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1. General introduction 

 

The electronic structure of a molecule governs its all chemical properties. The 

electronic structure can be calculated by solving the Schrödinger equation. By virtue of 

the recent improvement of computer performance, ab initio calculations are applied to 

the systems that were previously only applicable to the classical mechanics calculation. 

However, it is still very difficult to apply the standard quantum chemical method to the 

large-scale systems such as proteins. In the standard quantum chemical calculation, the 

computational time increases drastically with respect to the system size. For example, the 

computational time in Hartree-Fock (HF) method and Density functional theory (DFT) 

increase cubically with respect to the system size, due to the diagonalization in the Self-

consistent-field (SCF) calculation. In the post-HF theories, e.g. MP2 and coupled cluster 

method (CC), the computational time increases O(N5) or more, where N is the number of 

atoms in the target system.  

To overcome this problem, the construction of the new theory for large systems has 

been actively studied since 1990s. Owing to their effort, a lot of linear or low scaling 

methods have been developed. For example, in the ProteinDF program, the entire system 

can be treated straightforwardly by means of the efficient parallelization and the cut off 

scheme for two-electron integrals. A method which focuses on the active cite has been 

developed by means of the hierarchical computational level. In the Quantum mechanics 

/ molecular mechanics (QM/MM) method, a part of entire system (e.g. the active site) is 

only treated QM region and the other part is treated MM region. In the Our own n-layered 
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integrated molecular orbital and molecular mechanics (ONIOM) method, the large-scale 

system can be treated with 2 or 3 different computational levels. 

To calculate electronic structure of the entire system, many fragment-based quantum 

chemical calculation methods have been developed. In these methods, the entire system 

is divided into several fragments and the electronic structure of the entire system is 

approximately calculated by combining the properties of all fragments. The divide and 

conquer (DC) method proposed by Yang and Lee is one of the fragment-based quantum 

chemical calculation methods. In the DC method, each subsystem (fragment) is composed 

of two regions, namely the central region and buffer region. The central region is the 

separated region from each other. To consider the environment around the central region, 

the buffer region is added for each central region. In the DC method, the size of the buffer 

region plays an important role of the accuracy of the DC method. The error introduced by 

the fragmentation can be improved systematically by increasing the size of the buffer 

region. In the DC-SCF calculation, the density matrix for the entire system can be 

approximately constructed by using those of all subsystems and the total electronic energy 

is calculated with the approximate entire density matrix. Nakai and coworkers extended 

the DC method to post-HF (MP2 or CC) energy calculations as well as the HF and MP2 

energy gradient calculations. In the DC-MP2 calculation, because the buffer region in 

each subsystem overlaps with the other subsystem, the MP2 correlation energy of the 

entire system is approximated as the sum of the MP2 correlation energy corresponding to 

the central region of all subsystems.  

 

Except for the DC method, many fragment-based methods have been developed and 

applied to wide variety of large systems. However, to the best of my knowledge, the 
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appropriate fragment shape that is as compact as possible for reducing the computational 

time while keeping the acceptable accuracy depends on the target system. In addition, in 

most of these methods, the fragment shape is determined by the distance parameter. 

Consequently, it is difficult to evaluate the error directly and the preliminary assessment 

is required to determine the appropriate fragment shape. In particular, the appropriate size 

of the buffer region in the DC method is different for different quantum chemical 

calculation method. 

In my study, to control automatically the errors between the standard and the DC 

methods, I have proposed a method which determines the appropriate size of the buffer 

region based on the error estimation. Especially, for the DC-SCF and DC-MP2 

calculations, automatic energy error control methods with the estimated energy error were 

proposed. In addition, an automatic energy gradient error control scheme for the DC-HF 

energy gradient calculation was proposed. In the DC-SCF calculation, an energy 

estimation scheme with a two-layered buffer region was constructed. the estimated energy 

in the DC-MP2 calculation was formulated with the idea of atomic orbital (AO)-Laplace 

MP2 method. In addition, the estimation of the DC-SCF energy gradient was proposed 

by means of two inequalities. 

This dissertation consists of six Chapters, including this Chapter. An overview of each 

Chapter is given below. 

Chapter 2 gives the theoretical backgrounds of this dissertation. Specifically, the HF 

theory and the MP2 perturbation theory are summarized briefly. In addition, several 

fragment-based methods are explained, namely, Molecular tailoring approach (MTA), 

Fragment molecular orbital (FMO)method, Elongation (ELG) method and DC method. 

In Chapter 3, an automatic error control method in the DC-SCF calculation is proposed. 
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In this method, the atomic energy variation in each subsystem is estimated from the 

density matrix change between the two-layer buffer regions introduced by Dixon and 

Merz. Based on this estimated energy, the method to automatically determine the 

appropriate size of the buffer region is developed. In numerical assessment, it is 

confirmed that the present method works effectively for water cluster and protein. In 

addition, the present method achieves the linear scaling as well as the conventional DC 

method. 

In Chapter 4, an extension of the automatic error control method to the DC-MP2 

calculation is proposed. By using the idea of the AO-Laplace MP2 method proposed by 

Häser, the atomic DC-MP2 energy variations in each subsystem can be estimated. The 

appropriate size of the buffer region can be determined automatically with the estimated 

atomic energy contributions.  

In Chapter 5, an automatic error control scheme for the DC-SCF energy gradient error 

calculation is proposed. From the philosophy of the automated DC-HF method, I propose 

the error estimation of the energy gradient with respect to the nuclear coordinate. This 

estimation is formulated with the DC-HF energy gradient expression proposed by 

Kobayashi et al. and two inequalities. In my research, the estimated energy gradient tends 

to be consistent with the actual error between the standard and DC energy gradient 

calculations in the Pulay term. However, it tends to be underestimated the actual error in 

the Hellmann-Feynman term. 

In Chapter 6, the overall summary about this dissertation and the prospects of the DC 

method is mentioned. 
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2. Theoretical backgrounds 

 

In this Chapter, I briefly summarize the Hartree-Fock theory, which is the simplest ab 

initio calculation, in Section 2.1 and the second order Møller-Plesset perturbation theory 

in Section 2.2. In Section 2.3, several fragment-based quantum chemical methods for 

treating the large-scale systems are explained. 

 

2.1. Hartree-Fock theory 

 

A variety of physical properties of molecular structure are dominated by the electronic 

structure. The electronic structure can be determined by solving the Schrödinger equation. 

The non-relativistic and time-independent Schrödinger equation is expressed as 

ˆ E  =  .            (2.1) 

The Hamiltonian consists of the kinetic energy of the nucleus and electrons and their 

potentials by the coulomb interaction (Eq. 2.2). 

e N e e N N

2 2

1 1 1 1

1 1 1ˆ
2 2

n N n n N N

A A B
l A

l A l m l A A BA lm lA AB

Z Z Z
H

M r r R= =  = = 

= −  −  + − +            (2.2) 

rlm, rlA and RAB represent the electron-electron, the electron-nucleus and the nucleus-

nucleus distances. ne and NN are the total numbers of electrons and nuclei, respectively. 

MA and ZA are the nuclear mass and charge, respectively. The Schrödinger equation can 

be solved rigorously for systems with only one electron, such as hydrogen. it is very 

difficult to obtain an exact solution for systems with two or more electrons such as helium, 
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which is called the many-body problem. The Born-Oppenheimer approximation that the 

motions of the nucleus and the electron are separated approximately is introduced. Under 

this approximation, the wave function of the nuclei is not treated explicitly and the kinetic 

energy of the nuclei is neglected in the calculation of its electronic structure. Therefore, 

Eq. (2.2) is rewritten as the electronic Hamiltonian by 

e e e N

2

elec

1 1 1

1 1ˆ
2

n n n N

A
l

l l m l Alm lA

Z
H

r r=  = =

= −  + −   .             (2.3) 

To solve the electronic Schrödinger equation feasibly, many computational methods 

have been developed. I briefly summarize the Hartree-Fock (HF) method,[1-3] which is the 

simplest ab initio method. In the HF method, the potential for one electron is 

approximated by the averaged potential from the other electrons, that is, the many-

electron problem is replaced with the one-electron problem. In the HF method, the wave 

function of the ground state for the ne electron system, ΨHF, is represented as the Slater 

determinant of the one-electron wave functions , shown as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

e

e

e

e e e e

1 1 2 1 1

1 2 2 2 2HF

1 2

e

1 2

1
Ψ ( , , , )

!

n

n

n

n n n n

x x x

x x x
x x x

n

x x x

  

  

  

= ,           (2.4) 

where nx  is the n th electron coordinate and ( )l x  is the l th orthonormalized molecular 

orbital (MO).  l can be determined variationally by the HF equation, given as 

ˆ
l l lF  = ,               (2.5) 

where F̂  is the Fock operator shown in Eq. (2.6) and 
l  is the orbital energy of the HF 

method. 
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( )
1

ˆˆ ˆ ˆ
eN

m m

m

F h J K
=

= + −                   (2.6) 

In Eq. (2.6), ĥ  is the one electron operator, shown as 

N

2

1

1ˆ ( ) ( )
2

N

A
l l

A A

Z
h x x

r R
 

=

 
= −  − 

− 
 ,                (2.7) 

and ˆ
mJ  and ˆ

mK  are the Coulomb and exchange operators, shown as 

*

2

1ˆ ( ) ( ') ( ') ( )
'

m l m m lJ x x x dx x
r r

   =
− ,               (2.8) 

*

2

1ˆ ( ) ( ') ( ') ( )
'

m l m l mK x x x dx x
r r

   =
− .               (2.9) 

( )l x  is composed of the spatial orbital, ( )l rψ , and the spin function. Because the spin 

function is not treated explicitly, Eq. (2.5) can be expressed as the HF equation for the 

spatial region. In the closed shell case, Eq. (2.5) is rewritten as 

ψ ψˆ ( ) ( )l l lF =r r .                   (2.10) 

MO can be described by the linear combination of the AOs, described as 

1

( ) ( ) 



=

=l lCr rψ ,                 (2.11) 

where ( ) r  is the AO and lC  is the MO coefficient. By substituting Eq. (2.11) for Eq. 

(2.10) and integrating after multiplying 
* ( ) r  from left side, the Roothaan-Hall equation 

is obtained, show in 

1 1

   
 


= =

= l l lC F C S ,                 (2.12) 

where Fμν and Sμν are the Fock and the overlap matrices. These are expressed as 
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( ) ( )core 1
| |

2
F H D  



   
 

= + − 
 

               (2.13) 

* ( ) ( )dS       = = r r r ,                    (2.14) 

where ( ) * 1 *

1 1 12 2 2 1 2| ( ) ( )r ( ) ( )d d        −=  r r r r r r  , D is the density matrix, 

described as 

e
2

*

1

2

n

l l

l

D C C  
=

=  .                     (2.15) 

Eq. (2.12) is solved iteratively from the initial guess because this is nonlinear equation. 

This procedure is called Self-Consistent-Field (SCF). Eq. (2.12) is expressed as the matrix 

form, shown as 

FC=εSC.                        (2.16) 

The total electronic energy in the HF method can be calculated with the MOs obtained 

from above equation: 

HF core

elec

1
Tr ( )

2
E  = + D H F .                   (2.17) 

The total energy is calculated by the sum of the electronic energy of Eq. (2.17) and the 

internuclear repulsion energy with the fixed the nucleus-nucleus distances. In the HF 

method, the computational time for the diagonalization in the SCF procedure increases 

cubically with respect to system size.  
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2.2. Second order Møller-Plesset perturbation theory 

 

The HF energy, EHF, represents about 99% of the exact energy, Eexact, where Eexact is 

the exact ground state energy of the non-relativistic Schrödinger equation under the Born-

Oppenheimer approximation. In the above Schrödinger equation, the electrons that are 

close to each other are excluded because of Coulomb holes. Consequently, the exact 

ground state energy is lower than the HF energy because the Coulomb interaction is 

reduced. The energy difference between EHF and Eexact is called the electron correlation 

energy, which is given as 

Ecorr = Eexact – EHF.                    (2.18) 

To consider electron correlation, the post-HF theories, which is based on the HF 

method, has been developed to account for the electron correlation. In the configuration 

interaction (CI) method,[1,2] the wavefunction is constructed by the linear combination of 

the electron configurations. Although all configurations are considered in the full-CI 

method, to reduce computational cost, the truncated CI methods are often used. In the 

coupled cluster (CC) method,[4,5] the higher order contributions can be considered by the 

product of the lower order configurations. The Møller-Plesset perturbation theory[1-2,4-7] 

is a method to treat electron correlations. Particularly, the second order Møller-Plesset 

method is called MP2 method, which is the simplest molecular orbital method that can 

deal with the electron correlation. I briefly summarize the second order Møller-Plesset 

perturbation theory. The exact Hamiltonian, Ĥ , can be constructed 
0Ĥ  and V̂ ; 

0
ˆ ˆ ˆH H V= + ,                    (2.19) 
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where V̂  is called the perturbation term and V̂ <<
0Ĥ . λ is the perturbation parameter to 

only specify the corresponding order, thus λ=1. In the Møller-Plesset perturbation theory, 

the ground state eigenfunction and eigenvalue of Ĥ   are obtained by the successive 

approximation with the eigenfunctions and eigenvalues of
0Ĥ  . Assume that 

(0) (0) (0)

0
ˆ

n n nH E =   is already solved. Because V̂  <<
0Ĥ  , the ground state 

eigenfunction, Ψ0, and energy, E0, of Ĥ  lie near 
(0)

0  and 
(0)

0E  of 
0Ĥ  and these are 

expanded by the power series of λ, described as 

(0) (1) 2 (2)

0 0 0 0    = + + +                   (2.20) 

(0) (1) 2 (2)

0 0 0 0E E E E = + + + .                  (2.21) 

Eq. (2.20) and Eq. (2.21) are substituted for the exact eigenvalue problem, 

0 0 0Ĥ E =  , and thus, the following equations can be obtained by summarizing with 

the order of λ. 

0 (0) (0) (0)

0 0 0 0
ˆ: H E  =                    (2.22) 

1 (1) (0) (1) (0) (0) (1)

0 0 0 0 0 0 0
ˆ ˆ: H V E E    + = +           (2.23) 

2 (2) (1) (2) (0) (1) (1) (0) (2)

0 0 0 0 0 0 0 0 0
ˆ ˆ: H V E E E     + = + +        (2.24) 

Because 
(0)

0   and 
(0)

0E  have been already obtained, 
(1)

0   and 
(1)

0E   can be obtained 

from Eq. (2.23) with 
(0)

0  and 
(0)

0E . In addition, 
(2)

0  and 
(2)

0E  can be also obtained 

from Eq. (2.24) with 
(0)

0 , 
(0)

0E , 
(1)

0  and 
(1)

0E . Similarly, the higher order terms in Eqs. 

(2.20) and (2.21) can be obtained by the successive approximation. In the Møller-Plesset 

perturbation theory, 
0Ĥ  can be expressed as the sum of the HF operator; 
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0

1

ˆ ˆ ( )
en

l

H F l
=

= ,                    (2.25) 

where ˆ ( )F l  is the Fock operator for the electron l. The eigenfunction and eigenvalue of 

0Ĥ  are the HF wave function and the sum of the orbital energy, shown in Eqs. (2.26) and 

(2.27). 

HF HF

0 0Ĥ E =                     (2.26) 

0 l

l

E =                      (2.27) 

V̂  is given by the difference between the exact electron-electron interaction and one-

electron potential in the HF method. Consequently, V̂  is expressed as 

1 HF

1

ˆ ( )

ˆ ˆ( ) ( )

lm

l m l

lm m m

l m l m

V r v l

r J l K l

−


−



= −

 = − −
 

 

 
,                  (2.28) 

where ˆ ( )mJ l   and ˆ ( )mK l   are the Coulomb and exchange operators, respectively. The 

HF energy can be considered in corrections up to the first order perturbation term. 

Therefore, the electron correlation energy can be corrected from the second order 

perturbation term. In the closed shell case, the second order Møller-Plesset perturbation 

energy, 
(2)

corrE , are described as 

( )
( ) ( )

occ vir
(2)

corr

, ,

|
2 | |

   
= −  + − −

i j a b i j a b

ia jb
E ia jb ib ja ,             (2.29) 

where i, j and a,b are the occupied and virtual orbitals, respectively. To improve the 

accuracy in the Møller-Plesset perturbation theory, the methods which increase the order 

of the perturbation terms have been developed, which are called MP3, MP4 and so on. 
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2.3. Fragment-based quantum chemical calculation 

method 

 

For treating large-scale systems such as proteins, a lot of fragment-based quantum 

chemical calculation methods have been developed.[8-12] In the fragment-based method, 

there are several classifications for each fragmentation. Li et al. classified these methods 

into two categories.[13] One is the energy-based approach and the other is the density-

based approach. In the energy-based approach, the total energy for the entire system can 

be calculated directly from the energies for all fragments. On the other hand, in the 

density-based approach, the total energy for the entire system can be calculated with the 

approximate density matrix for the entire system, which is constructed from the density 

matrix or molecular orbital in each fragment or local region. In this Section, I summarize 

about several methods in the energy-based and the density-based approaches. 

 

2.3.1. Molecular tailoring approach 

 

The Molecular tailoring approach (MTA) proposed by Gadre et al is one of the energy-

based approach.[14-16] In the MTA, the entire system is divided into several initial 

fragments with the distance-based parameter, which is called R-goodness (Rg) parameter 

and the detail of Rg is given below. A sphere of radius Rg centered at each atom in the 

entire system is constructed and all atoms within the sphere belong to the initial fragment. 

It is noted that the sensitive regions, such as multiple bonds, aromatic rings and functional 
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group, are not divided but are kept intact during fragmentation. The neighboring initial 

fragments are merged while the number of atoms in the fragment is less than the 

maximum number of atoms set initially. After merging of these fragments, hydrogen atom 

caps are added for the broken bonds at the edge of each fragment. These dummy atoms 

are added at the standard bond length of X-H, where X is the connected atom.  

In the MTA, the total energy of the entire system is calculated by means of the 

inclusion-exclusion principle in the set theory. Therefore, the intersection regions of all 

fragment pairs are calculated. The intersection regions are also calculated for three, four, 

etc. fragments. The total energy for the entire system can be expressed as 

1

, , , ,

( 1)I J I J NI f f f f ff N

I I J I J N

E E E E
   −= − + + −   ,                 (2.30) 

where IfE  is the energy for the fragment I and I Jf f
E

 is the energy for the intersection 

region of fragment I and J, and so on. It is noted that the energy of the hydrogen atom 

caps is cancelled formally in this equation. 

I summarize about the determination of Rg.
[17,18] The Rg is introduced to mimic the 

chemical environment of each atom in the fragment. For a certain fragment, a sphere of 

centered at the atom included in this fragment is constructed. The radius of this sphere is 

enlarged until it touches an atom which belongs to other fragments. The radius of the 

enlarged sphere is called R-goodness (Rg) value for that atom. If an atom belongs to 

several fragments, the maximum of the sphere radii which are obtained from each 

fragment is taken as the R-goodness (Rg) value for that atom. This procedure is repeated 

for every atom in the entire system and the minimum of Rg for every atom is considered 

as the Rg of the scheme. The larger Rg gives the more accurate accuracy for the MTA 

calculations in general. From the earlier research, Rg is greater than or equal to 4 Å to be 

accurate enough for normal chemical structures.  
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2.3.2. Fragment molecular orbital method 

 

The Fragment molecular orbital (FMO) method proposed by Kitaura and Fedorov et 

al. is also the energy-based approach.[19-21] In the FMO method, the entire system is 

divided into several fragments in real space. The electrons are assigned to each fragment 

so as not to break the bond electron pair, in other words, the bonds which exist on the 

border are assigned to the fragments. It is important that the nuclei are not assigned to the 

fragments. At the boundaries of each fragment, the atoms to which the bond electron pair 

is assigned are defined as the bond attached atoms (BAAs). On the other hand, the atoms 

on the opposite side of BAAs is called the bond detached atoms (BDAs). To describe the 

bond between BAA and BDA, the basis function of BDA is transformed into the hybrid 

orbitals with the projection operator and its hybrid orbitals is assigned to the fragments. 

In addition, the atomic charge for BDA is split and one side of its atomic charge is 

transferred to the fragment including BDA. It is noted that atomic charge is split to keep 

the original fragment charge.  

The total energy in the original FMO method can be obtained from the energies for 

one fragment and the fragment pair. The Hamiltonian for the fragment I is described as 

Fallatoms
2 ( ')1 1ˆ '

2 '

I In N n

JA
I i

i A J I i ji A i i j

rZ
H dr

r r r r r r



 

  
= −  − + + 

− − −  
    ,                 (2.31) 

where nI and NF are the total numbers of electrons in the fragment I and total numbers of 

the fragments, respectively. In addition, ZA and ρJ(r) are the atomic charge of atom A and 

the electron density for fragment J, respectively. In the FMO method, the Hamiltonian for 

one fragment includes the coulomb interaction from all nuclei in the entire system and 
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the electrostatic interaction from the electrons in the surrounding (N-1) fragments. These 

effects are the characteristic in the FMO method. The Schrödinger equation for the 

fragment is  

ˆ
I I I IH E =  .                        (2.32) 

The SCF procedure is performed for each fragment. By solving the above equation, the 

fragment energy for each fragment, EI, and the electron density can be obtained. The SCF 

procedure for each fragment is carried out iteratively until the electron density of all 

fragments converges. Note that the iterative procedure for the electron density is called 

Self-Consistent-Charge (SCC). Next, the SCF procedure for the fragment pair is 

performed. The Hamiltonian for the fragment pair IJ is also described as 

Fallatoms
2

,

( ')1 1ˆ '
2 '

I J I Jn n n nN

A K
IJ i

i A K I J i ji A i i j

Z r
H dr

r r r r r r

+ +

 

  
= −  − + + 

− − −  
    ,     (2.33) 

and the Schrödinger equation for the fragment pair is expressed as 

ˆ
IJ IJ IJ IJH E =  .          (2.34) 

The Hamiltonian for the fragment pair also includes the contributions from the 

surrounding (N-2) fragments. By solving Eq. (2.34), the fragment energy for each 

fragment pair, EIJ, can be obtained. It is noted that the SCC loop is not performed in the 

fragment pair calculation because the Hamiltonian for the fragment pair is constructed 

with the converged electron density, ρJ(r). Therefore, the total energy for the entire system 

can be calculated with EI and EIJ, described as 

( )I IJ I J

I I J

E E E E E


= − − −  .         (2.35) 



- 17 - 

 

The accuracy of the FMO method can be systematically improved by increasing the 

order of many-body expansion from the original two-body to three-body[22,23] and four-

body[24] expansions. 
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2.3.3. Elongation method 

 

The Elongation (ELG) method proposed by Aoki and Imamura et. al. is one of the 

density-based approach.[25-27] The ELG method has been developed to investigate the 

electronic structure of polymers effectively. In the fragmentation of the ELG method, an 

initial cluster is constructed, which is called the oligomer. It is composed of several 

monomers. By interacting the monomers with the oligomer one after another, the 

electronic structure for the entire system can be calculated approximately. In the ELG 

method, the canonical molecular orbital (CMO) for the oligomer,  iψ , is obtained as 

well as the standard quantum chemical calculation, shown as 

1

i iC 




=

=ψ ,            (2.36) 

where χμ represents the μ th atomic orbital (AO). In the ELG method,  iψ is localized 

in two regions. The interaction region with the added monomer is called the active 

localized molecular orbitals (active LMOs) and the others is called the frozen localized 

molecular orbitals (frozen LMOs). It is noted that the frozen LMOs do not interact with 

the added monomer because it is far away from the added monomer. For convenience, 

the active LMOs is defined as region B and the frozen LMOs is defined as region A.  

From here, I explain how to construct LMOs for each region. It is important that the 

localization procedure in the ELG method is applied to the occupied orbitals and the 

virtual orbitals separately in order to preserve the invariance of the density matrix. The 

LMO in the occupied orbitals is obtained by means of a 2×2 unitary transformation 

between CMOs, which is described as 
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ψ

ψ

sin cos

cos sin

i i

j j

  

  

    
=    

−    
.            (2.37) 

By substituting Eq. (2.36) into Eq. (2.37) and dividing the AOs of the oligomer into 

regions A and B, the following equation is given: 

( )
1 1

sin cos

( ) ( )

A B

i i j

i j

C C

A B

  
 

   

 
= =

 
= + + 
 

= +

  ,         (2.38) 

( )
1 1

cos sin

( ) ( )

A B

j i j

j i

C C

A B

  
 

   

 
= =

 
= + − + 
 

= +

  .         (2.39) 

( )i A  and ( )i B  are the LMOs which are expanded by only the sum of AOs in the 

region A or the region B, respectively. i  and j  can be determined with θmax that gives 

the maximum value of Lij, shown as 

( ) ( ) ( ) ( )ij i i j jL A A B B   = + .             (2.40) 

This procedure is performed iteratively until the CMO pair does not give further 

localization and the same procedure is also performed for the virtual orbitals. By the 

above localization procedure, the occupied and virtual LMOs, 

occ occ vir( ), ( ) , ( ) and ( )vir

i i j jA A B B      can be obtained. Next, I explain about the MO 

calculation at the interaction region of the added monomers with the oligomers. As 

mentioned above, the added monomer does not interact with region A (frozen LMOs). 

Therefore, after removing the matrix in region A, the eigenvalue problem is solved for the 

between region B (active LMOs) and the added monomer. For the new system obtained 

by adding the monomer, region A and region B are newly distinguished and the molecular 

orbitals are localized in each region in the same manner. The above procedure for the 

orbital localization and eigenvalue problem is repeated until the last monomer is added. 
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Since the molecular orbitals in the frozen LMOs are conserved, the density matrix for the 

entire system can be constructed approximately with LMOs obtained in the last step and 

the conserved LMOs. In addition, the total energy for the entire system can be calculated 

with the approximate density matrix.  

In the ELG method, the localization procedure to construct the active and frozen LMOs 

plays an important role in the accuracy. To improve the accuracy in the ELG method, Gu 

et. al. proposed the new localization procedure, where the MOs on a certain special region 

are localized.[28,29] 
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2.3.4. Divide and conquer method 

 

The Divide and conquer method, which is also one of the density-based approach, is 

proposed by Yang and Li.[30-32] In the DC method, the entire system is divided into several 

disjointed region in the real space, which is called the central region. To consider the 

interaction around the central region, the buffer region is added at each central region. 

The fragment which is composed of the central region and the buffer region is called 

subsystem or localization region. In the DC method, the atomic centered basis function is 

used. Therefore, it is called an atomic orbital (AO) and referred to the Gleek index (μ, ν, 

…). A molecular orbital (MO) is expanded by the linear combination of the AOs and 

referred to (p, q, …). S(α) is the set of AOs for the central region in subsystem α and the 

set of AOs for the entire system, T, is expressed as 

( )


=T S .                   (2.41) 

In addition, B(α) is the set of AOs for the buffer region in subsystem α and the set of AOs 

for the localization region, L(α), is expressed as 

( ) ( ) ( )  =S B L .                     (2.42) 

In the DC-SCF calculation, the Fock matrix for the entire system is constructed with the 

density matrix of the entire system as well as the standard SCF calculation, shown in 

( ) ( )DC core DC[ ] 2 | |F H D  



   = + −  D ,            (2.43) 

where ( ) * * 1

1 2 1 2 12 1 2| d d ( ) ( ) ( ) ( )r        −=  r r r r r r   and  ( ) r   is the AO. The 

detail of the total density matrix, DDC, is noted later. Although Eq. (2.43) is the typical 

Fock matrix, the effective Hamiltonian generally depends on the density matrix. The Fock 
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matrix for subsystem α is constructed the submatrix of the effective Hamiltonian for the 

entire system. The MOs for subsystem α are expanded with the linear combination of 

AOs, which is expressed as 

( )

( ) ( )p pC 

 
 

 


= r r
L

.                   (2.44) 

The MO coefficient,  pC

  , and the orbital energy,  p

  , are obtained from the 

Roothaan equation in each subsystem, which is described as 

Fα[DDC]Cα=εαSαCα,                    (2.45) 

where Sα is the overlap matrix corresponding to the subsystem α, shown in 

S   = .                        (2.46) 

The DDC can be constructed approximately by the sum of the density matrix for 

subsystem, expressed as 

subsystem
DCD P D 

  


  .                    (2.47) 

In the closed shell case, the density matrix for subsystem α, Dα, is constructed with Fermi 

distribution function with the inverse temperature parameter, β : 

( )F p p p

p

D f C C   

    = − .                   (2.48) 

In the DC method, the universal common Fermi level, εF, is determined to preserve the 

total number of electrons by means of the following nonlinear equation; 

DC

e 2Tr( )n = D S ,                       (2.49) 

where ne is the total number of electrons. It is noted that εF is located between the occupied 

and virtual orbitals in principle. The P

  in Eq. (2.47) is the element of the partition 

matrix, Pα, which is expressed as  
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( )

1 for ( ) ( )

1 for ( ) ( ) or vice versa
2

0 otherwise

P



   

   

  


=   



S S

S B .       (2.50) 

The value of the buffer region which overlaps each other can be averaged by using the Pα. 

The total density matrix and the effective Hamiltonian matrix is determined self-

consistently. The total electronic energy can be calculated as the functional of DDC.  

DC DC core DC[ ] Tr[ ( [ ])]E = +D D H F D .            (2.51) 

In the standard calculation, the computational cost for the diagonalization is increased 

cubically with respect to the system size N. On the other hand, in the DC method, it is 

increased cubically for the subsystem size n. In the large-scale system, the computation 

cost for the diagonalization can be decreased significantly because n<<N and thus the 

linear scaling can be achieved in the DC method. 
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3. Automatic error control in DC-SCF 

calculation 

 

3.1. Introduction 

 

A Since the advent of computational quantum chemistry, the rapid increase in 

computational power has allowed the electronic structure calculation of ever-larger 

systems. In variational quantum chemical methods, the major computational task is the 

diagonalization of the Hamiltonian matrix that scales cubically with respect to the number 

of basis functions. To enable the electronic structure calculation of very large systems, 

many types of approximate electronic structure methods have been proposed in the last 

two decades that show linear-scaling computational time with respect to the system size. 

Almost all linear-scaling methods are approximations of existing matured electronic 

structure methods, such as Hartree–Fock (HF),[1] Kohn–Sham density functional theory 

(DFT),[2] and post-HF correlation calculations.[3] The results of linear-scaling methods 

bear two types of errors, i.e., those derived from the methodology and those from the 

linear-scaling approximation itself, the latter of which is desired to be controlled by the 

linear-scaling method itself.  

In many linear-scaling methods, procedures for distance-based control and/or accuracy 

evaluation have been introduced. For example, in the density matrix minimization 

method,[4] a cutoff distance was introduced for the construction of an auxiliary density 

matrix of the support function.[5,6] In the molecular tailoring approach,[7] Gadre and 



- 29 - 

 

coworkers defined the R-goodness parameter,[8,9] which indicates the quality of a 

fragmentation scheme based on the distance. The generalized energy-based fragmentation 

(GEBF) approach[10] can also employ a distance-based accuracy control scheme. [11] In 

the divide-and-conquer (DC) method,[12–14] the size of the buffer region controls primarily 

the accuracy of the approximation. Although methods with distance-based control 

parameters can systematically improve the accuracy of the approximations, it is still 

difficult to estimate the error in energy, which is the most important property in electronic 

structure calculations. For some linear-scaling methods, density-based or energy-based 

error estimation schemes have also been developed. For example, for the density matrix 

purification method,[15,16] Rubensson and coworkers proposed a scheme to control the 

density-matrix error derived from iterative purification.[17,18] Niklasson et al. proposed a 

graph-based Fermi-operator expansion scheme, in which the accuracy was controlled by 

thresholded sparse matrix algebra.[19] However, in fragment-based linear-scaling 

approaches, such as those with DC and molecular tailoring methods, it can be difficult to 

control the accuracy without careful prior testing.[19] Another example of accuracy control 

can be found in the fragment molecular orbital method,[20] in which the results can be 

improved by increasing the order of the many-body expansion.[21,22] 

In this Chapter, a scheme to estimate the energy error introduced in DC-HF or DC-

DFT calculations[23] is proposed. Nakai and coworkers extended the DC method to open-

shell systems[13,24] and proposed an energy gradient.[25] Recently, they have also applied 

this method to the density-functional tight-binding (DFTB) theory,[26,27] which has 

enabled us to perform quantum mechanical calculation of one million atom systems 

within one minute with the Japanese K supercomputer.[28,29] In the present error 

estimation method, the two-layer buffer region scheme originally introduced by Dixon 
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and Merz[30] was adopted. Guided by this error estimation scheme, an algorithm to 

automatically determine the appropriate buffer size was established. 
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3.2. DC-SCF scheme with two-layer buffer region 

 

Before summarizing the DC-SCF method with a two-layer buffer region, I note that, 

in the DC method, each basis function should be connected to an atom. Therefore, it is 

simply called an atomic orbital (AO) and denoted with a Greek letter index, {μ, ν, …}. In 

the DC method, the entire system is first divided into Nsub disjoint subsystems, each of 

which is referred to as the central region. A set of basis functions connected to the central 

region of subsystem α is denoted by S(α). For each subsystem, the buffer region is added 

to the central region to construct a localization region, where the subsystem molecular 

orbitals (MOs) are constructed. In the two-layer buffer scheme introduced by Dixon and 

Merz,[30] the buffer region is hierarchically divided into two sub-regions, denoted as the 

inner and outer buffer regions (Fig. 3-1). The inner buffer region, in which the set of AOs 

is denoted by Bi(α), is used to construct the subsystem MOs as well as to contribute to the 

density matrix; while the outer buffer region, in which the set of AOs is denoted by Bo(α), 

is only used to construct the subsystem MOs. 

According to the DC-SCF scheme, the one-body density matrix of the entire system is 

approximated by the sum of subsystem contributions: 

subsystem
DCD D P D 

   


 =  ,          (3.1) 

where 
D  expresses the density matrix of subsystem α, which is given in closed-shell 

case by 

*

F( )p p p

p

D f C C   

    = − .          (3.2) 
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The subsystem MOs, { }p

 , are expanded in the two-layer buffer scheme with the AOs, 

{ } , in the outer localization region, o i o( ) ( ) ( ) ( )     L S B B : 

o ( )

( ) ( )p pC 

 
 

 


= r r
L

.           (3.3) 

The MO coefficients, { }p


C  , and MO energies, { }p

  , are obtained by solving the 

following subsystem Roothaan equation: 

DC[ ] p p p

    =F D C S C .           (3.4) 

DC[ ]
F D   and 

S   are the subsystem effective Hamiltonian and overlap matrices, 

respectively, which are the submatrices of the entire effective Hamiltonian and overlap 

matrices, 

DC core DC[ ] 2F H D  


   = +  −  D ,        (3.5) 

S   = ,            (3.6) 

for o ( )L   with two-electron integral notation of 

* * 1

1 2 1 2 12 1 2( ) ( ) ( ) ( )d d r        −=  r r r r r r . Although the Fock matrix is shown in Eq. 

(3.5) as a typical example, the effective Hamiltonian generally depends on the density 

matrix. 
P  in Eq. (3.1) is the partition matrix, which is defined in the two-layer buffer 

scheme by 

i

1 for ( ) ( )

1/ 2 for ( ( ) ( )) or  

0 otherwise

P vice versa



   

   

  


=   



S S

S B ,       (3.7) 

and 1( ) [1 exp( )]f x x  −= + −   is the Fermi distribution function with the inverse 

temperature parameter β. F  represents the universal Fermi level, which is determined 
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by solving the following non-linear equation to conserve the total number of electrons, 

ne, in the entire system: 

DC

e 2Tr( )n = D S .            (3.8) 

The density matrix of Eq. (3.1) and the effective Hamiltonian matrix of Eq. (3.5) are 

determined self-consistently. The electronic energy can be obtained as the functional of 

the density matrix: 

DC DC core DC[ ] Tr ( [ ])E  = + D D H F D ,         (3.9) 

when the effective Hamiltonian is linear with respect to the density matrix, which is 

satisfied in HF and semiempirical MO calculations, but is not in typical DFT calculations. 
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3.3. Estimation of DC-SCF energy 

 

If the outer buffer region is transferred into the inner buffer region, the density matrix 

changes by 

* *

F F( ) ( )p p p p p p

p p

D P f C C P f C C       

        


   
 
  = − − − 

 
   ,     (3.10) 

where relaxation of the subsystem MOs is neglected. P   is the auxiliary partition 

matrix 

i o

1 for ( ) ( )

1/ 2 for [ ( ) ( ( ) ( ))] or  

0 otherwise

P vice versa



   

    

  


 =    



S S

S B B ,     (3.11) 

and F   is the auxiliary Fermi level. The first-order energy variation can be estimated 

with the density matrix correction, D , as 

DC2Tr [ ]E   =  DF D ,                (3.12) 

where the effective Hamiltonian is assumed to be linear with respect to the density matrix.  

There are two ways of obtaining the auxiliary Fermi level, F  . The first one is to consider 

F F  = , which simplifies Eq. (3.10) to 

*

F( ) ( )p p p

p

D P P f C C P D      

       
 

  = − − =    ,      (3.13) 

where 

( )o1/ 2 for ( ) ( )  or  

0 otherwise

vice versa
P



     
 = 



S B
.      (3.14) 

Substituting Eq. (3.13) into Eq. (3.12) gives 



- 35 - 

 

o (

DC DC

( ))

2 [ ] 2 [ ]E P D F D F    

    
      

 =  =   D D
S B

.     (3.15) 

According to the energy density analysis (EDA),[31] which is analogous to the Mulliken 

population analysis, the variation in energy can be separated into the contributions from 

the atoms in the outer buffer regions: 

o o( ) ( ) (

DC

)

2 [ ] A

A AA

E D F E
  

  

 
     

 = =      D
S B B

,      (3.16) 

where 

(

DC

)

2 [ ]
A

AE D F  

 
 

 =   D
S

,         (3.17) 

and index A designates an atom. 

The other way to obtain the auxiliary Fermi level relies on the electron number 

constraint, i.e., F   is found by solving the following equation: 

( )DC

e 2Trn  = +
 

D D S .          (3.18) 

Note that, in semiempirical MO calculations with a zero differential overlap (ZDO) 

approximation, the solution of Eq. (3.18) is F F  =  (as in the first case), since =S I  

and the diagonal elements of D  with F F  =  [i.e., Eq. (3.13)] are zero. 

If one chooses F F  =  for DC calculations with a two-layer buffer region, the energy 

error introduced by the DC method can be estimated as the sum of contributions from the 

outer buffer atoms in each subsystem according to Eq. (3.16). Also, it is known that the 

density matrix 1 2 1 2( , ) ( ) ( )D    =r r r r   decays exponentially with the distance 

1 2−r r  in the case of an insulator.[32] Based on these facts, the following automatic 

extension scheme for the buffer region was developed: 
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i). Evaluation of AE  according to Eq. (3.16) after constructing 
DC[ ]F D  for each SCF 

cycle. 

ii). Transferring all atoms in the outer buffer region of subsystem α to its inner buffer 

region. 

iii). Inclusion of the atoms in the sphere with radius extr   centered on atom A with 

threshAE e   into the new outer buffer region of subsystem α. 

iv). Calculation of the subsystem MOs with Eq. (3.4), construction of the density matrices 

with Eqs. (3.1) and (3.13), and back to step i). 

The above procedure is illustrated in Fig. 3-2. After several cycles, the outer buffer region 

automatically vanishes when all AE  become less than the threshold. Following this 

scheme, it may become possible to choose the appropriate buffer region for each 

subsystem while preserving the energy error per atom. In the actual implementation, the 

subsystem density matrix element required in Eq. (3.16) is approximated as ~D D

   

to avoid the need for storing the density matrices of all subsystems. This approximation 

can be validated because ( )1 1 2 2 1 2 11 2 ~D P D P D D D D      

        =  +  = +   for 

1 o 2( ) ( )     S B   and 2 o 1( ) ( )     S B  , where 2D


  is considered to be 

 

Fig. 3-2. Illustration of the automatic extension scheme for the buffer region. 
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similar to 1D


. Here, o 2( ) B  is not always the case. Therefore, ~ 2D D

   is 

the other choice of the approximation, while it is equivalent to halve ethresh. 
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3.4. Numerical assessment 

 

3.4.1. Computational details 

 

The automatically controlled DC method was implemented to the GAMESS 

package[33,34] and assessed its accuracy and efficiency for different types of systems. In 

the DC method, the inverse temperature parameter, β, in Eq. (3.2) was set to 200 a.u. The 

parameters for the automated DC method were set to ethresh = 0.1 μEh and rext = 3.0 Å 

unless otherwise noted.  

To discuss quantitatively the size of the localization region determined in the present 

scheme, I defined the major axis radius of localization region α, llocal(α), as half of the 

maximum atom pair distance in localization region α. The major axis radius at the initial 

SCF step, 
ini

locall , where the outer buffer region is excluded from the localization region, 

should strongly correlate with the initial buffer size, while that at the final SCF step, 
fin

locall , 

is expected to be barely dependent on the initial buffer size. 
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3.4.2. Accuracy and computational time of the present method 

 

I first compared two estimation schemes of the DC-HF energy error with Eq. (3.12): 

(a) where F F  =  and (b) where F   was determined for 
DC( )+ D D . The estimated 

and actual energy errors were obtained for calculations of the crambin protein, as 

summarized in Table 3-1. Here, the 6-31G basis set[35] was adopted. The geometry of 

crambin was obtained via the protein data bank (PDB, identification number 1CRN) and 

the hydrogen atoms were then added with the FU program.[36] The estimated energy errors 

obtained from the second and final SCF steps are given for both estimation schemes. The 

initial guess density, which affects the estimation at the second SCF step, was obtained 

by the DC extended Hückel method implemented in GAMESS. In the DC calculations, 

the entire protein was cut between the carbonyl C and the α-C, and each fragment was 

treated as a central region. The buffer size was defined by 
in

br   and 
out

br  , where the 

unions of the spherical regions with radius 
in

br  and 
out

br  centered on each atom in the 

central region were considered as the inner and outer localization regions, respectively. 

As expected, the actual energy error decreased with the increasing buffer size, except for 

the smallest buffer size where an error cancellation seems to have occurred. The two 

estimation schemes did not display significant differences. At both the second and final 

SCF steps, the difference in the errors estimated by the two schemes was less than 10% 

for 
in

b 4.0r    Å. The order of the estimated energy error at the final SCF step was 

consistent with that of the actual error. This estimation scheme worked reasonably even 

at the early SCF step, although the estimated error at the second SCF step was two or 
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more times larger than that at the final step for 
in

b 4.0r   Å. The method was also tested 

in calculations of delocalized polyene system and the similar results were obtained (see 

Table 3-2). From the following Section on, I will mainly focus on the semiempirical PM3 

method,[37,38] which adopts the ZDO approximation. 

 

  

Table 3-1. Buffer size dependence of the actual and estimated DC-HF energy errors 

for crambin protein. Standard HF energy is –17,996.926754 Eh. 

   –ΔE by scheme (a) /Eh  –ΔE by scheme (b) /Eh 

in

br /Å out

br /Å Actual error /Eh 2nd step Final step  2nd step Final step 

3.5 4.5 –0.144241 –0.768550 –0.886510  –0.682481 –0.890704 

4.0 5.0 –0.348118 –1.005190 –0.532129  –1.071929 –0.526987 

4.5 5.5 –0.067862 –0.504153 –0.126115  –0.507108 –0.125820 

5.0 6.0 –0.017408 –0.123892 –0.038836  –0.124559 –0.038845 

5.5 6.5 –0.005229 –0.084293 –0.016880  –0.084118 –0.016881 
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The accuracy of the present method and its computational time requirements were 

examined in the calculation of a cubic system containing Nwater randomly oriented water 

molecules with a weight density of 1.0 g cm−3. In the DC calculations, each water 

molecule was treated as the central region. The initial buffer size was determined by 
in

br  

and 
out

br  , the definitions of which are the same as in the previous Section. Table 3-3 

summarizes the initial buffer-size dependence of the automated DC-PM3 energy, the 

wall-clock computational time, and the number of SCF cycles for Nwater = 1000. The 

Table 3-2. Buffer size dependence of the actual and estimated DC-HF energy errors 

for the following polyene derivative. The cc-pVDZ basis set was adopted. Standard 

HF energy is –2314.676893 Eh. 

 

   –ΔE by scheme (a) /Eh  –ΔE by scheme (b) /Eh 

in

br /Å out

br /Å Actual error /Eh 2nd step Final step  2nd step Final step 

4.5 7.0 –5.095390 –0.896898 –10.330447  –0.896490 –10.330270 

7.0 9.5 –0.137146 –0.177043 –0.293687  –0.177043 –0.293687 

9.5 12.0 –0.021289 –0.012954 –0.047777  –0.012954 –0.047777 

12.0 14.5 –0.001921 –0.004375 –0.005201  –0.004375 –0.005201 

14.5 17.0 –0.000091 –0.000386 –0.000648  –0.000386 –0.000648 
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computational time for the SCF calculations was measured using a computer node 

equipped with an Intel Xeon E5-1650 CPU (6 cores, 3.50 GHz), and the average of three 

measurements was calculated. The energy difference from the standard PM3 results 

divided by the number of atoms (3000) is also shown in parentheses. For 
in

b 6.0r   Å, 

the energy difference values are comparable: ~0.5 μEh atom−1. For 
in

b 6.5r    Å, the 

 

Table 3-3. Initial buffer-size dependence of the total energy, the wall-clock 

computational time, and the number of SCF cycles for the automated DC-PM3 

calculation of the model system containing 1000 water molecules. 

in

br  /Å 
out

br  /Å Energy /Eh (Diff. /μEh atom−1) Time /s # cycles 

3.5 4.5 –11945.190938 (+0.48) 250 14 

4.0 5.0 –11945.190942 (+0.48) 246 14 

4.5 5.5 –11945.190837 (+0.51) 233 13 

5.0 6.0 –11945.190719 (+0.55) 209 12 

5.5 6.5 –11945.190414 (+0.65) 209 13 

6.0 7.0 –11945.190229 (+0.72) 202 12 

6.5 7.5 –11945.191077 (+0.43) 246 12 

7.0 8.0 –11945.191791 (+0.19) 325 12 

Standard-PM3 –11945.192376  2443 11 
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energy difference gradually decreases to zero because the estimation for the initial buffer 

size is smaller than the threshold for most of the subsystems. In fact, the energy error at a 

single fixed buffer size of rb = 7.5 Å is 0.50 μEh atom−1, in good agreement with the result 

for 
out

b 7.5r =   Å. Although the number of SCF cycles is slightly larger than that for 

standard PM3 calculations, the computational time is ~10 times shorter for 
in

b 6.5r   Å. 

It is also suggested that a smaller initial buffer size results in the deterioration of the SCF 

convergence, which in turn leads to longer computational times. 

Table 3-4 summarizes the average (< locall >) and standard deviation (σ[ locall ]) of the 

major axis radii among all localization regions in the automated DC-PM3 calculations of 

the water system (Nwater = 1000). As expected, <
ini

locall > increased linearly with the initial 

buffer size, and σ[
ini

locall ] was found to be relatively small. Interestingly, <
fin

locall > was found 

to be larger for small initial buffer sizes up to 
in

b 6.0r =  Å, although the difference was 

fairly small. Accordingly, σ[
fin

locall ] displayed smaller values for larger initial buffer sizes. 

It was thus suggested that large initial buffer sizes efficiently aid the selection of the 

appropriate buffer region and hence may reduce the computational time, although this 

effect does not largely affect the energy error. For readers with particular interest, the 

behavior of < locall > during the SCF iteration is given in Fig. 3-3. 
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Table 3-4. Average and standard deviation of the major axis radii of all localization 

regions at the initial and final SCF steps in the automated DC-PM3 calculation of the 

model system containing 1000 water molecules. 

in

br  /Å 
out

br  /Å <
ini

locall > /Å σ[
ini

locall ] /Å <
fin

locall > /Å σ[
fin

locall ] /Å 

3.5 4.5 3.577 0.306 8.105 0.626 

4.0 5.0 4.105 0.314 8.030 0.604 

4.5 5.5 4.659 0.319 8.031 0.581 

5.0 6.0 5.194 0.305 8.176 0.635 

5.5 6.5 5.703 0.313 7.981 0.766 

6.0 7.0 6.213 0.318 7.640 0.647 

6.5 7.5 6.708 0.342 7.832 0.507 

7.0 8.0 7.218 0.375 8.228 0.430 
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Next, the dependence of the computational time on the system-size was determined, 

as shown in Fig. 3-4. The initial buffer size was set to 
in

b 5.0r =  Å and 
out

b 6.0r =  Å. 

Even for Nwater = 400, the time for the automated DC-PM3 calculation (54 s) was around 

four times shorter than that for the standard PM3 calculation (204 s). Furthermore, the 

time required for the standard PM3 calculations increased steeply with the system size. 

The scaling analysis with the double logarithmic plot indicated that the times for the 

standard and automated DC-PM3 calculations scaled as O(n2.7) and O(n1.6), respectively. 

For all systems, the DC energy error per atom was within a narrow range: 0.44–0.57 μEh. 

It was thus confirmed that the present method is able to control the accuracy of the DC 

method while maintaining an almost linear-scaling computational cost. 

  

 

Fig. 3-3. Behavior of < locall > during the SCF iteration in the automated DC-PM3 

calculations of the water system (Nwater = 1000). 
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Table 3-5 summarizes the dependence of the energy error, computational time, and 

average of the major axis radii at the final step (<
fin

locall >) on the energy-based threshold, 

ethresh, in the automated DC-PM3 calculations of the water system (Nwater = 1000). The 

initial buffer size was set to 
in

b 3.5r =  and 
out

b 4.5r =  Å. The result confirmed that the 

energy error is almost proportional to the energy threshold, ethresh. As expected, <
fin

locall > 

decreases gradually as the energy threshold increases. Accordingly, the computational 

time decreases as the energy threshold increases, while it shows more significant 

 

Fig. 3-4. System-size dependence of the wall-clock computational time of standard 

PM3 and automated DC-PM3 calculations for the model system containing Nwater 

water molecules. The initial buffer size for the DC calculations was fixed to 

in

b 5.0r =  and 
out

b 6.0r =  Å. 
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dependence than <
fin

locall > does. Therefore, it is important to set ethresh appropriately to enjoy 

both of good accuracy and less computational time. 

  

 

Table 3-5. Energy threshold (ethresh) dependence of the energy error, computational 

time, and average of the major axis radii of all localization regions at the final SCF 

steps in the automated DC-PM3 calculation of the model system containing 1000 

water molecules. The initial buffer size was set to 
in

b 3.5r =  and 
out

b 4.5r =  Å. 

ethresh /μEh Energy error /μEh atom−1 Time /s <
fin

locall > /Å 

0.01 0.103 451 8.994 

0.05 0.295 319 8.396 

0.10 0.479 243 8.105 

0.50 1.360 179 7.421 

1.00 2.153 173 7.156 

1.50 2.953 144 7.024 
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Finally, the parallel efficiency of the program was examined, although the present 

source code is not optimized for the parallelization. Table 3-6 summarizes the dependence 

of the wall-clock times (t) for the automated DC-PM3 SCF calculation of the system with 

Nwater = 1000 on the number of CPU cores (Ncore). The times were measured using a 

computer node equipped with two Intel Xeon E5-2667 CPU (8 cores, 3.20 GHz) and the 

average of three measurements was calculated. The initial buffer size was set to 
in

b 5.0r =  

Å and 
out

b 6.0r =  Å. The parallel scalability S, given at the last column of the Table, is 

defined as the wall-clock time ratio S = t(Ncore = 1) / [Ncore × t(Ncore)]. Up to Ncore = 4, the 

scalability is higher than 0.7, while it rapidly decreases for Ncore > 4. There are two main 

reasons for the deterioration: (i) the reordering of the processing subsystem, which is 

effective for minimizing load imbalance, is not optimized for the varying subsystem size 

in the present automated DC method, and (ii) the semiempirical Hamiltonian matrix 

construction is not efficiently parallelized in GAMESS. Although there is room for 

improvement, the present automated DC implementation is moderately parallelized, 

which especially works better for larger systems. 

 

Table 3-6. Parallelization efficiency of the automated DC-PM3 calculations of the 

model system containing 1000 water molecules 

Ncore Time (t) /s Scalability (S) 

1 710 1.000 

2 381 0.933 

4 252 0.706 

8 229 0.387 

16 272 0.163 
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Then the method was applied to covalently bound systems. Table 3-7 shows the initial 

buffer-size dependence of the automated DC-PM3 energy for the crambin system treated 

in the previous Section. The energy difference from the standard PM3 results is also 

shown in parentheses. Again, it was confirmed that the energy difference was suppressed 

to small enough values: <1.4 μEh atom−1. The results for the crambin system did not show 

a systematic decrease of the energy difference up to 
in

b 5.5r =  Å, as the initial buffer size 

was sufficiently smaller than the major axis radius of the final localization region, as 

summarized in Table 3-8. From these data, it was again confirmed that <
fin

locall > and σ[
fin

locall ] 

tend to be smaller for larger initial buffer sizes. In comparison with Table 3-4, the <
fin

locall

> value for the crambin system is ~1 Å longer than that of the water system as the decay 

rate of the density matrix elements through covalent bonds is slower than that through 

hydrogen bonds. 
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Table 3-7. Initial buffer-size dependence of the automated DC-PM3 energy for the 

crambin system. 

in

br  /Å 
out

br  /Å Energy /Eh (Diff. /μEh atom–1) 

3.5 4.5 –2117.084675 (+0.10) 

4.0 5.0 –2117.084601 (+0.21) 

4.5 5.5 –2117.084647 (+0.14) 

5.0 6.0 –2117.083858 (+1.37) 

5.5 6.5 –2117.084462 (+0.43) 

Standard-PM3 –2117.084739  

 

Table 3-8. Average and standard deviation of the major axis radii of all localization 

regions at the initial and final SCF steps in the automated DC-PM3 calculation of the 

crambin system. 

in

br  /Å 
out

br  /Å <
ini

locall > /Å σ[
ini

locall ] /Å <
fin

locall > /Å σ[
fin

locall ] /Å 

3.5 4.5 5.348 0.890 9.082 1.204 

4.0 5.0 5.835 0.981 9.158 1.208 

4.5 5.5 6.338 0.948 9.043 1.178 

5.0 6.0 6.781 0.969 9.072 1.198 

5.5 6.5 7.204 1.065 8.899 1.191 

 



- 51 - 

 

Next, the present method was examined in calculations of the conjugated graphene 

system depicted in Fig. 3-5 (C180H48). All atoms were placed on a plane and the C–C and 

C–H bond lengths were fixed to 1.42 and 1.09 Å, respectively. Table 3-9 shows the initial 

buffer-size dependence of the DC-PM3 energy for C180H48. In the DC calculation, the 

entire system was divided by a lattice spacing of 3.5 Å and each fragment was treated as 

a central region. The definitions of the initial buffer sizes, 
in

br  and 
out

br , were the same 

as those in the previous Sections. The energies obtained with a fixed buffer size are given 

in Table 3-9, together with the estimated energy errors at the final SCF step and <
fin

locall >. 

Unlike the results for the water and crambin systems, the present automated DC method 

afforded in some cases a large energy deviation of >10 μEh atom−1. The estimated energy 

error with the fixed buffer size was found to be about one order of magnitude smaller than 

the actual error. Due to the significantly slow decay of the density matrix for conjugated 

systems, the energy error estimated in the outer buffer region may be insufficient to 

reproduce the actual energy error. In addition, the energy error does not converge to the 

standard PM3 result due to the finite temperature approximation in the DC method. 

Actually, the finite-temperature PM3 energy with β = 200 a.u. is −810.643352 Eh, which 

is much closer to the converged DC-PM3 energy. 

 

  

 

Fig. 3-5. Structure of the graphene system, C180H48. 



- 52 - 

 

  

Table 3-9. Initial buffer-size dependence of the buffer-size fixed and automated DC-PM3 

energies for the graphene system, C180H48. The estimated energy error at the final SCF step in 

the buffer-size fixed calculation is also given. Standard PM3 energy is –810.650309 Eh 

  Buffer size fixed  Automated  

in

br  /Å out

br  /Å Actual error /Eh −ΔE /Eh  Energy /Eh (Diff. /μEh atom−1) < fin

locall > /Å 

3.5 5.0 +0.466022 +0.141160  –810.650931 (–2.73) 10.672 

4.0 5.5 +0.163445 +0.023277  –810.651058 (–3.29) 10.820 

4.5 6.0 +0.107509 +0.024784  –810.644480 (+25.56) 12.251 

5.0 6.5 +0.137531 +0.013554  –810.650325 (–0.07) 11.458 

5.5 7.0 +0.065487 +0.008674  –810.648093 (+9.72) 11.427 

6.0 7.5 +0.041446 +0.008377  –810.651029 (–3.16) 10.926 

6.5 8.0 +0.044827 +0.004561  –810.644494 (+25.50) 12.033 

7.0 8.5 +0.039109 +0.003055  –810.643122 (+31.52) 11.796 

7.5 9.0 +0.016598 +0.001494  –810.655281 (–21.81) 10.846 

8.0 9.5 +0.011964 +0.001004  –810.644095 (+27.25) 12.199 

8.5 10.0 +0.014299 +0.001242  –810.642821 (+32.84) 11.992 

9.0 10.5 +0.017775 +0.000638  –810.643328 (+30.61) 12.310 

9.5 11.0 +0.010530 +0.000513  –810.644435 (+25.76) 12.543 

10.0 11.5 +0.008625 +0.000339  –810.644620 (+24.95) 12.211 
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Finally, the dependence of the energy error on the energy-based threshold, ethresh, was 

assessed. Fig. 3-6 shows the dependence of the final energy error on ethresh for the 

automated DC-PM3 calculation of 1000 water molecules and the crambin and graphene 

systems. The initial buffer size was set to 
in

b 3.5r =  and 
out

b 4.5r =  Å (or 
out

b 5.0r =  Å 

for the graphene system). For the water and crambin systems, which were adequately 

treated by the automated DC method, the energy error increased proportionally to ethresh, 

as expected. For the graphene system, however, the energy error did not show a systematic 

trend but oscillated throughout the ethresh value range, even at low ethresh values. Although 

there is still some room for improvement in the present automated DC scheme, it has been 

demonstrated that the energy error can be suppressed with the present method even for 

conjugated systems. 

 

Fig. 3-6. Dependence of the energy error on the energy-based threshold, ethresh, in 

the automated DC-PM3 calculations of 1000 water molecules and the crambin and 

graphene systems. 
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The present scheme was applied to the HF method and DFT with the pure BLYP[39,40] 

and hybrid B3LYP[41.42] functionals. Here, the DC energy error is estimated with Eq. (3.9) 

even for DFT calculations, where the Hamiltonian matrix is not linear with the density 

matrix. The option to use the HF Hamiltonian (Fock) matrix at the early SCF stage of the 

DFT calculation, which is adopted in the default setting of the GAMESS program, was 

switched off. Table 3-10 shows the initial buffer-size dependence of the DC-HF, DC-

B3LYP, and DC-BLYP energies for a n-alkane (C150H302) with the 6-31G* basis set.[43] In 

the DC calculations, a C2H4 (or C2H5 for the edges) group is adopted as a central region. 

For the DC-HF and DC-B3LYP calculations, the energy error could be controlled within 

0.7 μEh atom−1, while that for the pure DFT (DC-BLYP) calculation is one order larger in 

magnitude. The final localization region for central subsystems contains (C2H4)10−12 in 

the DC-HF and DC-B3LYP calculations, while that does (C2H4)7−8 in the DC-BLYP 

calculations. This result suggests that the magnitude of E   with Eq. (3.9) is 

underestimated without the HF exchange term. Actually, the energy error of the DC-BLYP 

calculation with the DC-HF final localization region was 0.09 μEh atom−1 for 
in

b 3.0r =  

and 
out

b 4.5r =   Å. Therefore, in practical DC-DFT calculation, it is recommended to 

determine the appropriate buffer size with the early DC-HF SCF cycles, which can be 

performed in GAMESS by switching back on the default option to use the Fock matrix at 

the early SCF stage. 
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3.5. Concluding remarks 

 

In this study, I have proposed an energy-based error estimation scheme for the linear-

scaling DC quantum chemical method with the help of two-layer buffer regions. 

Exploiting the fact that the estimated energy error can be divided into contributions from 

the atoms in the outer buffer region of each subsystem, our error estimation scheme was 

utilized for the automatic determination of the appropriate buffer region for the DC 

method. The present automated DC method worked satisfactorily in calculations of water, 

protein, and alkane systems, although its performance was insufficient in the calculation 

of a delocalized graphene system. Improvement of the present scheme for delocalized 

systems will be the scope of future studies. Furthermore, in the present scheme, the buffer 

region was gradually extended during the SCF cycles. There is an alternative approach to 

reduce the buffer region from a large initial buffer size, which may be preferably used 

when the method is applied to a series of quantum chemical calculations, such as 

geometry optimizations, where the appropriate buffer region of the previous step is 

available. 

An energy-based error control scheme such as the present method will be 

indispensable for quantum chemical molecular dynamics simulations, especially for 

microcanonical ensembles, where the total energy conservation is rigorously examined. 

Recently, Nakai and coworkers have published a series of studies performing quantum 

chemical molecular dynamics simulations with the DC-DFTB method.[28,29] The present 

automated DC method can straightforwardly be extended to the so-called DFTB2 

Hamiltonian, which is linear with respect to the density matrix. Furthermore, the present 
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error estimation scheme is expected to work even for non-linear Hamiltonians such as 

DFTB3. The development of an automated DC-DFTB molecular dynamics program is 

desirable not only to reduce the effort of preliminary assessments before the production 

runs but also to guarantee the accuracy of the results. The application of the present 

scheme to the DC Hartree–Fock–Bogoliubov method,[44] which can effectively treat the 

static electron correlation of large systems,[45] is also straightforward, as well as that to 

the open-shell DC unrestricted HF method.[13,24] However, the present method cannot be 

combined with DC post-HF correlation methods such as the second-order Møller–Plesset 

perturbation (MP2)[46–48] and coupled cluster[49–51] theories. As pointed out by Kobayashi 

and Nakai,[52] the appropriate buffer size for DC post-HF correlation calculations is 

generally smaller than that for DC-HF calculations. Furthermore, especially in DC-MP2 

calculations, the appropriate buffer size should be determined before carrying out the 

MP2 calculations as the procedure is not iterative. The solution to this issue will pave the 

way toward the development of an automated DC-MP2 scheme in the near future. 
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4. Energy based Automatic 

determination of buffer region in DC-

MP2 calculation 

 

4.1. Introduction 

 

 By virtue of recent advances in quantum chemical theory as well as the improvements 

in computer performance, electronic structure calculations of large-scale systems such as 

proteins have now become technically feasible. Such theoretical advances include the 

development of linear-scaling (or low-scaling) electronic structure methods. In the 

standard formalism of electronic structure methods, the computational time increases 

cubically [O(N3)] with respect to the system size N, even with the simplest Hartree-Fock 

(HF) method[1] or density functional theory (DFT),[2] owing to the diagonalization of the 

Hamiltonian matrix. Furthermore, in case of post-HF calculations, such as the second 

order Møller-Plesset perturbation (MP2)[3-5] and coupled cluster (CC) theories,[4,5] their 

time scalings deteriorate as O(N5) or more. Therefore, the standard formalisms of 

electronic structure methods cannot be applied to large-scale systems. By introducing 

approximations to the standard formalisms, many low-scaling electronic structure 

methods[6-10] have been proposed for treating such systems. Many of these methods equip 

some schemes to adjust the errors derived from the low-scaling approximations based on 

the distance parameter. For example, in the molecular tailoring approach proposed by 

Garde et al.,[11] R-goodness parameter is used to determine the quality of each 
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fragment.[12,13] In the generalized energy-based fragmentation approach,[14,15] each 

fragment is constructed with the distance threshold (ξ). The cluster-in-molecule local 

correlation method also adopts the distance threshold ξ to control the size of the cluster,[16] 

while a simple correction scheme to account for the distant-pair correlation has recently 

been proposed.[17] The accuracy of the fragment molecular orbital method[18] can be 

systematically improved by increasing the order of many-body expansion from the 

original two-body to three-body[19,20] and four-body[21] expansions. The pair natural 

orbital (PNO) electron correlation approach[22,23] adopts several truncation schemes for 

construction of correlated virtual orbitals (i.e., PNOs) for each occupied local molecular 

orbital (MO) pair, where the bond-based (so-called IEXT) or distance-based (so-called 

REXT) truncation is used to determine the local virtual orbital region to construct PNOs. 

Since molecular energy is the most important property in quantum chemical calculations, 

an energy-based parameter is more desirable than a distance-based one. For example, the 

divide-expand-consolidate method utilizes the energy-based fragment optimization 

threshold to determine the atomic occupied and virtual orbital spaces in each 

fragment.[24,25] 

Yang and coworkers introduced a linear-scaling approach called the divide-and-

conquer (DC) method.[26,27] The DC method has been applied to the HF or DFT self-

consistent field (SCF),[26,28] density-functional tight-binding,[29-32] and post-HF (MP2[33-

36] or CC[37-39]) energy calculations as well as the SCF[40] and MP2[41] energy gradient 

calculations. For treating static electron correlation in large-scale systems, the DC method 

has also been combined with the Hartree-Fock-Bogoliubov method[42] and the thermally-

assisted occupation (finite temperature) scheme.[43] In the DC method, the size of the 

buffer region plays the role of the distance parameter to adjust the approximation error; a 
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larger buffer size leads to a smaller approximation error. However, it is still difficult to 

estimate the error in energy based on the distance-based adjustment parameter. Recently, 

I[44] proposed a scheme to estimate the energy error introduced in the DC-HF and DC-

DFT calculations using a two-layer buffer region scheme introduced by Dixon and 

Merz.[45] This estimation scheme can successfully be applied to automatically determine 

the appropriate buffer region based on the estimated energy error.[44] 

This Chapter attempts to export the idea of the previous automated DC-HF scheme to 

the DC-MP2 calculation. Kobayashi et al.[36] reported that the buffer region used for the 

MP2 correlation calculation can be contracted from that for the HF one to achieve the 

same energy accuracy as the DC-HF calculation because of the short-range nature of the 

MP2 dynamical electron correlation. I first develop a method to estimate the subsystem 

MP2 correlation energy contribution from each atom in the buffer region. Here, the idea 

of the atomic orbital (AO) Laplace MP2 method[46-50] is used as well as the Schwarz 

inequality. Based on this estimated energy contribution, I established an algorithm to 

automatically determine the appropriate buffer region in the DC-MP2 calculation.  

This Chapter consists of five Sections. Section 4.2 gives a brief summary of the linear-

scaling DC electron correlation method with a fixed buffer region. In Section 4.3, the 

present procedure to estimate the energy contribution from each buffer atom and the 

automated DC-MP2 algorithm is explained. Numerical assessments are described in 

Section 4.4. Finally, I provide concluding remarks in Section 4.5. 
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4.2. DC-MP2 scheme 

 

I first outline the DC-MP2 electron correlation calculation scheme. The DC-MP2 

method is applicable only with atom-centered basis functions. Each basis function, ( ) r , 

called an AO, is denoted by a Greek letter index, μ, ν, …. In the DC method, the entire 

system is divided into several subsystems, each of which consists of the central and buffer 

regions. Each central region is mutually exclusive with the other central regions. The sets 

of AOs belonging to the central and buffer regions of subsystem α are referred to as S(α) 

and B(α), respectively.  

In the DC-MP2 method, the MOs in the subsystem α,  

( )

( ) ( )p pC 

 
 

 


= r r
L

,            (4.1) 

are used to evaluate the correlation energy of subsystem α, where ( ) ( ) ( )  = L S B  

represents the set of AOs in the localization region and p refers to an arbitrary MO. The 

MO coefficients, { }p


C , and the MO energies, { }p

 , of subsystem α are obtained by 

solving the Roothaan equation for each subsystem: 

SCF

p p p

    =F [D ]C S C ,           (4.2) 

where Fα[DSCF] is the subsystem Fock matrix constructed with the density matrix DSCF, 

and Sα is the subsystem overlap matrix with the element ( )|S

   =  for , ( )  L . 

The density matrix, DSCF, can be constructed from the standard or approximate HF 

calculation, such as the DC-HF one. Note that the subsystem SCF equation (4.2) has to 

be solved not self-consistently but just once using predetermined DSCF. If DSCF is obtained 
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from the DC-HF calculation, it is constructed with the local density matrices, { 
D }, and 

the partition matrices, {


p }, as the following: 

subsystem
SCFD p D 

  



  ,           (4.3) 

F( )p p p

p

D f C C   

    = − ,          (4.4) 

SCF SCF

1 ( )

1/ )2(( ( )

0 (othe s

( ) ( )

)

rw

( ) ( ) ( ( )

i e)

)p



   

       

  

    







= 





S S

S B B S ,      (4.5) 

where  
1

( ) 1 exp( )f x x 
−

= + −   is the Fermi distribution function with the inverse 

temperature, β, and F  is the universal Fermi level. The details of the DC-HF procedure 

can be found in Refs. 26 and 27.  

Before the evaluation of the subsystem correlation energy, the subsystem MOs of Eq. 

(4.1) must be classified into occupied  , ,...i j

    and virtual ones  , ,...a b

   . This 

can be accomplished by, for example, using the Fermi level determined in the prior DC-

HF calculations. The MP2 correlation energy for the entire system, 
(2)

corrE  , can be 

approximated as the sum of the subsystem MP2 correlation energies, 
(2)

corr{ }E , 

(2) (2)

corr corrE E



   .           (4.6) 

Because the buffer region in each localization region overlaps with the other localization 

regions, 
(2)

corrE  is obtained as the MP2 correlation energy corresponding to the central 

region of the localization region α by means of energy density analysis (EDA).[51] The 

subsystem correlation energy is then evaluated by  
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occ( ) vir( )
(2)

corr

( ), ,

( | )
[2( | ) ( | )]

i

i j a b i j a b

C a j b
E a i b j a j b i

   

    
        

   
 



   

 = −
+ − −

  
S

,     (4.7) 

with the two-electron integral notation  

* 1 *

1 2 1 1 12 2 2( | ) ( ) ( ) ( ) ( )i a j bi a j b d d r          −=  r r r r r r
.   



- 69 - 

 

4.3. Estimation of DC-MP2 energy based on AO-

Laplace MP2 method 

 

Based on EDA, the MP2 correlation energy for subsystem α, 
(2)

corrE , can be further 

divided into contributions from the atoms in the localization region α, 
(2)

BE , as 

(2) (2)

corr

( )

B

B

E E 



 = 
L

,           (4.8) 

occ( ) vir( )
(2)

( ), ,

( | )
[2( | ) ( | )]

i a

B

Bi j a b i j a b

C C j b
E a i b j a j b i

   

    
         

   
  



    

 = −
+ − −

   
S

.     (4.9) 

According to the local correlation philosophy for dynamical electron correlation,[52-54] it 

is expected that 
(2)

BE  rapidly decreases as the distance between atom B and central 

region α increases. The exponential decay of the MP2 energy contribution with respect to 

the interatomic distance is discussed in the Appendix. As pointed out by Kobayashi and 

Nakai,[36] the appropriate size of the buffer region for the DC-MP2 calculation can be 

smaller than that for the DC-HF calculation because of the locality of the dynamical 

electron correlation. Therefore, if the absolute value of 
(2)

BE  is estimated to be smaller 

than some criterion, the energy change by excluding atom B from the buffer region of 

subsystem α is expected to be small. By applying the AO-Laplace MP2 technique to Eq. 

(4.9), 
(2)

BE  can be expressed as 

(2)

0
( )

( ( ( ( ( | )[2( | ) ( | )) ) ]) )B

B

E X Y X Y d    

   
    

         






 = − − 
S

 ,

               (4.10) 

where Xα(τ) and Yα(τ) are the energy-weighted density matrices expressed as 
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F( )
)( i

i i

i

X C C e
   





  −
= ,         (4.11) 

F( )
)( a

a a

a

Y C C e
   

 



 − −
= .         (4.12) 

Here, the Fermi level, F , may be already determined in the prior DC-HF calculation, or 

may be the midpoint energy between HOMO and LUMO in the prior HF calculation. For 

estimation purpose, I drastically approximate the integral in Eq. (4.10) by the one-point 

Gauss-Laguerre quadrature, namely, 

(2)

( )

~ ( | )[2( | ) ( | )]B

B

E e X Y X Y    

   

    

     
 

 − − 
S

,    (4.13) 

F( )i

i i

i

X C C e
   

  

−
= ,          (4.14) 

F( )a

a a

a

Y C C e
   

  

− −
= .          (4.15) 

Assuming that the rhs of Eq. (4.13) gives the upper limit of 
(2)

BE , its absolute value 

can be bounded by adopting the Schwarz inequality 

( ) ( ) ( )| | |ij kl ij ij kl kl          (4.16) 

as 

(2)

( )

( )

(

( | ) [2 ( | ) ( | ) ]

[2 ]

[2 max( ) ]

B

B

B

B

E e X Y X Y

e X Y X Y A A A A A A

e X Y X Y A A A A A

    

   
    

         

         
    

         

        
    







     
 

 

 

  +

 +

 +

 

 

 A

S

S

S )

( )

( )

~ [2 max( )]

[2 max( )]

B

B

e X Y X Y A A A

e X Y A X Y A A

       

      
    

       

      
     

 

 

 
=  

 



 

  

A

A

S

S

,  (4.17) 

where ( )|A
  =  . Here, the analogy to the scaled opposite-spin MP2 

method,[55] the term A A 

   was omitted owing to its smaller contribution. Because the 
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summation in parentheses in Eq. (4.17) is constant for subsystem α, the following index 

can be considered as the magnitude of the contribution from atom B: 

( )

[2 max( )]B

B

e e X Y A A     

   
    

=   A
S

.       (4.18) 

Using the above Be  index, the following automatic determination scheme for the buffer 

region in the DC-MP2 method is proposed: 

i. Assignment of the initial DC-MP2 buffer region for each subsystem. This may be 

determined by prior DC-HF calculation. 

ii. Evaluation of Be  from Eq. (4.18). 

iii. The exclusion of atom B from the buffer region of subsystem α if Be  is smaller than 

the energy threshold. 

iv. Reconstruction of subsystem molecular orbitals { p


C } and { p

 }, using Eq. (4.2). 

v. Evaluation of the subsystem correlation energy, 
(2)

corrE , from Eq. (4.7).  

The above procedure is illustrated in Fig. 4-1. The additional computational cost for the 

evaluation of all necessary Be  scales as O(Nm3), where N and m represent the sizes of 

the entire system and buffer region, respectively, since the evaluation of each Be  of Eq. 

(4.18) scales with O(m2) owing to the summation over γ and κ and the number of Be  to 

be evaluated scales with O(Nm).  

 

Fig. 4-1. Illustration of determination scheme for the buffer region. 

Evaluation of 

in B(α)

Exclusion of the atoms in B(α) 

with 
Determination of appropriate buffer 

region in DC-SCF calculation

Central

region

Central

region
Central

region

Central

region

Perform DC-MP2 

calculation

corr
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4.4. Numerical assessment 

 

4.4.1. Computational details 

 

I implemented the above-mentioned automatically controlled DC-MP2 method to the 

GAMESS package[56,57] and evaluated its accuracy and efficiency for the different types 

of systems. In the DC-HF calculations, the inverse temperature parameter, β, was set to 

125 a.u. and the Fermi function cutoff factor (the FTOL option of $DANDC input group 

in GAMESS program) was set to 20. In addition, the parameters in the automated DC-

HF method were set to 
SCF

threshe  = 0.1 μEh and rext = 3.0 Å, the definitions of which are 

given in our previous paper.[44] The 6-31G(d) basis set[58] was adopted throughout this 

paper. I introduced the major axis radii of the HF and MP2 localization regions for 

subsystem α, SCFl  and corrl , respectively, to discuss the size of the localization regions 

determined by the automated DC method. 
SCF,

locall 
 (or 

corr,

locall 
) was defined as half of the 

maximum atom-pair distance in the HF (or MP2) localization region for subsystem α. 

The two-electron AO integrals, ( | )   , are treated in so-called “direct algorithm” 

manner, i.e., the same integrals are calculated repeatedly for every subsystem. 
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4.4.2. Accuracy and computational time of the present method  

 

I first applied the present automated DC-MP2 method to a cubic system containing 

100 water molecules with weight density of 1.0 g cm–3. Each water molecule was adopted 

as a central region in the DC calculation. To assess the performance of the automated DC-

MP2 calculation, the entire system was selected as the initial localization region for every 

subsystem in the DC-MP2 calculation. Fig. 4-2 shows the estimated MP2 energy 

contributions from buffer atom B ( Be ) with respect to its distance from the O atom in the 

central region. The blue plot represents the value for B being an H atom, and the red plot 

that for B being an O atom. The estimated energy contribution decays exponentially as 

the distance from the central region increases. The slight difference in the slope for H and 

O atoms in Fig. 4-2 is probably due to the fact that the summation over AOs at the buffer 

atom in Eq. (4.9) runs for the virtual orbital, that is, the charge-transfer excited 

configurations from O atoms in donor water to H atoms in acceptor water are more 

significant than those from acceptor to donor. This behavior was also confirmed for the 

water dimer system using the intermolecular interaction energy decomposition with the 

local PNO method.[59] Note that the estimated energies in Fig. 4-2 for the interatomic 

distance of 2-3 Å are up to several hundred Eh, which are significantly larger than the 

total MP2 energy of ~19 Eh. This is because that the estimated energy ( Be ) is derived as 

the upper limit of the atomic MP2 energy contribution. From the following section, the 

energy threshold in the automated DC-MP2 method, 
corr

threshe , was set to 0.1 μEh unless 

otherwise noted. 
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Next, the dependence of the computational time of Be   on the system-size was 

examined, as shown in Fig. 4-3. These were measured using a computer node equipped 

with two Intel Xeon Gold 5118 CPUs (12 cores, 2.30 GHz) and the average of three 

measurements was plotted. The initial sizes of the inner and outer buffer regions in the 

automated DC-HF calculation were set to 
in

b Å4.5r =   and 
out

b 5.5 År =  , respectively. 

The scaling analysis with the double logarithmic plot indicates that the computational 

 

Fig. 4-2. Estimated atomic MP2 energy contributions with respect to the 

interatomic distance. The blue plots represent the estimated MP2 energy of H atom 

and the red plots represent of O atom in the buffer region. 
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time for the evaluation of Be  scales as O(Nwater
1.5), which maintains an almost linear-

scaling behavior. 

 

The accuracy and the computational time of the automated DC-MP2 method were 

investigated for the cubic water system. Table 4-1 shows the energy-threshold (
corr

threshe ) 

dependence of the DC-MP2 correlation energy. Following Section, each water molecule 

was adopted as a central region and the entire system was selected as the initial 

localization region. The average and standard deviation of major axis radii ( corr

locall  and 

corr

local[ ]l  , respectively) are also given in Table 4-1. For 
corr

thresh h100 μe E=  , the actual 

 

Fig. 4-3. System-size dependence of the CPU time of the evaluation of Be  for the 

model system containing Nwater water molecules. The initial buffer size for the DC-

HF calculations was fixed to 
in

b Å4.5r =  and 
out

b 5.5År = . 
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correlation energy error per atom is 18.37 μEh, which is sufficiently smaller than
corr

threshe . It 

should be noted that the MP2 energy error decreases systematically as 
corr

threshe  decreases, 

while the dependence is not proportional but rather logarithmic to
corr

threshe . As with the ethresh 

parameter in automated DC-SCF method,[44] the smaller 
corr

threshe   parameter leads to a 

larger localization region, which can be confirmed from the average of the major axis 

radii of all localization regions, corr

locall . Interestingly, the standard deviation of the major 

axis radii, 
corr

local[ ]l , also tends to increase systematically as 
corr

threshe  decreases, except for 

corr

thresh h0.1μe E= . This fact suggests that the present scheme can effectively aid the selection 

of the appropriate buffer region for each subsystem in the DC-MP2 calculation. 

 

Table 4-1. 
corr

threshe  dependences of the DC-MP2 correlation energy and the major axis 

radius for 100 water cluster system.  

h

corr

thresh /μEe  
h

(2)

corr /EE  (Diff.) /µEh atom–1 
corr, 

local /Ål   corr, 

local /Ål    
 

100.000 –19.102140 (+18.37) 5.596 0.569 

10.000 –19.103891 (+12.54) 6.038 0.589 

1.000 –19.104999 (+8.84) 6.380 0.677 

0.100 –19.105661 (+6.64) 6.761 0.659 

0.010 –19.106160 (+4.97) 7.131 0.681 

Standard-MP2 –19.107652    
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Next, I examined the combination of the present automated DC-MP2 method with the 

automated DC-HF calculation. Table 4-2 shows the dependence of the automated DC-

MP2 energy on the initial DC-HF inner and outer buffer sizes, 
in

br   and 
out

br  , the 

definitions of which are given in our previous paper.[44] The averages ( HF

locall  and corr

locall ) 

and the standard deviations (
HF

local[ ]l   and 
corr

local[ ]l  ) of the major axis radii among all 

localization regions in the DC-HF and DC-MP2 calculations are also shown. Similar to 

the results in Ref. 44, the DC-HF energy error is sufficiently small and almost independent 

of the initial DC-HF buffer region. Subsequently, the DC-MP2 energy error is almost 

constant (~8.5 μEh atom−1). The average radius of the DC-HF localization region, HF

locall , 

is 7.0–7.2 Å, which is larger than the average radius, 6.761 Å, of the DC-MP2 localization 

region for 
corr

thresh h0.1μe E=  given in Table 4-1. A smaller initial DC-HF buffer size leads 

to a larger HF

locall , as was also confirmed in the previous study.[44] When combined with 

the automated DC-HF method, corr

locall  becomes smaller than its value when the initial 

localization region is set to be the entire system. Similarly, 
corr

local[ ]l   is approximately 

0.14 Å smaller than 
HF

local[ ]l .  
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Next, the proposed method was applied to a covalently bound system, namely, the 

chignolin protein with 10 amino acids. The geometry of chignolin was obtained from the 

protein data bank (PDBID: 1UAO). Hydrogen atoms were added using the Discovery 

Studio 2017 R2 software.[60] In the DC calculation, the entire system was divided between 

the carbonyl C and α-C atoms, and each of the divided systems was treated as a central 

region. Table 4-3 shows the 
corr

threshe  dependence of the DC-MP2 energy for chignolin. The 

entire system was selected as the initial localization region for every subsystem in the 

DC-MP2 calculation. For 
corr

thresh h100 μe E= , the actual correlation energy error per atom 

is 2.82 μEh, which is sufficiently smaller than
corr

threshe . As was also confirmed in the case of 

the water system, the MP2 energy error decreases systematically as 
corr

threshe   decreases. 

Again, the dependence of the error on 
corr

threshe  is rather logarithmic. The smaller 
corr

threshe  

leads to the larger corr

locall , while it leads to the smaller 
corr

local[ ]l , contrary to the case of 

water system. Comparing Table 4-3 with Table 4-1, corr

locall  of chignolin is about 1.0 Å 

larger than that of the water system for the same 
corr

threshe   parameter, reflecting the 

delocalized electronic nature in the covalently bound system. 
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Next, I combined this with the automated DC-HF calculation. Table 4-4 shows the 

dependence of the DC-MP2 energy on the initial DC-HF buffer size. The automated DC-

HF energy error for chignolin is smaller than that for the water system and almost 

independent of the initial DC-HF buffer region, while the radius of the DC-HF 

localization region (~7.5 Å) is about 1 Å greater than for the water system (~6.5 Å). 

Subsequently, the DC-MP2 energy error is also almost constant (~0.7 μEh atom−1). For 

this small protein system, in contrast to the result in Table 4-2 for the water system, the 

standard deviation of the sizes of the localization regions for the MP2 calculation is larger 

than that for the HF calculation. This is because the entire size of the chignolin system is 

so small that the localization region for every subsystem is close to the entire system. The 

present method was also tested on the β-strand glycine oligomer (GLY)20, and the result 

Table 4-3. 
corr

threshe  dependences of the DC-MP2 correlation energy and the major axis 

radius for chignolin. 

h

corr

thresh /μEe  
h

(2)

corr /EE  (Diff.) /µEh atom–1 
corr, 

local /Ål   corr, 

local /Ål    
 

100.000 –11.194529 (+2.82) 7.003 0.671 

10.000 –11.194689 (+1.67) 7.185 0.598 

1.000 –11.194770 (+1.08) 7.530 0.614 

0.100 –11.194828 (+0.66) 7.629 0.597 

0.010 –11.194847 (+0.52) 7.726 0.564 

Standard-MP2 –11.194919    

 



- 81 - 

 

of the calculation are given in Table 4-5. In Table 4-5, the DC-MP2 calculations with 

different 
corr

threshe  were performed to confirm that the present automated DC-MP2 energy 

error depends primarily on 
corr

threshe  and hardly on the initial buffer radii. For this stretched 

system, the standard deviation of the localization region sizes for the MP2 calculation is 

smaller than that for the HF calculation, while the energy error is similar to the result in 

Table 4-4. As well as the case of water system, the smaller 
corr

threshe   leads to the larger 

corr

locall  and 
corr

local[ ]l .  
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Finally, the present method was applied to the conjugated polyacetylene chain C2nH2n+2, 

shown in Fig. 4-4. All atoms were placed in a plane and the C–C, C=C, and C–H bond 

lengths were fixed at 1.462, 1.357, and 1.096 Å, respectively. Each C2H2 (or C2H3 for 

edges) unit divided at the C–C single bond was treated as a central region. Table 4-6 

shows the system-size dependence of the standard and DC-MP2 energies. For the 

automated DC calculations, the initial sizes of the inner and outer buffer regions in the 

automated DC-HF calculation were set to 
in

b Å5.0r =  and 
out

b 6.5År = , respectively. To 

avoid division of the localization region at C=C double bond, each C2H2 (or C2H3) unit 

was treated as one piece, that is, a unit was extracted from the DC-MP2 localization region 

only when all the estimated MP2 correlation energies,  Be , for the atoms in the unit 

were smaller than the threshold, 
corr

threshe  (analogous to the BUFTYP=RADSUB option of 

$DANDC input group in GAMESS program). The DC-MP2 energy error per atom is 

almost constant for 30n  . It was demonstrated that the correlation energy error can be 

controlled with the present method, even for conjugated systems.  

 

Fig. 4-4. Structure of polyacetylene chain system, C2nH2n+2. 
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Table 4-6. The system-size dependence of the MP2 electron correlation energy in the 

standard MP2 and automated DC-MP2 calculations for polyacetylene chain system, 

C2nH2n+2 

# of C atoms 

Standard-MP2  Auto.DC-MP2 

Energy /Eh  Energy /Eh (Diff.) /µEh atom–1 

10 –1.266346  –1.266346 (+0.00) 

20 –2.533020  –2.532799 (+5.25) 

30 –3.799773  –3.799303 (+7.58) 

40 –5.066529  –5.065806 (+8.81) 

50 –6.333285  –6.332309 (+9.56) 

60 –7.600041  –7.598813 (+10.06) 

70 –8.866797  –8.865319 (+10.40) 

80 –10.133553  –10.131822 (+10.68) 

90 –11.400309  –11.398327 (+10.89) 

100 –12.667065  –12.664831 (+11.06) 
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For this conjugated system, the dependence of the computational time on the system 

size was also examined, as shown in Fig. 4-5. The computational time for the MP2 

calculation was measured using a computer node equipped with two Intel Xeon E5–2667 

CPUs (8 cores, 3.20 GHz), and the average of three measurements was plotted. For 

comparison, the time required for the standard MP2 calculation was also plotted. The 

CODE=IMS program[61] specified in the $MP2 input group implemented in the GAMESS 

package was used. The automated DC-MP2 calculation shows a faster computational time 

than that of the standard MP2 calculation for 30n  . The scaling analysis with the double 

logarithmic plot for 40n   indicates that the computational time for the standard MP2 

scales as O(n2.5), while that for the present automated DC-MP2 method scales as O(n1.1). 

It is confirmed that the linear-scaling behavior of the DC-MP2 method is preserved even 

with the present automation scheme. In the present paper, the scaling analysis is examined 

for one-dimensional systems.  
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The scaling analysis was also conducted for three-dimensional water cluster systems. 

Figure 4-6 shows the dependence of the wall-clock computational time for the DC-MP2 

calculation on the number of water molecules, Nwater. The times were measured using a 

computer node equipped with two Intel Xeon Gold 5118 CPUs (12 cores, 2.30 GHz), and 

the average of three measurements was plotted. The initial sizes of the inner and outer 

buffer regions in the automated DC-HF calculation were set to 
in

b Å4.5r =   and 

out

b 5.5År = , respectively. The energy threshold in the automated DC-MP2 method, 
corr

threshe , 

was set to 10 μEh. The scaling analysis with the double logarithmic plot indicates that the 

 

Fig. 4-5. System-size dependence of the Wall-clock time of the standard MP2 and 

the automated DC-MP2 calculations for polyacetylene chain system containing n 

carbon atoms C2nH2n+2. Black dashed line: standard-MP2; solid red line: automated 

DC-MP2. 
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computational time for the present automated DC-MP2 method scales as O(Nwater
1.6), 

which indicates that the present method also achieves near-linear scaling computational 

time even for three-dimensional systems. 

 

  

 

Fig. 4-6. System-size dependence of the Wall-clock time of the automated DC-MP2 

calculations for the model system containing Nwater water molecules. The initial sizes 

of the inner and outer buffer regions in the automated DC-HF calculation were set to 

in

b Å4.5r =  and 
out

b 5.5År = , respectively. The energy threshold in the automated 

DC-MP2 method, 
corr

threshe , was set to 10 μEh.  
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4.5. Concluding remarks 

 

 In this study, I have proposed an automatic determination scheme for the buffer region 

in the DC-MP2 calculation. This method is based on a subsystem MP2 correlation energy 

contribution from each atom in the buffer region, which is estimated with the help of the 

AO-Laplace MP2 method and the Schwarz inequality. Because the appropriate size of the 

buffer region in the DC-MP2 calculation can be smaller than that in the DC-HF 

calculation, as suggested in a previous paper,[36] the present scheme reduces the buffer 

region from the prior DC-HF calculation. I applied the present method to a 100 water 

cluster system and the chignolin system, and confirmed that the estimated DC-MP2 

energy error can be systematically reduced as the energy threshold, 
corr

threshe , decreases. I 

also confirmed that the linear-scaling behavior of the DC-MP2 method is preserved even 

with the present automation scheme, from a calculation of linear polyene system.  

Since the MP2 amplitude is known to provide a good guess for the CC method in many 

cases, the proposed automation scheme is straightforwardly applicable to the DC-CC 

method.[37-39] Improvements in the accuracy of the correlation energy contributions from 

buffer atoms are also desirable, especially for delocalized systems. The use of the 

inequality test proposed by Thompson et al. [62] instead of the Schwarz inequality would 

be one way to provide this improvement. 
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4.6. Appendix 

 

Here, I propose a scheme to partition the standard MP2 energy into atom-pair (bond) 

contributions to demonstrate the local character of the MP2 correlation. The scheme is 

related to the bond EDA proposed by Nakai and coworkers.[63] 

The MP2 correlation energy can be divided into contributions from the atomic pair, 

expressed as 

(2) (2)

corr corr

,

AB

A B

E E =  ,          (4.19) 

occ vir
(2)

corr

, ,

( | )
[2( | ) ( | )]

i aAB

i j a b A B i j a b

C C jb
E ai bj aj bi

 

 



    

 = −
+ − −

 .      (4.20) 

Here, I have adopted the electron coordinate separation instead of the electron pair 

separation[52-54] to exploit the local nature of the MP2 correlation. This form is also 

consistent with 
(2)

BE , Eq. (4.9). Note that 
(2)

corr

ABE  is different from 
(2)

corr

BAE  because 

atoms A and B in 
(2)

corr

ABE   are associated with the occupied and virtual orbitals, 

respectively. The atom-pair MP2 correlation energies, 
(2)

corr

ABE , were evaluated for C-

30H32 polyene system with 6-31G(d) basis set. Fig. 4-7 shows the dependence of 
(2)

corr

ABE  

on the distance between the A and B atoms, r. Different color plots indicate different 

combinations of elements for atoms A and B. Overall, the atom-pair contribution 

decreases exponentially with respect to the distance, although that for 
(2)CC

corrE  has small 

hump around r = 20 Å. Reflecting the small number of correlated electrons around H 

atom, 
(2)HH

corrE  has the smallest contribution at the same distance r. 
(2)CH

corrE  is larger 
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than 
(2)HC

corrE  , probably due to more significant contribution of the charge-transfer 

excitation configurations from the electron-rich C atoms to the electron-deficient H atoms, 

similar to the discussion on the water system (see Section 4.4.2). 

  

 

Fig. 4-7. The absolute atomic pair MP2 correlation energy contribution with respect 

to the interatomic distance. The circle, pentagon, square and triangle plots represent 

the MP2 correlation energy contribution for C-C, C-H, H-C and H-H atomic pairs, 

respectively. 
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5. Approach to automatic error 

control for DC-HF energy gradient 

calculation 

 

5.1. Introduction 

 

Equilibrium and transition structures are one of the most important information to the 

chemical reaction analyses. Therefore, the quantum chemical calculation method for 

predicting such optimized molecular structures, in which the entire system can be 

considered, is needed also in large-scale systems. The structure optimization calculation 

with fragment-based electronic structure calculation methods have been developed. 

However, in these methods, the energy error is introduced by the fragmentation. Recently, 

an automated energy error control scheme in divide and conquer (DC) Hartree-Fock (HF) 

calculation was proposed in a previous paper by Kobayashi et al.[1] In this method, the 

size of the buffer region, which considerably affects the accuracy of DC-HF calculation, 

can be controlled properly in the SCF cycles. In this Chapter, I’m aiming to extend this 

automatic control method to the energy gradient calculation that is essential for the 

structure optimization calculation and the energy gradient error estimation with Schwarz 

and Thompson inequalities are proposed. 
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5.2. DC-HF energy gradient expression 

 

I briefly summarize the DC-HF energy gradient expression. Firstly, the DC-HF 

procedure is mentioned. In this Section, the Gleek letters {μ, ν, …} refer to atomic orbitals 

(AOs). {p, q, …} refer to molecular orbitals (MOs) expanded by the linear combination 

of AOs, which is described as p pC 


 = . In the DC method,[2-4] the entire system is 

divided into several subsystems. Each subsystem of the DC method is composed of the 

central region and the buffer region. The central region is separated from each other and 

the buffer region is added for each central region. In the DC method, the density matrix 

for the entire system can be obtained approximately by sum of the subsystem density 

matrix, expressed as 

subsystem
DCD D P D 

   



 =  .          (5.1) 

Shown in Eq. (5.1), the partition matrix, Pα, is introduced to average the value of the 

buffer regions because the buffer regions overlap each other. 

( )

1 for ( ) ( )

1 for ( ) ( ) or vice versa
2

0 otherwise

P



   

   

  


=   



S S

S B ,        (5.2) 

where S(α) is the set of AOs in the central region and B(α) is the set of AOs in the buffer 

region. 

The density matrix for the subsystem α is constructed with the Fermi function: 

( ) 1  1 ex[ )]p(f x x  −= + −   (β is the inverse temperature), which is described as 

( )F p p p

p

D f C C   

    = − ,          (5.3) 
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{Cα} and {εα} represent the MO coefficients and orbital energies for subsystem α. These 

are obtained from the Roothaan equation for each subsystem, which is described as 

DC[ ] p p p

    =F D C S C ,           (5.4) 

where Fα and Sα are the Fock matrix and the overlap matrix for subsystem α. F  

represent the universal Fermi level and is determined by the following constraint for the 

total number of electrons, ne: 

DC

e 2Trn  =  D S .           (5.5) 

In the DC method, the total energy for the entire system is calculated with converged 

Fock and density matrices, which is expressed as 

DC DC core DC[ ] Tr ( [ ])E  = + D D H F D ,         (5.6) 

where Hcore is the core Hamiltonian matrix. 

The standard HF energy gradient[5] is expressed as 

( ) ( )core

HF
| |

2
HE

D D
Q Q Q Q

D
F

Q



 
 






         
= + −  

      


+



 



,      (5.7) 

where Q is the atomic coordinate. In Eq. (5.7), the first term is called the Hellmann-

Feynman force and the second term is called Pulay force. Because MOs are normalized, 

the following equation is constructed. 

† =C SC 1             (5.8) 

Therefore, the derivative of Eq. (5.8) is described as 

†
† † 0

Q Q Q

  
+ + =

  

C S C
SC C C C S .                (5.9) 
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By using Eq. (5.9) and the Roothaan-Hall equation: 
p p p=FC S C , the pulay term in 

Eq. (5.7) can be rewritten as 

D S
F W

Q Q

 

 
 

 
= −

 
  ,         (5.10) 

where W is the energy-weighted density matrix, expressed as 

occ
*

i i i

i

W C C  = .          (5.11) 

Consequently, the standard HF energy gradient is given as 

( ) ( )core

HF
| |

2

Tr

HE
D D

Q Q Q Q

Q



 
 

         
= + −  

      

 
−  

 

 

S
W

,     (5.12) 

In the DC-HF energy gradient calculation, the Hellmann-Feynman term can be 

calculated in the same way as the standard calculation. However, the two expressions 

exist for the Pulay term. One is proposed by Yang et al.[6] and the other is Kobayashi et 

al.[7] In the DC-HF energy gradient proposed by Yang and Lee, the Pulay term is 

approximated by means of the density matrix obtained from the DC method. The energy-

weighted density matrix for the entire system is constructed approximately by the sum of 

the density matrix for subsystems, described as 

subsystem
DCW W P W 

   



 =  ,         (5.13) 

( )F p p p p

p

W f C C    

     = − .         (5.14) 

Therefore, the DC-HF energy gradient can be approximately expressed by using the 

standard Pulay term formula in Eq. (5.12), shown as 



- 101 - 

 

( ) ( )coreDC(Yang)
DC DCHF

DC

| |
2

Tr

HE
D D

Q Q Q Q

Q



 
 

         
= + −  

      

 
−  

 

 

S
W

.     (5.15) 

On the other hand, the partition matrix in Eq. (5.2) is rewritten as 

for ( ) ( )

0 otherwise

P P
P

 
  


    +   
= 


L L
,        

(5.16) 

1/ 2 for ( )

0 otherwise
P



 
= 


S
,         (5.17) 

where ( ) ( ) ( )   L S B  . The exact Pulay term in the DC-HF energy gradient 

calculation can be constructed by means of the definition of Eq. (5.16) and the natures of 

Hermitian in Dα and Fα, which is given as 

DC

( )

D D
F P F

Q Q

Q



 

  
  




   

 
=

 

 
=  

 

 

 
D

F
S

.        (5.18) 

Eq. (5.18) cannot be rewritten like Eq. (5.10) because of the existence of the partition 

matrix. Kobayashi et al. proposed the different DC-HF energy gradient expression with 

Eq. (5.16). In their approach, it is assumed that Dα has the idempotence, which is 

described as 

   D D S D            (5.19) 

from the Pulay term at the finite electronic temperature proposed by Niklasson. In 

addition, it is assumed that Dα is determined variationally. Under the condition that Dα 

has the idempotence and is the variational solution, the relationship equation is given as 
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~
Q Q

 
  

−
 

D S
D D .          (5.20) 

By substituting Eq. (5.20) for Eq. (5.18) and using the Roothaan equation for subsystem, 

the Pulay term can be described as 

( ) ( )

S
D W S

Q Q


   

  
       

  
= − 

  
    

D
F

S S

.      (5.21) 

Therefore, instead of the formula proposed by Yang and Lee, the alternative DC-HF 

energy gradient can be expressed as 

( ) ( )coreDC(Kobayashi)
DC DCHF

| |
2

Tr

HE
D D

Q Q Q Q

Q



 
 






         
= + −  

      

 
−  

 

 


S

X

,    (5.22) 

where    =X W S D  . When [n×m] represents the size of matrix (n is row and m is 

column), the size of matrix for Sα and Dα in Xα are [L(α)×S(α)] and [S(α)×L(α)], 

respectively. 
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5.3. Estimation of DC-HF energy gradient 

 

I propose a method which estimates the DC-HF energy gradient based on the 

philosophy of the automated DC-HF method. As mentioned in Chapter 3, the automated 

DC-HF method[1] is introduced the two-layered buffer region proposed by Dixon and 

Merz[8], which is called the inner buffer region [Bi(α)] and the outer buffer region [Bo(α)], 

respectively. In the automated DC-HF calculation, the density matrix change, ΔD, 

between the inner and outer buffer regions is constructed, described as 

* *

F F( ) ( )p p p p p p

p p

D P f C C P f C C       

        


   
 
  = − − − 

 
   .     (5.23) 

P  is the auxiliary partition matrix, expressed as 

i o

1 for ( ) ( )

1/ 2 for [ ( ) ( ( ) ( ))] or  

0 otherwise

P vice versa



   

    

  


 =    



S S

S B B      (5.24) 

P  and F   the auxiliary Fermi level in transferring the outer buffer region to inner 

buffer region. In the present method, I consider F F  =  and Eq. (5.23) is rewritten as 

DC *

F( ) ( )p p p

p

D D P P f C C P D      

        

 

    = − − =    ,     (5.25) 

where 

( )o1/ 2 for ( ) ( )  or  

0 otherwise

vice versa
P



     
 = 



S B
.      (5.26) 

If the density matrix is changed only ΔD in Eq. (5.25), the Pulay term proposed by 

Kobyashi et al. can be described as  
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o o

o o

o o

( ) ( ) ( ) ( )Pulay

( ) ( )
( )

[ ] [ ]

[ ]
[ ] [ ])( ) ( ( )

Q
Q

g

Q


 

  





 

  

  

 
   

 


 

 
 
 

 

= − 

= −  
 





S
W S D

S
W S D

L S S L

B L
L S S B

,     (5.27) 

where 
i o( ) ( ) ( ) ( )o      S B BL . Similarly, the one electron part of the Hellmann-

Feynman term in Eq. (5. 22) can be described with ΔD as 

core

DEI CO

Q

H
D

Q
g









=  .          (5.28) 

To reduce the computational cost of the two-electron integrals, the Schwarz inequality 

and the Thompson inequality[9] are employed: 

( ) ( ) ( )| | | ij klij kl ij ij kl kl A A = ,        (5.29) 

( ) ( ) ( )| | | ij klij kl ii jj kk ll M M = .        (5.30) 

Therefore, the upper limit of the two-electron part of the Hellmann-Feynman term can be 

described as 

( ) ( )

( ) ( )

DC DTEI C

DC

| |
2

| |
2

Qg D D
Q Q

D D
Q Q

 
 



 
 

   

   

  
=  − 

  

  
  + 

   

 

 

.       (5.31) 

By introducing Eqs. (5.29) and (5.30) into the two-electron integrals term in Eq. (5.31), 

the estimated DC-HF energy gradient is expressed as 

( ) ( )

o o

o o

( ) ( )
( ) (

e

)

cor

DC-HF DC

(
[ ]

[ ] ( ) )[ ]

2 2Q Q Q QQ

H
g D D A A A M M M C

Q

Q

 

        




  


 

  

 
  


 


  +  + + + + +
 

 
+  

 

  


S

W S D
B L

L S S B

,  (5.32) 

where Qi j
A   is the first derivative of the Schwarz inequality[10] and Qi j

M   is the first 

derivative of the Thompson inequality: 
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|Qi j

i i
A j j

Q Q

  
=  

  
,          (5.33) 

|Qi j

i i
M jj

Q Q

  
=  

  
.          (5.34) 

Because the summation of Cλσ in Eq. (5.32) is constant, the following index can be 

considered as 

( ) ( )

o o

o o

core

grad DC

[
)

]
[ ]

( ) ( )
( ) ( ) ([ ]( )

2 2Q Q Q Q

H
e D D A A A M M M

Q

Q

 

        
 


 

 





 
 


 


  +  + + + + +
 

 
+  

 

 


S

W S D
B L

L S S B

.    (5.35) 

The above 
grade   can be further divided into the contribution from atom A, 

grad

Ae  . 

Consequently, I propose the following automatic determination scheme for the buffer 

region in the DC-HF energy gradient method: 

i. Evaluation of 
grad

Ae  after constructing DC  F D   for each SCF cycle. 

ii. Transferring all atoms in the outer buffer region of subsystem α to its inner buffer 

region. 

iii. Inclusion of the atoms in the sphere with radius 
grad

extr   centered on atom A with 

grad grad

threshAe e  into the new outer buffer region of subsystem α. 

Note that the above procedure has not been implemented yet in the present paper.  
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5.4. Numerical assessment 

 

In this work, the estimation of the Pulay term ( Pulay

Qg ) and the one electron part of the 

Hellmann-Feynman term in Eq. (5.35) ( OEI

Qg  ) were implemented to the GAMESS 

package[11,12] and assessed its accuracy for α-helix glycine oligomer (GLY)10. The 

structure was constructed by using the Discovery Studio 2017 R2 software.[13] In the DC 

method, the inverse temperature parameter, β, in Eq. (5.25) was set to 200 a.u. To examine 

the estimated and actual energy errors, the automated DC-SCF method is not performed 

throughout this Section.  

Firstly, the buffer size dependence of the estimated Pulay term in the final SCF cycles 

are shown in Table 5-1. In Table 5-1, the maximum absolute deviations (MaxADs) and 

mean absolute deviations (MADs) between the DC-HF energy gradient and the standard 

HF energy gradient for each buffer size are shown. In addition, the actual and the 

estimated DC-HF energy errors are also given. Here, the 6-31G basis set[14] was adopted.  

As expected, in both the DC-HF energy and DC-HF energy gradient calculations, the 

actual errors decreased with the increasing buffer size. In the energy calculation, the order 

of the estimated energy error at the final SCF step was consistent with that of the actual 

error. In the energy gradient calculation, the order of the estimated Pulay term error at the 

final SCF step tended to be also consistent with that of the actual error. 

For the same system, I also examined the estimated one electron part of the Hellmann-

Feynman term, as shown in Table 5-2. In this term, except for in

b Å3.5r = , the actual 

errors also decreased with the increasing buffer size. The MaxAD in 
in

b Å3.5r =  is 
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smaller than that in in

b Å4.0r =  because it may be “lucky cancellation”. In contrast to 

the Pulay term, the order of the estimated MaxAD and MAD at the final SCF step was 

two or three orders of magnitude smaller than that of the actual errors. The estimated error 

decreased drastically than the actual error. It is because that the energy gradient may be 

sensitive to the density matrix change, which is affected widely. Consequently, the size 

of the outer buffer region in the energy error estimation may be insufficient in the energy 

gradient error estimation. 

  

Table 5-1. Buffer size dependence of the actual and estimated Pulay term for α-helix 

glycine oligomer (GLY)10. Standard HF energy is –2142.6879 Eh. 

in

br /Å out

br /Å 

DC Stand

HF HFE E−  

/Eh 
–ΔE /Eh  

DC Stand

Pulay PulayE E −

/Eh・bohr-1 

( )DC

PulayE 

/Eh・bohr-1 

3.5 4.5 +0.0553 +0.0540 

MaxAD 0.0265 0.0317  

MAD 0.0043 0.0027  

4.0 5.0 –0.0397 –0.0511 

MaxAD 0.0188 0.0209  

MAD 0.0026 0.0014  

4.5 5.5 +0.0027 +0.0022 

MaxAD 0.0021 0.0007  

MAD 0.0003 0.0002  

5.0 6.0 +0.0002 –0.0007 

MaxAD 0.0007 0.0007  

MAD 0.0001 0.0001  

5.5 6.5 +0.0001 –0.0003 

MaxAD 0.0006 0.0003  

MAD 0.0001 0.0000  
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Table 5-2. Buffer size dependence of the actual and estimated one electron part of the 

Hellmann-Feynman term for α-helix glycine oligomer (GLY)10. Standard HF energy 

is –2142.6879 Eh. 

in

br /Å out

br /Å 

DC Stand

HF HFE E−  

/Eh 
–ΔE /Eh  

DC Stand

Pulay PulayE E −

/Eh・bohr-1 

( )DC

PulayE 

/Eh・bohr-1 

3.5 4.5 +0.0553 +0.0540 

MaxAD 0.5021  0.2697  

MAD 0.1032  0.0208  

4.0 5.0 –0.0397 –0.0511 

MaxAD 0.5795  0.0998  

MAD 0.0808  0.0072  

4.5 5.5 +0.0027 +0.0022 

MaxAD 0.0664  0.0076  

MAD 0.0107  0.0007  

5.0 6.0 +0.0002 –0.0007 

MaxAD 0.0201  0.0010  

MAD 0.0037  0.0001  

5.5 6.5 +0.0001 –0.0003 

MaxAD 0.0160  0.0002  

MAD 0.0031  0.0000  
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5.5. Concluding remarks 

 

 In this study, I have proposed an approach to determine the appropriate size of the 

buffer region in the DC-HF energy gradient calculation. This estimation approach is based 

on the philosophy of the automated DC-HF method. From the energy gradient expression 

proposed by Kobayashi et. al., the Pulay term in the estimated DC-HF energy gradient is 

derived. In addition, Schwarz and Thompson inequalities were introduced to reduce the 

computational cost of the two-electron integrals. In this paper, the estimation of the Pulay 

term and the one electron part of the Hellmann-Feynman term were implemented to the 

GAMESS package. 

I applied the above terms to α-helix glycine oligomer (GLY)10 and confirmed that 

MaxAD and MAD for the estimated DC-HF energy gradient tended to be consistent with 

the actual values in the Pulay term. However, MaxAD and MAD in the one electron part 

of the Hellmann-Feynman term tended to be smaller than the actual value. 

In the geometry optimization calculation, the energy gradient for each atom is 

calculated in each optimization step. Therefore, the approach which determine the size of 

the buffer region based on the energy gradient differentiation between the optimization 

steps is proposed alternatively in the future work. 
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6. General conclusion 

 

In this study, to control automatically the errors between the standard and the DC 

methods, I have developed the method which determines the appropriate size of the buffer 

region automatically with the error estimation scheme for DC-SCF, DC-MP2 and DC-HF 

energy gradient calculations. 

In Chapter 3, the automatic error control method in the DC-SCF calculation was 

developed. In this method, the two-layer buffer regions proposed by Dixon and Merz was 

introduced and the density matrix change between the layers was constructed with it. The 

first order atomic energy variation can be calculated from the density matrix change. The 

appropriate size of the buffer region in the DC-SCF calculation can be constructed with 

the atomic energy contribution as a criterion. The present method was applied to the water 

cluster, protein and alkane systems and worked effectively for these molecule systems. In 

addition, the present method achieved linear scaling as well as the conventional DC 

method. 

In Chapter 4, an extension of the automatic error control method to the DC-MP2 

calculation was developed. With the help of the idea of atomic orbital (AO)-Laplace MP2 

method proposed by Häser, the atomic energy variation in the buffer region can be 

estimated from the DC-MP2 electron correlation energy in each subsystem. Because of 

the short-range nature of the MP2 dynamical electron correlation, the appropriate size of 

the buffer region in the DC-MP2 calculation can be smaller than that in the DC-HF 

calculation. Therefore, the appropriate size of the buffer region in the DC-MP2 

calculation can be determined automatically by reducing from the size of the buffer region 
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in the prior DC-HF calculation with the estimated atomic energy. The present method was 

applied to the 100 water cluster system and the chignolin system. It was confirmed that 

the DC-MP2 energy error can be systematically controlled by the estimated atomic energy. 

It was also confirmed that the linear-scaling behavior of the DC-MP2 method is preserved 

even with the present automation scheme, from a calculation of linear polyene system. 

In Chapter 5, I have proposed the automatic error control scheme for the DC-HF 

energy gradient calculation. Based on the philosophy of the automated DC-HF method, 

the Pulay term in the estimated energy gradient was constructed with the idea of the DC-

HF energy gradient expression proposed by Kobayashi et. al. In addition, to reduce the 

computational cost of the two-electron integrals, the upper limit of the Hellmann-

Feynman term was constructed with Schwarz and Thompson inequalities. The automatic 

determination of the buffer region in the DC-HF energy gradient calculation was proposed 

with the above estimation. In this paper, the Pulay term and the one-electron part of the 

Hellmann-Feynman term in the estimated DC-HF energy gradient were applied to the α-

helix glycine oligomer (GLY)10. It was confirmed that the maximum absolute deviation 

(MaxAD) and the mean absolute deviation (MAD) in the Pulay term tended to be 

consistent with the actual errors. However, MaxAD and MAD in the one electron part of 

the Hellmann-Feynman term tended to be smaller than the actual ones. Improvement of 

the present scheme or the alternative approach will be the scope of future studies. 

The present study makes it possible to perform the chemical reaction analysis for large-

scale systems with the high accuracy and short computational time. In addition, because 

the effort of preliminary assessment for determination of the size of the buffer region can 

be reduced, the convenience of the DC method was improved. In the future, it is expected 

that people from other fields such as biochemistry perform the quantum chemical 
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calculation and I hope that this study can contribute to a theoretical understanding of 

chemical phenomena for large-scale systems. 
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