreducible representation  is also irreducible, and 7 is a unique irreducible subrepresentation
of the parabolically induced representation (p| - |*)* x Dmx
particular, 7 is recovered from its highest derivatives in this case. By these properties, the

highest derivatives have many applications. For example:

(m) (see Proposition 2.6). In

e the proofs of the Howe duality conjecture by Minguez [14] and Gan—Takeda [6];

e another proof of the classification the unitary dual of general linear groups by Lapid—
Minguez [12] using the analogous derivatives for these groups (see Definition 2.2);

e several results on the irreducibility of parabolically induced representations by Jantzen
[9] and Lapid-Tadi¢ [13].

Jantzen [7] and Minguez [15] obtained a complete description of the highest derivatives of
irreducible representations of general linear groups GL,(F) independently. It gives an algo-
rithm to compute the Zelevinsky involutions ([7, §3.3]). Similarly, if one were able to compute
the highest derivatives of all irreducible representations, one might compute the Aubert dual
of any irreducible representation (see Theorem 2.13 below). Jantzen [10] suggested an algo-
rithm to compute the highest derivatives of irreducible representations. We will recall this
algorithm in §2.5 below. According to this algorithm, the computation of the highest deriv-
ative of an arbitrary irreducible representation of a classical group is reduced to the ones of
irreducible representations of the form L((p|-|~%)?, A,z — 1, —2]%; T) which is a unique irre-
ducible (Langlands) subrepresentation of the standard module (p|-|~%)% x A [z —1,—z]® x T,
where p is an irreducible unitary supercuspidal representation of GL4(F'), x is a positive
half-integer, A,z — 1, —z] is a Steinberg representation of GLgg,(F'), and T is an irreducible
tempered representation of a small classical group. For these notations, see §2 below.

For the problem to determine the highest derivative of L((p| - |7)%, Aplx — 1, —2]%T),
Jantzen gave an explicit formula for z = 1/2 ([10, Theorem 3.3]). Also, he suggested a
strategy for x > 1 ([10, §3.4, Cases 2, 3|). This strategy is an induction on z, i.e., the
computation for x is reduced to the one for z — 1. Hence it would be possible to solve this
problem when x € (1/2)Z\ Z. Using this strategy, he computed some examples of the Aubert
duals of certain irreducible representations in the half-integral reducibility case ([10, §4]).
However, since [10, Theorem 3.3] is already complicated (there are 5 cases), it is very hard to
proceed with this induction.
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In this paper, we give an algorithm (Theorem 4.1) to compute the highest derivative of
L((p| - 17%)%, Ay[z — 1, —2]*; T'). One can also write down an explicit formula (Corollary 4.2).
This corollary together with Corollary 4.4 completes Jantzen’s algorithm. When a = 0, one
might prove Corollary 4.2 by a similar argument to [10, Theorem 3.3], but we will give another
argument. A new ingredient for the proof is two results of Xu on A-packets [22, 23]. The
first is an estimation when derivatives of unitary representations of Arthur type are nonzero
(Lemma 3.4). Namely, for a specific tuple (a, b, T), we will find a “good” A-parameter 1) such
that L((p| - |7®)% Aplz — 1,—2]% T) belongs to the A-packet Il (e.g., see Example 3.5 and
Proposition 3.13). To compute the highest derivative, we will use Mceglin’s construction of
A-packets together with Xu’s combinational result [23, Theorem 6.1].

In conclusion, we obtain an algorithm to compute the highest derivatives with respect
to non-self-dual cuspidal representations p| - |*, and we can compute the Aubert duals of
irreducible representations in almost all cases. However, the derivatives considered in this
paper does not cover all cases because the derivatives with respect to self-dual p is mysterious
and useless. See Remark 4.5 below. In the next paper [3], the author and Minguez will give
a new idea to overcame such a difficulty, which will lead a complete algorithm for the Aubert
duality.

This paper is organized as follows. In §2, we review several results in representation theory
for classical groups. In particular, we explain how the highest derivatives of an irreducible
representation 7 determine its Langlands data almost completely (Theorem 2.13). Also we re-
call Jantzen’s algorithm to compute the highest derivatives in §2.5. In §3, we review Arthur’s
theory including Xu’s lemma (Lemma 3.4) and Moeglin’s construction (§3.4). We also give
a significant correction for an erratum to [2] for the highest derivatives of tempered repre-
sentations (Proposition 3.6). In addition, some results on the irreducibility of parabolically
induced representations are written in §3.3. In §4, we state the main results (Theorem 4.1
and Corollaries 4.2, 4.4). Also in §4.2, we give some examples of Aubert duals, which are in
the integral case. Finally, we prove Theorem 4.1 in §5.

Acknowledgement. The author is grateful to Professor Alberto Minguez for telling the
notion of derivatives and several results. He wishes to thank Professor Chris Jantzen for
allowing him to work on this topic. Thanks are also due to the referee for the careful readings
and the helpful comments. This work was supported by JSPS KAKENHI Grant Number
19K14494.

Notation. Let F' be a non-archimedean local field of characteristic zero. We denote by Wg
the Weil group of F. The norm map |- |: W — R is normalized so that |[Frob| = ¢~!, where
Frob € Wp is a fixed (geometric) Frobenius element, and ¢ is the cardinality of the residual
field of F'.

Each irreducible unitary supercuspidal representation p of GL4(F') is identified with the
irreducible bounded representation of W of dimension d via the local Langlands correspon-
dence for GL4(F'). Through this paper, we fix such a p.

For a p-adic group G, we denote by Rep(G) (resp. Irr(G)) the set of equivalence classes of
smooth admissible (resp. irreducible) representations of G. For II € Rep(G), we write s.s.(II)
for the semisimplification of II.
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2. REPRESENTATIONS OF CLASSICAL GROUPS

In this section, we recall some results on parabolically induced representations and Jacquet
modules.

2.1. Representations of GL,(F). Let P = MN be a standard parabolic subgroup of
GL,(F), i.e., P contains the Borel subgroup consisting of upper half triangular matrices.
Then the Levi subgroup M is isomorphic to GLy, (F) X - -+ x GL,,, (F) with ny +--- +n, = n.
For smooth representations 71, ..., 7 of GL,, (F),...,GL,, (F), respectively, we denote the
normalized parabolically induced representation by

Ly (F
T1X---XTr:Ind]Ci ( )(71@-~®7}).
When 7 =--- =7, = 7, we write
TI=T X XT.
————

A segment is a symbol [z,y], where z,y € R with  —y € Z and x > y. We identify
[z,y] with the set {z,x — 1,...,y} so that #[z,y] = © —y + 1. Let p be an irreducible
(unitary) supercuspidal representation of GL4(F). Then the normalized parabolically induced
representation

pl- " x - xp|-]
of GLg(y—y+1)(F) has a unique irreducible subrepresentation, which is denoted by

Ap[sv, y]

and is called a Steinberg representation. This is an essentially discrete series representation
of GLg(z—y11)(F).

When 7; = Ay, [x;, y;) with 21 +y1 < -+ < 2, +yp, the parabolically induced representation
71 X -++ X 7, is called a standard module. The Langlands classification says that it has a
unique irreducible subrepresentation, which is denoted by L(71, ..., 7,). This notation is used
also for 7 X -+ X 7. which is isomorphic to a standard module.

The definitions of Steinberg representations and standard modules might be unortho-
dox. However, these definitions seem to be better for the computation of Jacquet mod-
ules. For a partition (n1,...,n,) of n, we denote by Jac(,, . ,,) the normalized Jacquet
functor on Rep(GL,,(F')) with respect to the standard parabolic subgroup P = MN with
M = GL,, (F) x --- x GL,,(F). For a segment [z,y], the Jacquet modules of A,[z,y]| and
L(p|-|Y,...,p|-|*) are given by

Jac(d da—y) (Dpl,y]) = pl - [* B Az — 1,4,
Jac(qde—y) (Lol - V- opl - 1)) = pl - [P R L(p| - [T, pl - |7),
respectively (see [24, Propositions 3.4, 9.5]). Here, we set Ap[z — 1, 7] = 1gry(F)-

An irreducibility criterion for parabolically induced representations of Steinberg represen-
tations is given by Zelevinsky.

Theorem 2.1 (Zelevinsky [24, Theorem 9.7, Proposition 4.6]). Let [z,y] and [2',y'] be seg-
ments, and let p and p' be irreducible unitary supercuspidal representations of GLg¢(F) and
GLg (F), respectively. Then the parabolically induced representation

Ap[xv y] X Ap/ [wla yl]
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1s 1rreducible unless the following conditions hold:
° p=p;
o [z,y] Z [,y] and [2,y] ¢ [x,y] as sets;
o [z,y|U[z,y] is also a segment.

In this case, if x +y < x’ + 1/, then there exists an exact sequence
0 —— L(Ap[z,y], Apla, y']) —— Aplz,y] x Ayl y'] —— Al y] x Aylz,y'] —— 0.
Here, when x =y’ — 1, we omit A,[z,y].

Let R,, be the Grothendieck group of the category of smooth representations of GL,,(F') of
finite length. By the semisimplification, we identify the objects in this category with elements

in Ry,. Elements in Irr(GL,(F)) form a Z-basis of R,. Set R = ®,>0R,. The parabolic
induction functor gives a product

m:RIR =R, 11 &y 8.8.(T1 X T2).

This product makes R an associative commutative ring. On the other hand, the Jacquet
functor gives a coproduct

m'"R—=>RIR

which is defined by the Z-linear extension of

Irr(GL,(F)) 27— Zs.s.Jac(kvn_k) (7).
k=0

Then m and m* make R a graded Hopf algebra, i.e., m*: R = R®R is a ring homomorphism.
An antipode is given by the signed Zelevinsky involution (see [24, 9.16, Proposition]).
Definition 2.2. Let m be an irreducible representation of GLy,(F').

(1) Suppose that

s.s.Jac(q n—a)y(m @TZ&T(“ s.s.Jac(,_q,q) (T @ﬂ' &7’
el jeJ

with 7'7;,7';- and m,w} being irreducible representations of GLg(F') and GL,_q(F), re-
spectively. Then for x € R, we define the left p|-|*-derivative L, .. (1) and the right

p| - |*-derivative Rsz(ﬂ')
Lpjj=(m @ iy Rpppe(m @ m
i€l jeJ
Ti=2p|-|* Tj(ngT

(2) For a positive integer k, we define the k-th left and right p|-|*-derivatives L;ﬁz(ﬂ)
and RE)‘ )I“”( ) by

1

k k

We also set L(|)‘Z( ) = RI(DT)‘QC( ) =m.

k 1 k
L), () = = Lo 00 Lyja(m), r%™ (m)
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(3) When Lgr.)w(w) # 0 but L;ﬁ;l)(w) =0, we call Lgr.)w(w) the highest left derivative.
We also define the highest right derivative similarly.
This notion is essentially due to Jantzen [7] and Minguez [15]. One should not confuse our

derivatives with Bernstein—Zelevinsky’s ones, which are not used in this paper.

By [7, Lemma 2.1.2], for any irreducible representation 7, its highest derivatives Lfﬂz(ﬂ)

and Rgﬁ)w (m) are irreducible. The following result was obtained by Jantzen [7] and Minguez
[15, Théoreme 7.5] independently. We adopt the statements of [7, Propositions 2.1.4, 2.4.3,
Theorems 2.2.1, 2.4.5]. For another reformulation, see [12, Theorem 5.11].

Theorem 2.3 (Jantzen [7], Minguez [15]). Let m = L(A,lx1,y1], ..., Aplzr, yr]) be an irre-
ducible representation.

(1) We may assume that y1 < --- < y,, and that if y; = y;41, then x; > xj41. For

1 < j <, define ny(j) = #{i < j | x; = z}, and set ny(0) = 0. Then with

k = max;>0{nz(j) — ne—1(Jj)}, the left derivative L;(>]|€~)|Z(7T) is highest. For 1 <m <k,

:

o
LAz, vl - Aplzr, yr]) by replacing xj = x with x — 1 for all j € {j1,...,Jx}-

(2) We may assume that x1 < --- < z,, and that if x; = xj1, then y; > yj41. For

1 <j <, define ny(j) = #{i > r—j+ 11|y =y}, and set ny(0) = 0. Then

with k = max;>o{ny(j) — ny,1(4)}, the right derivative Rgﬁy(ﬂ) is highest. For 1 <

(k)
. . pl.ly . . .

7= LAy, 1), ..., Aplar, yr]) by replacing y; =y with y+1 for all j € {j1,..., jr}-

2.2. Representations of SOg,1(F) and Sp,,(F). We set G, to be split SOgy,4+1(F) or

Spa, (F), i.e., Gy, is the group of F-points of the split algebraic group of type B, or C,,. Fix

a Borel subgroup of G,, and let P = M N be a standard parabolic subgroup of GG,,. Then the

Levi part M is of the form GLy, (F') x -+ X GLg, (F) x Gp, such that k1 + - - - + k, + ng = n.

For a smooth representation 7y X - - - X 7. K g of M, we denote the normalized parabolically

induced representation by

if we set jp, = min{j | ny(j) — ny—1(j) = m}, then L’ (7) is given from m =

m < k, if we set jp, = min{j | ny(§) — ny1(j) = m}, then R ", (7) is given from

7'1><~-><7'7nNﬂgzIndg"(nﬁ'--&Trﬁﬂ'o).

The functor Indg": Rep(M) — Rep(G,,) is exact.
On the other hand, for a smooth representation 7 of GG,,, we denote the normalized Jacquet
module with respect to P by
Jacp (),
and its semisimplification by s.s.Jacp(m). The functor Jacp: Rep(G,) — Rep(M) is exact.
The Frobenius reciprocity asserts that

Homg, (, Indg” (0)) = Homy, (Jacp(), o)

for m € Rep(G,,) and o € Rep(M).

The maximal standard parabolic subgroup with Levi GLg(F') x G, is denoted by Py =
MpNyg for 0 < k < n. Let R(G,) be the Grothendieck group of the category of smooth
representations of Gy, of finite length. Set R(G) = @,>0R(G,). The parabolic induction
defines a module structure

X: RR(G) = R(G), T@ 7T s.8.(T 1),
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and the Jacquet functor defines a comodule structure
u:R(G) - R®R(G)
by

n
Irr(Gp) 3 m— Zs.s.JacPk(ﬂ).
k=0
Tadi¢ established a formula to compute p* for parabolically induced representations. The
contragredient functor 7 + 7V defines an automorphism V: R — R in a natural way. Let
s: R®R — R ® R be the homomorphism defined by >, 7 @ 7/ — >, 7/ @ 7.

Theorem 2.4 (Tadi¢ [20]). Consider the composition
M*=(m®id)o(V@m*)osom™: R > R R.

Then for the maximal parabolic subgroup Py, = My Ny of Gy, and for an admissible represen-
tation T X 7 of My, we have

pr(r xm) = M*(7) % p* ().
Here, the action x of R&R on ROR(G) is defined by (1 @) X (TR7) = (11 X T) @ (T2 X 7).

For a general reductive group G over F', irreducible smooth representations of G(F') are
classified by the Langlands classification. For a detail, see [11]. Here, we recall this for
Gh.

The Langlands classification asserts that for any irreducible representation 7 of Gy, there
exists an irreducible representation 7 X - - - X 7. Mo of a Levi subgroup M = GLy, (F') x -+ x
GLg, (F) x Gy, of some standard parabolic subgroup P satisfying that

o 7, = A, [x;, ;) for some irreducible unitary supercuspidal representation p; of GLg, (F),
and some segment [x;,y;| with x; > y;;

e o is an irreducible tempered representation of Gy, ;

ety < <z t+y <0

such that 7 is a unique irreducible subrepresentation of the parabolically induced representa-
tion 71 X -+ X 7, X o. In this case, we write

w=L(t,...,7;0),
and call it the Langlands subrepresentation of 71 X - - - X 7. xo. Note that L(7y,...,7,;0) &
L(r{,...,7l;;0')ifand only if 71 X -+ X 7 X o = 7 X --- x 7/, xo'. We refer (11,...,7;0)

as the Langlands data of .

2.3. Derivatives.

Definition 2.5. Let w be a smooth representation of G,.
(1) Consider s.s.Jacp,(m) (and a fized irreducible supercuspidal unitary representation p
Of GLd(F)) If

s.s.Jacp,(m) = @TZ‘ X 7;
i€l
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with 7; (resp. ;) being an irreducible representation of GL4(F) (resp. Gn_q), for
r € R, we define a partial Jacquet module Jac,.-(r) by

Jacp| |x @ 5.
i€l
m=p|-|*
This is a representation of Gy _q. For pairs (p1,1), ..., (pt, Tt), we also set Jac,, |.jz1, . 5|zt =

JantHzt 0---0 Jacpl‘.pl.
(2) For a non-negative integer k, the k-th p| - |*-derivative of 7 is the k-th composition

k
DE’\)P” (W) = E JanHz 0---0 JanHz(W).
k
If Dp| |$( ) # 0 but D;ﬁ;l)(ﬂ) =0, we call D/()ﬁx (m) the highest p| - |*-derivative

of 7.

The derivative D(‘ )|I( ) is a representation of some group G, of the same type as G,,. In
fact, it is characterized so that

k)
s.s.Jacp,, (1) = (o] - [)F © DY), (x +Z;Tz®m
1€

where 7; is an irreducible representation of GLgy(F) such that 7; 2 (p| - |*)*. It follows from

the transitivity of Jacquet modules and the fact that for any irreducible representation 7 of
GLgx(F),

7®

Pl 0 otherwise.

(r) = {1GL0(F) if 72 (p| - |7)¥,
The following is essentially the same as [8, Lemma 3.1.3]. For the convenience of the
readers, we give a proof.

Proposition 2.6. Let w be an irreducible representation of G, and me () be the highest

derivative.
(1) There exists an irreducible representation 7' of some group G, of the same type as
Gy, such that D¢(7]|€~)II (m) = m-7" with a positive integer m. Moreover, 7 is an irreducible
subrepresentation of the parabolically induced representation

pl-|

xT /

XXp‘|m

k

(2) If pV] - |7* % p| - |* (in particular, if © # 0), then Dmx(w) is irreducible, i.e., m =
1. Moreover, in this case, ™ is a unique irreducible subrepresentation of the above
parabolically induced representation.

Proof. If Dfﬁz(w) # 0, we can find an irreducible representation 7’ of some group G, such

that Jacp,, (1) — (p| - |*)¥ ® 7/, which is equivalent that
T pl |7 x e x pl T = (p] - F)F
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Note that Jac,.;«(7') = 0 since D;’f_)',c () is the highest derivative. By Theorem 2.4, we see
that

Jacyyo (ol ) ') = - (pl - 7)1 s,
where

koo i7" # ] I,
k= s —T ~~v x
ok it pY| [ g

This implies that

k x
DL (6l [ ') = -

1 if p’-|7" % pl - |7,
Cl = i o
28 i pY|- T = pl - |

with

Therefore D/(]’r_)‘z
tion of (2). For the last assertion of (2), we note that if 7 is an irreducible subrepresentation

of (p| -|*)* x 7', then Df)li)‘x(ﬁl) # 0. However, when p|- |~ % p| - |*, we have

DY, ((py oY s — 7r> = 0.

This means that (p| - |*)¥ x 7/ contains 7 as a unique irreducible subrepresentation (with
multiplicity one). O

(m) = m-7" with a positive integer m < ¢j. This shows (1) and the first asser-

Remark 2.7. One might consider the same notions for SOgy,(F') or Ogy,(F). However, the
descriptions are more complicated in these cases since Tadié¢’s formula needs a modification.
See [21, §5]. We do not treat these cases in this paper.

2.4. p-data. In this subsection, we introduce the p-data of irreducible representations. See
§4.2 below for examples.

Definition 2.8. Let m be an irreducible representation of G,,. For e € {£}, the p-data of =
is of the form
M;(ﬂ—) - [(3?1, kl)? SRR (xu kt);WO] )
where x; is a real number and k; is a positive integer, defined inductively as follows.
(1) If Jac,|.=(7) = 0 for any x € R, we set Mg(w) = 7] (so that t =0 and mo = 7).
(2) If Jacy)e(m) # O for some x € R, we set

[ max{z € R [ Jac,«(7) # 0} if € =+,
= min{z € R | Jac,|.j= () # 0} if e=—

and ki > 1 to be such that D) (m) is the highest p| - |**-derivative of w. By Proposi-

pl-*1
(k1)

tion 2.6, we can write Dpl'lgcl () = m-7’ for some irreducible representation 7'. Then

we define
M (m) = [(w1, k); Mg(n')] -

Let m be an irreducible representation of GG,. Then one can define another irreducible
representation 7, which is called the Aubert dual of 7 (see [4]). It is known by [4, Théoréme
1.7] that
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o T =T

e if 7 is supercuspidal, then 7 = ;
o DY), (#) is the Aubert dual of DY) _(r).

In particular, for € € {£}, if
M;(ﬂ-) = [(1‘1, kl)? KR (xt7 kt);ﬂ'O] )
then
Mp_ve(ﬁ-) - [(_xh kl)? R (_xb kt); 71"0] :
We will use M, (m) mainly. By taking the Aubert dual, several properties of M, , can be
translated into ones of M;Q. The following is the most important property of M, .

Theorem 2.9. Let 7 be an irreducible representation of Gy,. Then the p-data M, (m) can be
rewritten as

M (m) = (@ kD), @D D, @R, @ k)

t1

<k for1<i<rand1<j<t;—1;

°
8

Moreover, if we set T](i) = Ap[xgi),xgi)], then T](i) X TJ(»,i) = T](/i) X TJ@ forany1<j,7 <t., and

w18 an irreducible subrepresentation of

t1 k‘<-l)—k‘(-l) tr k(_7')_k(_7')
()7 Yo (X ()

Jj=1 Jj=1
where we set k:gzrl =0forl<i<r.

Proof. Write M (7) = [(z1,k1),. .., (zt,kt);m0]. Note that z;11 # x; by definition. Sup-
pose that z;+1 < x;. Replacing m with the (unique) irreducible representation appearing in

(k2) D(kl)

pli172 © p\-ll‘l(ﬂ) =m-,

Df}ﬁ;},)l 0+ 0 Dgﬁzl (7), we may assume that i = 1. If we write D
then

m s pl [ pl [P pl [ x  x pl [F2 a

k1 k2
If 23 < 1 but 3 # x1 — 1, then p[- [*1 x p|-["2 = p| - |"2 x p| - |[** so that Jac,|.j»> (7) # 0. This
contradicts the definition of ;. Hence xo = z1 — 1. In this case, by [24, §11.3], the above
inclusion factors through

m e L(p| - |72, p| - [F1)%0 x A [z1, x9]" x (p| - [T1)FL x (p] - [*2)%2 x0 7’

for some non-negative integers ko, k, k1, k5 with min{k}, k5} = 0. Here, we note that L(p| -
|2, p|-|*1) commutes with all of p[-|**, p[-|*2 and A,[z1, 22]. Since Jac).j=2 (L(p|-|"2, p|-|"*)) # 0
but Jac,|.j=> (1) = 0, we must have kj = 0. Namely, we have

1 ][ x Al aal® x (- )
where kg = min{ky, ko}. If ks > k; so that kg = k1, by Theorem 2.1, we would have

= (p| ’ ‘xz)bikl x Ap[thﬂko A 77/7
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which implies that Jac,|.=»(7) # 0. This contradicts the definition of z;. Hence we have
ko < k.

We conclude that if 1 > -+ > x,, then 41 = z; — 1 and kjy1 < kj for 1 <j <a—1
Moreover, in this case, 7 is a subrepresentation of

Ap[alrl,xl]klfl€2 X - X Ap[xl,xa_l]k“—rk“ X Ap[xl,xa}k“ x

for some irreducible representation 7’. Now suppose that z, < zq11.

o If v, < xg41 < x1 and zgy1 # xp for any 1 < b < a, by Theorem 2.1, we have
Jac,.jza+1(m) # 0. This contradicts the definition of ;.
o If x441 = xp for some 1 < b < a, by Theorem 2.1, we have

D(kb+1) o D(kbfl) 0.-+0 D(kl) (ﬂ') 7& 0.

pl|*® pl-[7b-1 pl|"1
This contradicts the definition of k.
Hence we must have x,11 > x1. Therefore M o () can be written as in the statement. The
above argument also shows the other statements. O

To obtain some consequences, let us prepare a useful lemma.

Lemma 2.10. Let m be an irreducible representation of Gn. Write M (7) = [(w1, k1), .. ., (2, kt); o] -
Suppose that there exists an inclusion

T Aplz,y] x 7
with some irreducible representation 7' such that x +vy < 0. Then there exists i <t — (z — y)

such that x; = x, 2,41 =2 — 1,...,Tiyp—y = y. Moreover, if i > 1, then x;—1 < x.

Proof. Write M, (7') = [(2,k}), ..., (¢}, k},); m]. We prove the lemma by induction on ¢'.
Note that z1 < 2 < —y. If ¢ =0 or 2} > z, then ¢ = 1 and the assertion is trivial. Now we
write m < (p| - [*1)¥ % m and 7’ < (p| - |¥1)¥1 % 7} for some irreducible representations
and 7). If 2} < and z} # y — 1, by Theorem 2.1, we have
T (ol - )M x Al y]
so that z1 = 2!, ki = k] and m; — A [z,y] x 7}. By applying the induction hypothesis, we
obtain the assertion.
Finally, we assume that ) =y — 1. Since we have an exact sequence
0 —— Ap[x7y - 1] — Ap[xay] X p‘ ' ’yil — p’ : ‘yil X Ap[.’IJ,y],

by Theorem 2.1, we see that m can be embedded into

(pl - /7% x Az, y] xmy, o

(ol - =DM Al y — 1]
In the former case, we have 1 =y — 1, k1 = k] and m — A,[z,y] x 7}. In the latter case,
we have one of the following:

o (z1,k1)=(y—1,k] —1) and m — Az, y — 1] x 7};
o ki =1and m— A,fz,y — 1] x 7.

In all cases, the induction hypothesis gives the assertion. O
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Corollary 2.11. Let m be an irreducible representation of Gy. Write

My (m) = (@ 6D, @D, @R @ k) o

as in Theorem 2.9. Suppose that (z,y) = (fcgz),xg:)) satisfies that ¢ +y < 0 and x +y <

mgj) + azg) for any j < i. Then there exists an irreducible representation ' such that

T Aplz,y] xw'.
For any such 7', the p-data M, (') is obtained from M (m) by replacing k:gi), el k‘g) with
kgi) —-1,..., kg) — 1, respectively.

Proof. By the assumption, we notice that x < —y and = > x(lj) > acg) > y for any j < i. By

Theorems 2.9 and 2.1, one can find an irreducible representation 7’ such that
T Aplz,y] xw'.

We compute the p-data M, (7') = [(2, k), . .., (x}, k;); mo] by induction on }7%_, #; as in the
proof of Lemma 2.10.
If 2} > x, then l'gl) = z so that ¢ = 1. In this case, the assertion is trivial. If 2} < z and
) #y—1, then i > 1 and (2, k]) = (azgl), kgl)). Moreover, by Theorem 2.1, we have
K} K/
D™ () & Az, y) x DM, ().
ol pl-"1
By the induction hypothesis, we obtain the assertion.
To complete the proof, it suffices to show that 2 never equals to y — 1. Suppose that

7 =y — 1. Then there exists an irreducible representation ©” such that 7’ < p| - [Y=% x 7"
so that

T Aplz,y] x p| - [V 7
Since we have an exact sequence
0 —— Ap[xvy - 1] — Ap[xay] X p‘ ’ ’yil — p’ ' ‘yil X Ap[l’,y],
we have Jac,|.jy-1(7) # 0 or m < Ay[z,y — 1] x 7. Lemma 2.10 eliminates the latter case.

In the former case, we must have :L‘gl) <y —1 < z. This implies that ¢ > 1 and

mgl) + :cg) < 2x§1) <2y—1)<2y<z+y,
which contradicts our assumption. This completes the proof. O
Also we can reformulate Casselman’s tempered-ness criterion as follows.

Corollary 2.12. Let w be an irreducible representation of G,. Then 7 is tempered if and
only if for any p, we can write

M (r) = (@ KY), @D kD) @R, @ kD)o

as in Theorem 2.9 such that $§i) + wg) >0 foranyl <i<r.
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Proof. Suppose first that some p-data M, (7) of the above form has an index 7 such that

xgi) + xg) < 0. We take ¢ so that a:gi) + a:(j) achieves the minimum value. Then by Theorem
2.9, we find an irreducible representation 7’ such that

T Ap[xgi),xg)] x

or equivalently,
Jacp,, (m) — Ap[mgl),xg)] ® .
By the Casselman criterion, we see that 7 is not tempered.

Suppose conversely that 7 is not tempered. Then by the Casselman criterion, there exists
an irreducible representation 7/ K 7" of GLg(F) X Gy, for some k such that 7 — 7/ x 7/, and
such that the central character of 7/ is of the form w,| - |* with w, being unitary and s < 0. If
we write 7" = L(A,, [z1,y1), ..., Ap, [r, yr]) where p; is an irreducible unitary supercuspidal
representation of GLg, (F') and 1 +y1 < -+ < zp+y,, we have s = > di(zi+y:) (i —yi+1) /2.
Since s < 0, we must have z1 + y; < 0. Hence we may replace 7" with A, [x1,y1]. In other
words, there exist p, [z,y] and 7’ such that 7 — A,[z,y] x 7’ with z+y < 0. By Lemma 2.10,

we conclude that there exists ¢ such that xgi) =z and :L'gj) < yso that xgi)—l—xg) <z+y<0. 0O

Now we compare the p-data with the Langlands data.

Theorem 2.13. Let 7 be an irreducible representation of G,. Write

My (m) = (@B, @D D, @R @ k) o

and set T]@ = Ap[:cgi),x;i)] as in Theorem 2.9. Suppose that m = L(7y,...,7;0) with 7, =

Ay zi,yil. Then as multi-sets, {r; | 1 <1 <1, p; = p} is equal to the multi-set of consisting
of TJ@ with multiplicity k§z) — k](:)_l for i, j such that x&z) + azg.z) < 0. Moreover, {M, (o)}, can
be computed from {M; ()}, by Corollary 2.11.

Proof. We prove the assertion by induction on n. If xgi) —i—:c;i) > 0 for all 4, j, then by Corollary
(4) (4)

2.12, 7 is tempered so that o = 7. Otherwise, take the minimum ¢ such that z;” + z;” < 0.
Then by Corollary 2.11, we have
(@)

/
T Ty X

with an irreducible representation 7' such that M (') is obtained from M () by replacing
k:gi), .. ,kg) with kzgi) —-1,.. .,k:t(f) — 1, respectively. By the induction hypothesis, we can
obtain the Langlands data of ' as in the assertion. If we write 7 = L(r{,...,7/;0’) with
T, = Ap;/ [#l,,y.,], by the choice of i, we see that asgz) + xg-l) < @l, + yl, whenever pl, = p.
Therefore, the Langlands data of 7 is obtained from that of 7’ by inserting Tt(:) in the relevant
place. O

In fact, by Proposition 3.8 below, the tempered representation o is determined almost
completely by {M, (o)},

Unfortunately, the map m — M7 (m) is not injective. For example, when g is supercuspidal
and p x mg is reducible, this induced representation is semisimple of length two, i.e., p X g =
T © T2 and w1 ¥ m2. However My(m) = Mg(ma) = [(0,1); mo] for e € {£}.
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2.5. Jantzen’s algorithm. Let m = L(7y,...,7,;0) be an irreducible representation of G,.
Suppose that p is self-dual and = € (1/2)Z. We recall Jantzen’s algorithm ([10, §3.3]) to

compute the highest derivative D;’f_)‘m (m) with = > 0.

(1) Write 73 X -+ X 7 = 7'1(1) X e X T,gll) x Ap[r — 1,—x]" with b maximal. (Hence,
e =, n\ {A e — 1, —2]}.) Then
T L(T(l), e r(ll)) x Aylz—1, -]’ x 0.
(2) Compute the right highest derivative R(\)I (L (7’1(1),..., ,(,11))) L(Tl(Q) TT(QQ)) Then
Jantzen’s Claim 1 says that
m s LD, ) ) L((p] |7 Agle — 1, —a]’, o),

(3) Assume for a moment that we were able to compute the highest derivative D(| | 1 (L((p|-
|=)a, Aplz — 1, —x]°,0)) = 1. Then Jantzen’s Claim 2 says that

mes LD, (o] - )R 3y

(4) Compute the left highest derivative L;k) (L(Tl(2), T,SZQ), (p|-]¥)k)) = L(7'1(3), e ,Tff)).

|-®

Then Dmx (m) is the highest derivative, and

k 3
DY) () = L, 7)) xm.

(5) By Theorem 2.3, one can write 7'1(3) X - X Tﬁf) = 7'1(4) ce X T,gf) x (p| - [*)¥2 such
that Ti(4) has a negative central exponent, and ko < k.

(6) There exists a unique irreducible representation 7y of the form L((p| - [7)%, A [z —
1,—2]"; 0’) such that Dgﬁi (m) = m1 is the highest derivative. Jantzen’s Claim 3 says
that

k 4
DY (7)) = L(r", .. 7D) xma.
Assume for a moment that we could specify ms.
(7) There exists a unique irreducible representation L(Tl(5), e r£§’ )) such that
! 5 4
R (L™, ) = LY, D)

is the highest right derivative. Moreover, T, ( ) has a negative central exponent. Then

(m) =L(=7 . 7O A [z — 1, 2] o).

s lrg

p®
pl-*

See §4.2 for examples. In conclusion, the computation of the highest derivative Df}’r) (m)

is reduced to the one of D(\)II( ((p| - 7%)%, Aplz — 1, —2]b,0)). Jantzen’s strategy of this

computation is an induction on z. Namely, this computation for the case z > 3/2 can be
reduced to the case for x — 1. Jantzen also gave an explicit formula in the case = = 1/2 ([10,
Theorem 3.3]). As a consequence, he gave some examples to compute the Langlands data
of the Aubert duals 7 of certain irreducible representations 7 in the half-integral reducibility
case ([10, §4]).
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In this paper, we will treat the general case. To do this, a key idea is to use certain Arthur
packets.

3. ARTHUR PACKETS

In his book [1], for each A-parameter 1), Arthur defined a finite (multi-)set I, consisting of
unitary representations of split SOg,41(F) or Spy, (F'). In this section, we review his theory.

3.1. A-parameters. A homomorphism
1[): WF X SL2(C) X SLQ(C) — GLn((C)
is called an A-parameter for GL, (F) if

e (Frob) € GL,(C) is semisimple and all its eigenvalues have absolute value 1;

e ¢)|Wp is smooth, i.e., has an open kernel;

e )|SLy(C) x SLo(C) is algebraic.
The local Langlands correspondence for GL,,(F') asserts that there is a canonical bijection
between the set of irreducible unitary supercuspidal representations of GL,(F') and the set
of irreducible representations of Wr of bounded images. We identify these two sets, and use
the symbol p for their elements.

Any irreducible representation of W x SLo(C) x SLo(C) is of the form pX .S, XSy, where S,
is the unique irreducible representation of SLy(C) of dimension a. We shortly write p X S, =
pX S, KS; and p = pX 51 X S1. For an A-parameter ¢, the multiplicity of pX S, X Sy, in 2
is denoted by my(p XS, X Sy). When an A-parameter 1) for GL,(F) is decomposed into a
direct sum

=P pi RS, BS,

we define an irreducible unitary representation 7, of GL,(F') by

Ty = >< L (Apz [Blv _Ai]v Api [BZ +1, _Ai + 1]7 SERE) AP«L [AU _BZ]) )

where we set A; = (a; +b;)/2 — 1 and B; = (a; — b;)/2.

We say that an A-parameter ¢: Wg x SLy(C) x SL2(C) — GLg(C) is symplectic or of
symplectic type (resp. orthogonal or of orthogonal type) if the image of ¢ is in Sp;(C)
(so that k is even) (resp. in Og(C)). We call ) an A-parameter for SO, 1(F) if it is an
A-parameter for GLo, (F) of symplectic type, i.e.,

¢2 WF X SLQ((C) X SLQ((C) — Sp2n((C)

Similarly, ¢ is called an A-parameter for Sp,, (F) if it is an A-parameter for GLgy,41(F) of
orthogonal type with the trivial determinant, i.e.,

1[): WF X SLQ((C) X SLQ(C) — SOQn+1((C).

For G,, = SOg,41(F) (resp. Gy, = Spy,,(F)), we let U(G,,) be the set of Gr-conjugacy classes
of A-parameters for G,, where G,, = Sp,,,(C) (resp. G, = SO2,41(C)). We say that
o ) € U(G,) is tempered if the restriction of 9 to the second SLa(C) is trivial;

e ) € U(G,) is of good parity if ¢ is a sum of irreducible self-dual representations of
the same type as 1;



16 HIRAKU ATOBE

We denote by Wiemp(Gn) = Ptemp(Gn) (resp. Vep(Gr)) the subset of ¥(G) consisting of tem-
pered A-parameters (resp. A-parameters of good parity). Also, we put @, (Gr) = Premp(Gn)N
Uy (Gr). Set U, (G) = Up>0 ¥4 (Gy) and @, (G) = Up>0P«(Gy) for x € {0, temp, gp}.

For ¢ € ¥(Gr), the component group is defined by Sy = m(Centg- (Im(w))/Z(C/};))
This is an elementary two abelian group. It can be described as follows. Let ¢ € ¥(G). For
simplicity, we assume that v is of good parity. Hence we can decompose ¢ = @!_,1;, where
1; is an irreducible representation (which is self-dual of the same type as ¥). We define an
enhanced component group A, as

Namely, Ay, is a free Z/2Z-module of rank ¢ with a basis {a, } associated with the irreducible
components {1;}. Then there exists a canonical surjection

whose kernel is generated by the elements

o zy =iy ay,; and
® «y, + ay, such that ¢; = ;.
Let S¢ and .A¢ be the Pontryagln duals of 81/, and Ay, respectlvely Via the surjection

Ay — Sy, we may regard Sw as a subgroup of Aw For n € Adn we write n(ay,) = n(v;). B
convention, we understand that my(p X Sp) = 1 and n(p X Sp) = 1.

Let w,z// € Uy,(G). When ¢/ C 1, we have a canonical inclusion Ay — Ay. When
Y =1 — o + ) with g, ¥ being\irreducible, we can define a map Aﬁf\ — Ay by sending
Q10 ary, . In these cases, for n € Ay, we denote its restriction by ' € Ay. For example, in
the second case, we set 7'(¢)) = n(vo).

Let Irrunit(Gr) (resp. IrTiemp(Gr)) be the set of equivalence classes of irreducible unitary
(resp. tempered) representations of G,,. The local main theorem of Arthur’s book is as follows.

Theorem 3.1 ([1, Theorem 2.2.1, Proposition 7.4.1]). Let G, be a split SOgpi+1(F) or
Sp2n(F>
(1) For each ¢ € ¥(G,,), there is a finite multi-set 11, over Irrynit(Gy) with a map

Hw - 3’(\/)7 T <'77T>1/J

satisfying certain (twisted and standard) endoscopic character identities. We call 11y,
the A-packet for G,, associated with 1.
(2) When ¢ = ¢ € Piemp(Gr), the A-packet 11y is in fact a subset of Irtiemp(Gr). More-

over, the map Iy > 7+ (-, m) 4 € 3; is bijective, Iy N1y =0 for ¢ # ¢/, and

Irttemp (Gn) = |_| I,
¢€q>temp (Gn)

When € Ly with n = (-,m), € :S';, we write m = (P, n).
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(3) If h = @ipi XSy, K Sy, , set
dpo= P piRS,.

i
b;=1 mod 2

Then for any o € 1y, , the unique irreducible subrepresentation of

X L (Apl [BZ‘, —Ai], Api [BZ +1, —A; + 1], C. ,Api[(ai — 3)/2, —(ai — 1)/2])

%
biE]. mod 2,1)1'751

X X L(Api[Bia_Ai]yApi[Bi+1a_Ai+1];--->Api[ai/2_17_ai/2]) X o
biEU 7Il‘nod 2
belongs to Iy, where A; = (a; +b;)/2—1 and B; = (a; — b;)/2. Here, the products are

taken so that the induced representation is isomorphic to a standard module.

Remark 3.2. (1) The map 1Ly > 7 = (-, m), € 3’1\/, is not canonical when G = Spy, (F).
To specify this, we implicitly fix an F*2-orbit of non-trivial additive characters of F
through this paper.

(2) In general, the map 11y, > 7 — (-, 7r>w € S/; is meither injective nor surjective.

(3) In general, I, can intersect with Iy even when ¢ % ¢'. However, [18, 4.2 Corollaire]
says that if Ly NIy # 0, then g = 4, where g =1 o A is the diagonal restriction
of ¥, i.e., A: Wg xSLa(C) — Wg x SLa(C) x SLa(C) is defined by A(w, g) = (w,g,9).

The following is a deep result of Mceglin.

Theorem 3.3 (Moeglin [19]). The A-packet 1Ly, is multiplicity-free, i.e., it is a subset of
II‘I‘unit(G).

Xu proved the following key lemma, whose proof uses the theory of endoscopy.
Lemma 3.4 (Xu [22, Proposition 8.3 (ii)]). Let ¢ = ®icrp; W Sq, K Sy, € Yy (G). For fized
reR, if D;ﬁz () # 0 for some w € 11y, then
E<#{iel|p=p, x=(a;—b;)/2}.

The following is the first observation.

Example 3.5. Let ¢ € ®q,(G) and n € :S’; Fiz v € (1/2)Z with © > 0. Suppose that
p X Sori1 is self-dual of the same type as ¢.
(1) Consider
™= L(Aplr — 1, —a]’s7(¢, m)).
By Theorem 8.1 (3), we have 7 € Il with

b=+ (pX So, K S5).
In particular, by Lemma 3.4, if Dﬁ)ﬁx(ﬂ') #0, then k < mg(p™X Sopi).
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(2) Assume that x =1, and consider

= L((pl - 171, 2,10, =1]% 7 (¢, m)).
By Theorem 8.1 (3), if a < mgy(p), then m € 11, with

)= —pP" + (PR 1 W G) P + (p K Gy B 55)*"
In particular, by Lemma 8.4, if D’(jﬁ)'l (m) # 0, then k < mg(pX S3).

3.2. Highest derivatives of tempered representations. In [8, 9, 10], Jantzen studied the

derivatives of irreducible representations of G,,. To do this, he used the extended Maeglin—

Tadi¢ classification, which characterizes irreducible tempered representations by their cuspidal

supports and the behavior of Jacquet modules. See [8]. Since the behavior of Jacquet modules

of irreducible tempered representations is known by the previous paper [2], one can easily

translate Jantzen’s results in terms of the local Langlands correspondence (Theorem 3.1 (2)).
The highest derivatives of tempered representations are given as follows.

Proposition 3.6 (]9, Theorem 3.1]). Let ¢ € Pg,(G) and n € :S’; Fiz a positive half-
integer x € (1/2)Z. Suppose that p X Sopi1 is self-dual of the same type as ¢. Denote
m = meg(p X Sazy1) > 0 by the multiplicity of p & Sozyq in @.

(1)

When x > 0, we have
DYy |z( m(d,m) =7 (¢ — (p B S2041) " + (p B S2-1) ", 1) .

It is the highest derivative if it is nonzero. Moreover, D! ol |z( m(p,m)) =0 if and only if
e m > 0; and

® 9D pK Sy 1 and n(p X Sazi1) # n(p X S21),
where we understand that ¢ DO p X Sy and n(p ® Sy) = 1 when p is self-dual of the
opposite type to ¢.

Suppose that m > 0, x > 0 and Dp‘ |z( w(¢p,m)) = 0. If m is odd, then

DIV (r(6,m) = 7 (6 — (0B Sapy1) ™™ 4 (p 8 S 1)L 7).
If m is even, D;ﬁ;l)(ﬂ(gb,n)) is equal to
L (Ap[x —1,—z];m (d) — (p X Sy 1) + (p X Sgp1)®™ 2, 7])) )

In particular, in both cases, D;ﬁ;l)(ﬂ(qﬁ,n)) is irreducible and the highest derivative.

Moreover, pm ol |z ( (¢,m)) is tempered if and only if m is odd.

When © = 0, set k = [m/2] to be the largest integer which is not greater than m/2.
Then

DW (n(p.m)) =cp - (</> - p®F, 77)
with
ok—1 if p is of the same type as ¢ and m is even,
- {Qk otherwise.

This is the highest derivative.
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Remark 3.7. (1) In [2], the highest derivatives of irreducible tempered representations
was also considered, but Proposition 6.3 and Remark 6.4 in that paper are mistakes.
(2) One can also prove Proposition 3.6 by using results in [2].
(3) When p is not self-dual, z > 0 and m = mgy(pK Saz11) > 0, we have my(p¥ RSop11) =
m and

W(ébﬂl) = Ap[mv _x]m A 77(¢07"70)a

where ¢pg = ¢p—(p@®p" )P K Sop 11, and ny = n|Ag,. In this case, the highest derivative
18

DY (w(d,m)) = Dl = 1,2]™ x (g0, m0).
Here, when x =0, we omit Ay[z —1,x].
As a consequence, we have the following.

Proposition 3.8. Let 1 = 7w(¢,n) be an irreducible tempered representation of G,. Fix
x € (1/2)Z and assume that p X Sy|q 41 is self-dual of the same type as ¢.

(1) Suppose that M, (m) = [(x1,k1), ..., (e, ke), (2, k); M (m1)] where x> 0 and m =
7(¢p1,m1) tempered (t can be zero). Then x = 1/2, or ¢1 contains p X Sop_1 with
multiplicity greater than or equal to k. Moreover, if ¢1 contains p® Sazi1 and n1(pX
Sozt+1) # m(p® Saz—1), then k is even. Set

b2 = 61 = (PR S2p-1) ™" + (p B S301) ™,
and define ny € qu: so that na(p' B S,) = m(p' ®S,) for any (p/,a) # (p, 2z + 1) and

m(p™ Sazy1)  if o1 D p X Sopy,

X Sort1) =
m(p 2+1) {nl(p X Soz—1) otherwise.

Here, we understand that ¢1 O pX Sy and n1(p X Sp) = 1 when © =1/2. Then
Mp_(ﬂ-) = [(‘Tla kl)a R (xta kt)7 Mp_(ﬂ-(qb%Th))] :
(2) Suppose that M, (7) = [(x1,k1), ..., (e, ke), (2, k); M, (m1)] where © = 0 and m =
7(¢p1,m1) tempered (t can be zero). Set

¢2 = p1 + pP".
Then there exists 1o € Zl; with n2| Ay, = m1 such that

M, (m) = (21, k1), ..., (mt,kt);M;(ﬂ(¢2,n2))] .

(3) Suppose that M, (m) = (21, k1), ..., (2, k), (—, k‘);Mp_(mﬂ where x > 0 and m =
w(p1,m) tempered. Then
e k=1;
o there exists 1 < t' <t such that

M, (m) = (1, k1), ..., (@e, k), (2, ), (= 1,1),..., (==, 1); Mp_(ﬂ'l)]

for some odd K';
e ¢1 contains p X So,_1 with multiplicity greater than or equal to K';
e ¢1 does not contain pX Sopi1.
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Set

$2 = ¢1 + (p B Sapp 1) T — (P& Sppq) V71,
and define ny € Ag, so that na(p' B S,) = n1(p' ®Sy) for any (p',a) # (p,2x+1) and
n2(p ® S2z41) = —m(p X Sap—1). Then

My (m) = [(w1, k1), - (@, ) M, (m(d2,m2))] -

Proof. We show (1) and (2) so that « > 0. If an irreducible representation 7y satisfies that
M, (m) = [(.’El,kl),...,([L‘t,k‘t);Mp_(Wg)], then M, (m2) = [(1:,k:);M;(7r1)]. By applying
Corollary 2.12 to m; and 7, we see that 7o is also tempered. If mo = 7(¢p2,72), the relation
between (¢1,m1) and (¢2,72) is given in Proposition 3.6. Hence we obtain (1) and (2).

We show (3) so that M, (m) = [(xl,kl),...,(xt,kt),(—x,k);M;(m)] with x > 0. By
applying Corollary 2.12 to m, we see that there exists 1 < ¢’ < ¢ such that M, (7) =
[(xb ki), (@ ky), (2, kD), (2 — 1,KS), ..., (=2, Kby )s Mp_(Trl)] with k] > --- > Ky, =
k. Take an irreducible representation 7 such that M, () = [(wl, i)y ooy @y, ); M, (7?2)].
Then M, (mg) = [(z,K}), (x —1,K)), ..., (=2, kb q); M, (m1)]. Since m is tempered, by
Corollary 2.12, we see that my is also tempered. Write my = m(¢2,72). Then by Proposi-

tion 3.6, we have

e ¢ contains p X So, 1 with even multiplicity 2m > 0;

e ¢ contains p X Sy, 1 and n2(p X Sopt1) # n2(p X Sop—1);

e ki=2m—land ky=---=kj, =1

o ¢1 = ¢ — (p X S9,41)P?™ + (p X S9,_1)P?™~2 50 that ¢ contains p K S, 1 with

multiplicity greater than 2m —2 =k} — 1.
Hence we obtain (3). O
When p X Syj,41 is not self-dual of the same type as ¢, a similar (and easier) statement

holds. We leave the detail for readers. We note that:

e When p & Sy, 41 is self-dual of the opposite type to ¢, the case (3) cannot occur.

e When p is not self-dual, the case (1) cannot occur.

3.3. Irreducibility of certain induced representations. Using the highest derivatives,
Jantzen proved some irreducibility of parabolically induced representations. For ¢ € ®4,(G),
we denote the multiplicity of pi.S, in ¢ by mg(pXS,). For consistency, we define mg(pXSy) =
1 and n(p X Sy) = +1 if p is self-dual of the opposite type to ¢.
Theorem 3.9 ([9, Theorem 4.7]). Let ¢ € ®gp(G) and n € 3’; Fiz a € Z with a > 2 such
that p X S, is self-dual of the same type as ¢. Consider p| - |aT_1 X m(p,m).
(1) If mg(p X Su—2) =0, then p| - \aT_l X (p,m) is irreducible.
(2) If my(p X Su—2) =1, then
(a) p|- |an1 x (¢, n) is reducible if mg(pX Sy) =0 or n(pX S,) = n(p XN S,—2);
(b) p| - |an1 X m(¢p,n) is irreducible if mg(p X Sy) >0 and n(p™X S,) # n(p X Se—2).
(3) If my(p X Su—2) > 2, then p| - ‘%1 X w(p,m) is reducible.

We also need the irreducibility of other parabolically induced representations.

Proposition 3.10. Let ¢ € Py, (G) and n € 3; Fiz x € (1/2)Z with x > 1 such that
p X Sori is self-dual of the same type as ¢.
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(1) Apler — 1, —z] x w(¢,n) is irreducible if and only if ¢ contains both p X Sopi1 and
p & Soz—1, and n(p X Sazi1) # n(p W Sagp—1).

(2) If ¢ contains both pX Soyy1 and p X Sop—1, but if n(p ™ Sozt1) = n(p X Sop—1), then
Aple =1, —x] X L(Ap[x — 1, —x]; (¢, 1)) is irreducible.

Proof. The only if part of (1) is proven in [2, Proposition 5.2]. The if part is similar to that
proposition. Assume that ¢ contains both p X So,11 and p X So,—1 and n(p X Sopi1) #
n(p ™ Saz—1). Suppose that A,z — 1, —x] x w(¢,n) is reducible. Note that by Tadi¢’s for-
mula (Theorem 2.4) and by the Casselman criterion, this standard module has a unique
irreducible non-tempered subquotient, which must be the Langlands subrepresentation. Take
an irreducible quotient 7’ of A,z — 1, —x] x 7(¢,n). Since the Langlands subrepresenta-
tion appears in the standard module as subquotients with multiplicity one, we see that «’
is tempered. Moreover, 7’ € Iy with ¢' = ¢ + p K (Sap41 + S22-1) by computing the

Plancherel measure of 7’ (see [5, Lemma A.6]). We write 7’ = 7(¢/,n). When D! ol ‘m( (¢, m))
(k+1)

is the highest derivative, by Proposition 3.6, we see that Dpl-\” (7') is equal to the irre-
ducible induction Ay[z — 1, —(x —1)] x ol |z( m(p,n). I n'(p® Sapy1) =1 (pX So,—1), then
Df}ﬁ;l)(ﬁ’ ) is tempered such that its L-parameter ¢” does not contain p X S, 1, whereas, if

Al —1,—(x—1)] x ol |z( m(¢,n)) is tempered, then its L-parameter must contain pX.So; 1.

This is a contradiction, so that we have n/(p K Soz11) # 17’ (p X Sa,—1). In addition, we have
equations of the highest derivatives

DU, o DED () = Aglw —2,~(a — 2)] 5 DY)y 0 DY), (w(om)) w22

pl-=

D" o D"V (') = DY o DY, (n(g,m)) ite =3,
ol 2 ol-|2 o3 ol-13 2
Dijjla’ o DY (') = 2- Do 0 DI, (m(6.m)) ifo =1

In each case, by Proposition 3.6, A [z — 2, —z| appears in exactly one of the left or right hand
side. This is a contradiction.
(2) is proven similarly to [10, Lemma 6.3]. We give a sketch of the proof.

e For ¢/ =¢—pK (S2z4+1 + S22-1), we have

m(p,n) = Az, —(x — 1)) x w(¢', 7).

o If we set m = L(A,Jx — 1,—z];m(¢,n)), then m — Ay[r — 1, —z] X Az, —(z —1)] x
7(¢’,n’). This implies that 7 — L(A [z — 1, —z], A [z, —(xz — 1)]) x 7(¢/,n') or T —
Aplz, —z] x Aplz — 1, —(z — 1)] x w(¢’,n’). Since 7 is non-tempered, the former case
must hold.

o Put m = my(pXSas11). Since L= (L(Ap[z—1, —z], Ap[z, —(2—1)])) = Ry |-+ (L(Ap[r—
1, —z], Ay[z, —(x — 1)])) = 0, and since L(A [z — 1, —z], A [z, —(z — 1)]) commutes
with p| - |*, we see that Déﬁ;l)(ﬂ') is the highest derivative, and

DY () = LAl = 1,=a), Ay fw, —(x = 1)]) x DSV (o)

e Set A= L(A [z — 1,—x]* (¢, n)). Since up to semisimplification
Al — 1, —a]? » w6, 1) =Agle — 1, —2] x Ayle, —(x — 1)] % (6, )
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=L(Ap[z — 1, —z], Ay[z, —(x — 1)]) x 7(¢,n)
D Ap[z, —x] x Aplr — 1, —(z — 1)] x w(¢p,n),

we see that X is a subrepresentation of L(A [z — 1, —z], Az, —(z —1)]) x 7(¢,n). In
particular,
DI () < LAl — 1, —a], Aglw, —(z = 1)]) x DI (n(6,m))

is the highest derivative.

e Since A — Ajy[r — 1, —z] x 7, we must have
m m—1
DY (V) € Al — 1, —(z = 1)] x D1 ().

(m—1)
pl-*

Ale,—(x = 1)] x (p| - [9)" 1 % DY () or A > LA e — 1, —(@ = 1), | - [%) x
(p| - [*)™ ! x Dm;l)(ﬂ). Since z > 1 and Df}ﬁi()\) # 0, the former case must hold.
Moreover, we see that

In particular, since A = (p| - |*)™ x Ayle — 1, —(z — 1)] x D (), we have A —

A= Aylz,—(x—1)] x7.

e Since A,[z, —(x—1)]x7w(¢,n) — 7, we see that A is the unique irreducible (Langlands)
quotient of Ap[z,—(xz — 1)] x m. Since this quotient appear in subquotients with
multiplicity one, A [z, —(x — 1)] x m must be irreducible.

This completes the proof. O

3.4. Mceglin’s construction. To obtain Theorem 3.3, Moceglin constructed A-packets Il
concretely. In this subsection, we review her construction in a special case. For more precision,
see [16, 17, 19] and [22].

Let ¢ € WUyp(Gp). We assume that ¢ is of the form

Y =¢o+ (@pﬁsaiﬁsbi>

i=1
such that
(a) ¢o € Pgp(G) such that g9 B pX Sy for any d > 1;
(b) a; > b; for any 1 <i <r;
(C) if a; — b; > ay —bj and a; + b; >aj+bj, then ¢ > j.
Note that the last condition may not determine an order on {(ai,b1),..., (ar,b,)} uniquely.
Once we fix such an order, we write p X S,, K S5, <y p X Saj X Sbj if ¢ < j.

Fix ny € @ such that if ¢g = PB;¢; is a decomposition into irreducible representations,
then n9(¢s) = no(¢;) whenever ¢; = ¢;. Let [ = (I1,...,l,) € Z" and n = (n1,...,n,) € {£1}"
such that 0 < ; < b;/2 and

-
mo(zgo) [ [P/l = 1.
i=1
For these data, Moeglin constructed a representation 7, (¥,1,m,m0) of Gy, If the order <y is
ﬁxedv we may write ﬂ(wvb mn, 770) = T<y, (T/J,L m, 770)

Theorem 3.11 (Mceglin). Notation is as above.
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(1) The representation w(,1,n,1m0) is irreducible or zero. Moreover,

Iy = {7(¥,l,m,m0) | L,n,m0 as above} \ {0}.

(2) Ifﬂ-(wvb ﬂa 770) = 7T(1/1,ll7 717 776) 7& 07 then é = K} o = 77(,); and N = 77; unless ll - bl/2
(3) Assume further that a; —b; > a;—1 +b;—1 for any i > 1. Then w(¢,1,m,m0) is nonzero
and is a unique irreducible subrepresentation of

r

X L(ApB;, —Ai], Ap[Bi + 1, =A; + 1], ..., Ap[Bi + 1; = 1, = A; + 1; — 1]) x w(é, 1),
i=1

where A; = (a; +b;)/2 =1, B; = (a; — b;)/2, and

¢ = ¢o+ (@ p ™ (Sap,yor,41 + -+ SQAi—2li+1)> ;

i=1
and 1) € Sy C Ay is given by 1l Ag, = 10 and 1(p R Sap o1, 20-1) = (~1)° " n; for
1 <c< bi — 2li.
(4) Suppose that

,
W = ¢o + (@p Sy K Sm) € VU, (G)
i=1
also satisfies the above assumptions (a)-(c). Assume further that a; > a; for anyi > 1
and that a; — b; > a;_, + b;_1 for any i > 1. Then

W(wvla ﬂv 770) = Jac al.—1 ap41 O 700 Jac aj -1 ay+1 (W(w,ala ﬂa 770))

ar—2 +
P2 pl| 2 ol T pl T2

For the proof, see [22, §8].

Example 3.12. Let us consider the situation of Example 3.5 with x > 1. Set v = ¢+ (p X
Soz X Sg)b. Write

Y=o+ (@pﬁsaiﬁsbJ

i=1
as above such that ay < --- < a, and b; € {1,2}. Define
el e sothatl,=11ifb;=2, and l; =0 if b, = 1;
o 1€ {£1}" so that n; = n(p™ S,,) if b; = 1;
e 10 € Ag, by 1o =Nl Ag,-
Then it is easy to see that w(1p,1,n,m0) = L(A,x — 1, —z]%; 7 (0, m)).

Similarly, we have the following proposition, which is a key observation.

Proposition 3.13. Let ¢ € $y,(G) and n € 3; Fix x € (1/2)Z with x > 1. Suppose that

pXSoz 11 is self-dual of the same type as ¢. Assume that mg(pXSasy1) # 0, me(pXS2,—1) # 0
and

n(p B Sog41)n(p W Soz—1) = <_1)b+1'
Then L(A, [z — 1, —2)% 7 (¢, 7)) € Il with

Y =¢— px(Saps1 + Soe_1) + (p X Sop K Go)PFL,
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More precisely, when we write

) = o+ (@msaixsbJ

i=1
as above such that a1 < --- < a, and b; € {1,2}, define
e lcZ" sothatl; =0 for any 1 <i<r;
o 1€ {£1}" so that
n(p X Sq,) if bi =1,
TP R Sy ) if b= 2;
o 1m0 € Agy by mo = 17 Ag,.-
Then (¢, L,n,m0) = L(A[z—1, —z] (¢, n)). In particular, ifD;’f_)lx(L(Ap[x—l, —z]; (¢, 1)) #
0, then k < mgy(pX Sapqq) — 1.

Proof. When b = 0 or b = 1, it follows from Theorem 3.11 together with Proposition 3.6.
Suppose that b > 2. Take

Y =1 — pN Sy, W So+ pX Sopyo B S — EB pRSs, | + @ p ™ Sy
1<i<r 1<i<r
a;>2x+1 a;>2x+1

such that al. > a,._; > --- are sufficiently large so that myy (pX Sap11) = my (p & Saz43) = 0.
By Theorem 3.11 (4), we have m(¢,L,n,m0) = J2 o Ji(w(¢',1,1,70)) with

Ju= Jacp e gl

J2_<Jac ah—1 aTH)o Jac ol -1 o1 O
ol 72 ol 2 ol ™ 2 ,pl|” 2

Since I; = 0 for any 4, we may apply the induction hypothesis to 7 (¢, 1, 7,1M0). Hence
w1, mo) = L(Ayle — 1, =2~ 1 w(¢/, 1)), where
¢ = — (P& Sop W S)P — p& oy W So + p & (Sap_1 + ST2 1 + Sawss)

=6+ pR(Spi1+Sys)— | P pRS |+ | @ pRS,
1<i<r 1<i<r
a; >2x+1 a; >2z+1

Note that m¢/(p X S2x+1) == 2, mqy(p X SQerg) =1 and n’(p X ngfl)n/(p X S2:1:+1) = (*1)17.

Take x € {0,1} such that b = x mod 2. By Proposition 3.10, A lx — 1, —2] x L(A [z —
1, —z]'" % m(¢',n')) is irreducible. Note that any irreducible subquotient of A [z — 1, —z]% is
of the form

L(Ap[x -1, _33]5 Ap[x7 —(:U - 1)])a X (Ap[x7 —.1’] X Ap[x -1, _(x - 1)])6

with a4 § = ¢. Considering the Langlands data of m(¢’,1,1,10), we see that it is a subrep-

resentation of
b—2+k

L(Aplr =1, —a; A, —(z = 1)) 2 % L(Ap[z — 1, —a]' %5 m(¢/, 7).
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Note that this induced representation is irreducible. Indeed, it is unitary so that it is semisim-
ple, but since it is subrepresentation of a standard module, it has a unique irreducible sub-
representation. Hence (1,1, 1,70) is equal to

b—2+k

L(Aplz = 1, —al; Apla, —(z = 1)]) 2 2 Jy o Ji(L(Ap[z, —(x = D' 7(¢',n'))).
Since Jac,.j=+1(m(¢',7')) = 0, we have
J2 0 J(L(Ap[z, —(z — D' 7(d, 1)) = L(Aplw, —(z — D] T2 0 Ji(n (¢, 1))
By [2, Theorem 4.2], we have
Joo Ji(m(¢',n') = L(Aple, —(z — 1)];7(¢, ).

Therefore,
m(¥,5n,m0) = L(Aplz — 1, —z]; Aple, —(z — 1)])
L(A [z, —(z = D]’ (6, m)),

as desired. O

X L(Aplz, —(z — DI m(e,m))

12

When x = 1, we have the following more general version.

Proposition 3.14. Let ¢ € ®,(G) and n € S‘; Suppose that p is self-dual of the same type
as ¢. Assume that my(p) # 0, mgy(p X S3) # 0 and

n(p)n(p B S3) = (—1)*+.
If a <mg(p) — 1, then L((p| - |71, Ap[0, =1]%; (¢, 7)) € 1L, with
=0 —pP+ (p R 51 K G3)%
— (p+ p B S3) + (p R Sy K §p) PV,

In particular, if Dfﬁl (m) # 0, then k < mg(pX S3) — 1.

The proof is the same as the one of Proposition 3.13, but it requires Mceglin’s construction
more generally since ¢ contains p X §1 X S3. We omit the detail.

4. DERIVATIVES OF CERTAIN REPRESENTATIONS

Let ¢ € ®g,(G) and n € 3’; Fix x € (1/2)Z with > 0 such that pXSs,4 is self-dual of the
same type as ¢. Let m = L((p|-|7%)%, A,z — 1, —2]% (¢, n)). By Jantzen’s algorithm recalled
in §2.5, the computation of the highest derivatives of arbitrary irreducible representations is

reduced to the one of D,()ﬁz (m). In this section, we give an algorithm to compute this for
x> 1.

4.1. Statements. The following is an algorithm.

Theorem 4.1. Suppose that x > 1.

(1) If mg(p® Sagy1) # 0, me(p® Sap—1) # 0 and n(p B Sozi1)n(p ¥ Sap—1) = (—1)>F1,
set

= ¢ — pR (Sap1 + S2p—1) + (p R Sz B S2) 0T,
Otherwise, set 1) = ¢ + (p X Sop W S2)P0. Then L(A [z — 1, —z]% 7(¢,n)) € Iy
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(2) Put m = my(pX Sopi1), m' =my(p & Sop_1), and
| = min{a — m’,0}.

Then D/()ﬁ:l) (L((p| - |7®)%, Ayl — 1, —x]% 7 (¢, m))) is the highest derivative. Moreover,

it is a unique irreducible subrepresentation of

(ol - )% % DY (LA — 1, =] m (6, 1))

ol
(3) If we set 9 = —(pRS, 1) " +(pKS201)®™, then D' (L(A fw—1, —a]’s 7(6,m))) €
Iy . In particular, if we write

¢:¢0+<@P®Sazxsb,>; ¢/:¢0+<@p®5a;®3bi>

i=1 i=1
such that ay < -+ < a,, a} <--- <al., and such that ¢po p pXR Sy for any d > 0, then
w(¥, L, m0) = L(A,[x — 1, —]% m(¢, 7)),
(@, L mg) = DL (LAl = 1, ~a]"s 7(6,m))

for some data. These are related as follows:

o = 1o = 1| Ag,;

if b, =1, then I, = 0;

if b, = bj = 2, then I} = 1; if and only if m is even;

if b, =1 and a} # 2z — 1, then n, = n(p X S,,);

ifb, =1 and a}, =2z —1, or if b, =2 and I, = 0, then

These values are equal to each other if ¢ O p™X (Sop—1 + S2z41)-
(4) We can compute the Langlands data of w(y',l',n',ny) by using Example 3.12 and
Proposition 3.13.

We can also write down this theorem more explicitly. Let x € {0,1} such that x = b mod 2.
Set mgq = my(p X.Sy) for d > 1. For d > 3, define

5 1 if mgma—2 # 0 and n(p X Sy) # n(p X Sq-2),
470 otherwise.

Put

¢ = ¢ — (P B Saay1) P> + (p B Spp1) PN
Let ' € .Z; be the pullback of 1 via the canonical map Ay — Ay — Sy. The following
is a reformulation of Theorem 4.1, which follows from Example 3.12 and Proposition 3.13
immediately.

Corollary 4.2. The notation is as above. Let m = L((p|-|72)%, A,z —1,—x]% (¢, n)). Then

sz (m) is the highest derivative with
[ max{a — maz—1 + magt1, M22y1 — 1} if Mog—1M2gt1 # 0, K # 02041,
| max{a — maoy_1 + Mazi1, Mowi1} otherwise.

Moreover:
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(1) Suppose that maoz+1 = 0. Set | = max{a — maoz—_1,0}. Then
(m) = L((p| - |7*)* ", Ayl — 1, =]’ m(6, ).
(2) Suppose that moy_1moy41 # 0. Set

max{a — maoz—1,0} if K= 02241,
max{a — maoz—1 + 1,0} if K # dop11.

pW
pl-®

(a) If k # d2z41, and if moz11 s odd, then

DY () = L (ol - 175 Aple = 1, =als w0 + p B (Saas1 — Sae-1),7)) -

(b) If k # 02541, and if may41 is even, then

l T - —xr\a—
DL 0 () = L (ol - 7 Agla = 1, —a]" (@ = (p B Sam1)*2,7) ) -

(¢) If Kk = 02541, and if maz41 is odd and b > 0, then

I+moy —x\a— _

D;ﬂ_x ? +1)(7T) =L ((P‘ ' ’ ) l7 Ap[x - 17 _x]b 1§7T(¢/ + P X (S2z+1 + 5217—1)777/)> .

(d) If k = 02541, and if may11 is even or b =0, then

I+mag —z\a—
DY () = L (o |75 Ayl = 1, =2l m(d) 1))

(3) Suppose that maz—1 = 0.
(a) If magy1 is even or b =0, then

DUt (m) = LA far — 1,—al i w(d ).

where 1 (p X Sap—1) = (—1)1(p X Soy11).
(b) If mag4q is odd and b > 0, then

D) (m) = L(Aplw — 1, —a]" ™5 7(¢ + p B8 (Saam1 + Soat1),75),

where ny(p R Sz 1) = (=1)°n(p & Sazi1) and ny(p R Saei1) = 1(p W Sazt1).-
Remark 4.3. When x = 1/2, we formally understand that mg = 1, n(p ® Sp) = +1 and

a = 0. Then Corollary 4.2 still holds for x = 1/2 ([10, Theorem 3.3]). Note that when
x =1/2, the case (3) does not appear.

Recall that for k' > 0, the parabolically induced representation (p| - |*)* x Dl()’r,)‘z () has a
unique irreducible subrepresentation 7/. When &' = 0 (resp. k' = k), we have 7’ = D/(JIIC)I* (m)

(resp. 7’ = 7). When 0 < &k’ < k, the following formula follows from Corollary 4.2 immediately.

Corollary 4.4. Let 7 = L((p| - |7®)%, Aplz — 1, —z]7(p,n)) be as in Corollary 4.2, and

p®

sz(w) be its highest derivative. Set

min{a, ma, 1} if K= 02241,
apg = . .
min{a, mo,—1 — 1} if K # doz11.
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Suppose that 0 < k' < k. Then the unique irreducible subrepresentation @ of (p| - |*)¥ x
Df}ﬂz(w) is of the form L((p| - |7%)%, Ay[x — 1, —2]% ; 7w(¢pr, mir ), where (ags, by, dpr, mpr) s
given as follows.

(1) Suppose that moz+1 = 0. Then k =a —may—1 > 0 and

(akla bk/7 ¢k/a nk’) - (k, + max—1, b7 ¢7 77)
(2) Suppose that moz_1moz+1 # 0.
(a) If K 75 (52$+1, then (ak/, bk,/7 ¢k’7 ﬁk/) 18 equal to

(ag,b,¢' + (pX Sgw+1)®k,+l - (pK Sg$_1)®kl+1,n') if K' < mogy1 — 1,k # may 1 mod 2,
(a0,b+1,¢" + (p X Sop 1) — (0K S, 1)FK+2 1) if k' < maogy1 — 1,k = maogy1 mod 2,
(k" = mazi1 + maz—1,b,¢,7) if k' > mozpr — 1.

(b) If k = 02541 and b > 0, then (ag/, by, P, M) is equal to
(a0,b, ¢ + (p B Sopy1)®F — (9K Sop1)®¥ 1) if k' < maogy1, k' = maogy11 mod 2,
(a0,b = 1,¢" + (p R Sou1)®¥ T — (pB® Sop )KL 0f)  if K < mgpi1, K # Moy mod 2,
(K" — maps1 + moz—1,b,0,1) if K> mogqr.

Similarly, if kK = 62441 and b =0, then (ay, by, dpr, i) is equal to
{(a[)a 0,8 + (p B Saz1)®* — (p & Sop 1)K 1y if K < mogy1,

(K" —mazy1 4+ maz—1,0,0,1) if k' > mogy1.
(3) Suppose that may—1 = 0. If b > 0, then (ag, by, dpr, nir) s equal to
(0,b,¢' + (p B Sgpi1)®* — (p R 521,1)@”,17,’]) if k' < magi1, k' = moz1 mod 2,
0,b—1,¢' + (pX Sogiq)EFHL - (pX ng_l)@k/_l, ) if K < mogi1, k' # maogpy1 mod 2,
(K" —mazi1,0,0,m) if k' > mogy1.

Similarly, if b= 0, then (ay, by, dpr, npr) is equal to
(07 07 (ZS/ + (P X SQJ:-}—I)@kl - (P X SQZ‘—I)@klv 771/)) Zf kl < Mag+1,
(k/ - m21}+17 07 (rb? 77) Zf kl Z m2$+1-

4.2. Examples of the Aubert duals. Let m be an irreducible representation of G,,. By
Theorem 2.13 and Proposition 3.8, if one could compute M;V (m) for all p, one would obtain the
Langlands data of the Aubert dual 7 of 7w almost explicitly. In this subsection, we give some
specific examples of explicit calculations of MY, (7) and # for some irreducible representations
7 of Gy, = Spy,(F). When ¢ = Sy, @ --- @ Sg, € ®(G) and n; = 1(Sy,), where dy, ..., d; are
all odd, we write
m(p,n) = W(d?lj e vd?t)'

We also write 1 = 1gr,, (r), and Alz,y] = Ay, y].

Let us consider 7 = L(A[0, 2], A[0, —=1];7(37,37,5%)) € Irr(Spyg(F)). Note that Jacy.j«(7) #
0 = =z € {0,1,2}. We compute the highest derivatives by applying Jantzen’s algorithm
recalled in §2.5. For x = 2, we have:

(1) m < L(A[0,-2], A[0,—1]) x 7(37,37,5T);
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(2) 7w Al0,~112 % L(|- | % n(3,3,57)):
(3) by Corollary 4.2, we have Jacy.j2(L(] - |72 7(37,37,5%))) = 0;
(4) we conclude that Jacy.j2(7) = 0.
For z = 1, we have:
(1)=(2) 7<= A0, —2] x L(A[0, =1];w(37,37,57));
(3) by Corollary 4.2 (3)-(a), we have D{T} (L(A[0, ~1];7(37,37,5%))) = L(A[0, ~1];w(1*, 1*,5%))
so that

T LA, =2], (|- ")) > L(A[0, 1) w(1F, 1%, 57));
(W-(5) Dypp(m) < LA, ~2],|-[') x LAD, 1 m(1+, 1+,5%);
(6)—(7) by Corollary 4.4 (3), we find that D‘(H (r(1%,17,37,37,5%)) = L(A[0, —1]; (1T, 1F,5T))
so that
Dyjp(m) < A0, =2] x 7(17,1%,37,37,5%).
Hence
M (m) = [(1,1); My (L(A[0, —2];m(1F,1%,37,37,5T)))] .
Set m = L(A[0,—2];7(1%,17,37,37,5%)). Note that Jac.j(m) #0 = x € {0,2}. By
a similar computation as above, we have Jacy2(m1) = 0. Since
7 — A0, —2] x 7(17,17,37,37,5T)
12 x A[-1,-2] x7(37,37,5T),
we have
My (m) = [(0,2); My (L(A[-1,-2];7(37,37,5%)))].
Set my = L(A[-1,—2];m(37,37,57)). Note that Jacpje(m2) #0 = z € {~1,1,2}. By a
similar computation as above, we have Jac|.2(m2) = 0. Since
7o — A[-1,-2] x 7(37,37,5T)
— A[-1,2] x (|- N2 x7w(17,17,57)
< (|- Y2 x A[-1,2] x 7(17,17,5%),
we have
My (m) = [(1,2); My (L(A[-1,-2);7(17,17,51)))].

Set m3 = L(A[-1,-2];7(17,17,5T)). Note that Jac|.j«(m3) # 0 = = € {-1,0,2}. By
applying Jantzen’s algorithm for x = 2, we have:
(1) m3 — A[=1,-2] x (17,17,5);
(2) mg = |- [7P < L(| - |7 w(17,17,51));
(3) by Corollary 4.2 (3)-(a), we have D|(2|3(L(| 7% w(17,17,5%))) = (17,17, 3%) so that
my = L [T (|- [7)%) = m(17,17,37);

(4)-(7) D{d(ms) = |- [T (17, 17,3%).
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Hence
My (m3) = [(2,2): My (L(| - |75 7(17,17,3%)))].

Set my = L(| - |~';m(17,17,3%)). Note that Jac.=(m4) # 0 = z € {—1,0,1}. Since we

have now
My (m) = [(1,1),(0,2), (1,2), (2, 2); M (ma)],
by applying Theorem 2.9 to 7, we see that Jac|.ji(m4) = Jac|.jo(m4) = 0. Therefore,
My (ma) = [(-1,1); My (n(17,17,3))].

Finally, it is easy to see from Proposition 3.6 that M, (7(17,17,3%)) = [(0, 1), (1, 1); 7(11)].

Hence we conclude that
Mii_(ﬂ—) = [(17 1)7 (07 2)7 (17 2)7 (27 2)7 (_17 1)7 (07 1)7 (17 1>; 7T(1+)]'
Therefore,
Ml_(ﬁ—) = [(_17 1)) (01 2)7 (_17 2)? (_27 2)7 (17 1)a (07 1)7 (_17 1); 7T(1+)]'
By Theorem 2.13 and Proposition 3.8, we have
e |7 x A0, =22 x w(17,37,37).

Remark 4.5. This method does not always determine 7. For example, let us consider we =
L(A[0, —2];7(15,1¢,3T)) € Irr(Spyo(F)) for a sign € € {£}. Then for any € € {£}, we have
M;_(WE) = [(07 2)7 (17 1)7 (27 1)7 <_17 1)7 7T(1+)] .

Using Theorem 2.13 and Proposition 3.8, this implies that . = ¢ for some € € {+}. However,
the correspondence € — € is not determined in this stage. In the next paper with Minguez [3],

we will give an another idea. As a conclusion, one can find that € =€, i.e., w¢ is fixed by the
Aubert involution.

5. PROOF OF THEOREM 4.1
In this section, we prove Theorem 4.1.

5.1. The case a = 0. First, we consider the case a = 0.

Proof of Theorem 4.1 when a =0. Let m = L(A,[x — 1,—x]°;7(¢,n)). The assertions (1)
and (4) follow from Example 3.12 and Proposition 3.13. For (2) and (3), we note that

W (r) #0 = k < m by Lemma 3.4.

pll®
To determine D/(Jﬁ)”

Y=¢o+pX(Sa_, +---+58_,)
+ (pX 5290—1>€Bm/ + (p R Sop X 52)696, + (pX SQ;B—&-I)@m
+p®(5a1+'-'+5at),

where a_py < - <a_1<2x—land2z+1<a; <---<ag and ¢g P pX Sy for any d > 0.
Take an A-parameter of the form

w> :¢0+p®(5’a7t/ +"'+Sa,1)
+ (P B Sopm1)®™ + (p B Sop B S2)®Y + p K (Soy, 11 + -+ + Soy,t1)
+ PR (S + -+ + ),

(), we will use Moeglin’s construction. Write



ON AN ALGORITHM TO COMPUTE DERIVATIVES 31

where 2y; +1 = @} = 2 +1 mod 2 such that 2z +1 < 2y;+1 < -+ <2y, +1<d} <--- < dj.
When 7 = m(¢,1,1,m0), we set 7> = m(¢>,l,n,m0). Then Mceglin’s construction says that
m = Jyo Ji(ms), where

J1 = JaCoum .. pl 1 © - 0 JACh gl o1,

Jo = Jac o)1 aptl o---odJac . _,
Pl pl| 72 ol 2
Set 7' = Jy 0 J{(7) with
/ - LY .
J1 = JaCpum . plfe 0 c 0 JAC g

Then 7’ = 7« (¢',1,1,m0), where
V' =¢o+pXR(Sq_, +-+Si,)
+ (PR Sz 1)®™ 4 (pR S, K S2)®Y 4 (p K Sy, )E™
+p X (S, + -+ Saq,)-
However, the order < for (p X ng,l)murm and (pX Sy, X Sz)b/ is
pBRS, 1 <y - <y pBRS 1 <y pRSo, XSy <y p B Sop1 <y -+ <y p B Sop 1

m/ m
To change the order so that pX Sy, 1 <y pXSo, XS for all pX Sy, 1 and pX Sy, K S, we
use a result of Xu [23, Theorem 6.1]. By this theorem, we see that 7' = 7 (', ', ', n0), where
" and 7/’ are given in Theorem 4.1 (3). In particular, 7’ # 0 by Example 3.12 and Proposition
3.13.
Now, by [21, Corollary 5.4, Lemma 5.7] and Lemma 3.4, one can write

s = X Aplyis ] % Jy (7).
i=1
Hence Ji(m=) < (p| - |*)™ x J{(7=) so that we conclude that
7o (pl - [

Since D;ﬁl( ) is irreducible or zero by Proposition 2.6, we see that D(‘ |Zc(7r) = O

5.2. The case z > 1. In this subsection, we will prove the following proposition.

Proposition 5.1. Assume that x > 1. Consider # = L((p| - |7)% Aplx — 1, =] 7(¢, 7))
and mo = L(Aplz — 1, —z]% (¢, 7). Set
B { max{a —maoz_1 + 1,0} if Mog—1Magt1 # 0,00,41 # K,

max{a — ma;—1,0} otherwise.

1f D% () and DV

e ol ‘I( ) are the highest derivatives, then k — ko = I.

Assume this proposition for a moment. If [ = 0 so that k = kg, since x > 1, we have
T (p - |7%)* X mo

< (pl - ")} x (p] - |7)® % DY) (o).
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Hence we have a non-zero map

DL (m) = (pl - [7*)* % DY) (o).

Since D;’f_)'w (m) is irreducible, this map must be an injection. If [ > 0, then
m (p 175 L((pl - |7)* L Al — 1, —a]’sm(6,m).
Since D(‘?z( ((p] - |7®)*7 L, Az — 1, —z]% (¢, n))) is the highest derivative, we must have

(m) = DS (L(pl - 7)™, Al — 1, =2 (6, )

= (pl - |7~ DY) (o).

p*
ol

Therefore, Proposition 5.1 implies Theorem 4.1 (for z > 1).
Now we prove Proposition 5.1. The proof uses Jantzen’s strategy.

Proof of Pmposition 5.1. We note that £ — 1 > 0. As explained in [10, §3.4], if m =

D;(;T%\)rfl (m), 7 D;ﬁz (m) and T3 = Df(;'/.)‘z,l (m2) are the highest derivatives, then Jac,.j« (73) =
0 and

T (P| .|;v)max{6—o¢—%0} ~ (,0| ‘|z—1)max{a—ﬂ+7,0} XL(p| ’;t—l’ p| . |a:)min{a,ﬂ—7} XAp[l‘, 17—1]7 XT3

Hence we see that Dgi)‘z (m) is the highest derivative with

k =max{f —a—7,0} +7.

We compute «, 3,7 by a case-by-case consideration using Jantzen’s algorithm (§2.5). We have
to consider the following cases separately:

(1) mory—1 = 0

(2) 02241 =0, 62,—1 = 0 and mgz_1 > 0;

(3) 52x+1 =1 and 523671 0

(4) d2441 =0, d2,—1 = 1 and mg,—1 = 1 mod 2;

(5) d2z41 =1, mazr1 = 1 mod 2, d2,—1 = 1 and ma,—1 = 1 mod 2;
(6) d24+1 =1, mogy1 =0 mod 2, d2,—1 = 1 and mg,—1 = 1 mod 2;
(7) d24+1 =0, d2,—1 = 1 and mg,—1 = 0 mod 2;

(8) 52x+l =1 5290 1 = 1 and moy—1 = 0 mod 2

For example, suppose that 9,11 = 1, dop—1 = 1 and mo,—1 = 0 mod 2. Then with ¢; =
¢ — (p& Sop_1)Pm2e-1 4 (p[K Sg,_3)P™2e-172 we see that

m = DY D) = L (ol 17 Ayl =2, =2l Ale = 2. (@ = Dl (é1,m))

is the highest derivative, so that & = b+ mg;_1 — 1. Note that
m = Lpl - 7%, Aple — 2, —(z = 1)]) x Ayl — 2, —(x — 1)° x (o] - 7)™ 37w (¢hy, m)

if a > 0. By [10, Proposition 3.4 (1)], with ¢o = ¢1 — (p & Sopi1)P"2e+1 + (p K Sop 1) PM2a+1,
we see that

Ty = D;T—F:b 1+m2:c+1)< ) — L(p‘ . ’_I,Ap[x —2, —(:C 1)]b+1 (¢27772))
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is the highest derivative, so that 5 =a 4+ b — 1 + moz4+1. By Corollary 4.2 for a = 0, we have
Magt1 if b =1 mod 2,
v=ko= I
Mog41 — 1 if b =0 mod 2,

Therefore, k — ko = max{a — may+1 — £ + 1,0}, where x € {0,1} such that x = b mod 2.
In every case, a similar argument implies that &k = kg + [ with [ being in the assertion. [J

5.3. The case x = 1. In this subsection, we prove:
Proposition 5.2. Proposition 5.1 holds even when x = 1.

As explained after Proposition 5.1, this proposition also implies Theorem 4.1 for x = 1.
Note that Jantzen’s strategy to determine k from «, 3,7 cannot be applied to the case x = 1.
Instead of this, we use the following proposition.

Proposition 5.3. Let ¢ € $,,(G) and n € 3'; Suppose that p is self-dual of the same type
as ¢. Set

5 {1 if ¢ O pX (S1+ S3) and n(p ™ Sy) # n(pX Ss),

3 p—

0 otherwise.
Consider m = L((p|-|71)% 7(¢,m)). Then p|-|~L x is irreducible if and only if a > my(p) —Js.

Proof. Write mi = mg(p) and mgz = mg(pX.S3). By Theorem 3.9, we may assume that a > 0.
When a < mq, by Example 3.5, we have 7 € IL,, with ¢g = ¢ — p®* + (p K S; K S3)%. Also,
if 03 =1 and a < m; — 1, by Proposition 3.14, we have 7 € I, with

U1 =¢—p¥+ (pR S K 55)%
—(p—i—p&Sg)—l—p&SQ&SQ

(k

p|.)|1(7r) # 0, then k& < mg3 — 03 by Lemma 3.4. Since

In particular, when a < mj — d3, if D

= (p]-[7)" 3 m(6,m)
= (] - 1) 7% x (p - [71)® % DT (6, m)),
D(m3_53)

p () # 0. Since it is irreducible, we have

we have
DY () < (p] - |71 0 DY (g, ).

This implies the reducibility of p| - |~! x 7 when a < my — d3.
Suppose that a = m; — d3 > 0. We prove the irreducibility of p| - |~} x 7 by induction
on a. Suppose that p|- |~ x 7 is reducible and choose an irreducible quotient o. Note

that D), (¢) # 0. By [9, Proposition 4.1], o = L((p| - ["1)% 7(¢1,m)) or & = L((p| -
’71>G7Ap[07 —1];7T(¢2,7]2)) with
pr=0¢—p+pRSs, ¢r=0¢—p™

We consider the former case o = L((p| - |71)%; 7(¢1,m)) with ¢1 = ¢ — p+ pX S5. Note that
mg, (p) = m1 —1 > &5. By the induction hypothesis, o = p|- |71 x L((p| - |71)* L w(p1,m)) is
an irreducible induction. In particular, D/()ﬁiﬁ_&’)(a) # 0. Hence Df}ﬁ?H_%)(p\ J7txm) #0,
D(m3+1763)(7r) # 0. This contradicts Lemma 3.4. Now, we consider the

which implies that ol |1
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latter case o = L((p| - |71, A0, —1]; w(¢2,m2)) with ¢o = ¢ — p®2 so that m; > 2. Note

that Jac, (o) is nonzero and irreducible (up to multiplicity) since D,()Q) () =0 by Lemma 3.4.
If ¢’ is the unique irreducible component of Jac,(c), then

o' = L((p| - [T w2, m2))-
Recall that a + 1 = mq + 1 — d3. By the induction hypothesis,

/ {(P| ) L((p] - [TH)™ T8 (e, m2)) i > 2,
g =
(- 17127 L((p| - |71)™ 2w, ) if my =2

is an irreducible induction. Hence we have Diﬁfrg_ag)(a’ ) # 0. Therefore we have

m -0 —
DY) (Jac, (p] - |71 wm) £ 0

33)
= DU (] [T e m) £ 0

— DT () £,

which contradicts Lemma, 3.4.
The case where a > mq—J3 follows from the case a = my—4Jd3. This completes the proof. [

Now we prove Proposition 5.2

Proof of Proposition 5.2. Recall that m = L((p|-|71)%, A,[0, —1]% 7 (¢, n)) and w9 = L(A,[0, —1]%;

and that D/()T)‘I(Tr) and D/()ﬁf (mo) are the highest derivatives. Set

; { max{a —m1 + 1,0} if mims # 0,93 # k,

max{a — my,0} otherwise.

We will prove that k — kg = .

Note that
T (pl -7 > L(pl - [T Ap[0, 1) (¢, m)).
By applying Example 3.5 and Proposition 3.14 to L((p| - |71)*7, A,[0, =1]% 7 (¢, n)), we see
that Dl()| ‘3( ((pl - 7Y, A0, —1)% (¢, 7)) is the highest derivative. Hence we have k <

ko + [. Also, we see that if [ = 0, then k = kg.
Assume that [ > 0. Since 7 is a unique irreducible subrepresentation of

(pl - 171" x Ap[0,=1]" 3 7(9,m) = Ap[0,=1]" x (p] - |71)* 3 m(@, ),
by Proposition 5.3, we see that

= D0, —1]" x (p| - [T L((p] - |TH)™ T w6, m))

0 (ol - [P s L((p] - |7y ()

= 0 x (o] - [ 0 L((p] - [7™ 0 m(6,m))

s g x (p] - [ g DO (L (o] |1y ().

This implies that k > a—mj+m3. Since kog+1 = a—m1+mg, we conclude that k = kg+1. 0O

m(¢,1)),
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