

Instructions for use

Title Study on Amoeba-inspired Electronic Computing System for Solving Optimization Problems

Author(s) 斉藤, 健太

Citation 北海道大学. 博士(工学) 甲第14587号

Issue Date 2021-03-25

DOI 10.14943/doctoral.k14587

Doc URL http://hdl.handle.net/2115/84408

Type theses (doctoral)

File Information Kenta_Saito.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Doctoral Dissertation

博士論文

Study on Amoeba-inspired Electronic Computing

System for Solving Optimization Problems

（生物粘菌アメーバに倣った最適化問題を解く
電子計算システムに関する研究）

Graduate School of Information Science and Technology,

Hokkaido University

北海道大学大学院情報科学研究科

Kenta SAITO

斉藤　健太

ロゴマーク各種 北海道大学シンボルマーク等データ

#23651C DIC F 304特　色RGB
80 %
10 %

プロセスカラー
Cyan
Magenta

100 %
30 %

Yellow
Black

スクールカラーの定義

横並び、和文のみ 縦組みロゴマーク １ ロゴマーク ５

横並び、和文＋英文ロゴマーク ２

縦並び、和文のみロゴマーク ３

縦並び、和文＋英文ロゴマーク ４

縦並び、英文ロゴマーク ６

横並び、英文のみ、２行ロゴマーク ７

横並び、英文のみ、1行ロゴマーク ８

通常特殊ロゴマーク 反転特殊ロゴマーク

Copyright ©2021 Kenta SAITO.

All Rights Reserved.

A dissertation submitted in partial fulfillment

of the requirements for the degree of Doctor of

Philosophy (Engineering)

in Hokkaido University, February 2021.

Dissertation Supervisor

Professor Seiya KASAI

ACKNOWLEDGEMENTS

Acknowledgements

This thesis describes my research work carried out at Research Center for Integrated

Quantum Electronics (RCIQE) and Graduate School of Information and Science

Technology, Hokkaido University.

First of all, I would like to thank my supervisor, Professor Seiya Kasai, for his

helpful suggestions and ideas. I learned a lot of things from him such as scientific

thought, writing technique, presentation, and so on. His help made my ability about

science improve.

I am deeply grateful to Dr. Masashi Aono for drawing me into this study. He

is an extremely attractive person and has passion. They exceedingly influenced my

life and thought.

I am grateful for helpful advices and discussions to supervisors of RCIQE, Profes-

sor Eiichi Sano Professor Tamotsu Hashizume, Professor Junichi Motohisa, Professor

Masayuki Ikebe, Associate Professor Taketomo Sato, Associate Professor Masamichi

Akazawa, Associate Professor Shinjiro Hara, and Associate Professor Katsuhiro

Tomioka.

I greatly appreciate valuable discussion with all the members of Kasai’s lab-

oratory, Dr. Masaki Sato, Dr. Yin Xiang, Dr. Ryota Kuroda, Mr. Kento Shi-

i

rata, Mr. Ryo Wakamiya, Mr. Yuki Inden, Mr. Syoma Okamoto, Mr. Kentaro

Sasaki, Mr. Koki Abe, Mr. Katsuma Shimizu, Mr. Kazuki Inada, Mr. Renpeng

Lu, Mr. Naoki Suefuji, Mr. Koichi Tajima, Mr. Syunsuke Saito, Ms. Syu Onuma,

Mr. Shintaro Mizuno, Ms. Yoko Shigematsu, and Mr. Tomoya Fujiwara.

I am greatful for encouragement to my collegues, Mr. Syota kaneki, Mr. Syota

Toiya, Mr. Ryoma Horiguchi, Mr. Keisuke Ito, Mr. Satoru Matsumoto, Mr. Dai

Hasegawa, Mr. Naoshige Yokota, Mr. Taito Hasezaki, Mr. Syota Hiramatsu, Mr. Ko-

hei Chiba, and Mr. Akinobu Yoshida.

I would like to express my gratitude to technical staffs and secretaries, Mr. Kenji

Takada, Mr. Kiyotake Nagakura, Ms. Mizuho Tanaka, and Ms. Chieko Akiyama for

their supports.

Finally, I would like to thank my parents, Masataka Saito and Yasuko Saito.

They always cheered me up under any circumstances. If without their help, this

work would not have completed.

February 2021 at RCIQE

Kenta Saito

ii

LIST OF TABLES

List of Tables

2.1 Combinatorial explosion . 15

4.1 Example of bounce-back rule for F (x1, x2, x3) = (x1∨x2∨x3)∧ (x1∨

x2 ∨ x3) . 36

5.1 Summary of TSP instances and route length 69

iii

LIST OF FIGURES

List of Figures

2.1 Computational complexity in case of P ̸= NP 14

2.2 (a) Problem example of TSP and (b) optimal solution of TSP 17

2.3 (a) 100-city instance and solution obtained by (b) random sampling

and (c) nearest neighborhood method. Total route of (b) is 340696

and that of (c) is 65646. 17

2.4 (a) Problem example of Max-cut and (b) worst and (c) optimal solu-

tions, where cut sizes are 0 and 4, respectively. 18

2.5 Amoeba-based computing system. 19

2.6 Amoeba-inspired electronic computing system, electronic amoeba. . . 21

3.1 Two-dimensional Ising model . 24

3.2 (a) Trapping in local minimum and escaping from local minimum

using (b) thermal fluctuation in simulated annealing and (c) quantum

tunnel effect in quantum annealing 26

3.3 Chimera graph structure of D-Wave’s Ising machine. 29

4.1 Electronic amoeba for solving SAT. 33

4.2 Error parameters. (a) Error probability and (b) average error period. 33

4.3 (a) Photograph of physically implemented electronic amoeba and (b)

time evolutions of variables that show 4 variables out of 24 variables. 36

v

4.4 Experimental results of electronic amoeba when solving random 3-

SAT having 12 variables with 59 clauses. 37

4.5 Asymmetric dynamics of electronic amoeba. 40

4.6 Numerical simulation results of AmoebaSAT with (a) symmetric dy-

namics and (b) asymmetric dynamics. 42

4.7 (a) Example of error probability distribution when σ = 0.05 and

σ = 0.025. (b) Numerical simulation results of AmeobaSAT with

symmetric and asymmetric dynamics. 42

4.8 Solution-searching performance of symmetric and asymmetric models

when solving (a) N = 50, (b) N = 75, and (c) N = 100. Results are

sorted in ascending order of iterations about symmetric model. I

tested 100 times for each instance. 44

4.9 Average iterations of symmetric and asymmetric models to find solu-

tion when solving N = 50, 75, and 100. 44

4.10 (a) Experimental condition to evaluate expansion and shrinkage speed

of amoeboid organism. Edge position when (b) unexposed and (c)

exposed to light. 45

4.11 Analogy with energy landscape of (a) asymmetric and (b) symmetric

models. 48

5.1 Schematic of electronic amoeba with crossbar instance-mapping cir-

cuit (IMC). Amoeba core searches solution and operates with asyn-

chronous way. Crossbar IMC performs product-sum operations and

thresholding and feeds back to amoeba core. Blue boxes in amoeba

core outputs sigmoid-like function. 56

5.2 (a) Problem to be solved and (b) time evolutions of all variables. . . . 58

5.3 (a) Photograph of physical circuit and (b) time evolutions of all vari-

ables. 59

vi

LIST OF FIGURES

5.4 (a) Histogram as function of cut size when electronic amoeba solves

100-vertex Max-cut and (b) solution-searching performance, as func-

tion of number of vertexes. 61

5.5 Solution-searching time. Red and blue dots are the results of the elec-

tronic amoeba and discrete-type Hopfield neural network, respectively. 62

5.6 Numerical simulation results using formulized behavior of electronic

amoeba. (a) Iterations to find solution and (b) cut size, as function

of number of vertices. 63

5.7 (a) Calculation time of DHNN in conventional computer per iteration

and (b) number of iterations for DHNN to find solution comparable

to average one of electronic amoeba, as function of number of vertexes. 65

5.8 (a) TSP instance to be solved and (b) time evolutions of all variables

obtained from circuit simulator when solving 4-city TSP instance. . . 67

5.9 (a) Photo of implemented circuit and (b) time evolutions of all vari-

ables obtained from physical-implemented circuit when solving 4-city

TSP instance. 68

5.10 Histogram when solving several 4-city TSP instances. (a) Instance

A, (b) instance B, (c) instance C, (d) instance D, and (e) instance E. 69

5.11 (a) Histogram of quality of solutions obtained by electronic amoeba

when solving 20-city TSP instance. (b) Solution quality as function

of number of cities. Vertical axis denotes route length of electronic

amoeba divided by average route length obtained by random sampling

from 10000 trials. 70

5.12 Time for electronic amoeba to find solution. 72

5.13 Algorithm for solving TSP with linear time growth against N 72

5.14 (a) Solution quality and (b) steps to find solution obtained from al-

gorithm shown in Fig. 5.13. 73

vii

5.15 Time for 2-opt to find solution comparable to average one of electronic

amoeba. 74

5.16 Dependence of solution search time on current and capacitance value.

(a) and (b) Solution search time and solution quality as function of

currents, respectively. (c) and (d) Solution search time and solution

quality as function of capacitances in pseudopod, respectively. 75

6.1 Delayed input/output signals in electronic amoeba due to parasitic

capacitances. 80

6.2 Output waveforms of delay-induced electronic amoeba when solving

(a) Max-cut and (b) TSP. 81

6.3 Time evolution of XV k when (a) τ = 0, (b) τ = 100, (c) τ = 200, and

(d) τ = 300. 84

6.4 (a) Oscillation period and (b) number of oscillations, where they are

derived from average of all variables when solving 10-city TSP. 85

6.5 Evaluation of solution-search performance as function of τ when solv-

ing 10-city instance. (a) Solution quality and (b) iterations to find

solution. Broken line is average quality of solutions obtained by ran-

dom sampling from 10000 trials. Solid line is optimal solution of used

instance. Error bars are standard deviation derived from 100 trials

for each magnitude of τ . 86

6.6 (a) Delay scheduling and (b) output waveforms of X. 87

6.7 Solution-search performance when changing scheduling parameters.

(a) Solution quality and (b) iterations to find solution when changing

width. (c) Solution quality and (d) iterations to find solution when

changing height. ν was set to 19.04 × 10−4 − 5 × 10−6. I tested 100

times. 88

viii

LIST OF FIGURES

6.8 Dependence of normalization coefficient on solution-searching perfor-

mance. (a) Solution quality, (b) iterations to find solution, and (c)

success rate of finding legal solutions when changing νoffset. Maxi-

mum delay, width, and height were set to 300, 15000, and 3, respec-

tively. Average solution quality was derived from success trials. . . . 89

6.9 Nonlinear time evolutions of units in amoeba core. 90

6.10 Simple problem example for understanding results of delayed feedback

system. 91

6.11 Time evolutions of XA,1 and XA,2 when (a) τ = 0, (b) τ = 50, and

(c) τ = 150. 91

6.12 Time evolutions of XA,1 and XA,2 when units evolve linearly. Results

of (a) τ = 0, (b) τ = 100, (c) τ = 200, (d) τ = 300, (e) τ = 400,

(f) τ = 500, and (g) τ = 600. ∆′
in and ∆′

out were 0.001 and 0.0008,

respectively. 92

6.13 (a) Solution quality and (b) number of iterations to find solution when

solving 10-city TSP instance. 93

6.14 Time evolutions of all variables. 93

A.1 Ising-model-based algorithm (a) without and (b) with SA. 102

A.2 10-city TSP instance. Average intercity distance is 100 103

A.3 (a) Success rate in finding legal solution and (b) route length of legal

solution found divided by average value obtained from the random

sampling as function of α when solving 10-city TSP instance. 104

A.4 (a) Quality of solutions and (b) success rate to find legal solution in

Ising model. 105

A.5 Flip of (a) XA,2 and (b) XA,1 when solving 4-city TSP instance. . . . 106

ix

A.6 Simulation results of Ising model. (a) and (b) Solution quality and

number of times that Ising model finds a solution, respectively, when

α = 100. Solution quality is an average value that Ising model finds

legal solution. (c) and (d) Those of when α = max(Wuv)+1. Solution

search was made until quality of obtained solution is comparable to

solution quality of electronic amoeba. I tried 100 times for each instance.107

A.7 Simulation results of Ising model SA. (a) and (b) Solution quality

and number of times that Ising model SA finds solution, respectively.

Parameters were set to α = 100 and Tmax = 30. (c) and (d) Those

of when parameters are α = max(Wuv) + 1 and Tmax = 30. Filled

green rhombuses, blue squares, red circles, and empty purple circles

are results of k = 10−2, 10−3, and 10−4, and electronic amoeba, re-

spectively. Number of iterations was set to Tmax/k + 10000, and I

tried 100 times for each instance. 108

B.1 (a) Variable encoding of TSP for amoeba-inspired computing system

and (b) Solution example, which indicates A→ B → C → D → A. . 112

B.2 (a) Variable encoding of Max-cut for amoeba-inspired computing

system and (b) Solution example, which indicates U1 = {1, 4} and

U2 = {2, 3}. 114

C.1 Genetic-algorithm-based method in case of (a) recurrence formula and

(b) electronic amoeba. 117

C.2 Simulation results of GA-based algorithm. (a) Cut size as function of

number of generations. Red and blue dots are average quality of all

individuals and best quality, respectively. Broken green line is optimal

solution. Histograms of (b) 1st, (c) 10th, and (d) 30th generations. . 119

x

LIST OF FIGURES

C.3 Example of output waveforms of recurrence formula when solving 10-

city instance. (a)–(c) Time evolution of X1,0. (d)–(f) σ15,1.5(X1,0 +

δ1,0). Amplitudes of fluctuation (a) and (d) were δ1,0 = [−0.5, 0.5], (b)

and (e) were δ1,0 = [−1.0, 1.0], and (c) and (f) were δ1,0 = [−1.25, 1.25].121

C.4 Solution-searching characteristics of electronic amoeba with fluctua-

tion obtained from computer simulations. (a) Obtained route length

when solving 10-city TSP instance. Error bar is derived from 100

trials. (b) Number of steps to reach solution. 121

C.5 (a) Histogram of 10-city TSP instance. (b) Enlarged view. 122

C.6 Pseudopod circuit having sigmoid function whose threshold value is

fluctuation by external noise. 122

C.7 Waveforms of XV k. (a)–(c) VT + δV k and (d)–(f) XV k. Amplitudes of

fluctuation δV k for (a) and (d) were 0, (b) and (e) were [−0.005, 0.005],

and (c) and (f) were [−1.0, 1.0]. 123

D.1 (a) Variable interactions of 3-city TSP about XA1 and (b) XA,2 for

discontinuous bounce-back rule. Those about (c) XA,1 for continu-

ous bounce-back rule. Red and blue arrows indicate distance and

constraint term, respectively. 126

D.2 Performance difference between continuous- and discontinuous-type

bounce-back rule. (a) Solution quality, (b) iterations to find solution,

and (c) performance differences between continuation and discontin-

uation. 127

D.3 Histogram of obtained solutions by (a) discontinuous- and (b) continuous-

type bounce-back rule. 128

xi

CONTENTS

Contents

1 Introduction 5

1.1 Background . 5

1.2 Objectives of this work . 8

1.3 Synopsis of this thesis . 8

2 Concept of amoeba-inspired computing system 11

2.1 Introduction . 11

2.2 Combinatorial optimization problems and computational complexity . 12

2.2.1 Time complexity . 12

2.2.2 Computational complexity . 12

2.2.3 Combinatorial optimization problems 14

2.2.4 Satisfiability problem . 15

2.2.5 Traveling salesman problem 16

2.2.6 Maximum cut problem . 17

2.3 Amoeba-inspired computing system 18

2.3.1 Amoeba-based computing system 18

2.3.2 Amoeba-inspired electronic computing system 20

2.4 Summary . 22

3 Previous system overview 23

3.1 Introduction . 23

1

3.2 Ising machine . 23

3.3 Weak points in Ising machine . 28

3.4 Summary . 29

4 Amoeba-inspired analog-digital hybrid computing system for solv-

ing satisfiability problem 31

4.1 Introduction . 31

4.2 Electronic amoeba for solving SAT 32

4.3 Bounce-back rule for SAT . 34

4.4 Experimental results of electronic amoeba 36

4.5 Asymmetric dynamics in amoeba-inspired algorithm 38

4.5.1 Original AmoebaSAT . 38

4.5.2 AmoebaSAT with asymmetric dynamics 39

4.5.3 Numerical simulation results of AmoebaSAT with and without

asymmetric dynamics . 41

4.6 Asymmetric deformation of amoeboid organism 45

4.7 Discussion . 46

4.8 Conclusion . 50

5 Amoeba-inspired all analog computing system integrating resis-

tance crossbar circuit for solving maximum cut problem and trav-

eling salesman problem 51

5.1 Introduction . 51

5.2 Bounce-back rule for Max-cut and TSP 53

5.2.1 Bounce-back signal . 53

5.2.2 Variable interaction for Max-cut 54

5.2.3 Variable interaction for TSP 55

5.3 Electronic amoeba integrating crossbar circuit that performs product-

sum and thresholding . 55

2

CONTENTS

5.4 Results . 57

5.4.1 Circuit simulation results for Max-cut 57

5.4.2 Physical system for solving Max-cut 59

5.4.3 Evaluation of solution-searching performance to Max-cut . . . 60

5.4.4 Circuit simulation results for TSP 66

5.4.5 Physical implemented system for TSP 67

5.4.6 Evaluation of solution-searching performance to TSP 69

5.5 Discussion . 76

5.6 Conclusion . 78

6 Exploiting delayed feedback to improve solution quality of traveling

salesman problem 79

6.1 Introduction . 79

6.2 Formulization of solution-searching behavior of electronic amoeba

with delayed feedback . 82

6.3 Results . 84

6.3.1 Influence of delay on performance 84

6.3.2 Delay time scheduling . 86

6.3.3 Optimizing normalization coefficient 87

6.4 Reason for improving quality of solutions by delayed feedback 89

6.5 Discussion . 93

6.6 Conclusion . 95

7 Conclusion 97

A Solution-searching performance of Ising-model-based algorithm 101

B Variable encoding and stabilization condition for TSP and Max-cut111

B.1 Variable encoding and stabilization condition for TSP 111

B.2 Variable encoding and stabilization condition for Max-cut 113

3

C Improving solution quality by genetic-algorithm-based and fluctuation-

introduced methods 115

C.1 Genetic-algorithm-based electronic amoeba 115

C.2 Fluctuation-induced electronic amoeba 120

D Reformulation of bounce-back rule for TSP 125

References 129

List of publications/conferences/awards 145

4

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background

The decline in the working population due to the decline in the birthrate is an

issue that must be resolved. In order to solve this problem, optimization of vari-

ous resources, such as personnel assignment and distribution channels, is needed.

These can be formulated as optimization problems. The optimization problem can

be found anywhere: for example, traffic flow optimization enables to resolve the

shortage of workers in carriers due to the increase in demands under the condi-

tion of the coronavirus pandemic [1]. In addition, many applications for resolving

problems in the real world have been proposed: prime factorization [2], item-listing

optimization [3], path optimization of automated-guided vehicle [4], shift scheduling

of nurses [5], proposing evacuation route for Tsunami [6], job shop scheduling [7]

radio resource allocation optimization in wireless communication systems [8], traffic

signal optimization [9], and vehicle-routing optimization [10]. According to the wide

range of applications in the optimization problem, it archieves the goals set out in

Society 5.0. The objective of optimization problems is to find a best combination of

variables that maximizes an objective function while the combination of variables

satisfies constraints given by the problem to be solved. Generally, we cannot find

5

an optimal solution to optimization problems mathematically; therefore, we should

search for the solution through trial and error. However, the computational time in

a conventional computer with a general-purpose processor that operates sequentially

becomes impracticable when the problem size is increased, because the number of

solution candidates exponentially increases, which is often called “combinatorial ex-

plosion.” The traveling salesman problem (TSP) is one of the typical examples as

the optimization problems, and the number of solution candidates in the TSP is

given by (N − 1)!/2, where N is the number of cities [11, 12]. In addition, although

recent progress in a complementary metal oxide semiconductor (CMOS) improves

the performance of general-purpose processors based on the Moore’s law and the

Dennard scaling, we have faced the physical limitations of the miniaturization. We

would not improve their performance [13–16]. Therefore, a domain-specific archi-

tecture (DSA) has been developed to realize a high-performance computing system

[17, 18].

An Ising machine is one of the DSAs and candidates dedicated to solving op-

timization problems, which is inspired from the Ising model in statistical physics

that describes spin alignments of magnetic body [19, 20]. However, Ising machines

suffer from problem mapping because their connectivity is sparse due to the machine

structure: it needs pre-processing to map the problem onto them [21–27]. They have

to solve an optimization problem to map the problem to the Ising machine: Ising

machines solve the problem twice. If Ising machines whose connectivity is sparse,

the complete graph is artificially achieved by using redundant variables. However,

the performance degrades compared to the system whose connectivity is complete

[28]. In addition, the redundant variables need consistency: the states of redundant

variables should be the same value; therefore, if the values of redundant variables

when they converge at the final state are different, post-processing is needed to

fix the states. Moreover, Ising machines have to tune a hyperparameter that is a

coefficient of penalty terms in the Ising model, due to the Ising model in order to

6

CHAPTER 1. INTRODUCTION

obtain a legal solution that satisfies the constraints of optimization problems, be-

fore starting the solution search. As a result, if the parameter tuning is not enough

to be performed, the system sometimes converges at an illegal solution [29]. Ising

machines require pre- and post-processing to solve optimization problems, and such

processings degrade its performance.

In contrast to the Ising machine, Aono et al. developed an amoeba-based com-

puting system in which an amoeboid organism, Physarum Polycephalum, searches a

solution while avoiding light illumination from a feedback system based on the prob-

lem to be solved. The amoeboid organism has high intelligence without a brain: it

solves a maze and optimizes a transportation network by utilizing its body shape

[30, 31]. It was also reported that the amoeboid organism could solve the TSP in

only linear time growth as increasing the number of cities [32, 33]. The system ex-

hibits interesting performance but it is not feasible for solving optimization problems

as an alternative to a conventional computer because the moving rate of the amoe-

boid organism is nearly 1 cm/h [34]. Therefore, Kasai et al. developed an electronic

computing system, called “electronic amoeba,” by utilizing the current dynamics

in a capacitor network, inspired from the amoeba-based computing system. They

demonstrated the electronic amoeba could solve a simple optimization problem,

Negative OR (NOR), that can be solved by a conventional computer. However, it

has not been demonstrated and evaluated that the system can solve a complicated

problem. To apply the electronic amoeba to practical applications in the real world

as an optimization problems solver, the ability for the electronic amoeba to solve

more complicated problems, such as the satisfiability problem (SAT), maximum cut

problem (Max-cut), and also TSP, should be demonstrated. In addition, evalua-

tion and improvement of its performance to these problems are needed to reveal

the advantages of the electronic amoeba to Ising machines in terms of the solution

search.

7

1.2 Objectives of this work

Based on the above background, the objectives of this thesis include to develop

the electronic amoeba that solves the SAT, TSP, and Max-cut, to evaluate and

to improve its performance. To change the problems to be solved by the elec-

tronic amoeba, a feedback circuit that implements interactions between variables is

changed based on a specified rule for the amoeba-inspired computing system. Then,

I develop an analog-digital hybrid electronic amoeba for solving the SAT and an

all-analog electronic amoeba for solving the TSP and Max-cut. The performance of

systems in the physically implemented electronic amoeba and simulated electronic

amoeba using a circuit simulator to those problems is evaluated. From this study,

it is found that its performance exceeds the performance of a local search algorithm

implemented on a conventional computer. The quality of solutions is improved by

a time delay, which is insipred from the dynamics of the physically implemented

electronic amoeba.

1.3 Synopsis of this thesis

This thesis consists of seven chapters, including Introduction in this chapter.

Chapter 2 describes an optimization problem and the amoeba-based computing

and -inspired electronic computing system.

Chapter 3 explains related works dedicated to solving optimization problems and

points out the weakness points in Ising machines against the electronic amoeba.

Chapter 4 describes an analog-digital hybrid electronic amoeba for solving the

SAT. We evaluate the influence of an error property on its solution-searching perfor-

mance to the SAT. I pointed out that the asymmetric dynamics in the system due to

charging-discharging time of the capacitors in a capacitor network plays an impor-

tant role in terms of solution searching. It provided the system with the robustness

8

CHAPTER 1. INTRODUCTION

to the error property and improved its performance exponentially, compared to the

original model.

Chapter 5 proposes and demonstrates the electronic amoeba integrating a resis-

tance crossbar circuit that implements the problem to be solved as resistances. The

crossbar circuit performs product-sum operations and thresholding. Maximum cut

and traveling salesman problem were mapped onto the crossbar circuit and solved

by the electronic amoeba on a circuit simulator and breadboard. Once the electronic

amoeba is implemented by physical circuits, it is suggested that its performance will

exceed a conventional computer by the circuit simulator.

Chapter 6 describes the influence of delayed feedback in the amoeba-inspired

computing system on its solution-searching performance, which is inspired from the

variables oscillation of the physically implemented electronic amoeba due to parasitic

capacitances in analog circuits. The quality of solutions was improved by imposing

an appropriate delay length to the system. By scheduling the magnitude of delay,

further improvement was achieved.

Chapter 7 summarizes and concludes this thesis.

9

CHAPTER 2. CONCEPT OF AMOEBA-INSPIRED COMPUTING SYSTEM

Chapter 2

Concept of amoeba-inspired

computing system

2.1 Introduction

Optimization problems can be widely applied to practical application in the real

world, and to quickly find a solution to optimization problems resolves social chal-

lenges: for example, we can resolve shortage of workers in Japan by optimizing

vehicle routing [1–10]. However, it is hard for a conventional computer with a

general-purpose processor to solve the optimization problems since the combinato-

rial explosion occurs when the problem size is increased. Special-purpose systems

dedicated to solving optimization problems are expected to solve such problems at

low power consumption and high speed, although the systems cannot be applied

to general purpose problems, such as a problem dealt by a central processing unit

(CPU). An amoeba-inspired electronic computing system, inspired from solution-

searching behavior of an amoeboid organism, has the ability to find a solution to

optimization problems [30–33, 35]. This chapter describes optimization problems,

an amoeba-based computing system, and an amoeba-inspired electronic computing

system.

11

2.2 Combinatorial optimization problems and com-

putational complexity

2.2.1 Time complexity

Time complexity expresses the degree of the computational difficulty and is usually

used in the research area of the computer science. The time complexity can be

indirectly measured through algorithm: for example, the maximum number of steps

to finish a computation for the input length, n, represents as a function of n. Because

the time complexity is not quantity, one cannot compare the magnitude correlation

between the time complexities but can compare them based on the increasing rate of

function values; therefore, the order expression is used, which represents the upper

bound of the function: for example,

x2 + x+ 1 = O(x2). (2.1)

The order of the following express is weak evaluation but correct equation, compared

to Eq. 2.1:

x2 + x+ 1 = O(x3). (2.2)

The increasing rate in Eq. 2.2 is larger than that in Eq.2.1.

2.2.2 Computational complexity

Class P and NP are a set of judgement problems: given the input to a problem,

the algorithm can judge yes-or-no to the problem in a polynomial time. When the

time complexity of an algorithm to the input size, n, is represented by a polynomial

express O(nk), where k is a constant depending on a problem. In this case, a solution

to this problem can be found in a polynomial time. Such a problem belongs to the

class P and a conventional computer can solve the problems belonging to class P in

12

CHAPTER 2. CONCEPT OF AMOEBA-INSPIRED COMPUTING SYSTEM

a realistic time because the problem size is increased slowly as increasing the input

size. On the other hand, when the order of the time complexity is represented by an

exponential cost such as O(kn), the computational cost is increased exponentially;

therefore, the computer cannot solve it in a realistic time. Problems belonging to

class NP are defined as follows: given a solution that is “yes” to a problem whose

input size n, the problem belongs to the class NP if the solution can be judged as

“yes” in the order of a polynomial time, O(nk). Therefore, considering the definitions

of the class P and NP, we can easily understand P ∈ NP , where P and NP are a

set of the class P and NP, respectively.

Next, I explain a definition of the class NP-complete. We call as “reduction”

transforming a problem x of a set of decision problem, X, to a different problem

y(y ∈ Y) with same solution. Here, when h(x) satisfies x ∈ X ⇔ h(x) ∈ Y , h(x)

is reduction from X to Y . If a function h can be calculated in a polynomial time,

h is called polynomial time reduction. If such a function exists, X can be reduced

by Y . We describe the reduction as X ≤p
m Y . When a decision problem satisfies

following Eq. 2.3, the problem is called NP-hard

∀L ∈ NP [L ≤p
m X]. (2.3)

When it also satisfies Eq. 2.4, it is called NP-complete.

X ∈ NP. (2.4)

NP-complete is a set of problems themself belonging to NP and being more difficult

than all NP problems. If one can solve problems belonging to NP-complete in a

polynomial time, we can solve all problems belonging the class NP in a polynomial

time. From above definitions, these relationships can be drawn as Fig. 2.1, where

we assume P ̸= NP . Nobody knows an algorithm that finds a solution to problems

13

of NP-complete in polynomial time, and most of mathematician predicts P ̸= NP .

NP-complete

NP-hardP

NP

Computational difficulty

Figure 2.1: Computational complexity in case of P ̸= NP .

2.2.3 Combinatorial optimization problems

Combinatorial optimization problems are defined as follows: finding an optimal com-

bination of variables in the vast number of solution candidates, where each variable

takes 0 or 1. Practical applications in the real world, such as artificial intelligence,

information security, design support of large-scale integration, and so on, can be

transformed to optimization problems. Examples of such problems include the sat-

isfiability problem (SAT), traveling salesman problem (TSP), and maximum cut

problem (Max-cut), which are described in the next subsection. Many of combi-

natorial optimization problems belong to the NP-complete or -hard; therefore, it

is known that the combinatorial explosion occurs as increasing the problem size

because the combination increases exponentially as increasing the problem size as

shown in Tab. 2.1. Nobody knows an exact algorithm that finds an optimal solution

in polynomial time. To quickly solve the problems, algorithms for searching for a

solution have been developed.

14

CHAPTER 2. CONCEPT OF AMOEBA-INSPIRED COMPUTING SYSTEM

Table 2.1: Combinatorial explosion
Number of variables (N) Number of combinations (2N)

10 1,024
20 1,048,576
30 1,073,741,824
40 1,099,511,627,776
50 1,125,899,906,842,624

2.2.4 Satisfiability problem

The SAT is a judgement problem stated as follows: finding a combination of variables

such that the combination makes an objective function true. The SAT belongs to

NP-complete; it can be converted from any problems belonging to the class NP. The

objective function, F (x), consists of a conjunctive normal formula (CNF), where

x = (x1, x2, x3, ..., xN) (xi ∈ 0, 1):

F (x) = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2), (2.5)

where each logical sum of variables is called clause. In Eq. 2.5, the solution is

(x1, x2) = (1, 1). When the number of variables in each clause is k at most, the

problem is called k-SAT. When k ≥ 3, the k-SAT belongs to the NP-complete.

When k < 3, a solution to k-SAT can be found in a polynomial time by using

unit propagation. The SAT is a first proven problem as it is the NP-complete

[36, 37]. Because the SAT belongs to the NP-complete and is represented by the

simple formula, algorithms for solving the SAT have been widely studied [38–41].

Empirically, it is known that the difficulty in finding a solution to the SAT becomes

maximum when the ratio of the number of variables to the number of clauses is near

to 4.3 [42, 43]. This is because constraints are too strong to exist a solution (i.e., the

number of clauses is large) and too weak to exist a large number of solutions (the

number of variables is small); therefore, the median value 4.3 makes the difficulty

maximize.

15

Algorithms for searching for a solution to the SAT are divided into complete and

incomplete algorithms; complete algorithms judge that there is a solution or not;

incomplete algorithms, on the other hand, find a solution quickly but cannot judge

that there is not a solution. In practical, finding a solution quickly is important

to apply the SAT to practical applications. So far, WalkSAT has been known as

the fastest algorithm in incomplete algorithms [40]. A basic method of WalkSAT is

simple. We randomly assign 0 or 1 to variables as initial values. We randomly select

a clause that is false and randomly flip the variable in the selected clause to make the

clause true. These steps are repeated until finding a solution. Flipping a variable in

the false clause ensures to search the neighborhood of present variable vector space.

However, if there does not exist a solution near to variable vector space, WalkSAT

forever repeats a variable flipping and never find a solution, where this condition is

called trapping a local optimum. To escape from local optima, stochastic flipping

mechanism is usually introduced, which randomly selects a variable from all variables

and flip it.

2.2.5 Traveling salesman problem

The TSP is one of the NP-hard problems and stated as follows: finding a minimum

route such that the salesman should visit all cities only once and return to home city.

An example of the TSP is shown in Fig. 2.2. The number of solution candidates

increases in (N − 1)!/2. When we define a intercity distance from city A to B as

RA,B, the symmetric TSP assumes RA,B = RB,A; on the other hand, the asymmetric

TSP assumes RA,B ̸= RB,A. There exist a lot of applications in the TSP, such as the

vehicle routing problem (VRP). Finding a solution to the VRP is an urgent issue

because the demand for optimizing logistics grows due to COVID-19.

An algorithm that quickly finds a solution to the TSP is the nearest neighborhood

method (NN). The NN searches a nearest city at the current city and moves to the

16

CHAPTER 2. CONCEPT OF AMOEBA-INSPIRED COMPUTING SYSTEM

nearest city. This process is made until all the cities are visited. Figure 2.3 shows

an example solution to the TSP by using random sampling and the NN, where the

random sampling decides the next visited city randomly. Comparing Figs. 2.3(b)

and 2.3(c), the solution obtained by the NN is superior to the random sampling one,

although the NN is a simple algorithm.

City

Start city

(a) (b)

Figure 2.2: (a) Problem example of TSP and (b) optimal solution of TSP

(a) (b) (c)

Figure 2.3: (a) 100-city instance and solution obtained by (b) random sampling and
(c) nearest neighborhood method. Total route of (b) is 340696 and that of (c) is
65646.

2.2.6 Maximum cut problem

The Max-cut also belongs to class NP-hard, such as the TSP. The Max-cut is

stated as follows: given a weighted graph, finding subsets of vertexes V , U1 and

U2 (U1, U2 ∈ V, U1 ∩ U2 = ∅) such that the sum of weighted edges between U1 and

U2 is maximized, as shown in Fig. 2.4. The number of solution candidates increases

17

in (2N − 2)/2, where N is the number of vertexes. Although practical applications

of the Max-cut are few, Ising machines dedicated to solving optimization problems

uses it to compare the performance between them. This is because the Max-cut is

easy for Ising machines to solve it because the Max-cut does not have constraints

such as TSP. An algorithm to find a solution to Max-cut is that a randomly or

deterministically selected vertex is inserted in both U1 and U2, we calculate the cut

size for both cases, and then, either the case of U1 or U2 that has the better cut size

is adopted. The discrete-type Hopfield Neural Network is one of such algorithms,

where the cut size is regarded as an energy value.

B

C

A
D

E

Gr. 0 Gr. 1

B

D

A
C

E

Gr. 0 Gr. 1
+1

-1

-1

-1

+1 +1

+1

+1

+1 +1

A

B E

C D

(a) (b) (c)

Figure 2.4: (a) Problem example of Max-cut and (b) worst and (c) optimal solutions,
where cut sizes are 0 and 4, respectively.

2.3 Amoeba-inspired computing system

2.3.1 Amoeba-based computing system

An amoeboid organism, Physarum polycephalum, has highly-sophisticated ability

to solving simple optimization problems even though it is a single-celled organism

[30, 31, 44]. Aono et al. have developed an amoeba-based computing system to solve

more complex optimization problems, the TSP. Figure 2.5 shows a schematic of the

amoeba-based computing system. The amoeba-based computing system utilizes

amoeboid organism’s habits. The amoeboid organism placed on a nutrient-rich agar

18

CHAPTER 2. CONCEPT OF AMOEBA-INSPIRED COMPUTING SYSTEM

Amoeboid
organism

X1

XN
X2

X3

0

LN=1

0

1

1

1

L1=1

L3=1

0

XN-1

XN-2

Figure 2.5: Amoeba-based computing system.

plate expands its body to maximize food intake [32, 33, 45]. The plate is divided

by several grooves, where the grooves are assigned each variable and the number

of grooves correspond to the number of variables of optimization problems to be

solved. If the amoeboid organism expands its pseudopod like branches to grooves to

absorb nutrients, then a variable state is regarded as 1 in accordance with the area

of pseudo pod-like branches, otherwise it is regarded as 0. A monitor and feedback

system always watches a state of the amoeba and illuminates a light to the amoeba’s

pseudo pod-like branches. The amoeboid organism avoids a light because it dislikes

a light. Which branches should be illuminated is decided by a specified rule, called

“bounce-back rule.” The bounce-back rule lists up all combinations of variables

that violate constraints to optimization problems to be solved in advance of starting

a search for a solution. The deformation and light illumination are repeated for

the amoeboid organism to find a solution. The light illumination pattern becomes

constant when the amoeboid organism finds a solution because there are no variables

that violate constraints. However, the amoeba fluctuates and deforms again; then,

state variables change and the light illumination pattern also changes based on the

19

bounce-back rule. This fluctuation plays an important role in solving optimization

problems because variables usually fall into a local optimum without the fluctuation

[46, 47].

Aono et al. have demonstrated that the amoeboid organism found a solution to

the TSP in a short time [33]. The amoeboid organism reached a solution in a linear

growth of time as increasing the number of cities of the TSP. The finding was featured

in an article released from an online science news site, Phys.org, and it attracted a

general audience [33, 48]. The article was shared approximately 15K times, where

the number of shares was the order of magnitudes greater that that of other typical

articles on the site. Aono et al. have also developed amoeba-inspired algorithms

for solving the SAT and TSP. In solving the SAT, the performance of the amoeba-

inspired algorithms is superior to the WalkSAT, which is a well-known algorithm

for solving the SAT [46, 47, 49]. The algorithm for solving the TSP reproduces the

behavior of the amoeba that finds a solution in an amount of time that grows only

linearly, where it assumes continuously redistributing its intracellular resource at a

constant rate, while processing optical stimuli in parallel. Theses algorithms emulate

parallel processing on a serial processing computer: a runtime on a conventional

computer grows with the number of variables and estimation time of the bounce-back

rule; thus, if we develop a physical system that performs the algorithms concurrently,

we could find a solution in a short time.

2.3.2 Amoeba-inspired electronic computing system

Kasai et al. have developed an electronic computing system, called “electronic

amoeba,” inspired from the ability of the amoeboid organism to solving optimization

problems and demonstrated that it could solve a NOR problem that is stated as find-

ing a combination of variables that satisfies NOR(xi−1, xi+1) = 1 (i = 1, 2, ..., N),

where N is the number of variables [35]. The electronic amoeba implements the

20

CHAPTER 2. CONCEPT OF AMOEBA-INSPIRED COMPUTING SYSTEM

essence of the solution-searching behavior of the amoeboid organism. Figure 2.6

shows a schematic of the electronic amoeba. In the electronic amoeba, an amoeba

Feedback
circuit

Amoeba
core

L1

L2
L3

L4

L5

E1

X1

X2X3

X4

X5

E2

E3

E4

E5

Figure 2.6: Amoeba-inspired electronic computing system, electronic amoeba.

core and a feedback circuit correspond to the amoeboid organism and the monitor

and feedback system in the amoeba-based computing system shown in Fig. 2.5. The

amoeba core searches a solution and the feedback circuit feeds back the information

produced by the bounce-back rule to the amoeba core. Each branch in the amoeba

core is connected by the current source, which implements the volume conservation

of the amoeboid organism on a chip by the Kirchhoff’s current law. The feedback

circuit reads variable states from the amoeba core and feeds back to the metal ox-

ide semiconductor field effect transistor (MOSFET) of branches in the amoeba core

based on the bounce-back rule. The bounce-back rule consists of logical sums and

products for the SAT, and it for the TSP consists of product-sum and threshold-

ing. The fluctuation of the amoeboid organism is implemented with external noise

sources that input a random value 0 or 1 to the MOSFET in the branch. As related

works, superconductor and FPGA-based amoeba-inspired solvers have been devel-

oped and demonstrated that the ability to solve optimization problems [50–56], and

only the concept of physical systems using exciton and Brownian ratchet has been

reported [46, 47].

21

2.4 Summary

We reviewed the optimization problem and discussed the hardness of optimization

problems. The SAT belongs to class NP-complete, and Max-cut and TSP belong to

NP-hard. The number of solution candidates in these problems increases exponen-

tially, which is called combinatorial explosion. We also reviewed an amoeba-based

computing system and an amoeba-inspired electronic computing system that solve

optimization problems. Related works of electronic amoebae was introduced.

22

CHAPTER 3. PREVIOUS SYSTEM OVERVIEW

Chapter 3

Previous system overview

3.1 Introduction

Due to the end of the Moore’s law and Dennard scaling, the performance improve-

ment of general purpose processors is no longer able to be expected [13–16]. There-

fore, a domain-specific architecture (DSA) dedicated to processing special tasks has

been developed [17, 18]. One of the DSAs is an Ising machine inspired from the Ising

model, which solves optimization problems at low power consumption and a high

speed [19, 20, 57, 58]. In this chapter, we review Ising machines dedicated to solving

optimization problems as a counterpart of the electronic amoeba, and I point out

weak points in Ising machines compared with the electronic amoeba.

3.2 Ising machine

The first physical computing system for searching for a solution to optimization

problems is Hopfield-Tank Neural Network (HTNN or HNN): Hopfield and Tank

developed a recurrent neural network called Hopfield-Tank neural network [59, 60].

The most important aspect of their works is that they formulated the Lyapunov

function of the HNN: the HNN converges at a stable state while reducing the energy,

23

where the state corresponds to a solution to optimization problems and a memory

pattern in associative memories. However, the HNN did not work well unfortunately

because the system fall into the local minimum state and sometimes reached an

illegal candidate for large-scale problems [61–63]. Moreover, the rapid performance

improvement of transistors based on the Moore’s law and Dennard scaling led one’s

effort to the development of a conventional digital computer rather than such an

analog computer [13, 14].

Here again, physical computing systems have attracted one’s attention because of

the end of Moore’s law and Dennard scaling [15, 17]. A physically inspired computing

system dedicated to solving optimization problems, called “Ising machine,” has been

drawing attention. Its solution search is based on the Ising model and utilizes natural

convergence behavior of physical systems. Several practical applications for Ising

machines have been proposed [1–10]. Moreover, softwares that connects the user

with the Ising machine have been developed [64, 65].

The Ising model is a statistical model that describes spin dynamics of magnetic

materials [66]. Spin states in the Ising model are represented by up and down,

(−1, 1). As shown in Fig. 3.1, in the square-lattice Ising model, a spin is connected

to other spins by interaction coefficients J . The Hamiltonian (energy) is given by

Variable
interaction

Spin

Figure 3.1: Two-dimensional Ising model

24

CHAPTER 3. PREVIOUS SYSTEM OVERVIEW

H = −
∑

Jijsisj −
∑

hisi, (3.1)

where s represents a spin state and h is an external magnetic field. If a spin si

is connected to another sj by Jij(< 0), the spin si has to be the same value to sj

because the Hamiltonian shown in Eq. 3.1 decreases, else if Jij > 0, si has to reverse

to sj. When Jij < 0, it is called as a ferromagnetic interaction, otherwise an anti-

ferromagnetic interation. The exact solution (ground state) of the two-dimentional

Ising model without the external magnetic field was derived; however, that with

the external magnetic field has not been derived and belongs to the NP-hard. The

three-dimentional lattice model also belongs to the NP-hard.

We have to transform optimization problems to the Hamiltonian, i.e., derive spin

interaction Jij from the problem to be solved. The ground state of the Hamiltonian

corresponds to an optimal solution of optimization problems. The Ising model is

equivalent to the quadratic unconstrained binary optimization (QUBO) by xi =

(si + 1)/2. Formulation of the QUBO for Ising machines have been studied [67].

Simulated annealing (SA) is usually used to solve the Ising model (find a ground

state) [68, 69]. The SA utilizes an analogy with the change from disordered arrange-

ment atoms in a metal to ordered ones by gradually cooling from high temperature

to low temperature. The atoms are disordered at high temperature; then, they are

frozen at low temperature. This process is called annealing. The SA utilizes the

annealing process by regarding atoms as variables of an optimization problem. A

local search algorithm in solving optimization problems successively improves a so-

lution by searching neighborhood; however, it falls into a local minimum as shown

in Fig. 3.2(a). The SA probabilistically flips a variable to escape from a local mini-

mum. Initially, the temperature in the SA is set to be high: a variable state becomes

random. Then, the temperature gradually decreases; variables freeze. This process

enables for the SA to find an optimal solution while escaping from a local optimum

as shown in Fig. 3.2(b).

25

Variable vector space

E
ne

rg
y

(O
bj

ec
tiv

e
fu

nc
tio

n)

Local optima
Global
optimum

Initial state

(a)
Variable vector space

(b)

Thermal
fluctuation

Variable vector space
(c)

Tunnel
effect

Figure 3.2: (a) Trapping in local minimum and escaping from local minimum using
(b) thermal fluctuation in simulated annealing and (c) quantum tunnel effect in
quantum annealing

Quantum annealing (QA) is inspired from the SA and utilizes the quantum

tunneling effect to escape from local optima as shown in Fig. 3.2(c) [19, 70]. In the

QA, the Hamiltonian is deformed by introducing a transverse field into Eq. 3.1,

H = −Λ(t)(
∑

Jijsisj +
∑

hisi)− Γ(t)
∑

si, (3.2)

where Λ is a value of the Hamiltonian and Γ is a value of the transverse field. The

value of the Hamiltonian and the transverse field are initially chosen to be low and

high, respectively; therefore the behavior of the system is dominated by the trans-

verse field, which indicates that spin states are in the quantum entanglement. Then

Λ gradually increases and Γ gradually decreases with time evolution [19, 70]. When

time evolves enough, the Hamiltonian term dominates Eq. 3.2 and the system be-

comes stable. The freezing state corresponds to a solution of optimization problems:

the system finds an optimal solution to optimization problems by increasing Λ and

decreasing Γ in sufficient time. However, when the annealing time is insufficient,

the system falls into a local optimum or an illegal solution that does not satisfy

constraints to optimization problems.

Several Ising machines have been developed to apply them to practical appli-

cations in the real world. Especially, major electrical manufacturer in Japan, Hi-

tachi Ltd. (CMOS annealing (CA) [20, 71–76]), Fujitsu Ltd. (Digital Annealer (DA)

26

CHAPTER 3. PREVIOUS SYSTEM OVERVIEW

[57]), Toshiba Ltd. (Simulated Bifurcation Machine (SBM) [58, 77–79]), and NTT

Ltd. (Coherent Ising Machine (CIM) [80–82]) have developed the Ising machine.

Ising machines are divided by how to implement a spin and variable interactions:

usually, they are implemented by a fully analog, an analog-digital hybrid, and a fully

digital Ising machine. A quantum annealer developed by D-Wave Inc., which is the

first commercial quantum computing system and sparked the development of Ising

machines, is implemented by a superconducting circuit as a spin and external flux

as the variable interaction; therefore, the D-Wave’s Ising machine is regarded as an

all-analog Ising machine [19]. Other analog Ising machines use a phase as a spin

[83–87].

In the CIM, a spin is also implemented by a phase but variable interactions are

calculated by an external feedback system that is implemented by field-programmable

gate array (FPGA); therefore, the CIM is categorized as the analog-digital hybrid

Ising machine. Low-cost implementation for the CIM was reported [88]. Although

the spin operates at high frequency, the FPGA calculating product sum between

variables and variable interactions, analog-digital converters to readout the states of

spins, and digital-analog converters to feed back to the spins limit its performance.

Other hybrid systems have been developed [89, 90], which implement a spin by a

digital memory but variable interactions by resistors in a crossbar circuit, where

the product-sum operation is performed based on the Kirchhoff’s current law (this

system is similar to the electronic amoeba discussed in Chpt. 5, in terms of using

the crossbar circuit). Also, an Ising machine utilizing chaotic dynamics in NbO2

memristor has been developed [91]

A pioneer of the fully digital implemented Ising machines is the CA, which was

reported in 2016, and after that, the DA was developed. The CA and DA are imple-

mented by the FPGA or application-specific interated circuit (ASIC). Fully digital

Ising machines are easy to implement because the model is compatible with the digi-

tal implementation. In academic research institutes, Ising machines implemented by

27

the FPGA [92, 93] and ASIC [94–97] have been developed. Graphics processing unit

(GPU) -based Ising machines have also been developed because the most computing

power required in the Ising model is the product-sum operations that is suitable for

the GPU [98–100].

3.3 Weak points in Ising machine

In Ref. [67], the QUBO for the Max-cut and TSP that are equivalent to the Ising

model was reported. The Ising machine searches for a spin assignment that mini-

mizes the Hamiltonian. The Hamiltonian is generally given by

H = Hcost + λHpenalty, (3.3)

where Hcost is an objective function that we have to minimize as possible, such as

a route length in the TSP, and Hpenalty is a penalty term that describes constraints

of optimization problems, such as prohibition of twice visit to the city and of a

visit to the city at the same time. λ is the strength of the penalty term to the

objective function [64]. λ should be set as an optimal value: the system falls into

an illegal state if λ is small, although the optimality of obtained states is high;

on the other hand, if λ is large, the system always finds a legal solution without

falling into an illegal state, although the quality of legal solutions is relatively low.

Therefore, searching for the optimal λ is needed in advance of starting search for a

solution [28, 29]. This weak point is discussed in Appx. A. To repair converged spin

alignments in D-Wave’s Ising machine when the final states fall at an illegal state,

it requires the post-processing to satisfy constraints of optimization problems to be

solved and improve the quality of solutions [4, 19, 101]. The similar post-processings

are necessary for the Hopfield’s neural network to obtain a legal solution.

A graph structure of Ising machines developed by D-Wave Inc. and Hitachi

28

CHAPTER 3. PREVIOUS SYSTEM OVERVIEW

Ltd. are sparse, which is called chimera graph and King graph, respectively [19, 20].

The structure of the chimera graph is shown in Fig. 3.3. The number of variable

interactions per a spin in the chimera graph are four; therefore, we should prepare

redundant variables to connect all variables when solving a complete graph prob-

lem. The D-Wave’s Ising machine needs O(N4) variables to solve a problem that

has complete graph: for example, the TSP. It is difficult for us to implement a

large number of variables into the Ising machine due to physical complexity; thus,

the Ising machine is hard to solve a large problem. To solve a large problem by

X3X1 X2

X2

X1

X3

X4

X4 X7X5 X6

X2

X1

X3

X4

X8

X7X5 X6

X6

X5

X7

X8

X8

Figure 3.3: Chimera graph structure of D-Wave’s Ising machine.

the Ising machine whose connectivity is sparse, embedding methods have been pro-

posed [21–27]. Searching for efficient embedding is also optimization problems, and

therefore, we need to solve optimization problem in advance of solving the problem

we hope to solve. Moreover, the solution-searching performance of Ising machines

degrades due to introduction of the redundant variables [27, 28].

3.4 Summary

In this chapter, we reviewed Ising machines which is based on the Ising model and

also discussed weak points in them. Several Ising machines have been developed

to solve optimization problems in the real world. The Ising machines require pre-

29

processing to map the problem onto the Ising machine, and therefore they require

to solve the optimization problem to map the problem to be solved. To implement

the TSP on the Ising machine, O(N4) redundant variable are required, and its

performance degrades due to introduced redundant variables.

30

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

Chapter 4

Amoeba-inspired analog-digital

hybrid computing system for

solving satisfiability problem

4.1 Introduction

An amoeboid organism shows high intelligence such that it solves a maze and op-

timize a transportation network [30, 31]. Aono et al. developed an amoeba-based

computing system that solves combinatorial optimization problems [33, 45]. Opti-

mization problems can be applied to practical applications in the real world. How-

ever, the number of solution candidates of an optimization problem exponentially

increases as increasing the problem size; therefore, a conventional computer that op-

erates sequentially cannot solve the problems. Aono et al. showed that the amoeba-

based computing system could solve the NOR problem, which is stated as follows:

find a combination of variables x = x1, x2, ..., xN that satisfy xi = NOR(xi−1, xi+1)

where i ∈ (1, 2, ..., N) [45]. They also examined that the system found a high-quality

solution to the traveling salesman problem (TSP) only in linear time growth when

increasing the number of cities. However, it is difficult to apply the system to prac-

31

tical applications because the moving speed of the amoeboid organism is 1 cm/h

[34].

Kasai et al. have electronically implemented an amoeba-based computing sys-

tem with analog circuits using charge dynamics in a capacitor network, which is

called “electronic amoeba” [35, 45], expecting that we would obtain a solution of

optimization problems quickly by implementing its behavior electronically. They

demonstrated that the electronic amoeba could find a solution to the NOR problem.

However, a conventional computer can solve the NOR problem in a polynomial time,

and so far, the solution search capability of the electronic amoeba for intractable

problems for the computer has not been evaluated for the electronic amoeba. In

addition, although the error property in the amoeba-inspired algorithm influences

on its solution-searching performance to the satisfiability problem (SAT) [46, 47],

its effect on the performance of the electronic amoeba has not been evaluated.

In this chapter, I propose the electronic amoeba implemented with analog-digital-

hybrid circuits and demonstrate that the electronic amoeba can find a solution to

the SAT. To evaluate its performance to the SAT, it is needed to change a problem

to be solved because some instances can be solved easily but others hardly; thus,

I implement the feedback circuit shown in Fig. 2.6 by the reconfigurable micro-

controller.

4.2 Electronic amoeba for solving SAT

I implemented the electronic amoeba by commercial electronic devices and a micro-

controller (Arduino DUE @ 84 MHz) for solving the SAT as shown in Fig. 4.1. The

descriptions of the electronic amoeba and SAT are shown in Chpt. 2. The branches

in the amoeba core search a solution and the controller circuit feeds back to the

amoeba core based on the bounce-back rule for the SAT. The bounce-back rule is

describe in the next section. The error, E, randomly switches the MOSFET of the

32

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

X1 = 1X4 = 0

X3 = 1 X2 = 0

Amoeba core

Controller circuit
(Arduino Due)

E3 E2

E1E4

Figure 4.1: Electronic amoeba for solving SAT.

pseudopod regardless of the bounce-back signal.

I defined error parameters (shown in Fig. 4.2) to investigate the effect of an error

property on the solution-searching performance of the electronic amoeba. When the

λ

t

E1

E2

t

λ

(b)

E1

E2
t t

(a)

Figure 4.2: Error parameters. (a) Error probability and (b) average error period.

error occurs, the variable is forcibly changed from 1 to 0 or fixed at 0 by stopping

current flow via the MOSFET. The error Ei for the variable Xi is independent of

other variables. It occurs with a probability Ep produced by the random number

33

generator and is updated every error duration time te because of an asynchronous

operation of the amoeba core. I also defined an average error period, λ, as λ = te/Ep,

which denotes the period during which errors occur on average.

The error signal was produced by the micro-controller that produces random

signals and sends the signals to the MOSFETs in the amoeba core. We implemented

Xorshift on the micro-controller, which is the fastest algorithm to produce random

numbers [102].

4.3 Bounce-back rule for SAT

Whether to decrease the value of the redundant variable (turn off the MOSFET) is,

in accordance with Ref. [46, 47], given by

Li,v(t+ 1) =

0 (otherwise)

1 (if B ∋ (P,Q) s.t. Q ∋ (i, v)) and ∀(j, u) ∋ P (Xb
j,u(t+ 1) = 1)

,

(4.1)

where

B = INTRA ∪ INTER ∪ CONTRA, (4.2)

and

Xb
i,v(t+ 1) =

0 (ifXi,v(t) < TH)

1 (ifXi,v(t) ≥ TH)

. (4.3)

When Li,v = 1, Xb
i,v is prohibited to become 1 by decreasing the value of Xi,v. The

INTRA is a constraint to avoid from contradiction due to introducing the redundant

variables:

INTRA ∋ ((i, v), (i, 1− v)). (4.4)

34

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

The INTER forbids not to satisfy the clause:

INTER ∋

(P, (i, 0)) (if Ck ∋ i)

(P, (i, 1)) (if Ck ∋ −i)
, (4.5)

where

P ∋

(j, 0) (if Ck ∋ j)

(j, 1) (if Ck ∋ −j)
. (4.6)

The CONTRA resolves a contradiction due to the INTER:

CONTRA ∋ (P ∪ P ′, P ∪ P ′) (if(P, (i, 0) ∋ INTER) and (P ′, (i, 1) ∋ INTER)).

(4.7)

Now we consider the bounce-back rule for F (x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨

x2 ∨ x3) as an example of SAT instances. The bounce-back rule for the instance is

shown in Table 4.1. The INTRA prohibits Xb
i,v = 1 when Xb

i,1−v = 1. In the INTER,

considering C1 = (x1 ∨ x2 ∨ x3) for instance, when x2 ∨ x3 = 0, x1 does not have to

become 0 to satisfy C1; therefore, the bounce-back rule prohibits Xb
1,0 = 1. When

x2 ∨ x3 = 0 in C1 and x2 ∨ x3 = 1 in C2 for instance, the bounce-back rule prohibits

Xb
1,0 = 1 and Xb

1,1 = 1 simultaneously due to the INTER: in this simulation, there

happens a contradiction that x1 cannot become 0 or 1. The CONTRA resolves

the contradiction by prohibiting factors that promote Xb
1,0 = 0 and Xb

1,1 = 0 by

prohibiting (Xb
2,0 ∧Xb

3,1) ∧ (Xb
2,1 ∧Xb

3,0) = 1.

35

Table 4.1: Example of bounce-back rule for F (x1, x2, x3) = (x1∨x2∨x3)∧(x1∨x2∨x3)
Li,v INTRA INTER CONTRA

L1,0 Xb
1,1 Xb

2,0 ∧Xb
3,1

(Xb
1,0 ∧Xb

3,1 ∧Xb
1,1 ∧Xb

3,0)∨
(Xb

1,1 ∧Xb
2,1 ∧Xb

1,0 ∧Xb
2,0)

L1,1 Xb
1,0 Xb

2,1 ∧Xb
3,0

(Xb
1,0 ∧Xb

3,1 ∧Xb
1,1 ∧Xb

3,0)∨
(Xb

1,1 ∧Xb
2,1 ∧Xb

1,0 ∧Xb
2,0)

L2,0 Xb
2,1 Xb

1,0 ∧Xb
3,1

(Xb
2,0 ∧Xb

3,1 ∧Xb
2,1 ∧Xb

3,0)∨
(Xb

1,1 ∧Xb
2,1 ∧Xb

1,0 ∧Xb
2,0)

L2,1 Xb
2,0 Xb

1,1 ∧Xb
3,0

(Xb
2,0 ∧Xb

3,1 ∧Xb
2,1 ∧Xb

3,0)∨
(Xb

1,1 ∧Xb
2,1 ∧Xb

1,0 ∧Xb
2,0)

L3,0 Xb
3,1 Xb

1,1 ∧Xb
2,1

(Xb
2,0 ∧Xb

3,1 ∧Xb
2,1 ∧Xb

3,0)∨
(Xb

1,0 ∧Xb
3,1 ∧Xb

1,1 ∧Xb
3,0)

L3,1 Xb
3,0 Xb

1,0 ∧Xb
2,1

(Xb
2,0 ∧Xb

3,1 ∧Xb
2,1 ∧Xb

3,0)∨
(Xb

1,0 ∧Xb
3,1 ∧Xb

1,1 ∧Xb
3,0)

4.4 Experimental results of electronic amoeba

I evaluated the effect of the electronic amoeba on the error parameters. Solved

instances were random 3-SAT that has 12 variables and 59 clauses. The solution-

searching time was capped at 4.75 s; if the time reached the limit, I regarded the

time as 4.75 s. Figures 4.3(a) and 4.3(b) show the photograph of the physically

implemented electronic amoeba and time evolutions of variables that show 4 vari-

ables out of 24 variables. All variables started from 3 V because of the capacitor

0 10

X1,0

2 4 6 8
Time [ms]

X1,1

X2,0

X2,1

SolutionStart(b)(a)

Figure 4.3: (a) Photograph of physically implemented electronic amoeba and (b)
time evolutions of variables that show 4 variables out of 24 variables.

36

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

charge was initially 0 V, which correspond to all variables taking 1 (Xb = 1). The

capacitor was charged by injecting the current from the current source. Then, the

variables approached to 0 V. The micro-controller that implements the bounce-back

rule read the states of variables and estimated the variable to flip in accordance

with the bounce-back rule, and it fed back to the amoeba core. The variables were

forcibly flipped randomly by the error. These processes were repeated, and finally,

the electronic amoeba found a solution.

Figure 4.4 shows the experimental results when changing the error parameters.

The number of tested instances was 25, and each instance was tested 30 times. The

solution-searching time depended on the error parameters, Ep and λ. We confirmed

three things from the results as follows. First the optimal error period for each

error probability existed, for example, λ = 3 ms when Ep = 0.2. Second the error

period dependence of the solution-searching time depended on the magnitude of the

error probability: if the error probability was low, it was unlikely to be influenced

by the error period, otherwise it was largely influenced. Third such the optimal

error parameters as make the solution-searching time minimum (0.2 s) existed in

Ep = 0.65 and λ = 0.6.

50%
65%80%

35%

Error probability
P=20%

S
o

lu
tio

n
se

a
rc

h
tim

e
 [s

]

Error period λE [ms]

0.1 1 10
0

0.5

1.0

1.5

2.0

Figure 4.4: Experimental results of electronic amoeba when solving random 3-SAT
having 12 variables with 59 clauses.

37

4.5 Asymmetric dynamics in amoeba-inspired al-

gorithm

4.5.1 Original AmoebaSAT

To reproduce and understand the solution-searching behavior of the electronic amoeba,

I used an amoeba-inspired algorithm, called “AmoebaSAT” [47]. There are several

versions of amoeba-inspired algorithms for solving SAT [46, 47, 49]. We used the

AmoebaSAT in Ref. [47] because the solution-searching behavior of the algorithm

is similar to the electronic amoeba. The pseudocode of the AmoebaSAT is shown

in Alg. 1.

Algorithm 1 AmoebaSAT algorithm
1: INITIALIZE: t← 0, c← 1, X ← 0
2: while t < tlimit do
3: update Xb and L using Eqs. 4.3 and 4.1, respectively
4: if Xb

i,v ⊻ Li,v = 1 for all i and v then
5: return X
6: end if
7: update X using Eqs. 4.8–4.10
8: t← t+ 1
9: if c = se then

10: c← 1
11: else
12: c← c+ 1
13: end if
14: end while

Following equations are used in Alg. 1:

Xi,v(t+ 1) =

Xi,v(t) + 1 (ifYi,v(t+ 1) = 1 andXi,v(t) < UL)

Xi,v(t)− 1 (ifYi,v(t+ 1) = 0 andXi,v(t) > 0)

Xi,v(t) (otherwise)

, (4.8)

38

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

Yi,v(t+ 1) =

1 (ifLi,v(t+ 1) = 0 andEi,v(t+ 1) = 0)

0 (otherwise)

, (4.9)

Ei,v(t+ 1) =

Ei,v(t) (c < se)

1 (if c = se andZi,v(t) + Ep > 1)

0 (otherwise)

, (4.10)

where Zi,v is a noise source that takes a value between 0 and 1, UL is an upper limit

of Xi,v, se is an error duration iteration, and c (c = 1, 2, ...) is a counter variable to

count the number of occurrences of the same error set. I modified Eq. 4.8 as adding

se and c, compared with original one. Yi,v determines whether to supply the resource

to Xi,v based on Li,v and Ei,v. se and UL are set to 1 and 2 in the AmoebaSAT,

respectively [47]; then, the error set is updated every iteration and Xi,v ∈ 0, 1, 2.

I introduced the error period, λ, to the AmoebaSAT by se > 1 in Eq. 4.10. The

error period λ is defined as λ = se/Ep. We can judge whether the AmoebaSAT

finds a solution by checking Xb
i,v(t)⊻Li,v(t+1) = 1 for all i and v without checking

whether to satisfy all clauses of the given instance [47].

4.5.2 AmoebaSAT with asymmetric dynamics

Now we focus on differences in the solution-searching behavior between the elec-

tronic amoeba and the AmoebaSAT. The electronic amoeba has a time constant in

a variable transition due to the capacitor and the transconductance of the MOS-

FET in the branch of the amoeba core that produces asymmetric dynamics for the

solution search as shown in Fig. 4.5. When the feedback circuit sends signals to the

MOSFETs in the branches to turn on them, the capacitor in the branch immediately

discharges and the current from the current source flows into the capacitor. On the

other hand, when the feedback circuit sends signals to the MOSFETs to turn off

39

them, the capacitor gradually charged distributed from the current source. That is,

the variable rapidly changes from 0 to 1, but it slowly changes from 1 to 0.

MOSFET off-state

MOSFET
on-state

V

t

Charge time

V

t

Inverter
threshold

Discharge time

Figure 4.5: Asymmetric dynamics of electronic amoeba.

The variables in the AmoebaSAT immediately change when Li,v = 1 or Ei,v = 1,

and the transition speed ratios is symmetric as shown in Eq. 4.8. We reformulate

Eq. 4.8 to introduce the asymmetric dynamics to the AmoebaSAT as follows:

Xi,v(t+ 1) =

Xi,v(t) + TE (ifYi,v(t+ 1) = 1 andXi,v(t) + TE < UL)

UL (ifYi,v(t+ 1) = 1 andXi,v(t) + TE ≥ UL)

Xi,v(t)− TS (ifYi,v(t+ 1) = 0 andXi,v(t)− TS > 0)

0 (ifYi,v(t+ 1) = 0 andXi,v(t)− TS ≤ 0)

Xi,v(t) (otherwise)

, (4.11)

where TE and TS represent the amount of the expansion and shrinkage after one iter-

ation, respectively. The asymmetric dynamics are introduced by setting the value of

UL more than 2 and the asymmetric relation between TE and TS. The AmoebaSAT

40

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

with the asymmetry is equal to Alg. 1 by replacing Eq. 4.8 with Eq. 4.11.

4.5.3 Numerical simulation results of AmoebaSAT with and

without asymmetric dynamics

Figure 4.6 shows the numerical simulation results of the AmoebaSAT with the sym-

metric and asymmetric dynamics. Used instances were the same to the experiments

of the electronic amoeba (shown in Fig. 4.4), and we tested 100 times for each in-

stance, where the maximum iteration was set to 105. If the iteration exceeds 105,

the solution search was forcibly aborted; then, the iteration was regarded as 105. In

the AmoebaSAT with the asymmetric dynamics, TE, TS, and UL were set to 10, 1

and 19. In Fig. 4.6, the vertical axis denotes an average iteration to find a solution,

where the iteration corresponds to t in Alg. 1. In Fig. 4.6(a), we obtained different

results from Fig. 4.4. The iterations were deteriorated over Ep = 0.2: they almost

reached the iteration limit (105) when Ep = 0.5 to 0.8. Note that the trend less

than λ = 5 in Ep = 0.2 cannot be evaluated because both the AmoebaSAT with

the symmetric and asymmetric dynamics consist of the discrete time step; on the

other hand, the electronic amoeba operates continuously. Figure 4.6(b) shows the

numerical simulation results of the AmoebaSAT with the asymmetric dynamics. As

opposed to the results of the symmetry, those of the asymmetry were similar to the

experimental results of the electronic amoeba. The AmoebaSAT with the asym-

metric dynamics has the robustness to the error property as with the experimental

results of the electronic amoeba.

I evaluated the performance of the AmoebaSAT with the symmetric and asym-

metric dynamics against the variabilities in the error probability to test a hypothesis

that the the asymmetry guarantees that organisms can efficiently perform complex

tasks even though they have diversity [103–106]. Figure 4.7(a) shows the example of

the error probability distribution for the symmetry and asymmetry. Figure 4.7(b)

41

50~80%

35% EP=20%

Error period λA

1 10 100
102

103

104

105

It
e

ra
tio

n
s

to
fin

d
so

lu
tio

n

(a)

Error period λA

1 10 100
0

500

1000

1500

It
e

ra
tio

n
s

to
fin

d
so

lu
tio

n

2000

2500

35%

EP=20%

50%65%

80%

(b)

Figure 4.6: Numerical simulation results of AmoebaSAT with (a) symmetric dy-
namics and (b) asymmetric dynamics.

0 0.1 0.2 0.2 0.3 0.4
Error probability

F
re

q
u
e
n
c
y

0

30

20

10

Symmetricity Asymmetricity

µ=0.08 µ=0.30

σ=0.005

σ=0.025

σ=0.005

σ=0.025

(a)

Standard deviation σ (×10-3)

0 5 10 15 20 25
103

104

105

It
e
ra

ti
o
n
s
 t
o
 f

in
d
 s

o
lu

ti
o
n

Symmetric

model

Asymmetric

model

(b)

Figure 4.7: (a) Example of error probability distribution when σ = 0.05 and
σ = 0.025. (b) Numerical simulation results of AmeobaSAT with symmetric and
asymmetric dynamics.

42

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

shows the numerical simulation results when the average of normaly distributed

error probabilities was 0.08 and 0.3 of the AmoebaSAT with the symmetric and

asymmetric dynamics, respectively. In the asymmetry, the parameters were set to

se = 1, UL = 9, TE = 5, TS = 2, and TH = 5. Used instance was the 50-variable

3-SAT instance with 218 clauses, named uf50-01.cnf, which is a benchmark prob-

lem of the SAT and available in Ref. [107]. I produced 100 different types of error

probability variations, for each standard deviation σ and tried 100 trials for each

type (i.e., the total number of trials was 10000 for each σ). Iterations of the sym-

metric model increased rapidly when increasing σ; on the other hand, those of the

asymmetric model was almost constant to the influence of σ.

My interest is not only the robustness to the error property but also the efficiency;

therefore, I evaluated the performance of the symmetric and asymmetric model

when increasing the instance size. Figure 4.8 shows the comparison results of the

symmetric and asymmetric models when solving random 3-SATs with N = 50 (uf50-

01–uf50-0100), N = 75 (uf75-01–uf75-0100), and N = 100 (uf100-01–uf100-0100),

which are available in Ref. [107]. The error parameters for the symmetric model

were Ep = 0.08 and se = 1. Those for the asymmetric model were Ep = 0.3 and

se = 1. Other parameters for the asymmetric model were UL = 9, TE = 5, TS = 2,

and TH = 5. The solution-searching performance could be improved by introducing

the asymmetry for all instances. The average iterations for N = 50, 75, and 100

are shown in Fig. 4.9. The iterations of the asymmetric model were 2, 3, and 19

times faster than those of the symmetric model when solving N = 50, 75, and 100,

respectively. The gaps widened as increasing the number of variables, N , and we

confirm that the performance exponentially was improved owing to the asymmetric

dynamics.

43

0 20 100
Instance number

40 60 80
102

103

104

105

106

107

N=50

It
e

ra
tio

n
s

to
fin

d
so

lu
tio

n

0 20 100
Instance number

40 60 80

N=75

0 20 100
Instance number

40 60 80

N=100

Symmetric
model

Asymmetric
model

(a) (b) (c)

Figure 4.8: Solution-searching performance of symmetric and asymmetric models
when solving (a) N = 50, (b) N = 75, and (c) N = 100. Results are sorted in
ascending order of iterations about symmetric model. I tested 100 times for each
instance.

50

Number of variables, N

75 100
103

104

105

106

A
ve

ra
ge

 it
e

ra
tio

n
s

to
fin

d
so

lu
tio

n

x2

x3

x19
Symmetric
model

Asymmetric
model

Figure 4.9: Average iterations of symmetric and asymmetric models to find solution
when solving N = 50, 75, and 100.

44

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

4.6 Asymmetric deformation of amoeboid organ-

ism

I investigated whether the asymmetric dynamics in the electronic amoeba are in

the amoeboid organism. A measurement environment to evaluate the expansion

and shrinkage ratio of the amoeboid organism on a nutrient-rich chip is shown in

Fig. 4.10(a). The amoeboid organism expands its body to maximize food intake; on

the other hand, it shrinks when it is exposed to a light. The temperature was 25

to 27 ◦C (room temperature) and the humidity was controlled at 85 to 100 % using

a humidifier and a humidity sensor. We used a light-emitting diode, VLDB123R-

08, to irradiate the amoeboid organism on the nutrient-rich agar plate, where the

irradiance was 12.8 mW/cm2. To evaluate expansion and shrinkage speeds of the

amoeboid organism, we measured the moving distance from a neutral position, which

was analyzed by time-lapse images.

(b)

0 40
0

0.4

Time [min]

0.1

0.2

0.3

20 8060

P
se

ud
op

o
d

ed
g

e
po

si
tio

n
[c

m
]

(c)
Light

0

0 250
-0.15

Time [min]
150 200

-0.05

-0.10

50 100

P
se

ud
op

o
d

ed
g

e
po

si
tio

n
[c

m
]

Dark

(a)

Humidity
sensor

Humidifier

LED

Amoeba

Figure 4.10: (a) Experimental condition to evaluate expansion and shrinkage speed
of amoeboid organism. Edge position when (b) unexposed and (c) exposed to light.

Figures 4.10(b) and 4.10(c) show the moving distance of the amoeboid organism

45

when it was not exposed and exposed to light, respectively. The amoeboid organism

fluctuated back and forth, and also it expanded its body when it was not irradiated

by the light; on the other hand, it avoided from the light while fluctuating. The

amoeboid organism hardly moved during 10 to 40 minutes and 50 to 180 minutes

when not exposed to the light and exposed to the light, respectively. The time to

decide to move without the light was shorter than that with it. I assumed that this

indecisive behavior was that the amoeboid organism was thinking whether to move

or not [34]. The average moving distance was 0.146 cm and 0.058 cm per minute

without and with light exposure, respectively. The expansion speed of the amoeboid

organism was about three times faster than the shrinkage speed.

Incidentally, we assumed that the shrinkage speed, TS in Eq. 5, was the same

when Li,v = 1 and Ei,v = 1 in order to only consider the ratio of the expansion to

the shrinkage. As shown in Fig. 4.10, indeed, the speed was different: the amoeboid

organism fluctuated on a much faster time scale than it expanded and shrunk.

Evaluating the effect of this behavior on the solution search ability remains as a

future work.

4.7 Discussion

The obtained results confirm that the asymmetric dynamics are feasible for searching

for a solution to the SAT as shown in Figs. 4.7 and 4.8. Here I interpret the roles

of the asymmetric dynamics in the solution search as the balanced combination of

the local and global searches. In general, the efficiency of the solution search can be

controlled by the balance [108, 109]. In the local search, the variables converge at

a local (or global) solution; however, they are frequently trapped in a local solution

because the optimization problem has many local solutions rather than the global

solution. In the global search, on the other hand, the search can avoid sticking in

a local solution by using stochastic behavior; however, the stochastic behavior also

46

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

makes it difficult for them to converge at a solution since the worst-case complexity

becomes O(2N) if the stochastic behavior is dominant in the solution search.

Above discussions are valid in the asymmetric model: when the error probability

Ep is high, the model amoeba can globally search variable vector space while avoiding

sticking in a local state. However, in the model with the symmetry, too high Ep

leads to vanish an exploration history and the solution search behavior becomes

random search, because the variables immediately change from 1 to 0 if the error

occurs. On the other hand, in the model with asymmetry, the history does not

vanish because they do not immediately change if it occurs; therefore, the model

effectively searches a solution even when Ep is too high.

The effect of the asymmetric delays in the response on the solution search is

discussed on the analogy of an energy landscape [62, 68]. In the case of the amoeba-

inspired computing system for solving the SAT, the global minimum corresponds

to the stationary state where the system stabilizes, which means the system finds

a solution, and the local minimum corresponds to the steady cyclic state where it

moves between several states in a cyclic manner. The barrier height of the potential

well is characterized by (TE/TS)UL as shown in Fig. 4.11 because increasing TE or

UL (or decreasing TS) reduces the effect of the error on the solution search. The

shape of the well in the model with the asymmetry is relatively deep compared to

the model with the symmetry. Here, the depth of the well is proportional to the

ratio of the expansion to the shrinkage and the upper bound UL. The error duration

time se can be considered as a time to climb from the well to escape from a local

state. Increasing se with low Ep or decreasing se with high Ep makes it easier to

escape from a local state. By optimizing the balance by the ratio of the expansion

to the shrinkage and the magnitude of Ep and se, the AmoebaSAT can effectively

search the variable vector space globally and locally.

The role of the asymmetry in the solution search is not only to modify the shape

of the well but also satisfy a SAT formula. If ignoring the contradiction due to

47

(TE / TR)UL

EP･se

(a) (b)

Figure 4.11: Analogy with energy landscape of (a) asymmetric and (b) symmetric
models.

introducing the redundant variables, INTRA, the objective function F is satisfied

when all redundant variables become 1. The depth of the well as discussed in the

above can be controlled by increasing UL and keeping the values of the expansion

and shrinkage constant. However, even if adjusting the balance in the symmetric

model, the model with the symmetry cannot effectively search variable vector space

because redundant variables are biased to 0 by the symmetric dynamics due to the

error. Because the asymmetric dynamics bias redundant variables to 1 even when

Ep is high, the model with asymmetry is easier to satisfy a SAT formula compared

to the symmetric model. We have concluded, from the above discussion, that the

AmoebaSAT with the asymmetric dynamics could search a solution compared to

original one.

Organisms process information by making their bodies interact with an envi-

ronment [110–114]. Caenorhabditis elegans is a multicellular organism unlike the

amoeboid organism asymmetrically behaves when making a decision: if increasing

concentration of repulsive odorant 2-nonanonn, C. elegans instantly makes the de-

cision to avoid from it, else if decreasing that of 2-nonanonn, it carefully makes a

decision [111]. C. elegans performs the calculus behavior at a molecular level. The

behavior is similar to the amoeboid organism when exposed to light or not. Based

on the Darwinism and my results in this chapter, the asymmetric dynamics are

considered as an evolution remnant and reasonableness as survival strategy.

48

CHAPTER 4. AMOEBA-INSPIRED ANALOG-DIGITAL HYBRID COMPUTING SYSTEM FOR SOLVING

SATISFIABILITY PROBLEM

The solution-searching performance of the electronic amoeba was low; 0.2 ms

was required to solve 12-variable 3-SAT instances even if using the optimal error

parameters as shown in Fig. 4.4. There are two solutions to improve the performance.

First we should implement the feedback circuit by using an asynchronous circuit.

There occurs an operational mismatch between the amoeba core and the feedback

circuit: in this chapter, the amoeba core and the feedback circuit operated with

an asynchronous and synchronous way, respectively. We can easily implement the

bounce-back rule on the feedback circuit by using the FPGA or a crossbar circuit

that has a memory at each cross-point because the bounce-back rule consists of AND

or OR operations. Second the parameters about the asymmetric dynamics were not

optimized. The electronic amoeba is the system that naturally incorporates the

asymmetric dynamics because of the capacitor network. Therefore, we can optimize

the parameters by adjusting the capacitance and transconductance of the MOSFET

in the amoeba core related to the time constant of resistive-capacitive circuits.

From the viewpoint of analog implementation of the electronic amoeba and

FPGA implementation of the AmoebaSAT, an overhead occurs in producing a

stochastic function [73, 106, 115]. Xorshift, used in the implementation of the elec-

tronic amoeba, is a hardware friendly implementation method because it consists of

exclusive-OR and bit shift operation [102]. Considering applying the SAT to real-

world applications, a numerous number of variables is required; therefore, we should

prepare random number generators corresponding to the number of variables. The

area of implementing stochastic functions enlarges, leading to reduce the scalability.

Therefore, we hope to implement a single stochastic function on a single device.

Figure 4.7 indicates that a stochastic analog device, such as a stochastic switching

memristor [116–123], is a feasible solution for the electronic amoeba and FPGA-

based AmoebaSAT because such a device uses low implementation area and low

power consumption although it exhibits finite probability distribution due to the

device variation. Random number generators implemented by a stochastic analog

49

device will enable to reduce the overheads.

4.8 Conclusion

I demonstrated that the electronic amoeba implemented by analog circuits and digi-

tal circuits that correspond to the amoeba core and the feedback circuit, respectively,

could solve the SAT. I also evaluated the performance of the electronic amoeba to

the SAT. The experimental results indicated that there were an optimal error period

for each error probability and optimal error parameter sets for the error period and

probability that minimized the solution-searching time. In addition, the solution

search of the electronic amoeba was uninfluenced by the error period when the error

probability was law; on the other hand, it was influenced by the period when the

probability was high. We considered these abilities of the electronic amoeba arose

from the asymmetric dynamics due to the transconductance of the MOSFET in

the branch in the amoeba core and investigated the performance a model amoeba

with the asymmetric dynamics by the numerical simulation. The model amoeba

showed the robustness to the error property as with the experimental results of

the electronic amoeba. Moreover, the solution-searching performance was improved

owing to the asymmetry, compared to original one; the gaps when increasing the

problem size widened. These results tell us that introducing the asymmetry into

FPGA-based amoeba-inspired algorithm is helpful to improve the performance and

stochastic hardware random number generators that have the gauss distribution can

be used as producing the error in the electronic amoeba. The amoeboid organism

and C. elegans have such an asymmetry; therefore it is considered to be reasonable

way to survive based on the Darwinism.

50

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

Chapter 5

Amoeba-inspired all analog

computing system integrating

resistance crossbar circuit for

solving maximum cut problem and

traveling salesman problem

5.1 Introduction

The traveling salesman problem (TSP) and maximum cut problem (Max-cut) are

one of the optimization problems and belong to nondeterministic polynomial time

hard (NP-hard) problems. Their detailed descriptions are shown in Chpt. 2. The

TSP and Max-cut have several applications in the real world. In addition, the

Max-cut is used as a benchmark problem to compare the performance of the Ising

machine [20, 28, 57, 58]; therefore, we can directly compare the performance between

the Ising machine and the electronic amoeba by solving the Max-cut by the electronic

51

amoeba. To solve the TSP and Max-cut by the electronic amoeba, the bounce-back

rules for them have to be formulized. So far, the bounce-back rule for the TSP

has been formulized by Aono et al. [32, 33], but it for the Max-cut has not been

formulized. We can formulize the bounce-back rule for the Max-cut by referring it

for TSP.

We have to consider how to implement the bounce-back rule on the electronic

amoeba. The bounce-back rule for the TSP needs to operate product-sum operations

and thresholding. As with the implementation of the electronic amoeba for solving

the satisfiability problem (SAT), we can implement the bounce-back rule on the

micro-controller shown in Chpt. 4. However, as we confirmed that the performance

of the electronic amoeba to the SAT was low when we implemented its feedback cir-

cuit with the micro-controller, the implementation is not feasible for the electronic

amoeba that solves the TSP and Max-cut and calculating the product-sum by a cen-

tral processing unit faces a memory wall problem [124–126]. Therefore, to perform

at the electronic amoeba’s full potential, we have to implement the bounce-back rule

by analog circuits. Then the performance is maximized because the amoeba core

and feedback circuit operate in analog domain.

In this chapter, I propose the electronic amoeba integrating the crossbar instance-

mapping circuit (crossbar IMC) that operates the product-sum operation and thresh-

olding in parallel based on the bounceback rule. First I formulize the bounce-back

rule for Max-cut and implement formulized bounce-back rule on the crossbar IMC,

and then I demonstrate the electronic amoeba solves the Max-cut and evaluate the

performance. Next I implement the bounce-back rule for the TSP on the cross-

bar IMC and demonstrate the electronic amoeba solves TSP. Then, I evaluate the

performance in solving TSP.

52

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

5.2 Bounce-back rule for Max-cut and TSP

5.2.1 Bounce-back signal

The bounce-back signal for the amoeba-inspired computing system that solves the

TSP is determined by following equations [32, 33]:

Lij(t+∆t) = σα1,β1

(∑
Ul

WV k,Ulσα2,β2 (XUl(t))

)
, (5.1)

σα,β(x) =
1

1 + exp(− α(x− β))
, (5.2)

where WV k,Ul is a variable interaction described in the next section where V and U

represent a visit city and k and l represent a visit order. LV k decides which variables

to be decreased; therefore, if LV k is 1, corresponding variable XV k is bounced back,

i.e., the variable approaches 0. σα,β(x) represents a sigmoid function where α decides

a slope of the function and β is a threshold value. We can change an instance to be

solved by changing WV k,Ul. In the amoeba-based computing system and -inspired

algorithm, the parameters are set to α1 = 1000, β1 = 0.5, α2 = 35, and β2 = 0.6

[32, 33].

53

5.2.2 Variable interaction for Max-cut

The bounce-back rule for Max-cut has not been formulated. We formulate the

variable interaction for the Max-cut by using 2N redundant variables for the Max-

cut (shown in Appx. B), and it is given by

Wiv,jv′ =

0.5, (if i = j and v = 1− v′)

edge(i, j)/ν, (if i ̸= j and v = v′ and edge(i, j) > 0)

−edge(i, j)/ν, (if i ̸= j and v ̸= v′ and edge(i, j) < 0)

0, (otherwise)

(5.3)

where edge(i, j) is the edge between the vertex i and j and ν is a normalization

coefficient that makes the amoeba core stable when it finds a solution to the Max-

cut. If Xi,0 = 1 and Xi,1 = 0, the vertex i belongs to group 0, else if Xi,0 = 0 and

Xi,1 = 1, it belongs to group 1. Therefore if Xi,0 = 1, Xi,1 is forbidden to become 1,

else if Xi,1 = 1, Xi,0 is forbidden to become 1. The variable interaction to maximize

the cut size should be considered: if the edge between the vertexes i and j (i ̸= j)

is positive (edge(i, j) > 0), the total cut size decreases when the vertexes i and j

belong to the same set (v = v′), else if edge(i, j) < 0, it decreases when the vertexes

belong to the set different from each other (v ̸= v′). A combination of vertexes such

as decreasing the total cut size is bounced back as much as possible. As a result,

the amoeba-inspired computing system can converge at a solution that the total cut

size is relatively large. How to determine the normalization coefficient for Max-cut

is given in Appx. B.

54

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

5.2.3 Variable interaction for TSP

In Ref. [32, 33], the variable interaction for the TSP is given by

WV k,Ul =

0.5 (if V = U at k ̸= l orV ̸= U at k = l)

dist(V, U)/λ (if V ̸= U and |k − l| = 1)

0 (otherwise)

, (5.4)

where dist(V, U) is an inter-city distance between the city V and U and ν is a

normalization coefficient to make the amoeba core stable when it finds a solution.

Eq. 5.4 forbids visiting same city (V = U) at the different time (k ̸= l) and forbids

visiting different city (V ̸= U) at the same time (k = l). To minimize the total

route, the variable that visits a different city (V ̸= U) at a time before and after

(|k − l| = 1) is likely to be bounced back as with the variable interaction of the

Max-cut. How to determine the normalization coefficient is given in Appx. B.

5.3 Electronic amoeba integrating crossbar cir-

cuit that performs product-sum and thresh-

olding

To evaluate the bounce-back rule for the Max-cut and TSP in the electronic amoeba,

the product-sum and thresholding is calculated by analog electronic circuits. Al-

though using the micro-controller such as the electronic amoeba for solving the SAT

shown in Chpt. 4 is considered to calculate the product-sum and thresholding, the

intrinsic ability of the electronic amoeba will not appear and the feedback circuit

faces a memory wall problem [124]. The feedback circuit of the electronic amoeba

has to be implemented with analog circuits.

Figure 5.1 shows the electronic amoeba that integrates a crossbar circuit for

55

X1,3

Amoeba core
X1,1

X1,2

XN,N

XN,N-1

XV,k

Crossbar IMC

R1,2

R1,3

R2,1

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

Rf

Vref

L1,1 L1,2 L1,3 LN,N-1 LN,N

Rs1

Rs2

R1,N

R1,N-1

Figure 5.1: Schematic of electronic amoeba with crossbar instance-mapping cir-
cuit (IMC). Amoeba core searches solution and operates with asynchronous way.
Crossbar IMC performs product-sum operations and thresholding and feeds back to
amoeba core. Blue boxes in amoeba core outputs sigmoid-like function.

calculating the product sum by using the Kirchhoff’s current law. Lij(t+∆t) given

by Eq. 5.1 typically takes 0 or 1 due to the sigmoid function when α1 = 1000. Then,

the bounce-back signal for the Max-cut and TSP from the crossbar circuit is defined

by reformulating Eq. 5.1 as follows:

Li,j = θ

(∑
j

Rf

Ri,j

Xj − T

)
, (5.5)

where θ(·) is a threshold function that can be implemented with a comparator, Rf is

56

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

a feedback resistance of an operational amplifier, Ri,j is a resistor at each cross-point

in the crossbar, and T is a threshold value representing β1 in Eq. 5.1. Wi,j in Eq. 5.1

corresponds to Rf/Ri,j, which is derived from Wi,j = Rf/Ri,j. T is a threshold value

and controlled by Vref of the comparator. We can change an instance to be solved

by changing the resistances Ri,j at each cross-point in the crossbar IMC based on

Eq. 5.1. We obtain the bounce-back rule for the Max-cut and TSP by changing the

subscripts in Eq. 5.5. To implement the bounce-back rule on the crossbar IMC, the

variable interaction for the Max-cut and TSP defined by Eqs. 5.3 and 5.4 can be

rewritten as Wiv,jv′ = Rf/Riv,jv′ and WV k,Ul = Rf/RV k,Ul, respectively.

Recently, the crossbar circuit to perform product-sum operations in analog do-

main has been studied in the area of neural networks [127–133], where memristive

switching memory so-called “memristor” is used [134, 135]. Relationship between

neural networks and optimization solvers, including Ising machines and the elec-

tronic amoeba, is an inverse problem: neural networks learn and optimize synapse

weights based on input and output signals [127–133]; on the other hand, in the sys-

tem dedicated to solving optimization problems, the weights are given by a problem

to be solved in advance and they find an optimal input. For example as dedicated

systems to solving optimization problems, Hopfield neural networks with the cross-

bar circuit have been reported [89, 90].

5.4 Results

5.4.1 Circuit simulation results for Max-cut

We conducted circuit simulations by using simulation-program-with-integrated-circuit-

emphasis-based analog circuit simulator (LTspice, available in [136]) developed by

Analog Devices, Inc. The resistance value of the feedback resistor for the opera-

tional amplifier was 10 kΩ. We set Rs1 and Rs2 to 10 kΩ and 56 kΩ. Figure 5.2(a)

57

XA,0

XA,1

XB,0

XC,0

XC,1

XB,1

XD,0

XD,1

XE,0

XE,1

Find solution

xA=1

xB=0

xC=0

xD=1

xE=0

Start

0

1

1

1

0

0

0

1

1

0

0 10050 150
Time [µs]

(b)

4 V

+1

-1

-1

-1

+1 +1

+1

+1

+1 +1

A

B E

C D

(a)

Figure 5.2: (a) Problem to be solved and (b) time evolutions of all variables.

shows the problem to be solved, which is 5-vertex Max-cut and completely con-

nected with +1 or -1. Fig. 5.2(b) shows time evolutions of all variables obtained by

the circuit simulation. In the circuit simulation and experiment shown in the next

subsection, the amount of the current from the current source and capacitances

in the pseudopods in the amoeba core were 25 µA and 100 pF, respectively. All

variables started from 3 V because the capacitor charges initially were 0 V, which

corresponds to all variables taking 1. These states violate the constraint that the

variables should not belong to Gr. 0 and Gr. 1 at the same time; thus, the crossbar

IMC sent a signal to turn off the MOSFETs of all branches in the amoeba core.

When we injected the current from the current source, each variable approached 0

V, while the crossbar IMC always calculated the product-sum and the thresholding

based on resistance values in each cross-point in the crossbar IMC. Then, the cross-

bar IMC stopped turning off several MOSFETs in accordance with the edge weights

and the constraint shown in Eq. 5.3. After the time evolution, the variables reached

stationary state, and the electronic amoeba found a solution. Note that if the elec-

58

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

tronic amoeba finds a solution to optimization problems, the outputs become stable

because there are no variables that violate constraints to optimization problems.

The obtained solution was (xA, xB, xC , xD, xE) = (1, 0, 0, 1, 0). That is, the ver-

texes B, C, and E belong to Gr. 0, and the vertexes A and D belong to Gr. 1. The

cut size of the obtained solution was 4, which was one of the optimal solutions to

the problem shown in Fig. 5.2(a).

5.4.2 Physical system for solving Max-cut

We implemented the electronic amoeba integrating the crossbar IMC with commer-

cial electronic devices as shown in Fig. 5.3(a). The amoeba core and crossbar IMC

were implemented on a breadboard and a surface mount circuit, respectively. The

solved problem was the same to Fig. 5.2(a). The feedback resistance of the opera-

tional amplifier is the same to the circuit simulation; however, because the accuracy

of resistors that are on sale commercially is low, I chose resistance values near to

original resistance values.

(a)

Amoeba Core

Crossbar IMC
XA,0

XA,1

XB,0

XC,0

XC,1

XB,1

XD,0

XD,1

XE,0

XE,1

Find solution

xA=0

xB=1

xC=0

xD=1

xE=1

Start

1

0

0

1

0

1

0

1

0

1

0 10050 150
Time [µs]

(b)

4 V

Figure 5.3: (a) Photograph of physical circuit and (b) time evolutions of all variables.

59

Figure 5.3(b) shows the time evolutions of all variables. The variables started

from 3 V as with the circuit simulation. The current from the current source was

injected into each branch, and then, the variables approached 0 V. After the time

evolution, the variables became stable and the system found a solution to the Max-

cut. The solution-searching behavior was the same to the circuit simulation. The

obtained solution was (xA, xB, xC , xD, xE) = (0, 1, 0, 1, 1). That is, the vertexes A

and C belong to Gr. 0 and the vertexes B, D, and E belong to Gr. 1. The cut

size of the obtained solution was 4, which was an optimal solution. Although the

solution was different one from the circuit simulation as shown in Fig. 5.2(b). We

have concluded that the electronic amoeba can solve the Max-cut from the circuit

simulation and the experimental result of physically implemented circuits.

After 50 µs, the experimental results showed that the amoeba branches whose

output signals became 0 V gradually approached 0 V. This is due to the transcon-

ductance of the MOSFETs in the amoeba core and the Kirchhoff’s current law. The

current from the current source mostly flowed into the MOSFETs whose state was

on because the transconductance was relatively large: the current flowed into the

branches whose states took 1. Note that the blue square box in Fig. 5.1 outputs

inverse sigmoid-like function. Then, in accordance with the Kirchhoff’s current law,

the current little flows into the MOSFETs whose state is off. Therefore, the variables

gradually approached 0 V. We can reproduce the simulation results by decreasing

the transconductance of the MOSFET.

5.4.3 Evaluation of solution-searching performance to Max-

cut

We investigated the solution-searching performance of the electronic amoeba to the

Max-cut by using the circuit simulator. Figure 5.4 shows the simulation results.

Tested problems were 5- to 100-vertex Max-cut whose connectivity was complete and

60

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

Cut size
160 280200 240

N=100

C
o

u
n

t

0

2

4

6

8
Optima

(a)
C

u
t s

iz
e

300

200

0

100

Optima
Electronic
amoeba

Random
Sampling

-50

50

150

250

0 12020 40 60 80 100
Number of vertexes

(b)

Figure 5.4: (a) Histogram as function of cut size when electronic amoeba solves
100-vertex Max-cut and (b) solution-searching performance, as function of number
of vertexes.

the weights were assigned by −1.0,−0.6,−0.2, 0.2, 0.6, and 1.0 randomly. I tested

100 trials for each instance. For each instance, the resistance values in the amoeba

core were randomly assigned from 1 Ω to 1 kΩ, which changed initial values when the

variables bifurcated and therefore it made the system search several solutions. The

current from the current source and capacitances in the pseudopods were 5N µA and

100 pF, respectively, where N is the number of vertexes. As shown in Fig. 5.4(a),

the electronic amoeba implemented on the circuit simulator found several solutions

owing to randomly assigning the resistance values. In this circuit simulation, the

electronic amoeba did not find an optimal solution.

Figure 5.4(b) shows the cut size of obtained solutions as a function of the number

of vertexes. The electronic amoeba found better solutions compared with the average

solution obtained by the random sampling from 10000 trials that produces a solution

to the Max-cut randomly, and the quality did not degrade against the average

results of the random sampling. However, the obtained solutions by the electronic

amoeba degraded against the optimal solutions. Methods to improve the quality

of solutions obtained by the electronic amoeba are needed (shown in Chpt. 6 and

61

Appx. C). Figure 5.5 shows a time in the circuit simulation for the electronic amoeba

to find a solution. The electronic amoeba found a solution to the Max-cut up to

100 vertexes in nearly constant time. It is needed to evaluate the performance to

a large-scale problem and the performance evaluation of the physical implemented

circuit is needed to confirm whether the search time is constant.

0 12020 40 60 80 100
Number of vertices

Electronic
amoeba

DHNN

100

0

50

S
o

lu
tio

n
se

a
rc

h
 ti

m
e

[u
s]

150

200

Figure 5.5: Solution-searching time. Red and blue dots are the results of the elec-
tronic amoeba and discrete-type Hopfield neural network, respectively.

I examined that the trend whether the electronic amoeba finds a solution to

the Max-cut in constant time shown in Fig. 5.5 was universal or not by numerical

experiments. I formulized a simple numerical model of the electronic amoeba as

follows:

Xi,v(t+ 1) =

Xi,v(t) +DinN/Loff (if Li,v(t+ 1) = 0)

Xi,v(t)−Doutσ20,0.6(X(t)) (if Li,v(t+ 1) = 1)

, (5.6)

where Din and Dout are the amount of supply and withdraw resources, respectively,

Loff emulates the current conservation in the amoeba core and is defined as the

total number of Li,v = 0, N is the number of vertices, and σα,β is a sigmoid function

having a slope α and a threshold value β. Xi,v represents a state variable of the

Max-cut. Li,v determines which the MOSFETs in the amoeba core should be turned

62

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

on and is defined as follows:

Li,v(t+ 1) = σ1000,0.5

(∑
jv′

Wiv,jv′σ35,0.6(Xj,v′)

)
. (5.7)

Figure 5.6 shows the numerical simulation results when I iteratively solve Eqs. 5.6

and 5.7. In this experiment, the parameters, ∆in and ∆out, were set to 0.0004 and

0.0010, respectively. Initial values of variables were set in the range of [0, 10−3]

randomly with the offset 0.59. The number of vertexes of solved instances was from

100 to 5000 and weighted in the range of−1.0,−0.6,−0.2, 0.2, 0.6, and 1.0. As shown

in Fig. 5.6(b), the cut size was increased when the number of vertices was increased.

This trend was the same to the circuit simulation results (shown in Fig. 5.4). On the

other hand, solution-searching time (iterations to find a solution) slightly increased

when solving over 2000-vertex Max-cut although it decreased when solving under

2000-vertex Max-cut. Therefore, we should conclude that the time to find a solution

in the electronic amoeba would grow when solving large vertex instances, although

the rate of the time as a function of the number of vertexes was small. In addition,

6540 321
Number of vertices(×103)

880

890

840

850

860

870

Ite
ra

tio
n

to
 fi

nd
 s

ol
ut

io
n(
×

10
3)

(a)

5

6

1

2

3

4

6540 321
Number of vertices(×103)

C
ut

 s
iz

e(
×

10
3)

(b)

0

Figure 5.6: Numerical simulation results using formulized behavior of electronic
amoeba. (a) Iterations to find solution and (b) cut size, as function of number of
vertices.

63

a physically implemented electronic amoeba has a time delay in its operations as

discussed in Chap. 6, the delay makes the search time longer.

We compared the performance of the electronic amoeba with the discrete-type

Hopfield neural network (DHNN) [59, 137, 138]. The DNHH is a greedy search

method if it does not accompany the simulated annealing (SA). The DHNN with

the SA is the solution-searching principle of the digital annealer and the CMOS

annealing, which have been developed by Fujitsu Ltd. and Hitachi Ltd., respectively

[20, 57]. The DHNN algorithm is shown in Alg. 2, where the energy corresponds to

the cut size; if the energy decreases, the cut size increases.

Algorithm 2 Discrete-type Hopfield neural network algorithm

1: INITIALIZE: Assign randomly -1 or 1 to X, E ← ReturnEnergy(X)
2: while Cut size of DHNN is smaller than average one of electronic amoeba do
3: rn← rand(0, N − 1)
4: ∆E ← 0, i← 0
5: for i < N do
6: ∆E ← ∆E + edge[rn][i]×X[i]
7: i← i+ 1
8: end for
9: ∆E ← −2×X[rn]×∆E

10: if ∆E ≤ 0 then
11: X[rn]← −X[rn]
12: E ← E +∆E
13: end if
14: end while

We implemented the DHNN on a conventional computer (Intel Xeon processor

E5-1650 v2 @3.5 GHz). In Fig. 5.5, the blue dots show the computation time for

the DHNN to find a solution whose quality is comparable to an average quality

of solutions obtained by the electronic amoeba. We tested 100 times for each in-

stance. The computation time in the DHNN increased with O(N2). The computer

simulation results indicate that the solution-searching performance of the electronic

amoeba is superior to that of the conventional computer when solving more than

90-vertex Max-cut.

There are two reasons that the computation time increased in the quadratic

64

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

trend. One is that in the line numbers 5–8 in the DHNN algorithm shown in Alg. 2,

the computational cost of the product-sum operation increases in O(N) with in-

creasing the number of vertexes, N . Figure 5.7(a) shows the computation time for

the product-sum operations in the DHNN algorithm per iteration. The computation

time increased in O(N) when the number of vertexes was larger than 30. This is

because the number of the product-sum operations increases as a function of N . In

the electronic amoeba, the computational cost about the product-sum operation is

constant even when the number of vertexes N increases because the product-sum

operations between the variables and the variable interactions are conducted by the

crossbar IMC with the operational amplifier and the comparator in a parallel fash-

ion. increasing The second reason is that the number of iterations for the DHNN

200

0

100

300

N
um

be
r

of
 it

er
at

io
ns

(b)

400

0 12020 40 60 80 100
Number of vertexes

(a)

0.4

0

0.2

0.6

C
al

cu
la

tio
n

tim
e

of

D
H

N
N

 p
er

 it
er

at
io

n
[u

s]

0.8

0 12020 40 60 80 100
Number of vertexes

1.0

Figure 5.7: (a) Calculation time of DHNN in conventional computer per iteration
and (b) number of iterations for DHNN to find solution comparable to average one
of electronic amoeba, as function of number of vertexes.

to find a solution comparable to the average one of the electronic amoeba increased

in O(N). Figure 5.7(b) shows the iteration number as a function of N . The itera-

tion number increased in O(N). The initial values were randomly assigned by -1 or

+1, which was the same to a solution produced by the random sampling. Then the

DHNN tried to improve the solution of the random sampling step by step. Therefore,

the number of iterations for the DHNN to find a solution comparable to the elec-

65

tronic amoeba one increased in O(N), while the solutions obtained by the electronic

amoeba did not degrade against the random sampling. From the first and second

reasons, the computation time of the DHNN increased in O(N)×O(N) = O(N2).

5.4.4 Circuit simulation results for TSP

To confirm that the electronic amoeba integrating the crossbar IMC can solve the

TSP, I first used the circuit simulator as with the experiment of solving the Max-

cut. The overall description of the TSP and the variable encoding for the bounce-

back rule for the TSP are shown in Chpt. 2 and Appx. B, respectively. Solved

instance is shown in Fig. 5.8(a). Figure 5.8(b) shows time evolutions of all variables

when solving the 4-city TSP instance. In the circuit simulation, the capacitances in

the amoeba core and the amount of the current from the current source were 500

pF and 80 µA, respectively. The number of required variables to solve the 4-city

TSP instance are 16 (4 × 4). All variables started from 3 V as with the electronic

amoeba for solving the Max-cut. These states violated the constraints of TSP that

a salesman should visit all cities only once and should not visit the city at the same

time. Therefore, the crossbar IMC sends a signal to the MOSFETs in the amoeba

core to turn off them. When the solution search started, the variables gradually

approached 0 V. Then, the crossbar IMC released the variables that tries to become

0 V, and they immediately reached 3 V. After the feedback process, the variables

converged at the stationary state in the same way as the electronic amoeba found a

solution to the Max-cut (shown in Fig. 5.2), and the states correspond to a solution

to the TSP. The obtained solution was D → A → B → C → D, the route length

was 100, which is the optimal solution to the problem to be solved.

66

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

(a)

A B

CD 25

5

35 35

656

XB,1

XB,2

XB,3

XB,4

1

0

0

0

0

Time [μs]

100 200 300

0

0

1

0

4 V

Start Solution

XA,1

XA,2

XA,3

XA,4

0

Time [μs]

100 200 300

XD,1

XD,2

XD,3

XD,4 0

0

0

1

0

Time [μs]

100 200 300

XC,1

XC,2

XC,3

XC,4 1

0

0

0

0

Time [μs]

100 200 300

(b)

Figure 5.8: (a) TSP instance to be solved and (b) time evolutions of all variables
obtained from circuit simulator when solving 4-city TSP instance.

5.4.5 Physical implemented system for TSP

I implemented the electronic amoeba integrating the crossbar IMC on the bread-

board as shown in Fig. 5.9(a). In the fabricated system, the capacitance in each

pseudopod in the amoeba core were 470 pF, which is the sum of parasitic capac-

itances and a discrete capacitor. The current of the current source was 80 µA.

Figure 5.9(b) shows time evolutions of all variables. The variables started from 3

V, and when the current was injected into the amoeba core, the variables gradually

approached 0 V. They became stable after the feedback process in the same way

as the electronic amoeba solved Max-cut and TSP by the circuit simulator and the

physical-implemented circuit. The obtained solution was A → D → C → B → A,

and the total route was 100 which was the optimal solution.

I conducted that the physically implemented electronic amoeba could solve dif-

ferent problems (shown in Fig. 5.9(a)) by only changing the resistances on each

67

Amoeba core

Crossbar IMC

0

0

0

1

4 V

Start Solution

XA,1

XA,2

XA,3

XA,4

0
Time [μs]

100 200 300

XC,1

XC,2

XC,3

XC,4 0

1

0

0

0
Time [μs]

100 200 300

XB,1

XB,2

XB,3

XB,4

0

1

0

0

0
Time [μs]

100 200 300

XD,1

XD,2

XD,3

XD,4 0

0

1

0

0
Time [μs]

100 200 300

(b)(a)

Figure 5.9: (a) Photo of implemented circuit and (b) time evolutions of all variables
obtained from physical-implemented circuit when solving 4-city TSP instance.

cross-point in the crossbar IMC. Figure 5.10 shows the experimental results, where

the upper of the figure is the problem to be solved and the bottom of the figure

is the histograms. The optimal solutions and the worst solutions are summarized

in Tab. 5.1. I confirmed that the fabricated electronic amoeba found the optimal

solution for the instances A-C and E. However, the system could not find the op-

timal solution for instance D as shown in Fig. 5.10(d), and the counts of obtained

solutions are different for the two optimal solutions, even though the route lengths

are in the same (Fig. 5.10(c)). These are attributed to variations in the fabricated

circuit: for examples, threshold voltage variation in the CMOS inverter, offset volt-

age variation in the operational amplifier, and difference in the wiring length in

the crossbar IMC. As a result, the electronic amoeba has likely to find the route,

A → C → D → B → A. The electronic amoeba has searched the optimal solution

for the instance that the total route length is widely distributed such as the instance

68

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

E.

Table 5.1: Summary of TSP instances and route length
Ins. A Ins. B Ins. C Ins. D Ins. E

Rt. 1:
100 100 100 100 100

A→ B → C → D → A
Rt. 2:

96 99 100 101 160
A→ C → D → B → A

Rt. 3:
136 139 140 141 200

A→ D → B → C → A

60
50
40
30
20
10

0

C
o

u
n

t

Instance A

Rt 1Rt 2Rt 3

(a)

Instance B

Rt 1Rt 2Rt 3
(b)

Instance C

Rt 1Rt 2Rt 3

(c)

Instance D

Rt 1Rt 2Rt 3

(d)

Instance E

A B

CD 25

5

35 35

651

A B

CD 25

5

35 35

654

A B

CD 25

5

35 35

655

A B

CD 25

5

35 35

656

A B

CD 25

5

35 35

6565

Rt 1Rt 2Rt 3

(e)

Figure 5.10: Histogram when solving several 4-city TSP instances. (a) Instance A,
(b) instance B, (c) instance C, (d) instance D, and (e) instance E.

5.4.6 Evaluation of solution-searching performance to TSP

I investigated the solution-searching performance of the electronic amoeba by the

circuit simulation when solving the 10–30 city TSP instances. I tried 50 times

for solving the 10–20 city instances and only once for solving more than the 20-city

instances because the run time in the simulation increased rapidly: 6 days were spent

to simulate the 30-city instance, although 5 hours were spent to do for the 20-city

instance. In each trial, resistances in the branches in the amoeba core were randomly

assigned from 1 Ω to 10 kΩ to make the electronic amoeba explore the solution space

in the same way as we evaluated the performance to Max-cut. Figure 5.11(a) shows

69

the circuit simulation results when solving 20-city TSP instance. The capability to

search the solution space arose in the electronic amoeba by introducing variations

in the randomly assigned resistances in the branches, where different solutions were

obtained even for the same instance. The randomly assigned resistance values vary

the speed of the state transition from 1 to 0 between the variables. This process does

not guarantee to reach the optimal solution, but it can lead the electronic amoeba

to reach a variety of solutions.

1.0

0.8

0.9

1.1

Number of cities N

R
o

u
te

 le
n

gt
h

 o
f a

 le
ga

l s
o

lu
tio

n

fo
u

n
d

d
iv

id
e

d
 b

y
a

ve
ra

ge
 v

a
lu

e

short
route

(b)

10 20 25 3015

(a)

20-city TSP

Route length
1600 20001800 1900
0

2

4

6

8

C
o

u
n

t

1700

Figure 5.11: (a) Histogram of quality of solutions obtained by electronic amoeba
when solving 20-city TSP instance. (b) Solution quality as function of number of
cities. Vertical axis denotes route length of electronic amoeba divided by average
route length obtained by random sampling from 10000 trials.

Figure 5.11(b) shows the route length obtained by the circuit simulation as a

function of the number of cities. The intercity distance of used instances was ran-

domly produced, where the average intercity distance and the standard deviation

of used instances were 100 and 17, respectively. In Fig. 5.11(b), the vertical axis

is normalized by the average route length obtained from the random sampling in

10000 trials: if a value on the vertical axis is less than 1.0, the solution quality is

better than that of the random sampling. The result indicates that the electronic

amoeba finds solutions better than the average. The average of solutions was on a

70

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

declining trend: the solution quality did not degrade against the average solution

when increasing N . We have also confirmed that the electronic amoeba did not

reach an illegal solution when it became the steady state such as the hatching area

in Fig. 5.8(b).

Figure 5.12 shows the time in the circuit simulation to find a solution. The

electronic amoeba could find a solution in linear time growth with the increase in

the number of cities. The electronic amoeba will find a better solution in a short time

when solving large size problems. A possible interpretation of the linear growth is

that the system decides the path one by one, avoiding reaching an illegal candidate.

The system searches a relatively shorter path by watching all variables. Once the

crossbar IMC determined which variable should be 1 (determine a city that should

be visited), the variable is fixed at 1 and the crossbar IMC forbids the variables

that violate constraints of the TSP in accordance with the bounce-back rule that

is designed so that the constraints are certainly ensured. Therefore, the search

space decreases to N2−O(N), and the reduction continues until the system finds a

solution. The number of reductions is estimated as O(N); therefore, the system finds

a solution even when increasing the number of cities. The design of the bounce-back

control produced by the crossbar IMC and the amoeba core that operate in parallel

are also contributed to the growth because their circuits are implemented by analog

circuits.

Figure 5.13 shows a flowchart of solving TSP with linear time growth against

N , discussed in the above. We first assign random initial values to all variables in

the range of [−0.005, 0.005] with the offset 0.6 to avoid deadlock and reach several

kinds of solutions. We define a step that counts the number of repetitions. We

compute LV k for all V and k, where WV k,Ul is defined by Eq. 5.4. Next, we search

the subscriptions i and j about Lij such as the minimum value of LV k, which

corresponds to the path that is assumed to be the shortest one under given XV k.

Then, we substitute 1 for the corresponding variable Xij, because the variable whose

71

80

50

70

S
ol

ut
io

n
se

ar
ch

 ti
m

e
[μ

s]
60

90

O(N)

10 20 25 3015
Number of cities N

100

Figure 5.12: Time for electronic amoeba to find solution.

LV k is minimum is most unlikely to be bounced back, and we substitute 0 for the

variables that violate constraints when Xij = 1. The variables assigned to 0 or 1 are

fixed and never flipped. The solution space that the electronic amoeba is able to

search decreases to N2−2N−1. If we repeat these operations N times, we can assign

all N2 variables and obtain a solution only in linear time as increasing the number

of cities. One of the differences between this algorithm and the solution search

behavior of the electronic amoeba is that XV k does not change 1 or 0 immediately.

Compute L if X ≠ 0 or 1

Search maximum value Lij of L

��� =� ���,�	 ⋅ ��,�.� ��	�	
��,� � = 1 (1 + exp � � − �⁄

Assign random initial value in
range [-0.005,0.005] with offset 0.6
to all X and substitute 0 for step

Substitute 0 for variables that
violate constraint when Xij=1

step = step + 1

step == N

Find solution

Yes

No

Substitute 1 for Xij

Figure 5.13: Algorithm for solving TSP with linear time growth against N .

Figure 5.14(a) shows the numerical simulation results when solving 10 to 30 cities

72

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

instances, which are the same instance to those of the circuit simulation results. The

results indicate that the solution quality obtained from the algorithm is comparable

to that of the electronic amoeba as shown in Fig. 5.11(b), and the number of steps

increases in linear time against N as shown in Fig. 5.14(b). Therefore, we have

concluded that the electronic amoeba may have searched the solution such as the

algorithm.

20

0

10

40

Number of cities N

S
te

p
s

to
re

a
ch

so
lu

tio
n

10 20 25 3015

(b)

30
1.0

0.8

0.9

1.1

Number of cities N

O
b

ta
in

e
d

so
lu

tio
n

s
n

o
rm

a
liz

e
d

b

y
a

ve
ra

ge
 p

a
th

 le
n

gt
h

10 20 25 3015

(a)

Algorithm

Figure 5.14: (a) Solution quality and (b) steps to find solution obtained from algo-
rithm shown in Fig. 5.13.

To clarify the solution search performance of the electronic amoeba, I compared

it with other algorithms. There exist various TSP approximation algorithms, such as

the simulated annealing (SA), genetic algorithm (GA), particle swarm optimization

(PSO), ant colony optimization (ACO), and k-opt [139–143]. I chose the probabilis-

tic 2-opt algorithm (shown in Alg. 3) for the comparison because it is a very simple

and fast algorithm and complex parameters setting is not necessary. Iteration of the

Algorithm 3 2-opt algorithm

1: Set initial solution X randomly
2: while route length of 2-opt is larger than average one of electronic amoeba do
3: Choose arbitrary two cities from solution X
4: Exchange selected cities and set new solution as X ′

5: Compare X with X ′ and set better solution as X
6: end while

73

2-opt was made using a commercial computer until the solution quality of the 2-opt

reached the average solution quality found by the electronic amoeba. The 2-opt was

implemented on a conventional computer (Intel Xeon processor E5-1650 v2 @3.5

GHz). Figure 5.15 shows the simulation results. Approximated curve in Fig. 5.15

is derived by the quadratic function. Figures 5.12 and 5.15 indicate that if the

electronic amoeba is implemented physically, it exceeds the 2-opt on a conventional

computing system when solving more than 50-city TSP instance.

50

40

0

10

30

S
ol

ut
io

n
se

ar
ch

 ti
m

e
[μ

s]

Number of cities N

20

10 20 25 3015

Figure 5.15: Time for 2-opt to find solution comparable to average one of electronic
amoeba.

The solution-searching time of the electronic amoeba highly depends on the

capacitances in the amoeba core and the current of the current source: we can ac-

celarate the solution search of the electronic amoeba by decreasing the capacitances

in the amoeba core or increasing the amount of currents from the current source.

In the electronic amoeba, the transition time of the state variable between the two

states, 1 and 0, depends on the current injected from the current source and the

capacitance value in the pseudopod; therefore, the solution search time depends on

these parameters. We confirm these points using the circuit simulation. I used the

10-city instance that is the same instance to the circuit simulation shown in Fig. 5.11

and it was tried 50 times, where the resistance values in the pseudopod were ran-

domly assigned in the range between 1 Ω and 10 kΩ. Figures 5.16(a) and 5.16(b) are

74

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

the solution-searching time and the route length of obtained solutions as a function

of the current of the current source, respectively. Those of the capacitances in the

amoeba core dependences are shown in Figs 5.16(c) and 5.16(d), respectively. The

solution-searching time decreased by both increasing the current and decreasing the

capacitances. The results suggest that the solution-searching time scales the current

of the current source and the capacitance down. On the other hand, the solution

quality slightly degraded when increasing the current or decreasing the capacitances

as shown in Figs. 5.16(b) and 5.16(d). This is because the effect of the variations

of resistances in the amoeba core increases relatively, when the current is increased

and/or the capacitance is decreased. Therefore, we can eliminate the degradation

of the solution quality by reducing the resistance variation.

0 900 1200
0

300

600

900

1200

300 600
Current [µA]

S
o

lu
ti
o

n
 s

e
a

rc
h

 t
im

e
 [
µ

s
]

0 900 1200
900

950

1000

1050

300 600
Current [µA]

R
o

u
te

 l
e

n
g

th

0 4000 6000
0

200

400

600

800

2000
Capacitance [pF]

S
o

lu
ti
o

n
 s

e
a

rc
h

 t
im

e
 [
µ

s
]

900

950

1000

1050

R
o

u
te

 l
e

n
g

th average

0 4000 60002000
Capacitance [pF]

(a) (b)

(c) (d)

average

Figure 5.16: Dependence of solution search time on current and capacitance value.
(a) and (b) Solution search time and solution quality as function of currents, re-
spectively. (c) and (d) Solution search time and solution quality as function of
capacitances in pseudopod, respectively.

75

5.5 Discussion

We have demonstrated the solution search capability of the electronic amoeba inte-

grating the crossbar circuit to the Max-cut and TSP. The problem to be solved can

be changed by changing the resistances in the crossbar IMC. In solving the Max-cut

and TSP, the quality of solutions was better than the average quality of solutions

obtained by the random sampling, and the time to find a solution was smaller than a

conventional computer when the electronic amoeba is physically implemented. The

capability of the electronic amoeba exceeds the conventional system when hundred

or more cities should be visited.

Our results show that the electronic amoeba is suitable for an application that

the user needs the better legal solution in a short time. Users have to select a better

legal solution after several trials under the different initial states, since the solution

search time of the electronic amoeba growing in O(1) for the Max-cut and O(N) for

the TSP makes it possible to retry searching other solutions within a limited time.

Weights for the crossbar IMC are attached to satisfying constraints to optimiza-

tion problems. Practical applications in the real world require to satisfy constraints.

The electronic amoeba takes care of satisfying constraints to optimization prob-

lems; on the other hand, Ising machines are not good at solving strictly constrained

problems when they have little time because converged spin-alignment sometime

represent an illegal candidate that does not satisfy the constraints (detailed dis-

cussion is shown in Appx A). Therefore, the electronic amoeba is suitable for such

problems.

Owing to the obtained results of the electronic amoeba and the characteristics

that the Ising machine converges at an illegal solution and has the laboriousness

of the problem mapping due to the sparse connectivity, the electronic amoeba is

suitable for the prompt search and has advantages in flexibility and adaptivity to

the change of solved instances.

76

CHAPTER 5. AMOEBA-INSPIRED ALL ANALOG COMPUTING SYSTEM INTEGRATING RESISTANCE

CROSSBAR CIRCUIT FOR SOLVING MAXIMUM CUT PROBLEM AND TRAVELING SALESMAN

PROBLEM

The crossbar IMC implementing the operational amplifiers and comparators has

several problems. The operational amplifier which calculates product-sum opera-

tion make error due to production tolerance: for example, an offset voltage of the

operational amplifier. Summing resistances at each cross-point in the crossbar IMC

increases to infinity in mapping Max-cut when the problem size increases. Because

the resolution of resistances is limited, we cannot map the large size of the Max-cut

on the crossbar IMC. A resistance value (or conductance) in the crossbar IMC can-

not be controlled precisely due to intrinsic error when we use the memristor [90, 144].

If the resistances are not precisely controlled, the intercity distance and edge weight

are wrongly set. There is a problem of power consumption of operational amplifier

because operational amplifier regularly flows current in contrast to the CMOS logic

gate. These remain future works.

There is another method for implementing the crossbar IMC without using oper-

ational amplifier. A time-domain product-sum operation circuit has been proposed

based on spiking neuron model [145–147]. This circuit computes product sum using

the slope of resistances: if the resistance in a crossbar circuit is large, the slope

is gentle, otherwise it is steep. Low resistance induces frequently-firing and high

resistance value induces infrequently-firing based on Ohm’s law. Therefore, in the

case of implementing the crossbar IMC by the time-domain operations, the cross-

bar IMC informs the bounce-back signal to the amoeba core at the time domain.

Variables that tend to violate constraints or decrease a cost function are frequently

bounced back; on the other hand, other variables are infrequently bounced back.

As a result, if the amoeba branch is frequently bounced back, its state is likely to

become 0, otherwise it is likely to become 1. The bounce-back signal is produced

at the frequency domain. Such implementation can remove the problem from the

crossbar IMC.

77

5.6 Conclusion

I successfully demonstrated that the electronic amoeba integrating the crossbar cir-

cuit could solve the Max-cut and TSP by both the circuit simulations and exper-

iments. I also evaluated the performance of the electronic amoeba by using the

circuit simulator as increasing the problem size: the solution-searching performance

of the electronic amoeba exceeds that of a conventional computer when it solves over

90-vertex Max-cut, and the performance in solving TSP exceeds it when solving over

50-city TSP, if the electronic amoeba is implemented by the electronic circuit. The

electronic amoeba is superior to Ising machines in terms of finding a legal solution

because the bounce-back rule certainly makes the electronic amoeba find a legal

solution. Moreover, the crossbar IMC enables the electronic amoeba to have the

robustness to the sudden change of problems because the problem can be changed

only by changing the resistances at each cross-point. The compact mapping of the

instance using the resistor crossbar indicates that the system-on-chip by the semi-

conductor LSI technology will enhance the potential of our system and the activities

of ourselves.

78

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

Chapter 6

Exploiting delayed feedback to

improve solution quality of

traveling salesman problem

6.1 Introduction

One of the challenges of the electronic amoeba is to improve the quality of solutions.

One needs a high-quality solution by the sacrifice of time: for example, optimization

of transportation network whose construction will not change. I demonstrated that

the electronic amoeba could find a solution to the SAT, Max-cut, and TSP shown

in Chpts. 4 and 5. To improve the quality of SAT solutions is not necessary because

the SAT has only the satisfiable solution: that is, we are not interested in the

“quality” in solving the SAT. However, NP-hard problems such as the Max-cut and

TSP should improve the quality of obtained solutions. Usually, algorithms for the

optimization problem uses a stochastic behavior [139–143]. Local optima freeze the

solution search of the algorithms; the stochastic search makes the search escape

from local optima. In genetic algorithm, the divergence of individuals (solutions)

is increased by the mutation that randomly changes the genetic code [140, 148].

79

Ising machine utilizes methods to improve the solution quality such as simulated

annealing (SA) or quantum annealing shown in Chpt. 3 [68, 70].

X1,3

Amoeba core

X1,1

X1,2

XN,N

XN,N-1

σ(XVk)

Crossbar IMC

R1,2

R1,3

R2,1

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

Rf

Vref

L1,1 L1,2 L1,3 LN,N-1 LN,N

R1,N -12

2R1,N

Parasitic
capacitance

Figure 6.1: Delayed input/output signals in electronic amoeba due to parasitic
capacitances.

I demonstrated that genetic-algorithm-based and fluctuation-induced methods

improved the quality of solutions obtained by the electronic amoeba (shown in

Appx. C). However, their methods require a communication overhead between the

electronic amoeba and a conventional computer, or additional circuitry to produce

fluctuation, which degrade the solution-searching performance and the scalability.

Therefore, we have to develop another method to improve the quality of solutions.

The clue to improve the quality is in the solution-searching behavior of the

electronic amoeba. Because the electronic amoeba operates with an asynchronous

way, there is an analog-circuit-specific problem. In the electronic amoeba, the output

80

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

signals from the amoeba core and feedback circuit are delayed due to parasitic

resistor-capacitor time constants in analog circuits as shown in Fig. 6.1; therefore,

the state variables of the electronic amoeba oscillate. The experimental results

for solving the Max-cut and TSP shown in Chap. 5 were optimized in terms of

decreasing the time delay such as resistances in the circuit of the sigmoid function.

Figure 6.2 shows the experimental results in solving the Max-cut and TSP when the

resistances in the sigmoid function is relatively large. The variables oscillated, and

then they became stable, which corresponds to finding a solution. A time for the

electronic amoeba with the delay to find a solution grows longer, compared with the

case without the delay, because the electronic amoeba reaches a solution when the

variables become steady state. Therefore, one may consider hoping to exclude the

delay as much as possible from the circuit.

XA,0

XA,1

XB,0

XC,0

XC,1

XB,1

XD,0

XD,1

XE,0

XE,1

Time [ms]
0 0.80.60.40.2 1.0

SolutionStart

(a)

0

XB,1

XB,2

XB,3

XB,4

0

1

0

0

Start Solution

XA,1

XA,2

XA,3

XA,4

0

0

1

0

Time [ms]
1 2 3 54

XC,1

XC,2

XC,3

XC,4

XD,1

XD,2

XD,3

XD,4

4 V0

0

0

1

1

0

0

0

Time [ms]
0 1 2 3 54

(b)

Figure 6.2: Output waveforms of delay-induced electronic amoeba when solving (a)
Max-cut and (b) TSP.

The hypothesis in this chapter is that the delayed feedback seems to be trouble-

some issues but is useful for improving the quality of solutions because the oscillation

forcibly causes the electronic amoeba to do trial and error. The trial-and-error be-

havior improves the solution quality in stead of the stochastic behavior. In this

81

chapter, we investigate the impact of the delayed feedback on the solution search

performance of the electronic amoeba through solving the TSP by using its nu-

merical model. The results show the delayed feedback produces instable states but

contributes to improve the solution quality at the expense of time.

6.2 Formulization of solution-searching behavior

of electronic amoeba with delayed feedback

I formulated the solution-searching behavior of the electronic amoeba with the de-

layed feedback for solving the TSP as follows:

XV k(t+ 1) =

XV k(t) +

Din

Loff (t+ 1)
(ifLV k(t+ 1) = 0)

XV k(t)−
XV k(t)

Dout

(ifLV k(t+ 1) = 1)

, (6.1)

LV k(t+ 1) = σα1,β1

(∑
Ul

WV k,Ulσα2,β2(XUl(t− τ))

)
, (6.2)

Loff (t+ 1) =
∑
iv

(1− LV k(t+ 1)), (6.3)

σα,β(x) =
1

1 + exp(−α(x− β))
, (6.4)

where ∆in and ∆out are the amount of resource supply and withdraw, respectively,

and τ is a delay time. Note that τ = 0 is that there is no delay in the system.

XV k represents a state variable (0 ≤ XV k ≤ 1, V, k = 1, 2, ..., N), where XV k = 1

corresponds to that a salesman visits V city at kth. σα,β is a sigmoid function that

has a slope α and threshold value β. LV k decides to decrease the corresponding

variable, which corresponds to whether to turn on the MOSFET in each unit. Loff

is the total number of non-decreased branches that is the same as the number of

82

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

L = 0 and represents the current conservation in the amoeba core corresponding to

the volume conservation by dividing ∆in by Loff . In Eq. 6.1, XV k(t)−XV k(t)/Dout is

derived from applying the Euler method to a resistor-capacitor circuit that discharge

the charge of the capacitor. WV k,Ul is variable interactions given by the bounce-back

rule for TSP [32, 33]. The bounce-back rule for the TSP is shown in Chpt. 2. I

reformulated the bounce-back rule for the TSP given by Eq. 5.4 as follows:

WV k,Ul =

0.5 (ifV = U at k ̸= l orV ̸= U at k = l)

ν · dist(V, U) (ifV ̸= U and (|k − l| = 1or |k − l| = N − 1))

0 (otherwise)

, (6.5)

where ν is a normalization coefficient to stabilize the behavior of the system when

finding a solution andN is the number of cities. The description of the normalization

coefficient is shown in Appx. B. Eq. 6.5 decreases the total route length by only one

path, compared to original one (shown in Appx. C). The general description of

Eq. 5.4 is shown in Chpt. 5.

We calculate Eqs. 6.1 and 6.2 iteratively successively using Eqs. 6.3–6.5. In

the simulation, the parameters ∆in, ∆out, α1, β1, α2, and β2 were set to 0.1, 700,

-1000, 0.5, -35, and 0.5, respectively. ν was set to ν = 0.5/max(dist(V, V ′) +

dist(V ′, V ′′)) (V ̸= V ′ ̸= V ′′). An initial value of XV k at t = 0 were randomly

assigned in range [−2.5 × 10−3,2.5 × 10−3] with the offset 0.99 for each trial. LV k

was set to 1 before t = 0 because the values of XV k should be decreased when XV k

was set to nearly 0.99. An average intercity distance of used 10-city instance was

100, and the standard deviation of intercity distances was 17 (the used instance is

the same to the instance in Chpt. 3). I regarded XV k as 1 if it was less than 0.2;

on the other hand, we regarded it as 0 if it was greater than 0.8. Then, I judged

whether the system finds a solution, by checking constraints of the TSP in every

iteration. In this experiment, ν of the used instance was set to 19.04× 10−4.

83

6.3 Results

6.3.1 Influence of delay on performance

Figure 6.3 shows time evolutions of all variables when changing the delay time, τ .

Although all variables (100 variables) are displayed in the figure, they are almost

overlapped. The variables did not oscillate when τ = 0, and they immediately

became stable and found a solution as shown in Fig. 6.3(a). In contrast, the variables

oscillated when τ = 100 and τ = 200 (shown in Figs. 6.3(b) and (c), respectively),

and after the time evolution, they reached the stationary state. It was found that

initially all the variables oscillated similarly, then gradually phased out from each

other and bifurcated. The variables involved in the same city bifurcated almost at

the same time and followed the same curve.

0

0.2

1.0

0.8

0.6

0.4

(b)

0 0.5 1.0 1.5 2.0 2.5

Number of iterations(×104)

0 1 2 3 4 5

Number of iterations(×104)

1.0

0

0.2

0.8

0.6

0.4

Periodic oscillation

(d)

V
a

ria
bl

es
,
X
V
k

V
a

ria
bl

es
,
X
V
k

0

0.2

1.0

0.8

0.6

0.4

V
a

ria
bl

es
,
X
V
k

(a)

1.0

0

0.2

0.8

0.6

0.4

(c)

Stationary state = solution

V
a

ria
bl

es
,
X
V
k

0 0.5 1.0 1.5 2.0 2.5

Number of iterations(×104)

0 0.5 1.0 1.5 2.0 2.5

Number of iterations(×104)

Figure 6.3: Time evolution of XV k when (a) τ = 0, (b) τ = 100, (c) τ = 200, and
(d) τ = 300.

84

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

Figure 6.4 shows the number of oscillations and average oscillating period when

τ is increased. The average oscillation period and number of oscillations linearly

grew with the delay τ . These results indicate that a time to find a solution depends

on the magnitude of the delay.

N
u

m
b

e
r

o
f

o
sc

ill
a

tio
ns

(a)

O
sc

ill
a

tio
n

 p
e

rio
d

0

400

800

1200

1600

0

10

20

30

40

(b)

0 100 200 300
Delay, τ

0 100 200 300
Delay, τ

Figure 6.4: (a) Oscillation period and (b) number of oscillations, where they are
derived from average of all variables when solving 10-city TSP.

Figure 6.5 shows the dependence of the solution quality and iterations to find

a solution on the length of a delay time. We observed that the quality of solu-

tions was improved and the iterations were increased by increasing τ as shown in

Figs. 6.5(a) and 6.5(b), respectively. Usually, the quality of the solution obtained by

the metaheuristic algorithm for optimization problems is proportion to the solution

search time [140–142, 149]. Ising machines using simulated annealing or quantum

annealing also take a long time to improve the quality of solutions.

We verified the hypothesis that the delayed feedback made the amoeba-inspired

computing system do trial-and-error behavior and the behavior improved the so-

lution quality. Although I hoped that the solution quality was more improved by

increasing a delay time, the result was contrary to the expectation: the variables

continued oscillating periodically when τ = 300, such as the limit cycle in a nonlin-

ear dynamical system, as shown in Fig. 6.3(d). The variables never became stable

85

(c)

800

850

900

950

1000

1050

R
o

u
te

 le
n

gt
h

It
e

ra
tio

n
s

to
 f

in
d

 s
o

lu
tio

n(
×

1
04

)

0

1

2

3

4

(d)

Optimum

Low

High

Quality

0 100 200 300
Delay, τ

0 100 200 300
Delay, τ

Figure 6.5: Evaluation of solution-search performance as function of τ when solving
10-city instance. (a) Solution quality and (b) iterations to find solution. Broken
line is average quality of solutions obtained by random sampling from 10000 trials.
Solid line is optimal solution of used instance. Error bars are standard deviation
derived from 100 trials for each magnitude of τ .

and could not reached a solution.

6.3.2 Delay time scheduling

The next hypothesis is that if the number of oscillations due to τ depends on the

solution quality as shown in Fig. 6.4, more improvement of the solution quality can

probably be achieved by introducing a process of becoming the instable states to

the stable states. The scheduling of a delay time improves the solution quality,

such as the temperature control in the simulated annealing. I defined the delay time

scheduling as follows: the magnitude of the delay is initially set to be large such that

the variables do not converge at a solution, and then, it is gradually decreased. I

defined three parameters in relation to the scheduling: one is the maximum value of

the delay, second is the width to continue the same magnitude of the delay (simply

called width), and third is the height of decreasing delay at the end of the width

(simply called height) as shown in Fig. 6.6(a).

86

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

D
e

la
y,

 τ

220

240

260

280

300

Width

Height

max. length of delay

(a)

0 3 6 9
Number of iterations (×104)

0 3 6 9
Number of iterations (×104)

1.0

0

0.2

0.8

0.6

0.4

V
a

ria
b

le
s,

 X
V
k

(b)

Stationary state = solution

Figure 6.6: (a) Delay scheduling and (b) output waveforms of X.

Figure 6.6(b) shows time evolutions of X when applying the delay scheduling,

where the maximum delay, width, and height were set to 300, 5000, and 3. The

variables firstly oscillated as with Fig. 6.3, and gradually decreasing τ , they became

stable and the system found a solution.

Figure 6.7 shows the computer simulation results when changing the width

and height at fixed maximum value of the delay. The scheduling parameters in

Figs. 6.7(a) and 6.7(b) were the maximum length of the delay of 300 and the height

of 3 at fixed width, and those in Figs. 6.7(c) and 6.7(d) were the maximum length

of the delay of 300 and the height of 15000 at fixed height. The quality of solutions

was improved by increasing the scheduling parameters: longer width and shorter

height improve the solution quality. The iterations to find a solution became longer

by increasing the scheduling parameters. The obtained results are similar to the

temperature scheduling in the SA [69].

6.3.3 Optimizing normalization coefficient

There is a case to improve the quality of solutions by optimizing the parameters such

as ∆in, ∆out, α1, β1, α2, and β2. I modified the normalization coefficient, ν, rather

than other parameters because the solution quality strongly depends on it. When

increasing ν, the optimality increases but the legality decreases, such as the Ising

87

(a)

0 3010 20

Width(×103)

800

850

900

950

1000

1050

R
o
u
te

 l
e
n
g
th

Optimum

Low

High

Quality

0

Height

800

850

900

950

1000

1050

R
o
u
te

 l
e
n
g
th

(c)

2015105

(d)

0

5

10

15
It

e
ra

ti
o
n
s
 t

o
 f
in

d

s
o
lu

ti
o
n
(×

1
0

4
)

20

0

Height

2015105

30

(b)

0 10 20

Width(×103)

0

5

10

15

It
e
ra

ti
o
n
s
 t

o
 f
in

d

s
o
lu

ti
o
n
(×

1
0

4
)

20

Figure 6.7: Solution-search performance when changing scheduling parameters. (a)
Solution quality and (b) iterations to find solution when changing width. (c) Solution
quality and (d) iterations to find solution when changing height. ν was set to
19.04× 10−4 − 5× 10−6. I tested 100 times.

machine: the variables sometimes converges at an illegal candidate when increasing

ν.

We set the normalized coefficient as ν = 19.04× 10−4+ νoffset. Figure 6.8 shows

the computer simulation results when changing νoffset. The quality of solutions

was improved by increasing νoffset, although the iterations to find a solution were

constant as shown in Figs. 6.8(a) and 6.8(b). On the other hand, as shown in

Fig. 6.8(c), the success rate to find a legal solution was degraded with the increase

in νoffset. The variables did not converge at a legal solution even once at νoffset =

5 × 10−5. The rate might have been improved by extending the scheduling time.

These results indicate that there is the trade-off between the optimality and the

legality when increasing νoffset, such as a penalty term of the Ising machine [29, 64].

88

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

1 2 3 4 50
νoffset(×10-4)

It
e

ra
tio

n
s

to
 f

in
d

 s
o

lu
tio

n(
×

1
04

)

0

5

10

15

20

(b)

1 2 3 4 50
800

820

840

860

880

900

R
o

u
te

 le
n

gt
h

νoffset(×10-4)

(a)

S
u

cc
e

ss
ra

te

to
 f

in
d

 s
o

lu
tio

n

(c)

1 2 3 4 50
νoffset(×10-4)

0

0.5

1.0

Optimum

Figure 6.8: Dependence of normalization coefficient on solution-searching perfor-
mance. (a) Solution quality, (b) iterations to find solution, and (c) success rate of
finding legal solutions when changing νoffset. Maximum delay, width, and height
were set to 300, 15000, and 3, respectively. Average solution quality was derived
from success trials.

6.4 Reason for improving quality of solutions by

delayed feedback

We discuss the reason why the system with the delayed feedback improves the quality

of solutions when increasing a delay. To come to the point, nonlinear time evolutions

of units in the amoeba core as shown in Fig. 6.9 improve the quality. As (1) in

Fig. 6.9, the variable decreases exponentially because I formulized the capacitor-

89

discharging. The differences between two variables are decreased when L1 = 0 and

L2 = 0. As (2) in Fig. 6.9, when L1 = 0 and L2 = 1, the differences increase

because of the current conservation (the volume conservation). As (3) in Fig. 6.9,

the differences are constant.

t

XVk

0 t1

X1

X2

(2) L1=0,L2=1

t2

(1) L1=L2=1 (3) L1=L2=0

Figure 6.9: Nonlinear time evolutions of units in amoeba core.

Figure 6.10 shows a simple problem example to understand the reason for im-

proving the quality of solutions when increasing a delay, where the state variables

are showed by the inverse logic. The variables covered by blue square in Fig. 6.10

are fixed and covered by red square are free to search a solution. In the right side,

the solutions are showed, where the solution 2 is better than the solution 1.

Using Eqs. 6.1–6.5, I searched a solution to the simple problem. Figure 6.11

shows time evolutions of XA,1 and XA,2 when changing τ . In this computer simu-

lation, I set the initial values of XA,1 and XA,2 such that the variables reached the

worse solution when τ = 0. We confirmed that the variables converged at the better

solution when increasing a delay, such as the experimental results. If the initial val-

ues are the same, the variables reach the better solution owing to the bounce-back

rule. In this case, the gap decreases owing to the exponential delay when LA,1 = 1

and LA,2 = 1, and then, the variables tend to reach the better solution because of

the property of the bounce-back rule and the volume conservation, where the non-

linearity of the volume conservation helps the bifurcation of the variables. When a

90

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

time delay increased, the oscillation amplitude became large and the gap decreases.

This is the reason why the delayed feedback improves the quality of solutions by

increasing the delay.

1 2 3 4 5 6 7 8 9 10
A x x 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1 1 1
C 1 1 0 1 1 1 1 1 1 1
D 1 1 1 0 1 1 1 1 1 1
E 1 1 1 1 0 1 1 1 1 1
F 1 1 1 1 1 0 1 1 1 1
G 1 1 1 1 1 1 0 1 1 1
H 1 1 1 1 1 1 1 0 1 1
I 1 1 1 1 1 1 1 1 0 1
J 1 1 1 1 1 1 1 1 1 0

V
is

ite
d

ci
ty

Visited order

fixed

1 2
A 0 1
B 1 0

1 2
A 1 0
B 0 1

Solution 1：
route length = 952.5

Solution 2：
route length = 935.4

Figure 6.10: Simple problem example for understanding results of delayed feedback
system.

0
0.2
0.4
0.6
0.8
1.0

Iterations (×103)
0 1 2 3 4

Iterations (×103)
0 1 2 3 4

Iterations (×103)
0 1 2 3 4

τ=150τ=50τ=0

XA,2

XA,1

XA,2

XA,1

XA,1

XA,2

X
V

,k

(a) (b) (c)

Figure 6.11: Time evolutions of XA,1 and XA,2 when (a) τ = 0, (b) τ = 50, and (c)
τ = 150.

From the above discussion, the delay scheduling is considered to be a reasonable

method to improve the quality. When the magnitude of a delay is large, it attracts

the variables into a periodic orbit. By decreasing a delay, the amplitude reduces

and it is unlikely to attract the variables. Then, the variable that is most likely to

91

converge at 0 or 1 is determined. As a result, plausible variables, decreasing a total

route, gradually converge at a stable state when decreasing a delay continuously.

Linear time evolutions of variables in the amoeba core may not improve the

quality, considering the above discussion. To confirm whether not to improve the

quality by the linear time evolution, I reformulated 6.1 as follows:

XV k(t+ 1) =

XV k(t) + ∆′

in (ifLV k(t+ 1) = 0)

XV k(t)−∆′
out (ifLV k(t+ 1) = 1)

. (6.6)

Figure 6.12 shows time evolutions of XA,1 and XA,2 when changing a time delay.

When increasing τ up to 500 (Figs. 6.12(a)–(f)), the number of oscillations and the

amplitude of variables increased. However, the convergence to the better solution

was not confirmed. As shown in Fig. 6.12(g), when τ = 600, the variables converged

to the better solution. This is because there happened the nonlinearity, since the

variables approached the upper limit (1.0) and lower limit (0.0): therefore, the

variable states turned over and they reached the better solution.

Figure 6.13 shows simulation results when solving the 10-city TSP instance,

X
V

k

XA,2

XA,1

τ=0 τ=200τ=100

Iterations (×103)

0 5 10 15

Iterations (×103)

0 5 10 15

Iterations (×103)

0 5 10 15

X
V

k

τ=300 τ=500τ=400

Iterations (×103)

0 5 10 15

Iterations (×103)

0 5 10 15

Iterations (×103)

0 5 10 15

(d) (e) (f)

(a) (b) (c)

0
0.2
0.4
0.6
0.8
1.0

0
0.2
0.4
0.6
0.8
1.0

Upper

limit

Under

limit

Iterations (×103)

0 5 10 15

τ=600

(g)

Figure 6.12: Time evolutions of XA,1 and XA,2 when units evolve linearly. Results
of (a) τ = 0, (b) τ = 100, (c) τ = 200, (d) τ = 300, (e) τ = 400, (f) τ = 500, and
(g) τ = 600. ∆′

in and ∆′
out were 0.001 and 0.0008, respectively.

92

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

while changing τ . The parameters were the same to Fig. 6.12. From the results, the

quality of solutions was not improved by increasing τ except for τ = 410. When

τ = 410, the variables approached the upper and lower limits, such as Fig. 6.12(g),

as shown in Fig. 6.14. These results indicate that the nonlinearity in the amoeba

core help for the system to improve the quality of solutions.

Delay
0 100 200 300 400

So
lu

tio
n

qu
al

ity
 n

or
m

al
iz

ed

by
 ra

nd
om

 s
am

pl
in

g

0.80

0.85

0.90

0.95

1.00

1.05

Delay
0 100 200 300 400

N
um

be
r o

f i
te

ra
tio

ns
 to

fin

d
so

lu
tio

n
(×

10
4)

0

2

4

6

(a) (b)

Figure 6.13: (a) Solution quality and (b) number of iterations to find solution when
solving 10-city TSP instance.

X V
k

0
0.2
0.4
0.6
0.8
1.0

Iterations (×104)
0 2 4 6

Upper limit

Under limit

Figure 6.14: Time evolutions of all variables.

6.5 Discussion

In this computer simulation, we regarded the occurrence of a delay in the feedback

signal, LV k. Because whether a delay occurs in the amoeba core or the IMC is a

93

relative problem, both are possible to apply the delay scheduling. In the implemen-

tation of a fabricated system, we consider that a delay in the amoeba core is easy

to implement: that is, the transition speed of variables, first, is made to be fast,

and the speed gradually decreases as time advances. Such a transition scheduling

may be implemented by gradually decreasing the magnitude of the current from the

current source in the amoeba core.

Although I proposed methods to improve the solution quality of the electronic

amoeba such as GA-based algorithm and stochastic fluctuation shown in Appx. C,

they require additional equipment, which decrease the scalability and increase the

power consumption. On the other hand, we can easily improve the solution quality

utilizing the delay in analog circuits without additional communication and circuits.

Therefore, the delay-induced method is superior to the GA-based algorithm and

introducing the stochastic behavior.

A delay due to time constants is usually eliminated from digital integrated cir-

cuits by miniaturing the size of transistors as much as possible in order to increase

the clock frequency, decrease the power consumption, and prevent incorrect actions.

Adjusting the clock frequency also reduces the impact of a delay on circuit opera-

tions. On the other hand, a delay in analog circuits cannot be avoided because all

operations are processed in a continuous time without a waiting time; therefore, we

have no choice but should cope with a delay well. In the electronic amoeba, we can

utilize a time delay to improve the quality of solutions.

The delay has been widely studied because it produces mathematically fasci-

nating phenomena, such as chaos in the Mackey-Glass equation, which explains

production of white blood cell [150, 151]. In the real world, one considers the delay

as putting us into troublesome issues because there occurs oscillation in a feedback

system due to signal propagation delay, and we sometimes fail to suppress the oscil-

lation. A delay in a feedback system cannot be neglected as long as we treat not ideal

but practical problems since it potentially exists all over the place. However, such

94

CHAPTER 6. EXPLOITING DELAYED FEEDBACK TO IMPROVE SOLUTION QUALITY OF

TRAVELING SALESMAN PROBLEM

as Mackey-Glass equation, several literatures reported that the delay feedback can

be useful in several fields: the delay can make an unstable system stable [152, 153],

reservoir computing system proposed as one of the bio-inspired computing systems

predicts time-series data using the delay in a non-linear dynamical system [154–156],

the delayed feedback in the auditory system of a human causes negative influences on

utterance but can improve stuttering [157, 158], and multistability in a neuron that

produces diverse behavior with it [159]. The obtained results indicate that a delay

is also useful, as with the literatures, for the system to improve the solution-search

performance without any additional circuit.

6.6 Conclusion

In this chapter, I made a recurrence formula to reproduce electronic amoeba having

the delayed feedback and demonstrated a hypothesis that the delayed feedback in

analog circuits in the system produced trial-and-error behavior and improved the

quality of the solution to the traveling salesman problem by numerical simulations,

compared with the results that did not impose the delay. The quality of solutions

was improved and the iterations to find a solution was increased by increasing the

magnitude of the delay. Although the variables did not become stable and did not

find a solution when a time delay is too large, introducing the delay scheduling con-

verged the variables at a solution and the quality of obtained solutions was more

improved than those of only imposing the delay. From the results of numerical sim-

ulations, the delayed feedback was useful for the solution search in the electronic

amoeba in terms of improving the solution quality, and additional circuits to in-

troduce external fluctuation to the circuits is not necessary but only adjusts the

magnitude of the delay.

95

CHAPTER 7. CONCLUSION

Chapter 7

Conclusion

In this thesis, I summarized electronic implementation of an amoeba-based com-

puting system that solves the satisfiability problem (SAT), maximum cut problem

(Max-cut), and traveling salesman problem (TSP), which are intractable problems

for a conventional computer.

Chapter 1 introduced the background and purpose of this work.

Chapter 2 described an amoeba-based and -inspired electronic computing system

(called electronic amoeba) and explained the SAT, Max-cut, and TSP.

Chapter 3 summarized physical computing system dedicated to solving optimiza-

tion problems.

In Chap. 4, I showed the analog-digital hybrid electronic amoeba for solving the

SAT. The solution-searching time depended on the error property. It was minimized

for each error probability by an appropriate error period. Solution search of the elec-

tronic amoeba is robust to the error property. There also existed an optimal error

probability and period that minimize the solution-searching time. By using a model

amoeba, I also showed that asymmetric dynamics in the electronic amoeba due to

transconductance of the metal-oxide-semiconductor-field-effect-transistor played an

important role in solving SAT. Thanks to introducing the asymmetric dynamics to

the model, it obtained the robustness to the error property, such as the electronic

97

amoeba, compared to original one. Moreover, the model with the asymmetry im-

proved the solution-searching performance in terms of the search time. Such an

asymmetry is in the amoeboid organism and also in the Caenorhabditis elegans,

and the asymmetric dynamics are considered to be reasonable way to survive based

on the Darwinism.

In Chap. 5, I proposed the electronic amoeba integrating a crossbar instance-

mapping circuit (IMC) that performs the product-sum operation and thresholding

based on the bounce-back rule. The resistors at each cross-point in the crossbar IMC

represent variable interactions of the bounce-back rule. I formulized the bounce-

back rule for Max-cut and demonstrated that the physically implemented electronic

amoeba found a solution to the Max-cut. I also evaluated the performance of the

electronic amoeba to Max-cut by using a circuit simulator, and we found that when

the electronic amoeba searches a solution to 5–100 vertexes Max-cut, the quality

of solutions did not degrade to that of solutions obtained by a random sampling

which produces a solution randomly and the solution-searching time of the electronic

amoeba was constant. Moreover, we confirmed that the electronic amoeba with the

crossbar IMC found a solution to the TSP. The performance was evaluated by the

circuit simulator and we found that the quality of solutions did not degrade and

the solution search time grew in only linear time when increasing the number of

cities. The electronic amoeba is suitable for strictly constrained problems such as

the TSP compared to Ising machines because it certainly satisfies constraints owing

to the bounce-back rule. The compactness of the crossbar IMC enables the electronic

amoeba to implement edge-side computing system with state-of-the-art large-scale-

integration technique and provide a better solution at low-power consumption.

In Chap. 6, I demonstrated that delayed feedback in the amoeba-inspired com-

puting system improved the quality of solutions without additional circuits. One of

the challenges of the electronic amoeba is to improve the quality. I proposed genetic-

algorithm-based algorithm and introducing fluctuation but they require overheads,

98

CHAPTER 7. CONCLUSION

which limit the performance of the electronic amoeba. The delayed feedback uti-

lizes the delay in an analog circuit, although improving the quality usually requires

external circuits to produce fluctuation or external communication via a conven-

tional computer. The quality depended on the magnitude of the delay. I introduced

scheduling of a delay and found that the quality of solutions was further improved.

If an appropriate value of a normalization coefficient in the bounce-back rule for the

TSP was set, the quality of solutions was also improved, otherwise the system fell

into an illegal candidate.

99

APPENDIX A. SOLUTION-SEARCHING PERFORMANCE OF ISING-MODEL-BASED ALGORITHM

Appendix A

Solution-searching performance of

Ising-model-based algorithm

In this chapter, we discuss weak points in the Ising machine. To discuss it, I evalu-

ated the solution-searching performance of Ising-model-based algorithms. The Ising

model for the TSP is formulated on the basis of the quadratic unconstrained binary

optimization (QUBO) given as follows [29, 67]:

E = A
∑
v

(
1−

∑
j

xv,j

)2

+ A
∑
j

(
1−

∑
v

xv,j

)2

+B
∑

(u,v)∈E

Wu,v

∑
j

xu,jxv,j+1.

(A.1)

The encoding of the variable xv,j (xv,j ∈ {0, 1}) for the QUBO of the TSP is the

same to the Hopfield Neural Network for solving the TSP [60]: xv,j = 1 denotes

that a salesman visits v-city at jth order. Wu,v is a distance between city u and v.

A is a coefficient of penalty terms and B is that of an objective function term. We

can reformulate Eq. A.1 because A and B are parameters that are not meaningful

numerically as follows:

E = α
∑
v

(
1−

∑
j

xv,j

)2

+ α
∑
j

(
1−

∑
v

xv,j

)2

+
∑
u,v

Wu,v

∑
j

xu,jxv,j+1, (A.2)

101

Finish

Yes

No

XVp=1-XVp

Select variable XVp
randomly

ΔE≤0

Initialize all variables to 0 or
1 randomly

Calculate energy change
ΔE=E(X|XVp→1-XVp)-E(X)

Yes

No

Satisfy condition

(a)

t=t+1

No

Finish

Yes

XVp=1-XVp

Select variable XVp
randomly

Initialize all variables to 0
or 1 randomly and t ← 0

Calculate energy change
ΔE=E(X|XVp→1-XVp)-E(X)

Yes

No

Satisfy condition

ΔE≤0 or
exp(-ΔE/(Tmax-kt))>rand[0,1]

(b)

Figure A.1: Ising-model-based algorithm (a) without and (b) with SA.

where α = A/B. That is, we have to only tune α. In Eq. A.2, the first and second

terms are the constraints of the TSP that forbid visiting different cities at the same

time and visiting the same city, and these terms are always positive because of a

square number. If a salesman visits all cities at only once, the penalty terms become

0, otherwise E increases. The third term represents the objective function of the

TSP that describes a total route. When a salesman finds an optimal route, Eq. A.2

becomes the lowest energy under proper α. Eq. A.2 can be transformed into the

Ising model by si,j = 2xi,j − 1, where si,j represents the spin at lattice site (i, j).

To minimize Eq. A.2, I examined two Ising-model-based algorithms without and

with simulated annealing (SA), corresponding to Ising machines which are imple-

mented by a digital circuit, such as the CMOS annealing and Digital Annealer.

Figure A.1 shows the algorithm without and with SA (hereinafter called Ising

model and Ising model SA, respectively). We first initialize all variables by 0 or

1. Next, we select a variable XV p randomly and then calculate the energy differ-

102

APPENDIX A. SOLUTION-SEARCHING PERFORMANCE OF ISING-MODEL-BASED ALGORITHM

Intercity distance

20

40

0

10

30

C
ou

nt

50 150100

Figure A.2: 10-city TSP instance. Average intercity distance is 100

ence ∆E = E(X|XV p → 1 − XV p) − E(X)). If the energy difference is smaller

than or equal to 0, we absolutely flip the selected variable, else if ∆E > 0, the

selected variable does not flip. At this time, the Ising model SA probabilistically

flips the selected variable under the condition, exp(−∆E/(Tmax − kt)) > rand[0, 1],

where Tmax is an initial temperature, k is a temperature gradient, t is the number

of iterations, and rand[0, 1] is the random number between 0 and 1. That is, the

proposed flip is accepted even when it increases the energy. The method to reduce

the temperature is called cooling schedule [160], and in this experiment, I adopted

a linear scheduling. If the temperature decreases sufficiently slow, we can find an

optimal solution with the probability 1 that is proven theoretically [161].

Figure A.3 shows the simulation results of the Ising model. The number of cities

of used instance was 10. The average intercity distance of the instance was 100 and

standard deviation was 17 as shown in Fig. A.2. I tested 100 times while changing

initial values. As shown in Fig. A.3(a), when increasing α, the success rate to find

a legal solution increased. This is because the constraint coefficient is relatively

larger than the constraint of the objective function. The reason that the success

rate rapidly increased when α = 100 was due to the average of intercity distances

used in the experiment. Figure A.3(b) shows the average quality of solutions that is

derived from obtained legal solutions. When increasing α, the quality of solutions

103

0 50 100 150 200 250

S
uc

ce
ss

 r
at

e
in

 fi
nd

in
g

a
le

ga
l s

ol
ut

io
n

20

0

60

40

100

60

α
0 50 100 150 200 250

0.8

1.0

0.9

1.1

α

R
ou

te
 le

ng
th

 o
f a

 le
ga

l s
ol

ut
io

n
fo

un
d

di
vi

de
d

by
 a

ve
ra

ge
 v

al
ue

(a) (b)

Average of
electronic Amoeba

Figure A.3: (a) Success rate in finding legal solution and (b) route length of legal
solution found divided by average value obtained from the random sampling as
function of α when solving 10-city TSP instance.

obtained by the Ising model degraded; moreover, when α = 140, the quality is nearly

equal to that of the random sampling even though the success rate was 100%. The

quality was superior to that of the electronic amoeba and at that time, the rate

was about 20%, although the electronic amoeba found a solution at 100% owing to

forbidding the variables that violate the constraints.

Figure A.4 shows the simulation results of the Ising model when changing the

number of cities and α. In solving 10–30 cities TSP instances, the trend of the Ising

model was the same as solving the 10-city TSP instance.

We derived α so that the Ising model converges to a legal solution certainly.

Figure A.5 shows the example of a legal solution and the changes of the solution

from the final state. In Fig. A.5(a), the energy difference between the legal state

and the flipped state is given from Eq. A.2 as follows:

∆E = 2α +WAC . (A.3)

Because α > 0 and WAC > 0, Eq. A.3 is always greater than 0; therefore, the

proposed flip increases the energy and is not accepted unless we apply the SA. In

104

APPENDIX A. SOLUTION-SEARCHING PERFORMANCE OF ISING-MODEL-BASED ALGORITHM

α

N
um

be
r

of
 c

iti
es
N

10

30

25

20

15

R
oute

length
of

a
legalsolution

found
divided

by
average

value

50 180100

(a)

0.88

0.72

1.04

0.96

0.80

α
N

um
be

r
of

 c
iti

es
N

10

30

25

20

15

50 180100

S
uccess rate in finding a

legal solution

(b)

60

20

100

80

40

0

Figure A.4: (a) Quality of solutions and (b) success rate to find legal solution in
Ising model.

Fig. A.5(b), the energy difference is given by

∆E = 2α−WDA −WAB. (A.4)

The constraint term increases, but the cost term decreases; therefore, there is the

possibility that Eq. A.4 decreases the energy. In order not to decrease the energy,

we impose ∆E > 0 on Eq. A.4. Then, using a max() function that returns the

maximum value to guarantee generality, we obtain the following equation:

2max(Wuv) > WDA +WAB. (A.5)

Therefore, the condition that does not change when the Ising model finds a legal

solution is given by

0 < max(Wuv) < α. (A.6)

A similar formulation is given in Ref. [29, 67].

I compared the performance of the Ising model with the electronic amoeba.

105

V
is

ite
d

 c
ity

Visited order

1 0 0 0

0

0

0

0 0

0

00

0

1

1

1

1 1 0 0

0

0

0

0 0

0

00

0

1

1

1

1 2 3 4

A
B

C
D

Flip
(a)

V
is

ite
d

ci
ty

Visited order

1 0 0 0

0

0

0

0 0

0

00

0

1

1

1

0 0 0 0

0

0

0

0 0

0

00

0

1

1

1

1 2 3 4

A
B

C
D

Flip
(b)

Figure A.5: Flip of (a) XA,2 and (b) XA,1 when solving 4-city TSP instance.

Figures A.6(a) and A.6(b) show the simulation results of the Ising model when α =

100. We confirmed that the Ising model found legal solutions that are comparable

to the solution quality of the electronic amoeba as shown in Fig. A.6(a). However,

the number of times that it found a legal solution was about 20 % and an illegal

candidate was found at 80 %; on the other hand, the electronic amoeba could find

a solution 100 % owing to the bounce-back rule as shown in Chpt. 5. As the

above discussion, the Ising model converges at a legal solution under the condition,

0 < max(Wuv) < α. Figures A.6(c) and A.6(d) show the simulation results when

α = max(Wuv) + 1, which is a proper value because max(Wuv) takes a value about

150. As shown in Figs. A.6(c) and (d), although the Ising model certainly found a

legal solution, the solution quality was near to that of the random sampling.

I conducted the performance evaluation of the Ising model SA shown in Fig. A.7.

Figure A.7(a) indicates that in the case of α = 100, the solution quality of the Ising

model SA was improved by reducing the temperature gradient, k, and exceeded

that of the electronic amoeba; however, when the number of cities increased, the

number of times that the Ising model SA found a legal solution decreased as shown in

106

APPENDIX A. SOLUTION-SEARCHING PERFORMANCE OF ISING-MODEL-BASED ALGORITHM

Ising model

Electronic
amoeba

0.8

1.0

0.9

1.1

Number of cities N
10 15 20 25 30

Number of cities N
10 15 20 25 30

(c) (d)

0

0.50

0.25

1.00

0.75

R
o

u
te

 le
n

gt
h

 o
f a

 le
ga

l s
o

lu
tio

n

fo
u

n
d

d
iv

id
e

d
 b

y
a

ve
ra

ge
 v

a
lu

e

S
u

cc
e

ss
 r

a
te

 in
 f

in
d

in
g

a
 le

ga
l s

o
lu

tio
n

0.8

0.9

1.1

Number of cities N
10 15 20 25 30

Ising model

Electronic amoeba
1.0

Number of cities N
10 15 20 25 30

(a) (b)

0

0.50

0.25

1.00

0.75

R
o

u
te

 le
n

gt
h

 o
f a

 le
ga

l s
o

lu
tio

n

fo
u

n
d

d
iv

id
e

d
 b

y
a

ve
ra

ge
 v

a
lu

e

S
u

cc
e

ss
 r

a
te

 in
 f

in
d

in
g

a
 le

ga
l s

o
lu

tio
n

Figure A.6: Simulation results of Ising model. (a) and (b) Solution quality and
number of times that Ising model finds a solution, respectively, when α = 100.
Solution quality is an average value that Ising model finds legal solution. (c) and
(d) Those of when α = max(Wuv) + 1. Solution search was made until quality of
obtained solution is comparable to solution quality of electronic amoeba. I tried 100
times for each instance.

107

0.7

0.9

1.1

Number of cities N
10 15 20 25 30

1.0

Number of cities N
10 15 20 25 30

(a) (b)

0.7

1.0

0.9

1.1

Number of cities N
10 15 20 25 30

0

0.50

0.25

1.00

Number of cities N
10 15 20 25 30

0.75

R
o

u
te

 le
n

gt
h

 o
f a

 le
ga

l s
o

lu
tio

n

fo
u

n
d

d
iv

id
e

d
 b

y
a

ve
ra

ge
 v

a
lu

e

(c) (d)

0.8

0.8

Electronic amoeba
k=10-4
k=10-3
k=10-2

S
u

cc
e

ss
 r

a
te

 in
 f

in
d

in
g

a

le
ga

l s
o

lu
tio

n

0

0.50

0.25

1.00

0.75

R
o

u
te

 le
n

gt
h

 o
f a

 le
ga

l s
o

lu
tio

n

fo
u

n
d

d
iv

id
e

d
 b

y
a

ve
ra

ge
 v

a
lu

e

S
u

cc
e

ss
 r

a
te

 in
 f

in
d

in
g

a

le
ga

l s
o

lu
tio

n

Figure A.7: Simulation results of Ising model SA. (a) and (b) Solution quality
and number of times that Ising model SA finds solution, respectively. Parameters
were set to α = 100 and Tmax = 30. (c) and (d) Those of when parameters are
α = max(Wuv)+1 and Tmax = 30. Filled green rhombuses, blue squares, red circles,
and empty purple circles are results of k = 10−2, 10−3, and 10−4, and electronic
amoeba, respectively. Number of iterations was set to Tmax/k + 10000, and I tried
100 times for each instance.

108

APPENDIX A. SOLUTION-SEARCHING PERFORMANCE OF ISING-MODEL-BASED ALGORITHM

Fig. A.7(b). We have to apply appropriate parameters for the SA, otherwise the Ising

model SA cannot find a legal solution. In contrast, when using α = max(Wuv) + 1

(shown in Fig. A.7(c)), the solution quality was severely deteriorated, although

the Ising model SA found a legal solution at 100 %. These results imply that

the electronic amoeba is suitable for an application that requires to obtain a legal

solution promptly, whereas the Ising model SA fits well to an application that needs

a high-quality solution in a long time.

109

APPENDIX B. VARIABLE ENCODING AND STABILIZATION CONDITION FOR TSP AND MAX-CUT

Appendix B

Variable encoding and

stabilization condition for TSP

and Max-cut

B.1 Variable encoding and stabilization condition

for TSP

In this appendix, I describe the variable encoding and stabilization condition in the

amoeba-inspired computing system for the TSP and Max-cut whose descriptions are

shown Chap. 2. To solve the TSP, matrix representation is used such as Hopfield

neural networks (HNN) [32, 33]: a row and column represent a visit city and order,

respectively, as shown in Fig. B.1. Thus, we need N2 redundant variables to solve

N -city TSP. This variable encoding is the same to the Ising machine, where the

variables are needed for O(N4) when the variable connectivity of the Ising machine

is sparce [67].

Variable interactions for the TSP are given by Eq. 5.4. ν is given by considering

stable condition when the system finds a solution, A → B → C → D → A. Con-

111

XA,1 XA,2 XA,3 XA,4

XB,1 XB,2 XB,3 XB,4

XC,1 XC,2 XC,3 XC,4

XD,1 XD,2 XD,3 XD,4

V
is

it
ci

ty
 V

Visit order k

(a) (b)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

V
is

it
ci

ty
 V

Visit order k

Figure B.1: (a) Variable encoding of TSP for amoeba-inspired computing system
and (b) Solution example, which indicates A→ B → C → D → A.

sidering the bounce-back rule of XB,2, the decision whether to change the variable

from 1 to 0 is determined by following equation using Eq. 5.1:

LB2(t+∆t) = σα1,β1

(∑
Ul

WB2,Ulσα2,β2 (XUl(t))

)

= σα1,β1(WB2,B1σα2,β2(XB1(t)) +WB2,B3σα2,β2(XB3(t)) + ...

+WB2,C3σα2,β2(XC3(t)) +WB2,D3σα2,β2(XD3(t))).

(B.1)

Substituting the values of variables shown in Fig. B.1(b) into Eq. B.1, we obtain

LB2(t+∆t) = σα1,β1(WB2,A1 +WB2,C3), (B.2)

where we use σ35,0.6(0) = 0 and σ35,0.6(1) = 1 in Eq. 5.2. To make the variable XB2

stable remaining 1, LB2(t+∆t) has to be 0:

σα1,β1(WB2,A1 +WB2,C3) = 0. (B.3)

α1 has to be large, which means that the light illumination to the amoeboid organism

on the chip in the amoeba-based computing system is two selections whether to

112

APPENDIX B. VARIABLE ENCODING AND STABILIZATION CONDITION FOR TSP AND MAX-CUT

illuminate it or not. The inside of the sigmoid function has to be smaller than β2.

Then, the stable condition is derived from Eq. B.3:

(WB2,A1 +WB2,C3)/λ < β1 ∴ λ > 2(WB2,A1 +WB2,C3), (B.4)

where β1 = 0.5. In general, Eq. B.4 is given by

λ > 2max(dist(V, V ′) + dist(V ′, V ′′)) (B.5)

where max(·) is a function that returns the maximum value from all combinations

(V, V ′, V ′′). In advance of starting solution search, ν is calculated by using a conven-

tional computer and the calculation time increases O(N3), where N is the number

of cities. If λ is smaller than 2max(dist(V, V ′)+dist(V ′, V ′′)), the system sometimes

converges at an illegal solution; on the other hand, if λ is larger than it, exactly it

converges at a legal solution. The value of ν is made as small as possible to amplify

the distance between the cities.

B.2 Variable encoding and stabilization condition

for Max-cut

In this section, I describe the variable encoding of the Max-cut and the stabilization

condition. Because the Max-cut is stated as the vertex set is divided two subsets,

U1 and U2 whose intersection is an empty set, we use redundant variables such as

the SAT formulation: Xi,v (i ∈ 1, 2, ..., N, v = 0, 1), where the vertex i belongs to

U1 when Xi,0 = 1 and Xi,1 = 0 and it belongs to U2 when Xi,0 = 0 and Xi,1 = 1 as

shown in Fig. B.2. The variable interactions for the bounce-back rule and Max-cut

are given in Eq. 5.3

ν is also defined as with the bounceback rule for the TSP: by setting a proper

113

X1,0 X1,1

X2,0 X2,1

X3,0 X3,1

X4,0 X4,1

V
e

rt
e

x
i

Group j

(a)

1 0

0 1

0 1

1 0

V
e

rt
e

x
i

Group j

(b)

Figure B.2: (a) Variable encoding of Max-cut for amoeba-inspired computing system
and (b) Solution example, which indicates U1 = {1, 4} and U2 = {2, 3}.

value, the system remains stable when finding a solution. The product-sum oper-

ations about the vertex i is less than the threshold value β1. Such a condition is

given as follows: ∑
j

Wiv,jv′/ν < β1 ∴ ν > 2
∑
j

Wiv,jv′ . (B.6)

Eq. B.6 is reformulated to generalize it using max(·) function as follows:

ν > 2max

(∑
j

Wiv,jv′

)
, (B.7)

for all i. ν can be calculated in O(N2) in advance of starting a solution search as

with deriving λ of the TSP.

114

APPENDIX C. IMPROVING SOLUTION QUALITY BY GENETIC-ALGORITHM-BASED AND

FLUCTUATION-INTRODUCED METHODS

Appendix C

Improving solution quality by

genetic-algorithm-based and

fluctuation-introduced methods

C.1 Genetic-algorithm-based electronic amoeba

Obtained solutions in the electronic amoeba depend on initial values of resistances or

device variations in the circuits as shown in Chap. 5. By hybridizing the electronic

amoeba and the genetic algorithm (GA, [140, 148]), we can realize the improvement

of the solution quality: we regard a combination of initial values as individuals in

the GA. The GA is a multi-point search method that takes over superior individuals

while crossing them. A method hybridizing the GA and the local search method

such as 2-opt has been proposed because the GA is good at the global search while it

is not good at the local search, which is called the Memetic Algorithm or Hybrid-GA

[162–165]. To improve the quality of solutions in a quantum annealer, hybridizing

the GA has been proposed [166]. Therefore, in the electronic amoeba, the GA-hybrid

method is also effective for improving the quality.

To confirm that, I performed computer simulations by using the formulized be-

115

havior of the amoeba core for the Max-cut as follows:

Xiv(t+ 1) =

Xiv(t) +

DinN

Loff (t+ 1)
(ifLiv(t+ 1) = 0)

Xiv(t)−
Xiv(t)

Dout

(ifLiv(t+ 1) = 1)

, (C.1)

Liv(t+ 1) = σα1,β1

(∑
jv′

Wiv,jv′σα2,β2(Xjv′(t))

)
, (C.2)

Loff (t+ 1) =
∑
iv

(1− Liv(t+ 1)), (C.3)

σα,β(x) =
1

1 + exp(−α(x− β))
, (C.4)

where Din and Dout are constant values that define the amount of resource supply

and withdrawal, respectively, and Loff is the total number of Liv = 0 that reproduces

volume conservation, Wiv,jv′ is a variable interaction between Xiv and Xjv′ (shown

in Chpt. 5), and σα,β is a sigmoid function that has slope α and a threshold value

β. From the dependence of the solution quality on initial values, initial values

(initial condition for each variable at t = 0) are regarded as individuals in the GA,

and then, taking over superior individuals is applied. In particular, I performed a

following algorithm as shown in Fig. C.1(a). The number of iterations is defined

as the number of generations. Crossing is made by crossing probability Pc. As the

generation passes, initial values that make the system converge to the better quality

of solutions is selectively taken over, crossing initial values themself.

The used instance was a 100-vertex Max-cut. The number of individual was 100,

and their initial values in the hybrid algorithm were set as the offset 0.53 with the

gauss distributed random number whose average was 0 and standard deviation was

10−4. The individuals to be taken over were selected by the tournament method

whose size was 3. In addition to the tournament method, the roulette wheel-based

selection method and the ranking based selection method have been known. I used

116

APPENDIX C. IMPROVING SOLUTION QUALITY BY GENETIC-ALGORITHM-BASED AND

FLUCTUATION-INTRODUCED METHODS

Evaluate obtained
solutions

Select initial values
combinations in accordance

with evaluated values

Reassign initial values
to systems

Cross initial values

Assign initial values
randomly

Prepare k amoeba
computing systems

Search for solutions with
all systems

Evaluate obtained
solutions

Select resistance
combinations in accordance

with evaluation values to
take over

Reassign resistance
combinations to

electronic amoebae

Swap resistance values

Assign resistance values
randomly to all electronic

amoebae

Prepare many electronic
amoebae (e.g. 100)

Search for solutions with
all electronic amoebae

(a) (b)

Figure C.1: Genetic-algorithm-based method in case of (a) recurrence formula and
(b) electronic amoeba.

117

two-point crossing, and the crossing probability Pc was 0.9. In this simulation, I

did not use the mutation in order to decrease hyper parameters. The parameters

in Eqs. C.1 and C.2 were α1 = 1000, β1 = 0.5, α2 = 35, β2 = 0.6, Din = 0.03, and

Dout = 500.

Figure C.2 shows the computer simulation result. We confirmed that the average

quality of obtained solutions and the best solution by the systems were improved as

the generations passed. The improvement stopped at 30th generation. In this sim-

ulation, we could not obtain the optimal solution. This is because the global search

was not enough to find the optimal solution: there happens initial convergence. The

system falls into a local optimum. The introduction of the mutation increases the

divergence and the system may have found the optimal solution.

The advantages of the hybridization of the electronic amoeba and GA are not

only to improve the solution quality but also the robustness to dynamic optimiza-

tion problems whose constraints and cost function change from hour to hour. The

properties of practical applications in the real world often change as time passes.

The amount of problem changes is smaller than that of original one: the change

of an optimal solution (hamming distance) is considered to be small. Because the

GA stores individuals that lead the system to find a better solution to the original

problem, the GA-hybrid system easily adopts the changes [167, 168]. Therefore, the

hybridization supplies the electronic amoeba with the robustness to the dynamic

changes of problems. In the case of the electronic amoeba, one of the possible ap-

proaches that implement the GA-based method is shown in Fig. C.1(b), where the

resistances in the amoeba core are regarded as individuals of the GA.

However, the GA-hybrid method requires the communication between the elec-

tronic amoeba and a conventional computer, leading an overhead that limits the

performance of the electronic amoeba. Moreover, optimal settings of parameters in

the GA have not been known despite the fact that empirical parameters setting has

been known, and there is not a general solution. Therefore, we have to tune the

118

APPENDIX C. IMPROVING SOLUTION QUALITY BY GENETIC-ALGORITHM-BASED AND

FLUCTUATION-INTRODUCED METHODS

280

300

200

220

240

260

C
ut

 s
iz

e

5040100 3020

Number of generations

Average

Optima
Best

30

0

10

20

C
ou

nt

300150 250200
Cut size

150

0

50

100

C
ou

nt

300150 250200
Cut size

300

30

0

10

20

C
ou

nt

150 250200
Cut size

(a)

(b) (c) (d)

Figure C.2: Simulation results of GA-based algorithm. (a) Cut size as function of
number of generations. Red and blue dots are average quality of all individuals and
best quality, respectively. Broken green line is optimal solution. Histograms of (b)
1st, (c) 10th, and (d) 30th generations.

119

parameters that directly affect the quality of solutions and the solution-searching

time.

C.2 Fluctuation-induced electronic amoeba

To improve the quality of solutions obtained by the electronic amoeba, another pos-

sible approach imposing fluctuation on the threshold of the sigmoid function in the

system (changing the pseudopod length by the fluctuation) can be considered. Tem-

poral fluctuation causes trial-and-error in the system. I demonstrated this concept

by computer simulation. I used Eq. C.1, C.3, and C.4, although we changed the

subscripts to solve the TSP. I reformulated Eq. C.2 as follows:

LV k(t+ 1) = σα1,β2

(∑
Ul

WV k,Ulσα2,β2(XUl(t) + δUl)

)
, (C.5)

where δUl is a fluctuation that has no correlation between other variables.

Figure C.3 shows the obtained time series of the state variable X1,0 and the

sigmoid function σ15,1.5(X1,0+δ1,0) as an example for different fluctuation range δ1,0.

The parameters were set to ∆in = 0.00015, ∆out = 650, α1 = 1000, β1 = 1.5, α2 =

15, β2 = 1.5, and T = 1.5. Initial values of XV k were all 1.37. X1,0 shows a plateau

after rapid decreases as shown in Figs. C.3(a)–(c), then it gradually decreased. The

width of the plateau increases with the increase of δ1,0. When X1,0 decreases, σ15,1.5

also decreases. At the end of the solution search, σ15,1.5 converges to 0 and became

stable, although the finite fluctuation is still imposed.

Figure C.4 shows the simulation results, where Fig. C.4(a) and C.4(b) show the

solution quality and the number of iterations to find a solution, respectively. We

found that the solution quality was improved by increasing the amplitude of δV k.

Especially, the solution quality is improved rapidly when δV k > 1.2. On the other

hand, the number of iterations to find a solution increases with the increase in δV k.

120

APPENDIX C. IMPROVING SOLUTION QUALITY BY GENETIC-ALGORITHM-BASED AND

FLUCTUATION-INTRODUCED METHODS

3

2

1

0

X
1
,0

0 41 2 3
Time step (×103)

3

2

1

0

σ
1
5
,1

.5
(X

1
,0
+
δ

1
,0

)

0 41 2 3
Time step (×103)

(a)

(d)

solution
δ1,0=[-0.5,0.5]

δ1,0=[-0.5,0.5]

3

2

1

0
0 124 8

Time step (×103)

3

2

1

0
0 124 8

Time step (×103)

(b)

(e)

σ
1
5
,1

.5
(X

1
,0
+
δ

1
,0

)
X

1
,0

δ1,0=[-1.0,1.0]

δ1,0=[-1.0,1.0]

3

2

1

0
0 5030 40

Time step (×103)
2010

3

2

1

0
0 5030 40

Time step (×103)
2010

(f)

(c)

σ
1
5
,1

.5
(X

1
,0
+
δ

1
,0

)
X

1
,0

δ1,0=[-1.25,1.25]

δ1,0=[-1.25,1.25]

Figure C.3: Example of output waveforms of recurrence formula when solving 10-
city instance. (a)–(c) Time evolution of X1,0. (d)–(f) σ15,1.5(X1,0+δ1,0). Amplitudes
of fluctuation (a) and (d) were δ1,0 = [−0.5, 0.5], (b) and (e) were δ1,0 = [−1.0, 1.0],
and (c) and (f) were δ1,0 = [−1.25, 1.25].

0 0.5 1.0 1.5
Amplitude of δVk

N
um

be
r

of
 s

te
ps

 u
nt

il
re

ac
hi

ng
 s

ol
ut

io
n

106

105

104

103

(b)

0 0.5 1.0 1.5
Amplitude of δVk

P
at

h
le

ng
th

1050

1000

950

900

850

(a)

average

Figure C.4: Solution-searching characteristics of electronic amoeba with fluctuation
obtained from computer simulations. (a) Obtained route length when solving 10-
city TSP instance. Error bar is derived from 100 trials. (b) Number of steps to
reach solution.

121

The result indicates the trade-off between the solution quality and solution-searching

time. It looks like that the amoeba carefully searches for a solution when the large

fluctuation is imposed. The minimum route length at large δV k of 1.27 is 845.1,

which is close to the minimum route length, 840.9, obtained by the brute-force

search as shown in Fig. C.5.

average
~1005.1

800 1200900 1000 1100
Path length

C
ou

nt

0

2000
0

40000

60000

80000

optimum
~840.9

820 900840 860 880
Path length

C
ou

nt

0

100

200

300

400

(a) (b)

Figure C.5: (a) Histogram of 10-city TSP instance. (b) Enlarged view.

A possible approach of introducing the fluctuation into the electronic amoeba is

shown in Fig. C.6. The threshold value of the sigmoid function of the branch can

be modulated by the external noise.

LVk

+
-

XVk

R2 R3

R1

VT
δVk

VC

Figure C.6: Pseudopod circuit having sigmoid function whose threshold value is
fluctuation by external noise.

122

APPENDIX C. IMPROVING SOLUTION QUALITY BY GENETIC-ALGORITHM-BASED AND

FLUCTUATION-INTRODUCED METHODS

The output voltage XV k is given by

XV k =

(
1 +

R3

R2

)
VC −

(
R3

R2

)
(VT + δV k), (C.6)

where Vss ≥ XV k ≥ Vdd, VT is a threshold voltage and δV k is the fluctuation. The

output voltage of the sigmoid function is similar to the rectified linear unit capped

at Vdd. In the following simulation, I set the parameters, Vss = 0 V, Vdd = 3

V, VT = 1.5 V, R2 = 1 kΩ, and R3 = 3 kΩ. Figures C.7(d)–(f) show the output

waveforms of the sigmoid function shown in Fig. C.6 with an external noise as shown

in Figs. C.7(a)–(c), obtained from the circuit simulator.

X
V
k
[V

]

3

0

1

2

0 1042
Time [ms]

V
T
+
δ
V
k

[V
]

6 8

δVk=0

(b)

(e)

δVk=0

X
V
k
[V

]

Time [ms]
1
0

42 6 8

δVk=[-0.05,0.05]

(c)

(f)

δVk=[-0.05,0.05]

0

3

0

1

2

3

0

1

2

0 321
Input voltage VC [V]

3

0

1

2

0 321
Input voltage VC [V]

3

0

1

2

0 321
Input voltage VC [V]

X
V
k
[V

]

(g)

δVk=[-1.0,1.0]

δVk=[-1.0,1.0]

Time [ms]
1
0

42 6 80

3

0

1

2

(d)

V
T
+
δ
V
k

[V
]

V
T
+
δ
V
k

[V
]

Figure C.7: Waveforms of XV k. (a)–(c) VT + δV k and (d)–(f) XV k. Amplitudes of
fluctuation δV k for (a) and (d) were 0, (b) and (e) were [−0.005, 0.005], and (c) and
(f) were [−1.0, 1.0].

The sigmoid curve fluctuated largely when large noise was imposed. Note that

123

the dynamic range of the nonlinear output is extended by adding large noise when

averaging XV k, which is sometimes explained by the context of stochastic resonance

[169, 170]. At present, I consider that this extends the searchable range of the can-

didates of the solution for the amoeba core. More discussions are needed to clearly

understand why we could improve the solution quality by imposing the fluctua-

tion. One perspective is that the fluctuation produces trial-and-error behavior and

the feedback of the IMC also fluctuates, and then the amoeba core integrates its

fluctuation. As a result, we can obtain a better solution without trapping a local

optimum. So far, an energy landscape such as the Ising machine and the Hopfield

neural network have not been defined in the electronic amoeba; however, if such an

energy landscape is specified in the electronic amoeba, a better solution has deeper

landscape than a coarse solution.

A device that can generate stochastic behavior by itself is preferable to introduce

the fluctuation to the electronic amoeba because such a device can easily connect to

the electronic amoeba without a conventional computer. A hardware random num-

ber generator (HRNG) using intrinsic noise or stochastic behavior is the candidate.

HRNGs, such as random switching resistive memories [116–120], have gathered at-

tention in the area of hardware security and stochastic computing. HRNGs are

seemed to be suitable for introducing the fluctuation to the electronic amoeba be-

cause they are low power consumption and small implementation area. Other noise

implementation method is shown in Ref. [171]

124

APPENDIX D. REFORMULATION OF BOUNCE-BACK RULE FOR TSP

Appendix D

Reformulation of bounce-back rule

for TSP

The bounce-back rule (variable interactions) for the TSP is given by Refs. [32, 33]

as follows:

WV k,Ul =

0.5 (ifV = U at k ̸= l orV ̸= U at k = l)

ν · dist(V, U) (ifV ̸= U and |k − l| = 1)

0 (otherwise)

. (5.4)

The general description for the bounce-back rule is shown in Chpt. 5. Eq. 5.4 does

not consider the intercity distance between the first and last visited city (hereinafter

referred to as the discontinuous-type bounce-back rule), as shown in Figs. D.1(a)

and D.1(b). In Fig. D.1(a), the variable interactions about XA,1 for the distance

term do not correlate with last visited cities (XB,3 and XC,3), indicated by the red

arrows; on the other hand, those about XA,2 for that correlate with first and last

visited cities (XB,1, XC,1, XB,3, andXC,3). Therefore, when we use the discontinuous

bounce-back rule, the first and last visited cities tend not to be bounced back and the

total route become longer with the distance between them. I reformulated Eq. 5.4

125

V
is

ite
d

 c
ity

Visited order

XA1 XA2 XA3

XB1 XB2 XB3

XC1 XC2 XC3

A
B

C
1 2 3

(a)

Visited order

XA1 XA2 XA3

XB1 XB2 XB3

XC1 XC2 XC3

A
B

C

1 2 3

(b)

Visited order

XA1 XA2 XA3

XB1 XB2 XB3

XC1 XC2 XC3

A
B

C

1 2 3

(c)

Figure D.1: (a) Variable interactions of 3-city TSP about XA1 and (b) XA,2 for
discontinuous bounce-back rule. Those about (c) XA,1 for continuous bounce-back
rule. Red and blue arrows indicate distance and constraint term, respectively.

to make them correlate as follows:

WV k,Ul =

0.5 (ifV = U at k ̸= l orV ̸= U at k = l)

ν · dist(V, U) (ifV ̸= U and (|k − l| = 1or |k − l| = N − 1))

0 (otherwise)

. (6.5)

As shown in Fig. D.1(c), by adding |k − l| = N − 1, the last and first visited cities

are correlated (hereinafter referred as to continuous-type bounce-back rule).

I confirmed the decrease in the distance when using the continuous-type bounce-

back rule compared to using the discontinuous-type bounce-back rule. Figure D.2

shows the simulation results of discontinuous- and continuous-type bounce-back

rules by using the AmoebaTSP given by Ref. [33], which is a mathematical model

that reproduces the solution-searching behavior of the amoeboid organism. I tested

100 times for each instance. Used instances were 10–30 cities TSP whose intercity

distance is 100 and standard deviation is 17. As shown in Fig. D.2(a), the total

route of the continuous-type bounceback rule decreased, compared with the discon-

tinuous one. The number of iterations of the continuous type was the same to the

discontinuous one (shown in Fig. D.2(b)). The difference of the quality between

126

APPENDIX D. REFORMULATION OF BOUNCE-BACK RULE FOR TSP

10 30
Number of cities

0.80

0.96

O
b
ta

in
e
d
 s

o
lu

ti
o
n
 d

iv
id

e
d
 b

y

s
o
lu

ti
o
n
 f
ro

m
 r

a
n
d
o
m

 s
a
m

p
lin

g

Continuous

type

Discontinuous

type

15 20 25

0.84

0.88

0.92

(a)

0

40

D
is

c
o
n
ti
n
u
a
ti
o
n
 -

c
o
n
ti
n
u
a
ti
o
n

10 30

Number of cities

15 20 25

20

30

10

Average

(a)

1000

4000

It
e
ra

ti
o
n
s

to
fin

d
s
o
lu

ti
o
n

10 30
Number of cities

15 20 25

2000

3000

(b)

Continuous type

Discontinuous

type

Figure D.2: Performance difference between continuous- and discontinuous-type
bounce-back rule. (a) Solution quality, (b) iterations to find solution, and (c) per-
formance differences between continuation and discontinuation.

the discontinuous and continuous type bounce-back rule is shown in Fig. D.2(c).

The average difference was 18, which is the almost same as the standard deviation;

therefore, we have concluded that the continuous-type bounce-back rule decreases

the total route length by only one path.

Figure D.3 shows a histogram of obtained solutions by the distontinuous- and

continusous-type bounce-back rule. As shown in Fig. D.3, obtained solutions by the

discontinuous-type bounce-back rule were biased. This is due to the discontinuation.

On the other hand, those by continuous-type one were not biased.

127

0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400

C
ou

nt
C

ou
nt

C
ou

nt
C

ou
nt

C
ou

nt
C

ou
nt

C
ou

nt
C

ou
nt

C
ou

nt
C

ou
nt

Visited city

A B C D E F G H I J
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
0

200

400
C

ou
nt

C
ou

nt
C

ou
nt

C
ou

nt
C

ou
nt

C
ou

nt
C

ou
nt

C
ou

nt
C

ou
nt

C
ou

nt
1st

2nd

10th

3rd

4th

5th

6th

7th

8th

9th

Visited order

A B C D E F G H I J

(a) (b)

Figure D.3: Histogram of obtained solutions by (a) discontinuous- and (b)
continuous-type bounce-back rule.

128

REFERENCES

References

[1] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, and B. Par-

ney, Front. ICT 4, 29 (2017).

[2] B. Wang, F. Hu, H. Yao, and C. Wang, Sci. Rep. 10, 7106 (2020).

[3] N. Nishimura, K. Tanahashi, K. Suganuma, M. J. Miyama, and M. Ohzeki,

Front. Comput. Sci. 1, 2 (2019).

[4] M. Ohzeki, A. Miki, M. J. Miyama, and M. Terabe, Front. Comput. Sci. 1, 9

(2019).

[5] K. Ikeda, Y. Nakamura, and T. S. Humble, Sci. Rep. 9, 12837 (2019).

[6] M. Ohzeki, Sci. Rep. 10, 3126 (2020).

[7] D. Venturelli, D. J. J. Marchand, and G. Rojo, “Job Shop Scheduling Solver

based on Quantum Annealing,” arXiv:1506.08479, 1–15 (2015).

[8] H. Ito, Y. Jiang, H. Yasuda, H. Takesue, K. Aihara, and M. Hasegawa, “High-

Speed Optimization Method for Resource Allocation in Wireless Communi-

cation Systems by Coherent Ising Machine,” in 2020 Int. Conf. Artif. Intell.

Inf. Commun., 93–97 (2020).

[9] D. Inoue, A. Okada, T. Matsumori, K. Aihara, and H. Yoshida, “Traffic Signal

Optimization on a Square Lattice using the D-Wave Quantum Annealer,”

arXiv:2003.07527, 1–11 (2020).

129

[10] S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, and

C. Linnhoff-Popien, Front. ICT 6, 13 (2019).

[11] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Trav-

eling Salesman Problem,” in Proc. Am. Math. Soc., 48–50 (1956).

[12] T. Bektas, Omega 34, 209–219 (2006).

[13] G. E. Moore, Electronics 38, 114–117 (1965).

[14] R. H. Dennard, F. H. Gaennsslen, H.-N. Yu, R. V. Leo, E. Bassous, and

A. R. Leblanc, “Ion implantation and anneal to produce low resistance metal-

diamond contacts,” in IEEE J. Solid-State Circuits, 256–267 (1974).

[15] F. Peper, New Gener. Comput. 35, 253–269 (2017).

[16] M. Waldrop, “The chips are down for Moore’s law,” in Nat. News, 144–147

(2016).

[17] J. L. Hennessy and D. A. Patterson, Commun. ACM 62, 48–60 (2019).

[18] S. R. Nandakumar, S. R. Kulkarni, A. V. Babu, and B. Rajendran, IEEE

Nanotechnol. Mag. 12, 19–35 (2018).

[19] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,

R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud,

J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov,

C. Rich, M. C. Thom, E. Tolkacheva, C. J. Truncik, S. Uchaikin, J. Wang,

B. Wilson, and G. Rose, Nature 473, 194–198 (2011).

[20] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and

H. Mizuno, IEEE J. Solid-State Circuits 51, 303–309 (2016).

[21] V. Choi, Quantum Inf. Process. 7, 193–209 (2008).

130

REFERENCES

[22] V. Choi, Quantum Inf. Process. 10, 343–353 (2011).

[23] J. Cai, B. Macready, and A. Roy, “A practical heuristic for finding graph

minors,” arXiv:1406.2741, 1–16 (2014).

[24] C. Klymko, B. D. Sullivan, and T. S. Humble, Quantum Inf. Process. 13,

709–729 (2014).

[25] S. Okada, M. Ohzeki, M. Terabe, and S. Taguchi, Sci. Rep. 9, 2098 (2019).

[26] Y. Sugie, Y. Yoshida, N. Mertig, T. Takemoto, H. Teramoto, A. Nakamura,

I. Takigawa, S. I. Minato, M. Yamaoka, and T. Komatsuzaki, “Graph minors

from simulated annealing for annealing machines with sparse connectivity,”

in Theory Pract. Nat. Comput., 111–123 (2018).

[27] D. Oku, K. Terada, M. Hayashi, M. Yamaoka, S. Tanaka, and N. Togawa,

IEICE Trans. Inf. Syst. 9, 1696–1706 (2019).

[28] R. Hamerly, T. Inagaki, P. L. Mcmahon, D. Venturelli, T. Honjo, K. Enbutsu,

T. Umeki, R. Kasahara, S. Utsunomiya, D. Englund, E. Rieffel, H. Takesue,

and Y. Yamamoto, Sci. Adv. 5, eaau0823 (2019).

[29] K. Takehara, D. Oku, Y. Matsuda, S. Tanaka, and N. Togawa, “A Multi-

ple Coefficients Trial Method to Solve Combinatorial Optimization Problems

for Simulated-annealing-based Ising Machines,” in IEEE Int. Conf. Consum.

Electron., 64–69 (2019).

[30] T. Nakagaki, H. Yamada, and Á. Tóth, Nature 407, 470 (2000).

[31] A. Tero, S. Takagi, T. Saiga, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki,

R. Kobayashi, and T. Nakagaki, Science 327, 439–442 (2010).

[32] L. Zhu, M. Aono, S. J. Kim, and M. Hara, BioSystems 112, 1–10 (2013).

131

[33] L. Zhu, S. J. Kim, M. Hara, and M. Aono, R. Soc. Open Sci. 5, 180396 (2018).

[34] S. Takagi, Y. Nishiura, T. Nakagaki, T. Ueda, and K.-I. Ueda, “Indecisive

behavior of amoeba crossing an environmental barrier,” in Int. Symp. Topol.

Asp. Crit. Syst. Networks, 86–93 (2007).

[35] S. Kasai, M. Aono, and M. Naruse, Appl. Phys. Lett. 103, 163703 (2013).

[36] R. M. Karp, Reducibility among combinatorial problems, Boston: Springer,

85–103 (1972).

[37] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proc. third

Annu. ACM Symp. Theory Comput., 151–158 (1971).

[38] M. Davis and H. Putnam, J. ACM 7, 201–215 (1960).

[39] J. P. Marques-Silva and K. A. Sakallah, IEEE Trans. Comput. 48, 506–521

(1999).

[40] U. Schoning, “A Probabilistic Algorithm for k-SAT and Constraint Satisfac-

tion Problems,” in Proc. 40th Annu. Symp. Found. Comput. Sci., 410–414

(1999).

[41] A. Balint and U. Schoning, “Choosing Probability Distributions for Stochastic

Local Search and the Role of Make versus Break,” in Theory Appl. Satisf.

Test., 16–29 (2012).

[42] B. Selman, D. G. Mitchell, and H. J. Levesque, Artif. Intell. 81, 17–29 (1996).

[43] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of

Satisfiability, NLD: IOS Press (2009).

[44] A. Tero, R. Kobayashi, and T. Nakagaki, J. Theor. Biol. 244, 553–564 (2007).

[45] M. Aono, M. Hara, and K. Aihara, Commun. ACM 50, 69–72 (2007).

132

REFERENCES

[46] M. Aono, M. Naruse, S. J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and

M. Hara, Langmuir 29, 7557–7564 (2013).

[47] M. Aono, S. Kasai, S. J. Kim, M. Wakabayashi, H. Miwa, and M. Naruse,

Nanotechnology 26, 234001 (2015).

[48] “Amoeba finds approximate solutions to NP-hard problem in lin-

ear time,” https://phys.org/news/2018-12-amoeba-approximate-solutions-np-

hard-problem.html.

[49] M. Aono, S.-j. Kim, L. Zhu, M. Naruse, M. Ohtsu, H. Hori, and M. Hara,

“Amoeba-inspired SAT Solver,” in Int. Symp. Nonlinear Theory its Appl.,

586–589 (2012).

[50] M. Aono, Jpn. J. Appl. Phys. 59, 060502 (2020).

[51] Y. Hara-Azumi, N. Takeuchi, K. Hara, and M. Aono, Jpn. J. Appl. Phys. 59,

040603 (2020).

[52] N. Takeuchi, M. Aono, and N. Yoshikawa, Phys. Rev. Appl. 11, 044069 (2019).

[53] K. Hara, N. Takeuchi, M. Aono, and Y. Hara-azumi, “Amoeba-Inspired

Stochastic Hardware SAT Solver,” in Int. Symp. Qual. Electron. Des., 151–156

(2019).

[54] A. H. N. Nguyen, M. Aono, and Y. Hara-Azumi, IEEE Access 4, 49053–49065

(2020).

[55] A. Hoang and N. Nguyen, “Amoeba-Inspired Hardware SAT Solver with Effec-

tive Feedback Control,” in Int. Conf. Field-Programmable Technol., 243–246

(2019a).

[56] A. Hoang and N. Nguyen, “FPGA-Based Amoeba-Inspired SAT Solver for

Cyber-Physical Systems,” in Int. Conf. Cyber-Physical Syst., 316–317 (2019b).

133

[57] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G.

Katzgraber, Front. Phys. 7, 48 (2019).

[58] H. Goto, K. Tatsumura, and A. R. Dixon, Sci. Adv. 5, eaav2372 (2019).

[59] J. J. Hopfield, “Neural networks and physical systems with emergent collective

computational abilities,” in Proc. Natl. Acad. Sci. USA, 2554–2558 (1982).

[60] J. J. Hopfield and D. W. Tank, Biol. Cybern. 52, 141–152 (1985).

[61] M. Krivan and B. Budinska, Math. Appl. 4, 109–121 (2015).

[62] G. V. Wilson and G. S. Pawley, Biol. Cybern. 58, 63–70 (1988).

[63] B. Kamgar-Parsi and B. Kamgar-Parsi, Biol. Cybern. 62, 415–423 (1990).

[64] K. Tanahashi, S. Takayanagi, T. Motohashi, and S. Tanaka, J. Phys. Soc.

Japan 88, 061010 (2019).

[65] S. Tanaka, Y. Matsuda, and N. Togawa, “Theory of Ising Machines and a

Common Software Platform for Ising Machines,” in Proc. Asia South Pacific

Des. Autom. Conf. ASP-DAC, 659–666 (2020).

[66] E. Ising, Zeitschrift für Phys. 31, 253–258 (1925).

[67] A. Lucas, Front. Pysics 2, 1–15 (2014).

[68] S. Kirkpatrick, J. Stat. Phys. 34, 975–986 (1984).

[69] D. Delahaye, S. Chaimatanan, and M. Mongeau, “Simulated annealing: From

basics to applications,” in Handb. Metaheuristics: Springer, 1–35 (2019).

[70] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355–5363 (1998).

[71] C. Yoshimura, M. Hayashi, T. Takemoto, and M. Yamaoka, “CMOS Annealing

Machine: A Domain-Specific Architecture for Combinatorial Optimization

134

REFERENCES

Problem,” in Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC, 673–

678 (2020).

[72] T. Okuyama, C. Yoshimura, M. Hayashi, and M. Yamaoka, “Computing ar-

chitecture to perform approximated simulated annealing for Ising models,” in

2016 IEEE Int. Conf. Rebooting Comput., 1–8 (2016).

[73] C. Yoshimura, M. Hayashi, T. Okuyama, and M. Yamaoka, Int. J. Netw. 7,

154–172 (2017a).

[74] T. Taketomo, M. Hayashi, C. Yoshimura, and M. Yamaoka, “A 2*30k-Spin

Multichip Scalable Annealing Processor Based on a Processing-In-Memory

Approach for Solving Large-Scale Combinatorial Optimization Problems,” in

2019 IEEE Int. Solid- State Circuits Conf., 52–54 (2019).

[75] C. Yoshimura, M. Hayashi, T. Okuyama, and M. Yamaoka, “FPGA-based

annealing processor for ising model,” in Int. Symp. Comput. Netw., 436–442

(2017b).

[76] T. Okuyama, T. Sonobe, K.-i. Kawarabayashi, and M. Yamaoka, Phys. Rev.

E 100, 12111 (2019).

[77] H. Goto, J. Phys. Soc. Japan 88, 061015 (2019).

[78] H. Goto, Sci. Rep. 6, 21686 (2016).

[79] K. Tatsumura, A. R. Dixon, and H. Goto, “FPGA-based Simulated Bifurca-

tion Machine,” in Int. Conf. F. Program. Log. Appl., 59–66 (2019).

[80] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo,

A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Take-

nouchi, K. Aihara, K. Kawarabayashi, K. Inoue, S. Utsunomiya, and H. Take-

sue, Science 354, 603–606 (2016).

135

[81] Y. Yamamoto, K. Aihara, T. Leleu, K.-i. Kawarabayashi, S. Kako, M. Fejer,

K. Inoue, and H. Takesue, npj Quantum Inf. 3, 49 (2017).

[82] Y. Yamamoto, T. Leleu, S. Ganguli, and H. Mabuchi, “Coherent Ising ma-

chines – Quantum optics and neural network perspectives,” arXiv:2006.05649,

1–32 (2020).

[83] T. Wang and J. Roychowdhury, “OIM: Oscillator-based Ising Machines

for Solving Combinatorial Optimisation Problems,” arXiv:1903.07163, 1–20

(2019).

[84] J. Chou, S. Bramhavar, S. Ghosh, and W. Herzog, Sci. Rep. 9, 14786 (2019).

[85] A. Raychowdhury, A. Parihar, G. H. Smith, V. Narayanan, G. Csaba,

M. Jerry, W. Porod, and S. Datta, “Computing with Networks of Oscilla-

tory Dynamical Systems,” in Proc. IEEE, 73–89 (2019).

[86] R. Afoakwa, Y. Zhang, U. K. R. Vengalam, Z. Ignjatovic, and M. Huang,

“CMOS Ising Machines with Coupled Bistable Nodes,” arXiv:2007.06665

(2020).

[87] T. Wang and L. Wu, “Late Breaking Results : New Computational

Results and Hardware Prototypes for Oscillator-based Ising Machines,”

arXiv:1302.5843, 1–2 (2019).

[88] M. Babaeian, D. T. Nguyen, V. Demir, M. Akbulut, P. A. Blanche, Y. Kaneda,

S. Guha, M. A. Neifeld, and N. Peyghambarian, Nature Commun. 10, 3516

(2019).

[89] J. H. Shin, Y. J. Jeong, M. A. Zidan, Q. Wang, and W. D. Lu, “Hardware

Acceleration of Simulated Annealing of Spin Glass by RRAMCrossbar Array,”

in Int. Electron Devices Meet., 3.3.1–3.3.4 (2018).

136

REFERENCES

[90] F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu, C. Li, Z. Liu,

M. Foltin, S. Yu, Q. Xia, J. J. Yang, R. Beausoleil, W. D. Lu, and J. P.

Strachan, Nat. Electron. 3, 409–418 (2020).

[91] S. Kumar, J. P. Strachan, and R. S. Williams, Nature 548, 318–321 (2017).

[92] A. Minamisawa, R. Iimura, and T. Kawahara, “High-speed Sparse Ising Model

on FPGA,” in Midwest Symp. Circuits Syst., 670–673 (2019).

[93] H. Gyoten, M. Hiromoto, and T. Sato, “Enhancing the solution quality of

hardware ising-model solver via parallel tempering,” in 2018 IEEE/ACM Int.

Conf. Comput. Des., 1–8 (2018).

[94] K. Yamamoto, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto,

A. Sakai, S. Takamaeda-Yamazaki, and M. Motomura, “STATICA: A 512-

Spin 0.25M-Weight Full-Digital Annealing Processor with a Near-Memory

All-Spin-Updates-at-Once Architecture for Combinatorial Optimization with

Complete Spin-Spin Interactions,” in IEEE Int. Solid-State Circuits Conf.,

138–140 (2020).

[95] R. Ono, K. Someya, and T. Kawahara, Microprocess. Microsyst. 78, 103251

(2020).

[96] K. Someya, R. Ono, and T. Kawahara, “Novel Ising model using dimension-

control for high-speed solver for Ising machines,” in 14th IEEE Int. NEWCAS

Conf. NEWCAS 2016, 1–4 (2016).

[97] S. Kitamura, R. Iimura, and T. Kawahara, “AI Chips on Things for Sus-

tainable Society: A 28-nm CMOS, Fully Spin-to-spin Connected 512-Spin,

Multi-Spin-Thread, Folded Halved-Interaction Circuits Method, Annealing

Processing Chip,” in IEEE 18th World Symp. Appl. Mach. Intell. Informatics,

319–323 (2020).

137

[98] R. Yasudo, K. Nakano, Y. Ito, M. Tatekawa, R. Katsuki, T. Yazane, and

Y. Inaba, “Adaptive Bulk Search: Solving Quadratic Unconstrained Binary

Optimization Problems on Multiple GPUs,” in 49th Int. Converence Parallel

Process., 1–11 (2020).

[99] H. M. Waidyasooriya and M. Hariyama, IEEE Access 8, 67929–67939 (2020).

[100] C. Cook, H. Zhao, T. Sato, M. Hiromoto, and S. X. Tan, Integr. VLSI J. 69,

335–344 (2019).

[101] D-Wave Systems Inc., “Postprocessing Methods on D-Wave Systems,” tech-

nical report (2018), URL: http://www.dwavesys.com.

[102] G. Marsaglia, J. Stat. Softw. 8, 1–6 (2003).

[103] A. V. Chervyakov, D. O. Sinitsyn, M. A. Piradov, M. Lebedev, H. Merchant,

and Y. Sakurai, Front. Hum. Neurosci. 10, 603 (2016).

[104] I. Dinstein, D. J. Heeger, and M. Behrmann, Trends Cogn. Sci. 19, 322–328

(2015).

[105] T. Masquelier, Front. Comput. Neurosci. 7, 1–7 (2013).

[106] J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and

M. D. Stiles, Nat. Electron. 3, 360–370 (2020).

[107] “SATLIB,” https://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html.

[108] J. Xu and J. Zhang, “Exploration-exploitation tradeoffs in metaheuristics:

Survey and analysis,” in Proc. 33rd Chinese Control Conf., 8633–8638 (2014).

[109] C. Blum and A. Roli, ACM Comput. Surv. 35, 268–308 (2003).

[110] J. Palmer, A. C. Huk, and M. N. Shadlen, J. Vis. 5, 376–404 (2005).

138

http://www.dwavesys.com

REFERENCES

[111] Y. Tanimoto, A. Yamazoe-Umemoto, K. Fujita, Y. Kawazoe, Y. Miyanishi,

S. J. Yamazaki, X. Fei, K. E. Busch, K. Gengyo-Ando, J. Nakai, Y. Iino,

Y. Iwasaki, K. Hashimoto, and K. D. Kimura, Elife 6, e21629 (2017).

[112] S. DasGupta, C. H. Ferreira, and G. Miesenbock, Science 344, 901–904 (2014).

[113] B. W. Brunton, M. M. Botvinick, and C. D. Brody, Science 340, 95–99 (2013).

[114] J. I. Gold and M. N. Shadlen, Annu. Rev. Neurosci. 30, 535–574 (2007).

[115] M. R. Mahmoodi, M. Prezioso, and D. B. Strukov, Nature Commun. 10, 5113

(2019).

[116] S. Gaba, P. Sheridan, J. Zhou, S. Choi, and W. Lu, Nanoscale 5, 5872–5878

(2013).

[117] H. Jiang, D. Belkin, S. E. Savel’Ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya,

C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, and Q. Xia, Nature Commun.

8, 882 (2017).

[118] S. Balatti, S. Ambrogio, Z. Wang, and D. Ielmini, IEEE J. Emerg. Sel. Top.

Circuits Syst. 5, 214–221 (2015).

[119] T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou, Nat.

Nanotechnol. 11, 693–699 (2016).

[120] A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler, C. Gam-

rat, W. S. Zhao, J. O. Klein, S. Galdin-Retailleau, and D. Querlioz, IEEE

Trans. Biomed. Circuits Syst. 9, 166–174 (2015).

[121] S. Balatti, S. Ambrogio, R. Carboni, V. Milo, Z. Wang, A. Calderoni, N. Ra-

maswamy, and D. Ielmini, IEEE Trans. Electron Devices 63, 2029–2035

(2016).

139

[122] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, Nat.

Nanotechnol. 15, 529–544 (2020).

[123] S. Choi, Y. Yang, and W. Lu, Nanoscale 6, 400–404 (2014).

[124] W. A. Wulf and S. A. McKee, ACM SIGARCH Comput. Archit. News 23,

20–24 (1995).

[125] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,

R. Thomas, and K. Yelick, IEEE Micro 17, 34–44 (1997).

[126] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu, IBM J.

Res. Dev. 63, 1–19 (2019).

[127] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang,

R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, Adv. Mater. 30, 1705914

(2018).

[128] T. Gokmen, M. J. Rasch, and W. Haensch, Front. Neurosci. 12, 745 (2018).

[129] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian,

Nature 577, 641–646 (2020).

[130] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,

M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neu-

ral Network Accelerator with In-Situ Analog Arithmetic in Crossbars,” in

ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit., 14–26 (2016).

[131] W. A. Borders, H. Akima, S. Fukami, S. Moriya, S. Kurihara, Y. Horio,

S. Sato, and H. Ohno, Appl. Phys. Express 10, 013007 (2017).

[132] C. X. Xue, W. H. Chen, J. S. Liu, J. F. Li, W. Y. Lin, W. E. Lin, J. H. Wang,

W. C. Wei, T. W. Chang, T. C. Chang, T. Y. Huang, H. Y. Kao, S. Y. Wei,

Y. C. Chiu, C. Y. Lee, C. C. Lo, Y. C. King, C. J. Lin, R. S. Liu, C. C.

140

REFERENCES

Hsieh, K. T. Tang, and M. F. Chang, “A 1Mb Multibit ReRAM Computing-

In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN-Based

AI Edge Processors,” in IEEE Int. Solid-State Circuits Conf., 388–390 (2019).

[133] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno, and

S. Datta, Nature 573, 390–393 (2019).

[134] H. Yeon, P. Lin, C. Choi, S. H. Tan, Y. Park, D. Lee, J. Lee, F. Xu, B. Gao,

H. Wu, H. Qian, Y. Nie, S. Kim, and J. Kim, Nat. Nanotechnol. 15, 574–579

(2020).

[135] M. Jerry, P.-Y. Chen, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric

FET Analog Synapse for Acceleration of Deep Neural Network Training,” in

Int. Electron Devices Meet., 6.2.1–6.2.4 (2017).

[136] “LTspice,” https://www.analog.com/jp/design-center/design-tools-and-

calculators/ltspice-simulator.html.

[137] J. Bruck, “On the Convergence Properties of the Hopfield Model,” in Proc.

IEEE, 1579–1585 (1990).

[138] Z. B. Xu, G. Q. Hu, and C. P. Kwong, Neural Networks 9, 483–501 (1996).

[139] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671–680 (1983).

[140] D. Whitley, Stat. Comput. 4, 65–85 (1994).

[141] K. Wang, L. Huang, C. Zhou, and W. Pang, “Particle swarm optimization

for traveling salesman problem,” in Proc. Second Int. Conf. Mach. Learn.

Cybern., 1583–1585 (2003).

[142] M. Dorigo and L. M. Gambardella, IEEE Trans. Evol. Comput. 1, 53–66

(1997).

141

[143] S. Lin and B. W. Kernighan, Oper. Res. 21, 498–516 (1973).

[144] L. Xia, B. Li, T. Tang, P. Gu, P. Y. Chen, S. Yu, Y. Cao, Y. Wang, Y. Xie,

and H. Yang, IEEE Trans. Comput. Des. Integr. Circuits Syst. 37, 1009–1022

(2018).

[145] T. Tohara, H. Liang, H. Tanaka, M. Igarashi, S. Samukawa, K. Endo, Y. Taka-

hashi, and T. Morie, Appl. Phys. Express 9, 03420 (2016).

[146] T. Morie, H. Liang, T. Tohara, H. Tanaka, M. Igarashi, S. Samukawa, K. Endo,

and Y. Takahashi, “Spike-based time-domain weighted-sum calculation using

nanodevices for low power operation,” in Int. Conf. Nanotechnol., 390–392

(2016).

[147] Q. Wang, H. Tamukoh, and T. Morie, “Time-Domain Weighted-Sum Calcula-

tion for Ultimately Low Power VLSI Neural Networks,” in Int. Conf. Neural

Inf. Process., 758–759 (2017).

[148] N. M. Razali and J. Geraghty, “Genetic Algorithm Performance with Different

Selection Strategies in Solving TSP,” in Proc. World Congr. Eng., 1134–1139

(2011).

[149] G. Reinelt, The Traveling Salesman-Computational Solutions for TSP Appli-

cations, Berlin: Springer, 1–223 (1994).

[150] E. Thomas, Applied Delay Differential Equations, New York: Springer, 1–204

(2009).

[151] M. C. Mackey and L. Glass, Science 197, 287–289 (1977).

[152] K. Pyragas, Phys. Lett. A 170, 421–428 (1992).

[153] K. Konishi, H. Kokame, and K. Hirata, Phys. Rev. E 60, 4000–4007 (1999).

142

REFERENCES

[154] L. Appeltant, M. C. Soriano, G. Van Der Sande, J. Danckaert, S. Massar,

J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, Nature Commun. 2,

468 (2011).

[155] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, Nature Commun.

4, 1364 (2013).

[156] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda,

H. Numata, D. Nakano, and A. Hirose, Neural Networks 115, 100–123 (2019).

[157] B. S. Lee, J. Acoust. Soc. Am. 22, 824–826 (1950).

[158] T. Toya, D. Ishikawa, R. Miyauchi, K. Nishimoto, and M. Unoki, J. Signal

Process. 20, 197–200 (2016).

[159] J. Foss and J. Milton, J. Neurophysiol. 84, 975–985 (2000).

[160] Y. Nourani and B. Andresen, J. Phys. A: Math. Gen. 31, 8373–8385 (1998).

[161] S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6,

721–741 (1984).

[162] Y. Watanabe, N. Mizuguchi, and Y. Fujii, Syst. Comput. Japan 29, 68–74

(1998).

[163] S. Salcedo-Sanz and X. Yao, IEEE Trans. Syst. Man, Cybern. Part B Cybern.

34, 2343–2353 (2004).

[164] M. Matayoshi, M. Nakamura, and H. Miyagi, “A Genetic Algorithm with the

Improved 2-opt Method,” in IEEE Int. Conf. Syst. Man Cybern., 3652–3658

(2004).

[165] F. Neri and C. Cotta, Swarm Evol. Comput. 2, 1–14 (2012).

143

[166] J. King, M. Mohseni, W. Bernoudy, A. Fréchette, H. Sadeghi, S. V.

Isakov, H. Neven, and M. H. Amin, “Quantum-Assisted Genetic Algorithm,”

arXiv:1907.00707, 1–13 (2019).

[167] A. Zhou, L. Kang, and Z. Yan, “Solving dynamic TSP with evolutionary

approach in real time,” in Congr. Evol. Comput., 951–957 (2003).

[168] J. Branke and Y. Jin, IEEE Trans. Evol. Comput. 9, 303–317 (2005).

[169] L. Gammaitoni, Phys. Rev. E 52, 4691–4698 (1995).

[170] Y. Tadokoro, S. Kasai, A. Ichiki, and H. Tanaka, IEEE Trans. Syst. Man,

Cybern. Syst. 46, 1121–1128 (2016).

[171] S. Cheemalavagu, P. Korkmaz, K. Palem, B. Akgul, and L. Chakrapani, “A

probabilistic CMOS switch and its realization by exploiting noise,” in IFIP

Intl. Conf. VLSI, 535–541 (2005).

144

LIST OF PUBLICATIONS/CONFERENCES/AWARDS

List of

publications/conferences/awards

Publications related to this work

[1] Kenta Saito, Naoki Suefuji, Seiya Kasai, and Masashi Aono, “Amoeba-inspired

Electronic Computing System and its Application to Autonomous Walking of a

Multi-legged Robot,” Journal of Applied Logics - ifCoLoG Journal of Logics and

their Applications 5, pp. 1799-1814 (2018).

[2] Kenta Saito and Seiya Kasai, “Effect of feedback delays on solution quality

in amoeba-inspired computing system that solves traveling salesman problem,”

Applied Physics Express 13, 114501 (2020).

[3] Kenta Saito, Masashi Aono, and Seiya Kasai, “Amoeba-inspired Analog Elec-

tronic Computing System Integrating Resistance Crossbar for Solving the Trav-

eling Salesman Problem,” Scientific Reports 10, 20772 (2020).

[4] Kenta Saito and Seiya Kasai, “Effect of Asymmetric Deformation Dynamics in

Amoeboid Organism on Its Search Ability,” Bioinspiration & Biomimetics (2021,

under review).

[5] 斉藤健太、青野真士、葛西誠也、「抵抗クロスバー回路を備えた粘菌型アナログ
電子解探索システムにおける最大カット問題解法」電子情報通信学会論文誌C・

145

招待論文（2021、under review）

Presentations related to this work

International conference

[1] Kenta Saito, Seiya Kasai, and Masashi Aono, “Impact of External Fluctuation on

Solution Search in Amoeba-inspired Electronic Computing System,” Workshop

on Molecular Architectonics - Toward Realization of Neuromorphic Computing

by Nanomaterials, Osaka, June 2017.

[2] Kenta Saito, Naoki Suefuji, Seiya Kasai, and Masashi Aono, “Amoeba-Inspired

Electronic Solution-Searching System and Its Application to Finding Walking

Maneuver of a Multi-legged Robot,” The 48th International Symposium on

Multiple-Valued Logic, Linz, Austria, May 2018.

[3] Kenta Saito, Seiya Kasai, and Masashi Aono, “Evaluation of Solution Search

Performance of Amoeba-inspired Electronic Computing System for Solving Max-

imum Cut Problem,” Proceedings of 2020 International Symposium on Nonlinear

Theory and Its Applications, Virtual, November 2020.

Domestic conference

[1] 斉藤健太、若宮遼、葛西誠也、「粘菌アメーバ型最適化問題解探索電子システム
の再構成・大規模化の検討」電子情報通信学会北海道支部学生会インターネット
シンポジウム、2016年 2月

[2] 斉藤健太、葛西誠也、青野真士、「電子アメーバにおけるエラーと SAT解探索効
率の関係」、電子情報通信学会ソサイエティ大会、札幌、2016年 9月

[3] 斉藤健太、葛西誠也、青野真士、「電子アメーバ最適化問題解探索における外乱
の効果」、第 64回応用物理学会春季学術講演会、横浜、2017年 3月

146

LIST OF PUBLICATIONS/CONFERENCES/AWARDS

[4] 斉藤健太、葛西誠也、青野真士、「電子アメーバ SAT解探索システムにおけるエ
ラーと解探索効率の相関」、電子情報通信学会総合大会、金沢、2018年 9月

[5] 斉藤健太、末藤直樹、葛西誠也、青野真士、「粘菌に着想を得たTSP解探索アル
ゴリズムの電子回路実装」、第 66回応用物理学会春季学術講演会、東京、2019

年 3月

[6] 斉藤健太、末藤直樹、葛西誠也、青野真士、「アメーバ電子計算システムにおけ
る最大カット問題のマッピングとその求解」、第 80回応用物理学会秋季学術講演
会、札幌、2019年 9月

[7] 斉藤健太、末藤直樹、葛西誠也、青野真士、「巡回セールスマン問題に対するア
メーバ電子計算システムの解探索性能」、第 67回応用物理学会春季学術講演会
（新型コロナの影響により講演会中止）

[8] 斉藤健太、葛西誠也、青野真士、「アナログ電子アメーバにおける遅延による不
安定状態の解探索性能への影響評価」、第 81回応用物理学会秋季学術講演会、オ
ンライン、2020年 9月

Presentations related to other work

Domestic conference

[1] 末藤直樹、斉藤健太、葛西誠也、青野真士、「粘菌アメーバ型最適化問題解探索
の 4足ロボット自律歩行への応用」、電子情報通信学会ソサイエティ大会、金沢、
2018年 9月

[2] 末藤直樹、斉藤健太、葛西誠也、青野真士、「非同期 CMOS論理回路に問題を
マッピングしたアメーバ型解探索電子システムの動的挙動」、第 66回応用物理
学会春季学術講演会、東京、2019年 3月

147

[3] 大沼柊、斉藤健太、末藤直樹、葛西誠也、青野真士、「粘菌型自律歩行ロボット
行動決定のための動態時系列センシング」、第 80回応用物理学会秋季学術講演
会、札幌、2019年 9月

[4] 大沼柊、斉藤健太、末藤直樹、葛西誠也、青野真士、「粘菌型自律歩行ロボット
の身体感覚による路面状態センシング」、電子情報通信学会総合大会（新型コロ
ナの影響により講演会中止）

[5] 大沼柊、斉藤健太、末藤直樹、葛西誠也、青野真士、「確率的傾斜法を用いた粘
菌型自律歩行ロボットの歩行効率化」、第 81回応用物理学会秋季学術講演会、オ
ンライン、2020年 9月

Awards

[1] 第 66回応用物理学会春季学術講演会 Poster Award

148

	Introduction
	Background
	Objectives of this work
	Synopsis of this thesis

	Concept of amoeba-inspired computing system
	Introduction
	Combinatorial optimization problems and computational complexity
	Time complexity
	Computational complexity
	Combinatorial optimization problems
	Satisfiability problem
	Traveling salesman problem
	Maximum cut problem

	Amoeba-inspired computing system
	Amoeba-based computing system
	Amoeba-inspired electronic computing system

	Summary

	Previous system overview
	Introduction
	Ising machine
	Weak points in Ising machine
	Summary

	Amoeba-inspired analog-digital hybrid computing system for solving satisfiability problem
	Introduction
	Electronic amoeba for solving SAT
	Bounce-back rule for SAT
	Experimental results of electronic amoeba
	Asymmetric dynamics in amoeba-inspired algorithm
	Original AmoebaSAT
	AmoebaSAT with asymmetric dynamics
	Numerical simulation results of AmoebaSAT with and without asymmetric dynamics

	Asymmetric deformation of amoeboid organism
	Discussion
	Conclusion

	Amoeba-inspired all analog computing system integrating resistance crossbar circuit for solving maximum cut problem and traveling salesman problem
	Introduction
	Bounce-back rule for Max-cut and TSP
	Bounce-back signal
	Variable interaction for Max-cut
	Variable interaction for TSP

	Electronic amoeba integrating crossbar circuit that performs product-sum and thresholding
	Results
	Circuit simulation results for Max-cut
	Physical system for solving Max-cut
	Evaluation of solution-searching performance to Max-cut
	Circuit simulation results for TSP
	Physical implemented system for TSP
	Evaluation of solution-searching performance to TSP

	Discussion
	Conclusion

	Exploiting delayed feedback to improve solution quality of traveling salesman problem
	Introduction
	Formulization of solution-searching behavior of electronic amoeba with delayed feedback
	Results
	Influence of delay on performance
	Delay time scheduling
	Optimizing normalization coefficient

	Reason for improving quality of solutions by delayed feedback
	Discussion
	Conclusion

	Conclusion
	Solution-searching performance of Ising-model-based algorithm
	Variable encoding and stabilization condition for TSP and Max-cut
	Variable encoding and stabilization condition for TSP
	Variable encoding and stabilization condition for Max-cut

	Improving solution quality by genetic-algorithm-based and fluctuation-introduced methods
	Genetic-algorithm-based electronic amoeba
	Fluctuation-induced electronic amoeba

	Reformulation of bounce-back rule for TSP
	References
	List of publications/conferences/awards

