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1. General introduction

The electronic structure of a molecule governs its all chemical properties. The
electronic structure can be calculated by solving the Schrodinger equation. By virtue of
the recent improvement of computer performance, ab initio calculations are applied to
the systems that were previously only applicable to the classical mechanics calculation.
However, it is still very difficult to apply the standard quantum chemical method to the
large-scale systems such as proteins. In the standard quantum chemical calculation, the
computational time increases drastically with respect to the system size. For example, the
computational time in Hartree-Fock (HF) method and Density functional theory (DFT)
increase cubically with respect to the system size, due to the diagonalization in the Self-
consistent-field (SCF) calculation. In the post-HF theories, e.g. MP2 and coupled cluster
method (CC), the computational time increases O(N°) or more, where N is the number of
atoms in the target system.

To overcome this problem, the construction of the new theory for large systems has
been actively studied since 1990s. Owing to their effort, a lot of linear or low scaling
methods have been developed. For example, in the ProteinDF program, the entire system
can be treated straightforwardly by means of the efficient parallelization and the cut off
scheme for two-electron integrals. A method which focuses on the active cite has been
developed by means of the hierarchical computational level. In the Quantum mechanics
/ molecular mechanics (QM/MM) method, a part of entire system (e.g. the active site) is

only treated QM region and the other part is treated MM region. In the Our own n-layered



integrated molecular orbital and molecular mechanics (ONIOM) method, the large-scale
system can be treated with 2 or 3 different computational levels.

To calculate electronic structure of the entire system, many fragment-based quantum
chemical calculation methods have been developed. In these methods, the entire system
is divided into several fragments and the electronic structure of the entire system is
approximately calculated by combining the properties of all fragments. The divide and
conquer (DC) method proposed by Yang and Lee is one of the fragment-based quantum
chemical calculation methods. In the DC method, each subsystem (fragment) is composed
of two regions, namely the central region and buffer region. The central region is the
separated region from each other. To consider the environment around the central region,
the buffer region is added for each central region. In the DC method, the size of the buffer
region plays an important role of the accuracy of the DC method. The error introduced by
the fragmentation can be improved systematically by increasing the size of the buffer
region. In the DC-SCF calculation, the density matrix for the entire system can be
approximately constructed by using those of all subsystems and the total electronic energy
is calculated with the approximate entire density matrix. Nakai and coworkers extended
the DC method to post-HF (MP2 or CC) energy calculations as well as the HF and MP2
energy gradient calculations. In the DC-MP2 calculation, because the buffer region in
each subsystem overlaps with the other subsystem, the MP2 correlation energy of the
entire system is approximated as the sum of the MP2 correlation energy corresponding to

the central region of all subsystems.

Except for the DC method, many fragment-based methods have been developed and

applied to wide variety of large systems. However, to the best of my knowledge, the



appropriate fragment shape that is as compact as possible for reducing the computational
time while keeping the acceptable accuracy depends on the target system. In addition, in
most of these methods, the fragment shape is determined by the distance parameter.
Consequently, it is difficult to evaluate the error directly and the preliminary assessment
is required to determine the appropriate fragment shape. In particular, the appropriate size
of the buffer region in the DC method is different for different quantum chemical
calculation method.

In my study, to control automatically the errors between the standard and the DC
methods, I have proposed a method which determines the appropriate size of the buffer
region based on the error estimation. Especially, for the DC-SCF and DC-MP2
calculations, automatic energy error control methods with the estimated energy error were
proposed. In addition, an automatic energy gradient error control scheme for the DC-HF
energy gradient calculation was proposed. In the DC-SCF calculation, an energy
estimation scheme with a two-layered buffer region was constructed. the estimated energy
in the DC-MP2 calculation was formulated with the idea of atomic orbital (AO)-Laplace
MP2 method. In addition, the estimation of the DC-SCF energy gradient was proposed
by means of two inequalities.

This dissertation consists of six Chapters, including this Chapter. An overview of each
Chapter is given below.

Chapter 2 gives the theoretical backgrounds of this dissertation. Specifically, the HF
theory and the MP2 perturbation theory are summarized briefly. In addition, several
fragment-based methods are explained, namely, Molecular tailoring approach (MTA),
Fragment molecular orbital (FMO)method, Elongation (ELG) method and DC method.

In Chapter 3, an automatic error control method in the DC-SCF calculation is proposed.



In this method, the atomic energy variation in each subsystem is estimated from the
density matrix change between the two-layer buffer regions introduced by Dixon and
Merz. Based on this estimated energy, the method to automatically determine the
appropriate size of the buffer region is developed. In numerical assessment, it is
confirmed that the present method works effectively for water cluster and protein. In
addition, the present method achieves the linear scaling as well as the conventional DC
method.

In Chapter 4, an extension of the automatic error control method to the DC-MP2
calculation is proposed. By using the idea of the AO-Laplace MP2 method proposed by
Hiaser, the atomic DC-MP2 energy variations in each subsystem can be estimated. The
appropriate size of the buffer region can be determined automatically with the estimated
atomic energy contributions.

In Chapter 5, an automatic error control scheme for the DC-SCF energy gradient error
calculation is proposed. From the philosophy of the automated DC-HF method, I propose
the error estimation of the energy gradient with respect to the nuclear coordinate. This
estimation is formulated with the DC-HF energy gradient expression proposed by
Kobayashi et al. and two inequalities. In my research, the estimated energy gradient tends
to be consistent with the actual error between the standard and DC energy gradient
calculations in the Pulay term. However, it tends to be underestimated the actual error in
the Hellmann-Feynman term.

In Chapter 6, the overall summary about this dissertation and the prospects of the DC

method is mentioned.






2. Theoretical backgrounds

In this Chapter, I briefly summarize the Hartree-Fock theory, which is the simplest ab
initio calculation, in Section 2.1 and the second order Moller-Plesset perturbation theory
in Section 2.2. In Section 2.3, several fragment-based quantum chemical methods for

treating the large-scale systems are explained.

2.1. Hartree-Fock theory

A variety of physical properties of molecular structure are dominated by the electronic
structure. The electronic structure can be determined by solving the Schrédinger equation.
The non-relativistic and time-independent Schrodinger equation is expressed as
H|¥)=E|¥). (2.1)
The Hamiltonian consists of the kinetic energy of the nucleus and electrons and their
potentials by the coulomb interaction (Eq. 2.2).

Ny n Ny 7

Z——ZZ Z (2.2)
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rim, 714 and R4p represent the electron-electron, the electron-nucleus and the nucleus-
nucleus distances. ne and N are the total numbers of electrons and nuclei, respectively.
My and Z4 are the nuclear mass and charge, respectively. The Schrodinger equation can

be solved rigorously for systems with only one electron, such as hydrogen. it is very

difficult to obtain an exact solution for systems with two or more electrons such as helium,



which is called the many-body problem. The Born-Oppenheimer approximation that the
motions of the nucleus and the electron are separated approximately is introduced. Under
this approximation, the wave function of the nuclei is not treated explicitly and the kinetic
energy of the nuclei is neglected in the calculation of its electronic structure. Therefore,
Eq. (2.2) is rewritten as the electronic Hamiltonian by

Ne

] 1o, 1 &z,
Helec =_Z§vl +ZT_IZ:ZE (23)
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To solve the electronic Schrodinger equation feasibly, many computational methods
have been developed. I briefly summarize the Hartree-Fock (HF) method,!'*] which is the
simplest ab initio method. In the HF method, the potential for one electron is
approximated by the averaged potential from the other electrons, that is, the many-
electron problem is replaced with the one-electron problem. In the HF method, the wave
function of the ground state for the 7. electron system, P!, is represented as the Slater

determinant of the one-electron wave functions , shown as

k) (k) o 2 (%)

X X cee n X
W“F(xl,xz,---,xne)=%%(:2) ZZ(:Z) iy "() (2.4)
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where X, isthe n th electron coordinate and %, (X) 1s the / th orthonormalized molecular

orbital (MO). { V4 } can be determined variationally by the HF equation, given as

A

Fr=ax, (2.5)
where F is the Fock operator shown in Eq. (2.6) and ¢ is the orbital energy of the HF

method.



F=h+)(J,-K,) (2.6)

In Eq. (2.6), h is the one electron operator, shown as

A=l

i (x [ Z J 2.7)

A

and J, and Km are the Coulomb and exchange operators, shown as

Jotn )= [ 7, 0) = 7 ()2 (1), 2.8)

el
5 | ,
Kot (%)= 1000 00, ). (29)

7(X) is composed of the spatial orbital, ¥,(I), and the spin function. Because the spin

function is not treated explicitly, Eq. (2.5) can be expressed as the HF equation for the

spatial region. In the closed shell case, Eq. (2.5) is rewritten as

Fy, (r) =&, (r). (2.10)
MO can be described by the linear combination of the AOs, described as
w.(f)=Z_1:CV|¢V(F)a (2.11)

where ¢,(r) isthe AOand C, is the MO coefficient. By substituting Eq. (2.11) for Eq.

(2.10) and integrating after multiplying ¢; (r) from left side, the Roothaan-Hall equation
is obtained, show in

> C,F.,=6>.C,S,, (2.12)
v=l v=1

where F,, and S,y are the Fock and the overlap matrices. These are expressed as



core 1
F, =H,"+> D, {(leﬂ)—i(ﬂallvq (2.13)
Ao

S, = [ 4,4, (r)dr = (g,

4.), (2.14)
where  (uv|ic)=[[4,(5), ()4, ()4, (r,)drdr, , D is the density matrix,

described as

n

%
D, =2 C,C,. (2.15)
=1

|
Eq. (2.12) is solved iteratively from the initial guess because this is nonlinear equation.
This procedure is called Self-Consistent-Field (SCF). Eq. (2.12) is expressed as the matrix
form, shown as
FC=¢SC. (2.16)
The total electronic energy in the HF method can be calculated with the MOs obtained

from above equation:

ENF :%Tr[D(Hm’e +F)]. (2.17)

elec

The total energy is calculated by the sum of the electronic energy of Eq. (2.17) and the
internuclear repulsion energy with the fixed the nucleus-nucleus distances. In the HF
method, the computational time for the diagonalization in the SCF procedure increases

cubically with respect to system size.



2.2. Second order Mgller-Plesset perturbation theory

The HF energy, Enr, represents about 99% of the exact energy, Eexact, where Eexact 1S
the exact ground state energy of the non-relativistic Schrodinger equation under the Born-
Oppenheimer approximation. In the above Schrédinger equation, the electrons that are
close to each other are excluded because of Coulomb holes. Consequently, the exact
ground state energy is lower than the HF energy because the Coulomb interaction is
reduced. The energy difference between Enr and Eexact is called the electron correlation
energy, which is given as
Ecorr = Eexact — Enr. (2.18)

To consider electron correlation, the post-HF theories, which is based on the HF
method, has been developed to account for the electron correlation. In the configuration
interaction (CI) method,"*) the wavefunction is constructed by the linear combination of
the electron configurations. Although all configurations are considered in the full-CI
method, to reduce computational cost, the truncated CI methods are often used. In the
coupled cluster (CC) method,*”! the higher order contributions can be considered by the
product of the lower order configurations. The Moller-Plesset perturbation theory!! 247!
i1s a method to treat electron correlations. Particularly, the second order Mgller-Plesset

method is called MP2 method, which is the simplest molecular orbital method that can

deal with the electron correlation. I briefly summarize the second order Mgoller-Plesset

perturbation theory. The exact Hamiltonian, H , can be constructed I—]O and V;

H=H,+AV, (2.19)

-10 -



where V is called the perturbation term and V <<H. 4 is the perturbation parameter to

only specify the corresponding order, thus A=1. In the Mgller-Plesset perturbation theory,

the ground state eigenfunction and eigenvalue of H are obtained by the successive

approximation with the eigenfunctions and eigenvalues of I—AI0 . Assume that

A (0)
H 0 V/n

o) =0

> is already solved. Because V << H the ground state

0
eigenfunction, Wo, and energy, Eo, of H lienear w” and E” of I—AI0 and these are

expanded by the power series of 4, described as

W, =y + Ay + AP (2.20)
E, =EX +AEP + 1PEP +---. (2.21)
Eq. (2.20) and Eq. (2.21) are substituted for the exact eigenvalue problem,
H |W,) =E,|¥,), and thus, the following equations can be obtained by summarizing with

the order of 4.

20 ) = B0 ) )

2 H )V ) = P ) + 9 .23)

22 H [y @) +V [w ) = EP [wP) + EL|w) + EQ ) (2.24)

Because w” and E.” have been already obtained, w{” and E{” can be obtained
from Eq. (2.23) with w{” and E{.In addition, w{? and E{” can be also obtained
from Eq. (2.24) with ¥, E, w{’ and E{.Similarly, the higher order terms in Eqs.

(2.20) and (2.21) can be obtained by the successive approximation. In the Meller-Plesset

perturbation theory, HO can be expressed as the sum of the HF operator;

-11 -



H, :Zﬁu), (2.25)

where F () is the Fock operator for the electron /. The eigenfunction and eigenvalue of

I—]O are the HF wave function and the sum of the orbital energy, shown in Egs. (2.26) and

(2.27).
Ho|¥") = E, | %) (2.26)
E, = Z‘ﬂ (2.27)

V is given by the difference between the exact electron-electron interaction and one-

electron potential in the HF method. Consequently, V is expressed as

V=>3rt=> V()

I<m

=Zr.;1—i2[im(l)—rima)]’

I<m

(2.28)

where J (1) and Km (I) are the Coulomb and exchange operators, respectively. The

HF energy can be considered in corrections up to the first order perturbation term.
Therefore, the electron correlation energy can be corrected from the second order

perturbation term. In the closed shell case, the second order Moller-Plesset perturbation

energy, EZ)  are described as

EQ :Ozcclvz": (ia] jb)

i) ap & TE —& —

. [2(ia| jb)—(ib] ja)], (2.29)

where i, j and a,b are the occupied and virtual orbitals, respectively. To improve the
accuracy in the Mgoller-Plesset perturbation theory, the methods which increase the order

of the perturbation terms have been developed, which are called MP3, MP4 and so on.

-12 -



2.3. Fragment-based quantum chemical calculation

method

For treating large-scale systems such as proteins, a lot of fragment-based quantum
chemical calculation methods have been developed.l®'?! In the fragment-based method,
there are several classifications for each fragmentation. Li ef al. classified these methods
into two categories.'3! One is the energy-based approach and the other is the density-
based approach. In the energy-based approach, the total energy for the entire system can
be calculated directly from the energies for all fragments. On the other hand, in the
density-based approach, the total energy for the entire system can be calculated with the
approximate density matrix for the entire system, which is constructed from the density
matrix or molecular orbital in each fragment or local region. In this Section, I summarize

about several methods in the energy-based and the density-based approaches.

2.3.1. Molecular tailoring approach

The Molecular tailoring approach (MTA) proposed by Gadre ef al is one of the energy-
based approach.l!*16! In the MTA, the entire system is divided into several initial
fragments with the distance-based parameter, which is called R-goodness (R;) parameter
and the detail of R, is given below. A sphere of radius R, centered at each atom in the
entire system is constructed and all atoms within the sphere belong to the initial fragment.

It is noted that the sensitive regions, such as multiple bonds, aromatic rings and functional

-13-



group, are not divided but are kept intact during fragmentation. The neighboring initial
fragments are merged while the number of atoms in the fragment is less than the
maximum number of atoms set initially. After merging of these fragments, hydrogen atom
caps are added for the broken bonds at the edge of each fragment. These dummy atoms
are added at the standard bond length of X-H, where X is the connected atom.

In the MTA, the total energy of the entire system is calculated by means of the
inclusion-exclusion principle in the set theory. Therefore, the intersection regions of all
fragment pairs are calculated. The intersection regions are also calculated for three, four,

etc. fragments. The total energy for the entire system can be expressed as

E:zEf, _zEfme +"‘+(—1)N_1 Z Eflmem-~-mfN , (230)
|

1,J 1,J,-N
where E" is the energy for the fragment 7 and E""" is the energy for the intersection
region of fragment / and J, and so on. It is noted that the energy of the hydrogen atom
caps is cancelled formally in this equation.

I summarize about the determination of Ry.!'”!8] The R, is introduced to mimic the
chemical environment of each atom in the fragment. For a certain fragment, a sphere of
centered at the atom included in this fragment is constructed. The radius of this sphere is
enlarged until it touches an atom which belongs to other fragments. The radius of the
enlarged sphere is called R-goodness (Rg) value for that atom. If an atom belongs to
several fragments, the maximum of the sphere radii which are obtained from each
fragment is taken as the R-goodness (Rg) value for that atom. This procedure is repeated
for every atom in the entire system and the minimum of R, for every atom is considered
as the Ry of the scheme. The larger Ry gives the more accurate accuracy for the MTA
calculations in general. From the earlier research, R, is greater than or equal to 4 A to be

accurate enough for normal chemical structures.

-14 -



2.3.2. Fragment molecular orbital method

The Fragment molecular orbital (FMO) method proposed by Kitaura and Fedorov et
al. is also the energy-based approach.!!”2!l In the FMO method, the entire system is
divided into several fragments in real space. The electrons are assigned to each fragment
so as not to break the bond electron pair, in other words, the bonds which exist on the
border are assigned to the fragments. It is important that the nuclei are not assigned to the
fragments. At the boundaries of each fragment, the atoms to which the bond electron pair
is assigned are defined as the bond attached atoms (BAAs). On the other hand, the atoms
on the opposite side of BAAs is called the bond detached atoms (BDAs). To describe the
bond between BAA and BDA, the basis function of BDA is transformed into the hybrid
orbitals with the projection operator and its hybrid orbitals is assigned to the fragments.
In addition, the atomic charge for BDA is split and one side of its atomic charge is
transferred to the fragment including BDA. It is noted that atomic charge is split to keep
the original fragment charge.

The total energy in the original FMO method can be obtained from the energies for
one fragment and the fragment pair. The Hamiltonian for the fragment / is described as
H, =i{—%v$ a"awms +Zjdr'pJ(r)} byt (2.31)

i |r_rA| J#1 |r I’-| i>] ri_rj

where n; and Nr are the total numbers of electrons in the fragment / and total numbers of
the fragments, respectively. In addition, Z4 and p,(r) are the atomic charge of atom 4 and
the electron density for fragment J, respectively. In the FMO method, the Hamiltonian for

one fragment includes the coulomb interaction from all nuclei in the entire system and

-15-



the electrostatic interaction from the electrons in the surrounding (N-1) fragments. These
effects are the characteristic in the FMO method. The Schrodinger equation for the
fragment is
HWY, =EY,. (2.32)
The SCF procedure is performed for each fragment. By solving the above equation, the
fragment energy for each fragment, £}, and the electron density can be obtained. The SCF
procedure for each fragment is carried out iteratively until the electron density of all
fragments converges. Note that the iterative procedure for the electron density is called
Self-Consistent-Charge (SCC). Next, the SCF procedure for the fragment pair is
performed. The Hamiltonian for the fragment pair 1J is also described as

n,+n, dlgoms 7

Hy = z{_%vs_ y

. Z Idr.pK(r)} Z (2.33)

|r—rA| For A [ o B B~ \r

and the Schrédinger equation for the fragment pair is expressed as
H,¥Y,=E,¥,. (2.34)

The Hamiltonian for the fragment pair also includes the contributions from the
surrounding (N-2) fragments. By solving Eq. (2.34), the fragment energy for each
fragment pair, £y, can be obtained. It is noted that the SCC loop is not performed in the
fragment pair calculation because the Hamiltonian for the fragment pair is constructed
with the converged electron density, p(r). Therefore, the total energy for the entire system

can be calculated with Er and Ery, described as

E= ZE ->(Ey—E —E;). (2.35)

1>J

-16 -



The accuracy of the FMO method can be systematically improved by increasing the
order of many-body expansion from the original two-body to three-body!?**¥ and four-

body!?*! expansions.

-17 -



2.3.3. Elongation method

The Elongation (ELG) method proposed by Aoki and Imamura et. al. is one of the
density-based approach.>?1 The ELG method has been developed to investigate the
electronic structure of polymers effectively. In the fragmentation of the ELG method, an
initial cluster is constructed, which is called the oligomer. It is composed of several
monomers. By interacting the monomers with the oligomer one after another, the

electronic structure for the entire system can be calculated approximately. In the ELG
method, the canonical molecular orbital (CMO) for the oligomer, {\Vi } , 1s obtained as

well as the standard quantum chemical calculation, shown as

Vi=>Cul, (2.36)
u=1

where y, represents the u th atomic orbital (AO). In the ELG method, {\I’i } is localized

in two regions. The interaction region with the added monomer is called the active
localized molecular orbitals (active LMOs) and the others is called the frozen localized
molecular orbitals (frozen LMOs). It is noted that the frozen LMOs do not interact with
the added monomer because it is far away from the added monomer. For convenience,
the active LMOs is defined as region B and the frozen LMOs is defined as region 4.
From here, I explain how to construct LMOs for each region. It is important that the
localization procedure in the ELG method is applied to the occupied orbitals and the
virtual orbitals separately in order to preserve the invariance of the density matrix. The
LMO in the occupied orbitals is obtained by means of a 2x2 unitary transformation

between CMOs, which is described as

-18 -



[qﬁ,}:{sine c?se}[wi} 237
$; | |—cos@ sind ||y,

By substituting Eq. (2.36) into Eq. (2.37) and dividing the AOs of the oligomer into

regions A4 and B, the following equation is given:

A B

P :(Z +y J(sinHC#ﬁcosacm);(# (2.38)

u=1 u=l

=4 (A)+¢,(B)
9, =(Z:‘ +VZ: j(—cos@CviJrsin@CVj);(v. (2.39)
=¢;(A)+4,(B)

¢(A) and ¢(B) are the LMOs which are expanded by only the sum of AOs in the

region 4 or the region B, respectively. ¢ and ¢; canbe determined with Omax that gives

the maximum value of L;;, shown as
Ly = {4 (A4 (A)+(4,(B)|4,(B)). (2.40)

This procedure is performed iteratively until the CMO pair does not give further
localization and the same procedure is also performed for the virtual orbitals. By the

above localization ~ procedure, the occupied and  virtual = LMOs,

¢ (A), 4" (A) ,¢7°(B) and ¢"(B) can be obtained. Next, I explain about the MO

calculation at the interaction region of the added monomers with the oligomers. As
mentioned above, the added monomer does not interact with region A (frozen LMOs).
Therefore, after removing the matrix in region 4, the eigenvalue problem is solved for the
between region B (active LMOs) and the added monomer. For the new system obtained
by adding the monomer, region 4 and region B are newly distinguished and the molecular
orbitals are localized in each region in the same manner. The above procedure for the

orbital localization and eigenvalue problem is repeated until the last monomer is added.

-19-



Since the molecular orbitals in the frozen LMOs are conserved, the density matrix for the
entire system can be constructed approximately with LMOs obtained in the last step and
the conserved LMOs. In addition, the total energy for the entire system can be calculated
with the approximate density matrix.

In the ELG method, the localization procedure to construct the active and frozen LMOs
plays an important role in the accuracy. To improve the accuracy in the ELG method, Gu
et. al. proposed the new localization procedure, where the MOs on a certain special region

are localized.[?$%!
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2.3.4. Divide and conquer method

The Divide and conquer method, which is also one of the density-based approach, is
proposed by Yang and Li.[?*32 In the DC method, the entire system is divided into several
disjointed region in the real space, which is called the central region. To consider the
interaction around the central region, the buffer region is added at each central region.
The fragment which is composed of the central region and the buffer region is called
subsystem or localization region. In the DC method, the atomic centered basis function is
used. Therefore, it is called an atomic orbital (AO) and referred to the Gleek index (u, v,
...). A molecular orbital (MO) is expanded by the linear combination of the AOs and
referred to (p, ¢, ...). S(a) is the set of AOs for the central region in subsystem a and the

set of AOs for the entire system, 7, is expressed as

T=]]S(e)- (2.41)

In addition, B(«) is the set of AOs for the buffer region in subsystem o and the set of AOs

for the localization region, L(«), is expressed as
S(@)][B(a) =L(a). (2.42)

In the DC-SCF calculation, the Fock matrix for the entire system is constructed with the

density matrix of the entire system as well as the standard SCF calculation, shown in

F,[D1=H +> D[ 2(uo |vA)-(uc| Av)], (2.43)
Ao

where (uo|v2)= [[drdrg, ()4 ()¢, ()4, (r,) and {4,(r)} is the AO. The

detail of the total density matrix, DPC, is noted later. Although Eq. (2.43) is the typical

Fock matrix, the effective Hamiltonian generally depends on the density matrix. The Fock
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matrix for subsystem « is constructed the submatrix of the effective Hamiltonian for the
entire system. The MOs for subsystem a are expanded with the linear combination of

AOQOs, which is expressed as

pi(r)= Y Ci4,r). (2.44)

uel(a)

The MO coefficient, {Cfl’p} , and the orbital energy, {g“

p} , are obtained from the

Roothaan equation in each subsystem, which is described as
F[DPC]C*=¢*S*C*, (2.45)
where S* is the overlap matrix corresponding to the subsystem a, shown in

S/w - <¢/t

4,)- (2.46)

The DPC can be constructed approximately by the sum of the density matrix for
subsystem, expressed as

subsystem

DX~ Y PiD% . (2.47)

uv = uv
In the closed shell case, the density matrix for subsystem a, D%, is constructed with Fermi
distribution function with the inverse temperature parameter, f :
upvp -

D:, = f,(&—5)CiC (2.48)
p

In the DC method, the universal common Fermi level, ef, is determined to preserve the

total number of electrons by means of the following nonlinear equation;

n, =2Tr(D"°S), (2.49)
where 7. is the total number of electrons. It is noted that er is located between the occupied
and virtual orbitals in principle. The P;‘V in Eq. (2.47) is the element of the partition

matrix, P% which is expressed as
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1 forueS(a)aveS(a)
Pe = % for (1€ S(a) Av e B(a))orvice versa. (2.50)

MV

0 otherwise

The value of the buffer region which overlaps each other can be averaged by using the P*.
The total density matrix and the effective Hamiltonian matrix is determined self-

consistently. The total electronic energy can be calculated as the functional of DPC.
E[D"]= Tr[D"(H*" + F[D"°])]. (2.51)

In the standard calculation, the computational cost for the diagonalization is increased
cubically with respect to the system size N. On the other hand, in the DC method, it is
increased cubically for the subsystem size n. In the large-scale system, the computation
cost for the diagonalization can be decreased significantly because n<<N and thus the

linear scaling can be achieved in the DC method.
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3. Automatic error control in DC-SCF
calculation

3.1. Introduction

A Since the advent of computational quantum chemistry, the rapid increase in
computational power has allowed the electronic structure calculation of ever-larger
systems. In variational quantum chemical methods, the major computational task is the
diagonalization of the Hamiltonian matrix that scales cubically with respect to the number
of basis functions. To enable the electronic structure calculation of very large systems,
many types of approximate electronic structure methods have been proposed in the last
two decades that show linear-scaling computational time with respect to the system size.
Almost all linear-scaling methods are approximations of existing matured electronic
structure methods, such as Hartree-Fock (HF),!!! Kohn—Sham density functional theory
(DFT),” and post-HF correlation calculations.®! The results of linear-scaling methods
bear two types of errors, i.e., those derived from the methodology and those from the
linear-scaling approximation itself, the latter of which is desired to be controlled by the
linear-scaling method itself.

In many linear-scaling methods, procedures for distance-based control and/or accuracy
evaluation have been introduced. For example, in the density matrix minimization
method,* a cutoff distance was introduced for the construction of an auxiliary density

matrix of the support function.>* In the molecular tailoring approach,!’! Gadre and
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coworkers defined the R-goodness parameter,™ which indicates the quality of a
fragmentation scheme based on the distance. The generalized energy-based fragmentation
(GEBF) approach!'” can also employ a distance-based accuracy control scheme. [!! In
the divide-and-conquer (DC) method,!'>" !4 the size of the buffer region controls primarily
the accuracy of the approximation. Although methods with distance-based control
parameters can systematically improve the accuracy of the approximations, it is still
difficult to estimate the error in energy, which is the most important property in electronic
structure calculations. For some linear-scaling methods, density-based or energy-based
error estimation schemes have also been developed. For example, for the density matrix

15,16

purification method,!'>!®] Rubensson and coworkers proposed a scheme to control the

o (1718

density-matrix error derived from iterative purificatio ' Niklasson et al. proposed a

graph-based Fermi-operator expansion scheme, in which the accuracy was controlled by

thresholded sparse matrix algebra.!']

However, in fragment-based linear-scaling
approaches, such as those with DC and molecular tailoring methods, it can be difficult to
control the accuracy without careful prior testing.['”! Another example of accuracy control
can be found in the fragment molecular orbital method,'*”! in which the results can be
improved by increasing the order of the many-body expansion.?!-2?!

In this Chapter, a scheme to estimate the energy error introduced in DC-HF or DC-
DFT calculations®! is proposed. Nakai and coworkers extended the DC method to open-

13.241 and proposed an energy gradient.?’! Recently, they have also applied

shell systems!
this method to the density-functional tight-binding (DFTB) theory,?*?”! which has
enabled us to perform quantum mechanical calculation of one million atom systems

within one minute with the Japanese K supercomputer.’>*] In the present error

estimation method, the two-layer buffer region scheme originally introduced by Dixon
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and Merz*"! was adopted. Guided by this error estimation scheme, an algorithm to

automatically determine the appropriate buffer size was established.
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3.2. DC-SCF scheme with two-layer buffer region

Before summarizing the DC-SCF method with a two-layer buffer region, I note that,
in the DC method, each basis function should be connected to an atom. Therefore, it is
simply called an atomic orbital (AO) and denoted with a Greek letter index, {u, v, ...}. In
the DC method, the entire system is first divided into Nsw disjoint subsystems, each of
which is referred to as the central region. A set of basis functions connected to the central
region of subsystem a is denoted by S(«). For each subsystem, the buffer region is added
to the central region to construct a localization region, where the subsystem molecular
orbitals (MOs) are constructed. In the two-layer buffer scheme introduced by Dixon and
Merz,*% the buffer region is hierarchically divided into two sub-regions, denoted as the
inner and outer buffer regions (Fig. 3-1). The inner buffer region, in which the set of AOs
is denoted by Bi(a), is used to construct the subsystem MOs as well as to contribute to the
density matrix; while the outer buffer region, in which the set of AOs is denoted by Bo(a),
is only used to construct the subsystem MOs.

According to the DC-SCF scheme, the one-body density matrix of the entire system is

approximated by the sum of subsystem contributions:

subsystem

o~ Dpr = Z P“ D” (3.1)

uv uv —uv
where D“ expresses the density matrix of subsystem a, which is given in closed-shell
case by

D% = f,(s —£2)Co,CE - (3.2)
P

HP VP
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The subsystem MOs, {y,}, are expanded in the two-layer buffer scheme with the AOs,

{¢#} , in the outer localization region, L (@)= S(a)UB,(a)UB,(a):

i)=Y Cig,n). (3.3)

pely(a)

The MO coefficients, {C7}, and MO energies, {¢,}, are obtained by solving the
following subsystem Roothaan equation:

F“[DDC]C%‘ =¢£,5"CY. (3.4)
F“[D°°] and S* are the subsystem effective Hamiltonian and overlap matrices,

respectively, which are the submatrices of the entire effective Hamiltonian and overlap

matrices,

D] =H + 3 D5 [2(uor|v2)~ (o] Av) . (3.5)
S, =(2,]4,), (3.6)
for L, (@) with two-electron integral notation of

(uo|vi)= [ drdr,g, (r)g, (r,)r;'9, (r)4, (r,) . Although the Fock matrix is shown in Eq.

(3.5) as a typical example, the effective Hamiltonian generally depends on the density

matrix. P* in Eq. (3.1) is the partition matrix, which is defined in the two-layer buffer

scheme by
1 for pe S(a) Av e S(a)

Ps =411/2  for (ue S(a) Av e B(a)) or vice versa, (3.7)
0 otherwise

and f (x)=[1+ exp(—pBx)]" is the Fermi distribution function with the inverse

temperature parameter . & represents the universal Fermi level, which is determined
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by solving the following non-linear equation to conserve the total number of electrons,

ne, in the entire system:
n, = 2Tr(D"S). (3.8)
The density matrix of Eq. (3.1) and the effective Hamiltonian matrix of Eq. (3.5) are

determined self-consistently. The electronic energy can be obtained as the functional of

the density matrix:
E[D°°]=Tr[ D°*(H*" +F[D*]) |, (3.9)

when the effective Hamiltonian is linear with respect to the density matrix, which is

satisfied in HF and semiempirical MO calculations, but is not in typical DFT calculations.
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3.3. Estimation of DC-SCF energy

If the outer buffer region is transferred into the inner buffer region, the density matrix

changes by

AD,, = Z{Pﬁ > (et —e)CaCl—Pa > f (e —e8)CoCE } , (3.10)
p p

[24

where relaxation of the subsystem MOs is neglected. P’ is the auxiliary partition

matrix

1 for pe S(a) Av e S(a)
P =11/2  for[ue S(a)Ave(B(a)UB,(a))] orvice versa, (3.11)
0 otherwise

and &; is the auxiliary Fermi level. The first-order energy variation can be estimated

with the density matrix correction, AD, as

AE = 2Tr[ ADF[D™]], (3.12)
where the effective Hamiltonian is assumed to be linear with respect to the density matrix.
There are two ways of obtaining the auxiliary Fermi level, 5;. The first one is to consider
&t = &, which simplifies Eq. (3.10) to

AD,, =>" (Pl - P;’V)Zp: f (e —€2)CoCl =D APZDE | (3.13)

where

1/2  for e S(a)AveB (a)) orvice versa
AP;;:{ (neS@nveB (@) . (3.14)

0 otherwise

Substituting Eq. (3.13) into Eq. (3.12) gives
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AE=2>3 AP:DZ F2[D™]=>" > > 2D F:D]. (3.15)

wooa a peS(a)veB,(a)
According to the energy density analysis (EDA),*! which is analogous to the Mulliken
population analysis, the variation in energy can be separated into the contributions from

the atoms in the outer buffer regions:

AE=Y" > > > 2DiF:iD™]=> > AE;, (3.16)

a peS(a) AeBy(a)veA a AeBj(a)

where

AE; = > > 2D% F2[D™], (3.17)

ueS(a)veA
and index A4 designates an atom.

The other way to obtain the auxiliary Fermi level relies on the electron number
constraint, i.e., & is found by solving the following equation:
n, = 2Tr[(DDC +AD)S] . (3.18)
Note that, in semiempirical MO calculations with a zero differential overlap (ZDO)
approximation, the solution of Eq. (3.18) is & =& (as in the first case), since S=1

and the diagonal elements of AD with &f =& [i.e., Eq. (3.13)] are zero.

If one chooses & =& for DC calculations with a two-layer buffer region, the energy

error introduced by the DC method can be estimated as the sum of contributions from the

outer buffer atoms in each subsystem according to Eq. (3.16). Also, it is known that the

density matrix p(r,1,)=D,,8,(r)4,(r,) decays exponentially with the distance

|I’l — r2| in the case of an insulator.*?! Based on these facts, the following automatic

extension scheme for the buffer region was developed:
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i). Evaluation of AE{ according to Eq. (3.16) after constructing F[D°°] for each SCF

cycle.
i1). Transferring all atoms in the outer buffer region of subsystem a to its inner buffer
region.

ii1). Inclusion of the atoms in the sphere with radius r,, centered on atom A4 with

AE; >e,,. into the new outer buffer region of subsystem a.

iv). Calculation of the subsystem MOs with Eq. (3.4), construction of the density matrices
with Egs. (3.1) and (3.13), and back to step 1).

The above procedure is illustrated in Fig. 3-2. After several cycles, the outer buffer region
automatically vanishes when all AE, become less than the threshold. Following this

scheme, it may become possible to choose the appropriate buffer region for each

subsystem while preserving the energy error per atom. In the actual implementation, the

subsystem density matrix element required in Eq. (3.16) is approximated as Dy, ~ AD

uv
to avoid the need for storing the density matrices of all subsystems. This approximation

can be validated because AD,, =AP?D; +AP2D =1/ 2( D; + Dz’ﬁ) ~ D, for

ueS(y)AueB (a,) and veS(a,)rveB, (o), where D;2 is considered to be

Evaluation of Transferring all Inclusion of the atoms in the sphere
AES in By(a) atoms in B(a) with radius r,,, centered on atom A with
to its B;(«) AEf =64 eqn INt0 the new B (a)

Next SCF cycle

Fig. 3-2. Illustration of the automatic extension scheme for the buffer region.
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similar to Dy . Here, ueB(a,) is not always the case. Therefore, Dy, ~2AD,, is

the other choice of the approximation, while it is equivalent to halve emresh.
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3.4. Numerical assessment

3.4.1. Computational details

The automatically controlled DC method was implemented to the GAMESS

33341 and assessed its accuracy and efficiency for different types of systems. In

package!
the DC method, the inverse temperature parameter, £, in Eq. (3.2) was set to 200 a.u. The
parameters for the automated DC method were set to emresh = 0.1 pEh and 7exe = 3.0 A
unless otherwise noted.

To discuss quantitatively the size of the localization region determined in the present

scheme, I defined the major axis radius of localization region a, /iocal(2), as half of the

maximum atom pair distance in localization region a. The major axis radius at the initial
SCF step, ||i§cia| , where the outer buffer region is excluded from the localization region,
Ifin

should strongly correlate with the initial buffer size, while that at the final SCF step, |,,c4»

is expected to be barely dependent on the initial buffer size.
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3.4.2. Accuracy and computational time of the present method

I first compared two estimation schemes of the DC-HF energy error with Eq. (3.12):
(a) where & =&, and (b) where & was determined for (D +AD). The estimated

and actual energy errors were obtained for calculations of the crambin protein, as
summarized in Table 3-1. Here, the 6-31G basis set’**) was adopted. The geometry of
crambin was obtained via the protein data bank (PDB, identification number 1CRN) and
the hydrogen atoms were then added with the FU program.** The estimated energy errors
obtained from the second and final SCF steps are given for both estimation schemes. The
initial guess density, which affects the estimation at the second SCF step, was obtained
by the DC extended Hiickel method implemented in GAMESS. In the DC calculations,

the entire protein was cut between the carbonyl C and the a-C, and each fragment was

treated as a central region. The buffer size was defined by I’bin and I’bOUt , where the

unions of the spherical regions with radius I’bin and I’boUt centered on each atom in the

central region were considered as the inner and outer localization regions, respectively.
As expected, the actual energy error decreased with the increasing buffer size, except for
the smallest buffer size where an error cancellation seems to have occurred. The two
estimation schemes did not display significant differences. At both the second and final

SCF steps, the difference in the errors estimated by the two schemes was less than 10%
for " >4.0 A. The order of the estimated energy error at the final SCF step was

consistent with that of the actual error. This estimation scheme worked reasonably even

at the early SCF step, although the estimated error at the second SCF step was two or
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more times larger than that at the final step for " >4.0 A. The method was also tested

in calculations of delocalized polyene system and the similar results were obtained (see
Table 3-2). From the following Section on, I will mainly focus on the semiempirical PM3

method, 73] which adopts the ZDO approximation.

Table 3-1. Buffer size dependence of the actual and estimated DC-HF energy errors

for crambin protein. Standard HF energy is —17,996.926754 Ej.

—AE by scheme (a) /En —AE by scheme (b) /En
/A r™/A  Actualerror /Ew  2ndstep  Final step 2nd step Final step
3.5 4.5 —0.144241 —0.768550 —0.886510 —0.682481 —0.890704
4.0 5.0 —0.348118 —1.005190 —0.532129 —1.071929 —0.526987
4.5 5.5 —0.067862 —0.504153 —0.126115 —0.507108 —0.125820
5.0 6.0 —0.017408 —0.123892 —0.038836 —0.124559 —0.038845
5.5 6.5 —0.005229 —0.084293 —-0.016880 —0.084118 —0.016881
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Table 3-2. Buffer size dependence of the actual and estimated DC-HF energy errors

for the following polyene derivative. The cc-pVDZ basis set was adopted. Standard

HF energy is —2314.676893 En.

CN
NeT A
23
—AE by scheme (a) /En —AE by scheme (b) /En
/A r™/A  Actual error /Ey  2nd step Final step 2nd step Final step
4.5 7.0 —5.095390 —0.896898 —10.330447 —0.896490  —10.330270
7.0 9.5 —0.137146 —0.177043  —0.293687 —0.177043 —0.293687
9.5 12.0 —0.021289 —0.012954  —0.047777 —0.012954 —0.047777
12.0 14.5 —0.001921 —0.004375  —0.005201 —0.004375 —0.005201
14.5 17.0 —0.000091 —0.000386 —0.000648 —0.000386 —0.000648

The accuracy of the present method and

its computational time requirements were

examined in the calculation of a cubic system containing Nwater randomly oriented water

molecules with a weight density of 1.0 g cm 3. In the DC calculations, each water

molecule was treated as the central region. The initial buffer size was determined by ;"

and I,

, the definitions of which are the same as in the previous Section. Table 3-3

summarizes the initial buffer-size dependence of the automated DC-PM3 energy, the

wall-clock computational time, and the number of SCF cycles for Nwateer = 1000. The
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computational time for the SCF calculations was measured using a computer node
equipped with an Intel Xeon E5-1650 CPU (6 cores, 3.50 GHz), and the average of three

measurements was calculated. The energy difference from the standard PM3 results

divided by the number of atoms (3000) is also shown in parentheses. For I," <6.0 A,

the energy difference values are comparable: ~0.5 uEn atom '. For " >6.5 A, the

Table 3-3. Initial buffer-size dependence of the total energy, the wall-clock
computational time, and the number of SCF cycles for the automated DC-PM3

calculation of the model system containing 1000 water molecules.

" /A ™ /A Energy /En (Diff. /uEnatom™')  Time/s  # cycles

3.5 4.5 —-11945.190938 (+0.48) 250 14
4.0 5.0 —-11945.190942 (+0.48) 246 14
4.5 5.5 -11945.190837 (+0.51) 233 13
5.0 6.0 -11945.190719 (+0.55) 209 12
5.5 6.5 -11945.190414 (+0.65) 209 13
6.0 7.0 -11945.190229 (+0.72) 202 12
6.5 7.5 -11945.191077 (+0.43) 246 12
7.0 8.0 -11945.191791 (+0.19) 325 12
Standard-PM3  -11945.192376 2443 11
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energy difference gradually decreases to zero because the estimation for the initial buffer
size is smaller than the threshold for most of the subsystems. In fact, the energy error at a

single fixed buffer size of 1, = 7.5 A is 0.50 uEn atom ™!, in good agreement with the result

for r* =75 A. Although the number of SCF cycles is slightly larger than that for

standard PM3 calculations, the computational time is ~10 times shorter for I’,Din <6.5 A.

It is also suggested that a smaller initial buffer size results in the deterioration of the SCF

convergence, which in turn leads to longer computational times.
Table 3-4 summarizes the average (< ||0ca| >) and standard deviation (o[ ||0ca| ]) of the
major axis radii among all localization regions in the automated DC-PM3 calculations of

the water system (Nwater = 1000). As expected, < ||i§cia| > increased linearly with the initial
buffer size, and o] ||i§cia| ] was found to be relatively small. Interestingly, < ||f(:23| > was found
to be larger for small initial buffer sizes up to 1" =6.0 A, although the difference was

fairly small. Accordingly, o[ ||f(:23|] displayed smaller values for larger initial buffer sizes.

It was thus suggested that large initial buffer sizes efficiently aid the selection of the
appropriate buffer region and hence may reduce the computational time, although this

effect does not largely affect the energy error. For readers with particular interest, the

behavior of <l > during the SCF iteration is given in Fig. 3-3.
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Table 3-4. Average and standard deviation of the major axis radii of all localization
regions at the initial and final SCF steps in the automated DC-PM3 calculation of the

model system containing 1000 water molecules.

RA Rt A <l /A of ot 1 /A <l > /A of hoget 1 /A
35 4.5 3.577 0.306 8.105 0.626
4.0 5.0 4.105 0.314 8.030 0.604
4.5 5.5 4.659 0.319 8.031 0.581
5.0 6.0 5.194 0.305 8.176 0.635
5.5 6.5 5.703 0.313 7.981 0.766
6.0 7.0 6.213 0.318 7.640 0.647
6.5 7.5 6.708 0.342 7.832 0.507
7.0 8.0 7.218 0.375 8.228 0.430
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Fig. 3-3. Behavior of <l ;> during the SCF iteration in the automated DC-PM3

calculations of the water system (Nwater = 1000).

Next, the dependence of the computational time on the system-size was determined,
as shown in Fig. 3-4. The initial buffer size was set to I,' =5.0 A and " =6.0 A

Even for Nyater = 400, the time for the automated DC-PM3 calculation (54 s) was around
four times shorter than that for the standard PM3 calculation (204 s). Furthermore, the
time required for the standard PM3 calculations increased steeply with the system size.
The scaling analysis with the double logarithmic plot indicated that the times for the
standard and automated DC-PM3 calculations scaled as O(n*7) and O(n'*%), respectively.
For all systems, the DC energy error per atom was within a narrow range: 0.44—0.57 pEn.
It was thus confirmed that the present method is able to control the accuracy of the DC

method while maintaining an almost linear-scaling computational cost.
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Fig. 3-4. System-size dependence of the wall-clock computational time of standard
PM3 and automated DC-PM3 calculations for the model system containing Nwater

water molecules. The initial buffer size for the DC calculations was fixed to

rb‘“ =5.0 and I’bOUt =6.0 A.

Table 3-5 summarizes the dependence of the energy error, computational time, and
average of the major axis radii at the final step (< ||22a| >) on the energy-based threshold,
ethresh, 1N the automated DC-PM3 calculations of the water system (Nwater = 1000). The
initial buffer size was set to I," =3.5 and " =4.5 A. The result confirmed that the

fin

energy error is almost proportional to the energy threshold, emresh. As expected, <0 >

decreases gradually as the energy threshold increases. Accordingly, the computational

time decreases as the energy threshold increases, while it shows more significant
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dependence than < ||f(:23| > does. Therefore, it is important to set ewmresh appropriately to enjoy

both of good accuracy and less computational time.

Table 3-5. Energy threshold (ewmresh) dependence of the energy error, computational
time, and average of the major axis radii of all localization regions at the final SCF

steps in the automated DC-PM3 calculation of the model system containing 1000

water molecules. The initial buffer size was setto Ir" =3.5 and L™ =4.5 A.

ethresh /LEh Energy error /pEp atom ! Time /s < ||foiza| > /A
0.01 0.103 451 8.994
0.05 0.295 319 8.396
0.10 0.479 243 8.105
0.50 1.360 179 7.421
1.00 2.153 173 7.156
1.50 2.953 144 7.024
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Finally, the parallel efficiency of the program was examined, although the present
source code is not optimized for the parallelization. Table 3-6 summarizes the dependence
of the wall-clock times () for the automated DC-PM3 SCF calculation of the system with
Nwater = 1000 on the number of CPU cores (Ncore). The times were measured using a

computer node equipped with two Intel Xeon E5-2667 CPU (8 cores, 3.20 GHz) and the

average of three measurements was calculated. The initial buffer size was set to I’,Din =50

A and rbom =6.0 A. The parallel scalability S, given at the last column of the Table, is

defined as the wall-clock time ratio S = #(Ncore = 1) / [Neore X t(Ncore)]. Up t0 Neore = 4, the
scalability is higher than 0.7, while it rapidly decreases for Ncore > 4. There are two main
reasons for the deterioration: (i) the reordering of the processing subsystem, which is
effective for minimizing load imbalance, is not optimized for the varying subsystem size
in the present automated DC method, and (ii) the semiempirical Hamiltonian matrix
construction is not efficiently parallelized in GAMESS. Although there is room for
improvement, the present automated DC implementation is moderately parallelized,

which especially works better for larger systems.

Table 3-6. Parallelization efficiency of the automated DC-PM3 calculations of the

model system containing 1000 water molecules

Neore Time () /s Scalability (5)
1 710 1.000
2 381 0.933
4 252 0.706
8 229 0.387
16 272 0.163
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Then the method was applied to covalently bound systems. Table 3-7 shows the initial
buffer-size dependence of the automated DC-PM3 energy for the crambin system treated
in the previous Section. The energy difference from the standard PM3 results is also
shown in parentheses. Again, it was confirmed that the energy difference was suppressed

to small enough values: <1.4 uE, atom™'. The results for the crambin system did not show
a systematic decrease of the energy difference up to I‘bin =55 A, as the initial buffer size
was sufficiently smaller than the major axis radius of the final localization region, as
summarized in Table 3-8. From these data, it was again confirmed that < ||f(:23| >and of ||f(:23| ]
[fin

tend to be smaller for larger initial buffer sizes. In comparison with Table 3-4, the <l .,

> value for the crambin system is ~1 A longer than that of the water system as the decay
rate of the density matrix elements through covalent bonds is slower than that through

hydrogen bonds.
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Table 3-7. Initial buffer-size dependence of the automated DC-PM3 energy for the

crambin system.

" /A /A Energy /En (Diff. /uEn atom™)
3.5 45 ~2117.084675 (+0.10)
4.0 5.0 ~2117.084601 (+0.21)
45 5.5 —2117.084647 (+0.14)
5.0 6.0 ~2117.083858 (+1.37)
5.5 6.5 ~2117.084462 (+0.43)
Standard-PM3 -2117.084739

Table 3-8. Average and standard deviation of the major axis radii of all localization
regions at the initial and final SCF steps in the automated DC-PM3 calculation of the

crambin system.

' /A YA <lgg>/A ofleal/A <lgu>/A  oflon1/A
3.5 4.5 5.348 0.890 9.082 1.204
4.0 5.0 5.835 0.981 9.158 1.208
4.5 5.5 6.338 0.948 9.043 1.178
5.0 6.0 6.781 0.969 9.072 1.198
5.5 6.5 7.204 1.065 8.899 1.191
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Next, the present method was examined in calculations of the conjugated graphene
system depicted in Fig. 3-5 (CigoHag). All atoms were placed on a plane and the C—C and
C—H bond lengths were fixed to 1.42 and 1.09 A, respectively. Table 3-9 shows the initial
buffer-size dependence of the DC-PM3 energy for CigoHas. In the DC calculation, the

entire system was divided by a lattice spacing of 3.5 A and each fragment was treated as
a central region. The definitions of the initial buffer sizes, I‘bin and rb"“t , were the same

as those in the previous Sections. The energies obtained with a fixed buffer size are given

fin

in Table 3-9, together with the estimated energy errors at the final SCF step and <l >.

Unlike the results for the water and crambin systems, the present automated DC method

afforded in some cases a large energy deviation of >10 pEj atom ™!

. The estimated energy
error with the fixed buffer size was found to be about one order of magnitude smaller than
the actual error. Due to the significantly slow decay of the density matrix for conjugated
systems, the energy error estimated in the outer buffer region may be insufficient to
reproduce the actual energy error. In addition, the energy error does not converge to the
standard PM3 result due to the finite temperature approximation in the DC method.

Actually, the finite-temperature PM3 energy with =200 a.u. is —810.643352 E}, which

is much closer to the converged DC-PM3 energy.

Fig. 3-5. Structure of the graphene system, CigoHas.
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Table 3-9. Initial buffer-size dependence of the buffer-size fixed and automated DC-PM3
energies for the graphene system, CigoH4s. The estimated energy error at the final SCF step in

the buffer-size fixed calculation is also given. Standard PM3 energy is —810.650309 Ey

Buffer size fixed Automated
i /A ™ /A Actual error /E,  —AE /Ey Energy /En ~ (Diff. /uEyatom™)  <I™" >/A
3.5 5.0 +0.466022 +0.141160 —810.650931 (-2.73) 10.672
4.0 5.5 +0.163445 +0.023277 —810.651058 (-3.29) 10.820
4.5 6.0 +0.107509 +0.024784 —810.644480 (+25.56) 12.251
5.0 6.5 +0.137531 +0.013554 —810.650325 (-0.07) 11.458
5.5 7.0 +0.065487 +0.008674 —810.648093 (+9.72) 11.427
6.0 7.5 +0.041446 +0.008377 —810.651029 (-3.16) 10.926
6.5 8.0 +0.044827 +0.004561 —810.644494 (+25.50) 12.033
7.0 8.5 +0.039109 +0.003055 —810.643122 (+31.52) 11.796
7.5 9.0 +0.016598 +0.001494 —810.655281 (-21.81) 10.846
8.0 9.5 +0.011964 +0.001004 —810.644095 (+27.25) 12.199
8.5 10.0 +0.014299 +0.001242 —810.642821 (+32.84) 11.992
9.0 10.5 +0.017775 +0.000638 —810.643328 (+30.61) 12.310
9.5 11.0 +0.010530 +0.000513 —810.644435 (+25.76) 12.543
10.0 11.5 +0.008625 +0.000339 —810.644620 (+24.95) 12.211
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Finally, the dependence of the energy error on the energy-based threshold, etnresh, Was
assessed. Fig. 3-6 shows the dependence of the final energy error on emresh for the

automated DC-PM3 calculation of 1000 water molecules and the crambin and graphene
systems. The initial buffer size was setto " =3.5 and ™ =45 A (or " =50 A

for the graphene system). For the water and crambin systems, which were adequately
treated by the automated DC method, the energy error increased proportionally to ethresh,
as expected. For the graphene system, however, the energy error did not show a systematic
trend but oscillated throughout the emrwesh value range, even at low ewmresh values. Although
there is still some room for improvement in the present automated DC scheme, it has been
demonstrated that the energy error can be suppressed with the present method even for

conjugated systems.

10
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—i— Graphene
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Fig. 3-6. Dependence of the energy error on the energy-based threshold, etnresh, In
the automated DC-PM3 calculations of 1000 water molecules and the crambin and

graphene systems.
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The present scheme was applied to the HF method and DFT with the pure BLY P4
and hybrid B3LYP™!*? functionals. Here, the DC energy error is estimated with Eq. (3.9)
even for DFT calculations, where the Hamiltonian matrix is not linear with the density
matrix. The option to use the HF Hamiltonian (Fock) matrix at the early SCF stage of the
DFT calculation, which is adopted in the default setting of the GAMESS program, was
switched off. Table 3-10 shows the initial buffer-size dependence of the DC-HF, DC-
B3LYP, and DC-BLYP energies for a n-alkane (C1s0H302) with the 6-31G* basis set.*’] In
the DC calculations, a C2H4 (or CoHs for the edges) group is adopted as a central region.
For the DC-HF and DC-B3LYP calculations, the energy error could be controlled within
0.7 pEy atom™ !, while that for the pure DFT (DC-BLYP) calculation is one order larger in
magnitude. The final localization region for central subsystems contains (C2Has)10-12 in
the DC-HF and DC-B3LYP calculations, while that does (C2H4)7-s in the DC-BLYP

calculations. This result suggests that the magnitude of AE  with Eq. (3.9) is

underestimated without the HF exchange term. Actually, the energy error of the DC-BLYP
calculation with the DC-HF final localization region was 0.09 pEy atom™' for r," =3.0

out

and r," =4.5 A. Therefore, in practical DC-DFT calculation, it is recommended to

determine the appropriate buffer size with the early DC-HF SCF cycles, which can be
performed in GAMESS by switching back on the default option to use the Fock matrix at

the early SCF stage.
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3.5. Concluding remarks

In this study, I have proposed an energy-based error estimation scheme for the linear-
scaling DC quantum chemical method with the help of two-layer buffer regions.
Exploiting the fact that the estimated energy error can be divided into contributions from
the atoms in the outer buffer region of each subsystem, our error estimation scheme was
utilized for the automatic determination of the appropriate buffer region for the DC
method. The present automated DC method worked satisfactorily in calculations of water,
protein, and alkane systems, although its performance was insufficient in the calculation
of a delocalized graphene system. Improvement of the present scheme for delocalized
systems will be the scope of future studies. Furthermore, in the present scheme, the buffer
region was gradually extended during the SCF cycles. There is an alternative approach to
reduce the buffer region from a large initial buffer size, which may be preferably used
when the method is applied to a series of quantum chemical calculations, such as
geometry optimizations, where the appropriate buffer region of the previous step is
available.

An energy-based error control scheme such as the present method will be
indispensable for quantum chemical molecular dynamics simulations, especially for
microcanonical ensembles, where the total energy conservation is rigorously examined.
Recently, Nakai and coworkers have published a series of studies performing quantum

d.1?821 The present

chemical molecular dynamics simulations with the DC-DFTB metho
automated DC method can straightforwardly be extended to the so-called DFTB2

Hamiltonian, which is linear with respect to the density matrix. Furthermore, the present
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error estimation scheme is expected to work even for non-linear Hamiltonians such as
DFTB3. The development of an automated DC-DFTB molecular dynamics program is
desirable not only to reduce the effort of preliminary assessments before the production
runs but also to guarantee the accuracy of the results. The application of the present
scheme to the DC Hartree—Fock—Bogoliubov method,** which can effectively treat the
static electron correlation of large systems,**! is also straightforward, as well as that to
the open-shell DC unrestricted HF method.['>>*] However, the present method cannot be
combined with DC post-HF correlation methods such as the second-order Moller—Plesset
perturbation (MP2)!6 8] and coupled cluster**-!! theories. As pointed out by Kobayashi
and Nakai,®?! the appropriate buffer size for DC post-HF correlation calculations is
generally smaller than that for DC-HF calculations. Furthermore, especially in DC-MP2
calculations, the appropriate buffer size should be determined before carrying out the
MP?2 calculations as the procedure is not iterative. The solution to this issue will pave the

way toward the development of an automated DC-MP2 scheme in the near future.
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4. Energy based Automatic
determination of buffer region in DC-
MP2 calculation

4.1. Introduction

By virtue of recent advances in quantum chemical theory as well as the improvements
in computer performance, electronic structure calculations of large-scale systems such as
proteins have now become technically feasible. Such theoretical advances include the
development of linear-scaling (or low-scaling) electronic structure methods. In the
standard formalism of electronic structure methods, the computational time increases
cubically [O(N?)] with respect to the system size N, even with the simplest Hartree-Fock
(HF) method!!! or density functional theory (DFT),”) owing to the diagonalization of the
Hamiltonian matrix. Furthermore, in case of post-HF calculations, such as the second
order Moller-Plesset perturbation (MP2)!*! and coupled cluster (CC) theories,!*! their
time scalings deteriorate as O(N°) or more. Therefore, the standard formalisms of
electronic structure methods cannot be applied to large-scale systems. By introducing
approximations to the standard formalisms, many low-scaling electronic structure
methods!®!% have been proposed for treating such systems. Many of these methods equip
some schemes to adjust the errors derived from the low-scaling approximations based on
the distance parameter. For example, in the molecular tailoring approach proposed by

Garde et al.''! R-goodness parameter is used to determine the quality of each
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12131 In the generalized energy-based fragmentation approach,!'*!) each

fragment.!
fragment is constructed with the distance threshold (¢). The cluster-in-molecule local
correlation method also adopts the distance threshold & to control the size of the cluster,'®!
while a simple correction scheme to account for the distant-pair correlation has recently

18] can be

been proposed.l'”! The accuracy of the fragment molecular orbital method
systematically improved by increasing the order of many-body expansion from the
original two-body to three-body!*?° and four-body!!! expansions. The pair natural
orbital (PNO) electron correlation approach!?>23 adopts several truncation schemes for
construction of correlated virtual orbitals (i.e., PNOs) for each occupied local molecular
orbital (MO) pair, where the bond-based (so-called IEXT) or distance-based (so-called
REXT) truncation is used to determine the local virtual orbital region to construct PNOs.
Since molecular energy is the most important property in quantum chemical calculations,
an energy-based parameter is more desirable than a distance-based one. For example, the
divide-expand-consolidate method utilizes the energy-based fragment optimization
threshold to determine the atomic occupied and virtual orbital spaces in each
fragment.[242°]

Yang and coworkers introduced a linear-scaling approach called the divide-and-
conquer (DC) method.?®?”] The DC method has been applied to the HF or DFT self-
consistent field (SCF),?%?] density-functional tight-binding,'**-*! and post-HF (MP2[**
31 or CCPB73%) energy calculations as well as the SCF*) and MP2*!) energy gradient
calculations. For treating static electron correlation in large-scale systems, the DC method
has also been combined with the Hartree-Fock-Bogoliubov method!** and the thermally-

assisted occupation (finite temperature) scheme.[** In the DC method, the size of the

buffer region plays the role of the distance parameter to adjust the approximation error; a
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larger buffer size leads to a smaller approximation error. However, it is still difficult to
estimate the error in energy based on the distance-based adjustment parameter. Recently,
I proposed a scheme to estimate the energy error introduced in the DC-HF and DC-
DFT calculations using a two-layer buffer region scheme introduced by Dixon and
Merz.[*) This estimation scheme can successfully be applied to automatically determine
the appropriate buffer region based on the estimated energy error.[*!

This Chapter attempts to export the idea of the previous automated DC-HF scheme to
the DC-MP2 calculation. Kobayashi et al.*®! reported that the buffer region used for the
MP2 correlation calculation can be contracted from that for the HF one to achieve the
same energy accuracy as the DC-HF calculation because of the short-range nature of the
MP2 dynamical electron correlation. I first develop a method to estimate the subsystem
MP2 correlation energy contribution from each atom in the buffer region. Here, the idea
of the atomic orbital (AO) Laplace MP2 method™¢Y is used as well as the Schwarz
inequality. Based on this estimated energy contribution, I established an algorithm to
automatically determine the appropriate buffer region in the DC-MP2 calculation.

This Chapter consists of five Sections. Section 4.2 gives a brief summary of the linear-
scaling DC electron correlation method with a fixed buffer region. In Section 4.3, the
present procedure to estimate the energy contribution from each buffer atom and the
automated DC-MP2 algorithm is explained. Numerical assessments are described in

Section 4.4. Finally, I provide concluding remarks in Section 4.5.
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4.2. DC-MP2 scheme

I first outline the DC-MP2 electron correlation calculation scheme. The DC-MP2

method is applicable only with atom-centered basis functions. Each basis function, ¢,(r),

called an AO, is denoted by a Greek letter index, x4, v, .... In the DC method, the entire
system is divided into several subsystems, each of which consists of the central and buffer
regions. Each central region is mutually exclusive with the other central regions. The sets
of AOs belonging to the central and buffer regions of subsystem a are referred to as S(a)
and B(a), respectively.

In the DC-MP2 method, the MOs in the subsystem a,

v (=2 Cia.(r), (4.1)

uel(a)

are used to evaluate the correlation energy of subsystem a, where L(a)=S(a)uB(a)
represents the set of AOs in the localization region and p refers to an arbitrary MO. The
MO coefficients, {Cz}, and the MO energies, {83}, of subsystem a are obtained by
solving the Roothaan equation for each subsystem:

F“ [DSCF]Cﬁ =¢£,5"CY, (4.2)
where F*[D5¢F] is the subsystem Fock matrix constructed with the density matrix DSF,

and S* is the subsystem overlap matrix with the element S = (¢H | @, ) for u,vel(a).

Hv

The density matrix, D5F, can be constructed from the standard or approximate HF
calculation, such as the DC-HF one. Note that the subsystem SCF equation (4.2) has to

be solved not self-consistently but just once using predetermined DSCF. If DS is obtained
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from the DC-HF calculation, it is constructed with the local density matrices, { D“ }, and

the partition matrices, {pP“}, as the following:

scr subsystem
D"~ >, p.Dy, (4.3)
DS, = (e = #3)C1Cly (44
p
1 (ueS(a)AveS(a))
pL, =11/ 2((u € S(a) AV € B (@) v (1 € Byep (@) av € S(a)), 4.5)
0 (otherwise)

where f, (x)=[1+ exp(—ﬂx)]f1 is the Fermi distribution function with the inverse

temperature, 5, and g is the universal Fermi level. The details of the DC-HF procedure
can be found in Refs. 26 and 27.
Before the evaluation of the subsystem correlation energy, the subsystem MOs of Eq.

(4.1) must be classified into occupied {wi”,t//f,...} and virtual ones {1//:,1//;’,...}. This

can be accomplished by, for example, using the Fermi level determined in the prior DC-

(2)

HF calculations. The MP2 correlation energy for the entire system, AE_) , can be

approximated as the sum of the subsystem MP2 correlation energies, {AEZ”},

@ @
AEcorr ~ ZAE;I’I’ . (4-6)
[24
Because the buffer region in each localization region overlaps with the other localization
a(2)

regions, AE_’ is obtained as the MP2 correlation energy corresponding to the central

region of the localization region a by means of energy density analysis (EDA).’! The

subsystem correlation energy is then evaluated by
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occ(a) vir(a) Ca_ a 'aba
aez =SO85 Sl potasie e o) - a e i), @.7)

a a a
ia'ja aa'ba ‘ues(a) gl +g] _ga _gb

with the two-electron integral notation

(a” | jb") = [[ drdry” (ws (DR (v (r)
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4.3. Estimation of DC-MP2 energy based on AO-
Laplace MP2 method

Based on EDA, the MP2 correlation energy for subsystem a, AE“? | can be further

corr >

divided into contributions from the atoms in the localization region a, AEZ @) , as

AELY = > AE;?, (4.8)

BelL(a)

P CaCa eV ID)
AEZO =3 ST S S — L2 |b* j) — (a" " |bi)]- (4.9)
b

a a a
i“,j* a* ,b* ueS(a)veB gi +gj —&

a

According to the local correlation philosophy for dynamical electron correlation,®>34 it

is expected that AES® rapidly decreases as the distance between atom B and central

region a increases. The exponential decay of the MP2 energy contribution with respect to
the interatomic distance is discussed in the Appendix. As pointed out by Kobayashi and
Nakai,*% the appropriate size of the buffer region for the DC-MP2 calculation can be

smaller than that for the DC-HF calculation because of the locality of the dynamical
electron correlation. Therefore, if the absolute value of AES® is estimated to be smaller

than some criterion, the energy change by excluding atom B from the buffer region of

subsystem a is expected to be small. By applying the AO-Laplace MP2 technique to Eq.

(4.9), AE‘B’"Z) can be expressed as

[e¢)

AES® =

0

D 22 2 X @Y (@)X ()Y () (v | A0)[2(xy | £6) — (k5 | y)ld 7 |

ueS(a)veB Ao ykde

(4.10)

where X%(7) and Y%(7) are the energy-weighted density matrices expressed as
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X,uv (T) Z:C/llc\f:e(gl o ° (411)

Yo (r)=) CoCue (4.12)
a

Here, the Fermi level, ¢, may be already determined in the prior DC-HF calculation, or

may be the midpoint energy between HOMO and LUMO in the prior HF calculation. For
estimation purpose, | drastically approximate the integral in Eq. (4.10) by the one-point

Gauss-Laguerre quadrature, namely,

MELP ~—e Y 33 S XAV (v | A2y | 68) - (x5 )] @.13)
ueS(a)veB Ao yxde

=2 CLCie ™ (4.14)

S @5

Assuming that the rhs of Eq. (4.13) gives the upper limit of AEZ? | its absolute value

can be bounded by adopting the Schwarz inequality

[CICO ENCII NGO (4.16)

R EDIPH DI

S(a)veB Ao yok:

<e ) XX Xa|Y

ueS(a)veB Ao yoke

se 3 XXX v

ueS(a)veB Ao yoke

L DIDWHI )+

ueS(a)veB Ao yoke

o 23z
Ao ¢

a a
YVK X A6

o€

Y2\ (v | 20| [2] 7 | )] +](5 | )]

Y0!

A% AC [2A% A + AL A ]

Yll

AY AL [2AY max(A”)+ ASAZT , (4.17)

XY e

a
YW(

AL ALL2AL max(A©)]

L] >yl

ueS(a)veB

o A [2A7, max(A©)]

VK

where A% = |( Ly | yv)| . Here, the analogy to the scaled opposite-spin MP2
method,** the term  AZ A’ was omitted owing to its smaller contribution. Because the
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summation in parentheses in Eq. (4.17) is constant for subsystem a, the following index

can be considered as the magnitude of the contribution from atom B:

eg=e > Y YIXp

ueS(a)veB

Yool As [2A] max(A®)]. (4.18)

Using the above e€; index, the following automatic determination scheme for the buffer

region in the DC-MP2 method is proposed:
I.  Assignment of the initial DC-MP2 buffer region for each subsystem. This may be

determined by prior DC-HF calculation.

ii. Evaluation of e; from Eq. (4.18).

iii. The exclusion of atom B from the buffer region of subsystem o if €; is smaller than
the energy threshold.

Iv. Reconstruction of subsystem molecular orbitals { C‘; }and {€ Z }, using Eq. (4.2).

v. Evaluation of the subsystem correlation energy, AE“? | from Eq. (4.7).
The above procedure is illustrated in Fig. 4-1. The additional computational cost for the

evaluation of all necessary €; scales as O(Nm®), where N and m represent the sizes of
the entire system and buffer region, respectively, since the evaluation of each e; of Eq.

(4.18) scales with O(m?) owing to the summation over y and x and the number of €; to

be evaluated scales with O(Nm).

Determination of appropriate buffer | | Evaluation of Exclusion of the atoms in B(«)

corr

region in DC-SCF calculation e in B(a) with e < ey

Perform DC-MP2
calculation

Fig. 4-1. Illustration of determination scheme for the buffer region.
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4.4. Numerical assessment

4.4.1. Computational details

I implemented the above-mentioned automatically controlled DC-MP2 method to the
GAMESS packagel*®" and evaluated its accuracy and efficiency for the different types
of systems. In the DC-HF calculations, the inverse temperature parameter, £, was set to
125 a.u. and the Fermi function cutoff factor (the FTOL option of $DANDC input group

in GAMESS program) was set to 20. In addition, the parameters in the automated DC-
HF method were set to €5, = 0.1 pEy and rex = 3.0 A, the definitions of which are

given in our previous paper.** The 6-31G(d) basis set’®® was adopted throughout this

paper. I introduced the major axis radii of the HF and MP2 localization regions for
subsystem a, lg and 17, , respectively, to discuss the size of the localization regions

determined by the automated DC method. 135 (or 1°7“) was defined as half of the

maximum atom-pair distance in the HF (or MP2) localization region for subsystem a.

The two-electron AO integrals, (uv|Ao), are treated in so-called “direct algorithm”

manner, i.e., the same integrals are calculated repeatedly for every subsystem.
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4.4.2. Accuracy and computational time of the present method

I first applied the present automated DC-MP2 method to a cubic system containing
100 water molecules with weight density of 1.0 g cm™. Each water molecule was adopted
as a central region in the DC calculation. To assess the performance of the automated DC-
MP2 calculation, the entire system was selected as the initial localization region for every

subsystem in the DC-MP2 calculation. Fig. 4-2 shows the estimated MP2 energy
contributions from buffer atom B (€5 ) with respect to its distance from the O atom in the

central region. The blue plot represents the value for B being an H atom, and the red plot
that for B being an O atom. The estimated energy contribution decays exponentially as
the distance from the central region increases. The slight difference in the slope for H and
O atoms in Fig. 4-2 is probably due to the fact that the summation over AOs at the buffer
atom in Eq. (4.9) runs for the virtual orbital, that is, the charge-transfer excited
configurations from O atoms in donor water to H atoms in acceptor water are more
significant than those from acceptor to donor. This behavior was also confirmed for the
water dimer system using the intermolecular interaction energy decomposition with the
local PNO method.*”! Note that the estimated energies in Fig. 4-2 for the interatomic

distance of 2-3 A are up to several hundred Ey, which are significantly larger than the

total MP2 energy of ~19 Eh. This is because that the estimated energy (€5 ) is derived as

the upper limit of the atomic MP2 energy contribution. From the following section, the
corr

energy threshold in the automated DC-MP2 method, €, , was set to 0.1 pEy unless

otherwise noted.
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Interatomic distance / A

Fig. 4-2. Estimated atomic MP2 energy contributions with respect to the
interatomic distance. The blue plots represent the estimated MP2 energy of H atom

and the red plots represent of O atom in the buffer region.

Next, the dependence of the computational time of €; on the system-size was

examined, as shown in Fig. 4-3. These were measured using a computer node equipped
with two Intel Xeon Gold 5118 CPUs (12 cores, 2.30 GHz) and the average of three

measurements was plotted. The initial sizes of the inner and outer buffer regions in the
automated DC-HF calculation were set to " =4.5A and r™ =55A, respectively.

The scaling analysis with the double logarithmic plot indicates that the computational
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time for the evaluation of e; scales as O(Nwater' ), Which maintains an almost linear-

scaling behavior.

2500

2000 ¢

1500

CPUtime /s

1000

500

0 100 200 300 400

# water molecules (Ve )

Fig. 4-3. System-size dependence of the CPU time of the evaluation of e; for the
model system containing Nwater Water molecules. The initial buffer size for the DC-

HF calculations was fixedto " =4.5A and " =55A.

The accuracy and the computational time of the automated DC-MP2 method were

corr

investigated for the cubic water system. Table 4-1 shows the energy-threshold (€, )

dependence of the DC-MP2 correlation energy. Following Section, each water molecule
was adopted as a central region and the entire system was selected as the initial

localization region. The average and standard deviation of major axis radii ((I,;‘;;) and

ollie] . respectively) are also given in Table 4-1. For ey, =100 uE, , the actual
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corr

correlation energy error per atom is 18.37 uEy, which is sufficiently smaller thane, ., . It

corr

should be noted that the MP2 energy error decreases systematically as €., decreases,

corr

while the dependence is not proportional but rather logarithmic to €., . As with the eresh

corr

parameter in automated DC-SCF method,** the smaller e;n. parameter leads to a

larger localization region, which can be confirmed from the average of the major axis

| corr
local

radii of all localization regions, < > . Interestingly, the standard deviation of the major

I corr

et ] » also tends to increase systematically as €y, decreases, except for

axis radii, o[

€gvesn = 0.1E, . This fact suggests that the present scheme can effectively aid the selection

of the appropriate buffer region for each subsystem in the DC-MP2 calculation.

Table 4-1. e, dependences of the DC-MP2 correlation energy and the major axis

radius for 100 water cluster system.

€fveen ME, EQ/E,  (Diff) juEnatom™  (IE5“) /A o[12me /A
100.000 —19.102140 (+18.37) 5.596 0.569
10.000 —19.103891 (+12.54) 6.038 0.589
1.000 —19.104999 (+8.84) 6.380 0.677
0.100 —19.105661 (+6.64) 6.761 0.659
0.010 —19.106160 (+4.97) 7.131 0.681

Standard-MP2  —19.107652
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Next, I examined the combination of the present automated DC-MP2 method with the

automated DC-HF calculation. Table 4-2 shows the dependence of the automated DC-

in out

MP2 energy on the initial DC-HF inner and outer buffer sizes, r, and I, , the

definitions of which are given in our previous paper.[** The averages (<|Ilc-J|('::aI > and <I on > )

local

and the standard deviations (o[ll"] and o[li°"]) of the major axis radii among all

localization regions in the DC-HF and DC-MP2 calculations are also shown. Similar to
the results in Ref. 44, the DC-HF energy error is sufficiently small and almost independent

of the initial DC-HF buffer region. Subsequently, the DC-MP2 energy error is almost

constant (~8.5 pEy atom ™). The average radius of the DC-HF localization region, <I,';fa, > ,
is 7.0-7.2 A, which is larger than the average radius, 6.761 A, of the DC-MP2 localization

region for ey, =0.1pE, given in Table 4-1. A smaller initial DC-HF buffer size leads

IHF

to a larger < ocal

> , as was also confirmed in the previous study.*¥ When combined with

the automated DC-HF method, <I°°”> becomes smaller than its value when the initial

local

corr

localization region is set to be the entire system. Similarly, o[l ;] is approximately

0.14 A smaller than o[l/F ].
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Next, the proposed method was applied to a covalently bound system, namely, the
chignolin protein with 10 amino acids. The geometry of chignolin was obtained from the
protein data bank (PDBID: 1UAO). Hydrogen atoms were added using the Discovery
Studio 2017 R2 software.[”! In the DC calculation, the entire system was divided between

the carbonyl C and a-C atoms, and each of the divided systems was treated as a central
region. Table 4-3 shows the €., dependence of the DC-MP2 energy for chignolin. The
entire system was selected as the initial localization region for every subsystem in the

DC-MP2 calculation. For ey, =100 puE, , the actual correlation energy error per atom

is 2.82 pEn, which is sufficiently smaller thane€y, ... . As was also confirmed in the case of

the water system, the MP2 energy error decreases systematically as €., decreases.

Again, the dependence of the error on €y, is rather logarithmic. The smaller €.,

I corr

,oca,> , while it leads to the smaller O [h%%;] , contrary to the case of

leads to the larger <

water system. Comparing Table 4-3 with Table 4-1, <I°°rr > of chignolin is about 1.0 A

local

corr

larger than that of the water system for the same €,, parameter, reflecting the

delocalized electronic nature in the covalently bound system.
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Table 4-3. e, dependences of the DC-MP2 correlation energy and the major axis

radius for chignolin.

e JuE, E?IE, (Diff) /uEpatom™ (I VA o[ 135« /A
100.000 ~11.194529 (+2.82) 7.003 0.671
10.000 ~11.194689 (+1.67) 7.185 0.598
1.000 ~11.194770 (+1.08) 7.530 0.614
0.100 ~11.194828 (+0.66) 7.629 0.597
0.010 ~11.194847 (+0.52) 7.726 0.564

Standard-MP2 —-11.194919

Next, I combined this with the automated DC-HF calculation. Table 4-4 shows the
dependence of the DC-MP2 energy on the initial DC-HF buffer size. The automated DC-
HF energy error for chignolin is smaller than that for the water system and almost
independent of the initial DC-HF buffer region, while the radius of the DC-HF
localization region (~7.5 A) is about 1 A greater than for the water system (~6.5 A).
Subsequently, the DC-MP2 energy error is also almost constant (~0.7 pEx atom™'). For
this small protein system, in contrast to the result in Table 4-2 for the water system, the
standard deviation of the sizes of the localization regions for the MP2 calculation is larger
than that for the HF calculation. This is because the entire size of the chignolin system is
so small that the localization region for every subsystem is close to the entire system. The

present method was also tested on the f-strand glycine oligomer (GLY )20, and the result
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of the calculation are given in Table 4-5. In Table 4-5, the DC-MP2 calculations with

different ey, were performed to confirm that the present automated DC-MP2 energy

error depends primarily on €y, and hardly on the initial buffer radii. For this stretched

system, the standard deviation of the localization region sizes for the MP2 calculation is

smaller than that for the HF calculation, while the energy error is similar to the result in

Table 4-4. As well as the case of water system, the smaller eg.., leads to the larger

corr corr
<I > and ofl; 1.

local
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Finally, the present method was applied to the conjugated polyacetylene chain Cz,H2,+2,
shown in Fig. 4-4. All atoms were placed in a plane and the C—C, C=C, and C—H bond
lengths were fixed at 1.462, 1.357, and 1.096 A, respectively. Each CoH» (or CoHj; for
edges) unit divided at the C—C single bond was treated as a central region. Table 4-6
shows the system-size dependence of the standard and DC-MP2 energies. For the

automated DC calculations, the initial sizes of the inner and outer buffer regions in the
automated DC-HF calculation were setto " =5.0A and r™ =6.5A respectively. To

avoid division of the localization region at C=C double bond, each CoH> (or C;H3) unit

was treated as one piece, that is, a unit was extracted from the DC-MP2 localization region

only when all the estimated MP2 correlation energies, {eg‘} , for the atoms in the unit

were smaller than the threshold, €4, (analogous to the BUFTYP=RADSUB option of

$DANDC input group in GAMESS program). The DC-MP2 energy error per atom is
almost constant for n>30. It was demonstrated that the correlation energy error can be

controlled with the present method, even for conjugated systems.

H H

H{ 1357A, ¢ 14624
\C/ \C/ \\H
| 1.096 A |

- H H -n/2

Fig. 4-4. Structure of polyacetylene chain system, C2,Ho+2.
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Table 4-6. The system-size dependence of the MP2 electron correlation energy in the

standard MP2 and automated DC-MP2 calculations for polyacetylene chain system,

C2Hant2
Standard-MP2 Auto.DC-MP2
# of C atoms
Energy /En Energy /En (Diff.) /UEn atom™
10 —-1.266346 —1.266346 (+0.00)
20 ~2.533020 ~2.532799 (+5.25)
30 —3.799773 —3.799303 (+7.58)
40 -5.066529 ~5.065806 (+8.81)
50 —6.333285 —6.332309 (+9.56)
60 ~7.600041 ~7.598813 (+10.06)
70 —8.866797 —8.865319 (+10.40)
80 ~10.133553 ~10.131822 (+10.68)
90 ~11.400309 ~11.398327 (+10.89)
100 ~12.667065 ~12.664831 (+11.06)

-85 -



For this conjugated system, the dependence of the computational time on the system
size was also examined, as shown in Fig. 4-5. The computational time for the MP2
calculation was measured using a computer node equipped with two Intel Xeon E5-2667
CPUs (8 cores, 3.20 GHz), and the average of three measurements was plotted. For
comparison, the time required for the standard MP2 calculation was also plotted. The
CODE=IMS program!®!! specified in the $MP2 input group implemented in the GAMESS
package was used. The automated DC-MP2 calculation shows a faster computational time
than that of the standard MP2 calculation for n>30. The scaling analysis with the double
logarithmic plot for n>40 indicates that the computational time for the standard MP2
scales as O(n*>°), while that for the present automated DC-MP2 method scales as O(n'!).
It is confirmed that the linear-scaling behavior of the DC-MP2 method is preserved even
with the present automation scheme. In the present paper, the scaling analysis is examined

for one-dimensional systems.
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Fig. 4-5. System-size dependence of the Wall-clock time of the standard MP2 and
the automated DC-MP2 calculations for polyacetylene chain system containing »
carbon atoms C,H2,+2. Black dashed line: standard-MP2; solid red line: automated

DC-MP2.

The scaling analysis was also conducted for three-dimensional water cluster systems.
Figure 4-6 shows the dependence of the wall-clock computational time for the DC-MP2
calculation on the number of water molecules, Nwaer. The times were measured using a
computer node equipped with two Intel Xeon Gold 5118 CPUs (12 cores, 2.30 GHz), and

the average of three measurements was plotted. The initial sizes of the inner and outer

buffer regions in the automated DC-HF calculation were set to " =45A and

corr

" =5.5A  respectively. The energy threshold in the automated DC-MP2 method, efr.

was set to 10 pEy. The scaling analysis with the double logarithmic plot indicates that the
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computational time for the present automated DC-MP2 method scales as O(Nwater' ),
which indicates that the present method also achieves near-linear scaling computational

time even for three-dimensional systems.

4000
_ 3000
% 2000 |
ks
[
| L
G
=
~ 1000
[} ) \ ) L L L i L
0 100 200 300 400
# water molecules (N e )

Fig. 4-6. System-size dependence of the Wall-clock time of the automated DC-MP2
calculations for the model system containing Nwater Water molecules. The initial sizes
of the inner and outer buffer regions in the automated DC-HF calculation were set to
" =45A and r™ =55A respectively. The energy threshold in the automated

DC-MP2 method, ey, , was set to 10 pEn.
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4.5. Concluding remarks

In this study, I have proposed an automatic determination scheme for the buffer region
in the DC-MP2 calculation. This method is based on a subsystem MP2 correlation energy
contribution from each atom in the buffer region, which is estimated with the help of the
AO-Laplace MP2 method and the Schwarz inequality. Because the appropriate size of the
buffer region in the DC-MP2 calculation can be smaller than that in the DC-HF
calculation, as suggested in a previous paper,*®! the present scheme reduces the buffer
region from the prior DC-HF calculation. I applied the present method to a 100 water

cluster system and the chignolin system, and confirmed that the estimated DC-MP2

energy error can be systematically reduced as the energy threshold, ;.. , decreases. |

also confirmed that the linear-scaling behavior of the DC-MP2 method is preserved even
with the present automation scheme, from a calculation of linear polyene system.

Since the MP2 amplitude is known to provide a good guess for the CC method in many
cases, the proposed automation scheme is straightforwardly applicable to the DC-CC
method.?7*] Improvements in the accuracy of the correlation energy contributions from
buffer atoms are also desirable, especially for delocalized systems. The use of the
inequality test proposed by Thompson et al. 1°?] instead of the Schwarz inequality would

be one way to provide this improvement.
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4.6. Appendix

Here, I propose a scheme to partition the standard MP2 energy into atom-pair (bond)
contributions to demonstrate the local character of the MP2 correlation. The scheme is
related to the bond EDA proposed by Nakai and coworkers. 3]

The MP2 correlation energy can be divided into contributions from the atomic pair,

expressed as

G =R @19)
@M N & yl C..(uv] jb)
AES® =" > [2(a| |bj) —(aj | bi)] . (4.20)

ij ab,ueAveBg+€ a

Here, 1 have adopted the electron coordinate separation instead of the electron pair

separation®>>¥ to exploit the local nature of the MP2 correlation. This form is also

DAB s different from AE?®*

corr corr

consistent with AEZ® | Eq. (4.9). Note that AE because

atoms A and B in AE@"®

o are associated with the occupied and virtual orbitals,

respectively. The atom-pair MP2 correlation energies, AE2*® . were evaluated for C-

corr

E (A8

corr

30H32 polyene system with 6-31G(d) basis set. Fig. 4-7 shows the dependence of A

on the distance between the 4 and B atoms, r. Different color plots indicate different

combinations of elements for atoms A4 and B. Overall, the atom-pair contribution

(2)cc

corr . has small

decreases exponentially with respect to the distance, although that for AE
hump around » = 20 A. Reflecting the small number of correlated electrons around H

atom, AE2™ has the smallest contribution at the same distance . AEQ)™ is larger
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than AE2™ | probably due to more significant contribution of the charge-transfer

excitation configurations from the electron-rich C atoms to the electron-deficient H atoms,

similar to the discussion on the water system (see Section 4.4.2).
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Fig. 4-7. The absolute atomic pair MP2 correlation energy contribution with respect
to the interatomic distance. The circle, pentagon, square and triangle plots represent
the MP2 correlation energy contribution for C-C, C-H, H-C and H-H atomic pairs,

respectively.
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5. Approach to automatic error
control for DC-HF energy gradient
calculation

5.1. Introduction

Equilibrium and transition structures are one of the most important information to the
chemical reaction analyses. Therefore, the quantum chemical calculation method for
predicting such optimized molecular structures, in which the entire system can be
considered, is needed also in large-scale systems. The structure optimization calculation
with fragment-based electronic structure calculation methods have been developed.
However, in these methods, the energy error is introduced by the fragmentation. Recently,
an automated energy error control scheme in divide and conquer (DC) Hartree-Fock (HF)
calculation was proposed in a previous paper by Kobayashi et a/.l'! In this method, the
size of the buffer region, which considerably affects the accuracy of DC-HF calculation,
can be controlled properly in the SCF cycles. In this Chapter, ’'m aiming to extend this
automatic control method to the energy gradient calculation that is essential for the
structure optimization calculation and the energy gradient error estimation with Schwarz

and Thompson inequalities are proposed.
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5.2. DC-HF energy gradient expression

I briefly summarize the DC-HF energy gradient expression. Firstly, the DC-HF
procedure is mentioned. In this Section, the Gleek letters {u, v, ...} refer to atomic orbitals
(AOs). {p, q, ...} refer to molecular orbitals (MOs) expanded by the linear combination

of AOs, which is described as y, = » C, g, . In the DC method,”*! the entire system is
U

divided into several subsystems. Each subsystem of the DC method is composed of the
central region and the buffer region. The central region is separated from each other and
the buffer region is added for each central region. In the DC method, the density matrix
for the entire system can be obtained approximately by sum of the subsystem density
matrix, expressed as

subsystem

DDC Z Pa Da . (51)

v v = uv

Shown in Eq. (5.1), the partition matrix, P%, is introduced to average the value of the
buffer regions because the buffer regions overlap each other.

1  forueS(a)aveS(a)
P, = % for (1€ S(a) Av e B(a))orviceversa, (5.2)

0  otherwise
where S(a) is the set of AOs in the central region and B(a) is the set of AOs in the buffer
region.
The density matrix for the subsystem a is constructed with the Fermi function:

f,(X) = [L+exp(—=Bx)]" (B is the inverse temperature), which is described as
=2 Ty (e =27 )CICl (53)
p

-08 -



{C*} and {&”} represent the MO coefficients and orbital energies for subsystem a. These

are obtained from the Roothaan equation for each subsystem, which is described as

a DC a aQamr~a
F[D™]C: =&is°Ce, (5.4)

where F* and S“ are the Fock matrix and the overlap matrix for subsystem a. €

represent the universal Fermi level and is determined by the following constraint for the

total number of electrons, 7e:

n, =2Tr[ D*s]. (5.5)
In the DC method, the total energy for the entire system is calculated with converged

Fock and density matrices, which is expressed as

E[D°°]=Tr[ D**(H** +F[D*]) |, (5.6)

where H'® is the core Hamiltonian matrix.

The standard HF energy gradient?! is expressed as

OB, _ oH " 8(1/,u|ﬂc7)_8(vﬂ|,u0)
% _;D,w{ 0 +;DM{2 0 0 .

oD
v
+Z aQ FV#
uv

where Q is the atomic coordinate. In Eq. (5.7), the first term is called the Hellmann-
Feynman force and the second term is called Pulay force. Because MOs are normalized,
the following equation is constructed.

c’sC=1 (5.8)

Therefore, the derivative of Eq. (5.8) is described as

.
C scictBeircsEog, (5.9)

oQ 0Q 0Q
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By using Eq. (5.9) and the Roothaan-Hall equation: FC_ =¢,S C, the pulay term in

Eq. (5.7) can be rewritten as

> D >w (5.10)
p GQ i pr '
where W is the energy-weighted density matrix, expressed as
0CC
W = 2.6C,Cu (5.11)
Consequently, the standard HF energy gradient is given as
oH"* vu| o VA | uo
L { ZDA{ (i) 0o )}}
- ‘e , (5.12)

—Tr[W oS }
oQ

In the DC-HF energy gradient calculation, the Hellmann-Feynman term can be
calculated in the same way as the standard calculation. However, the two expressions
exist for the Pulay term. One is proposed by Yang et al.[! and the other is Kobayashi et
al! In the DC-HF energy gradient proposed by Yang and Lee, the Pulay term is
approximated by means of the density matrix obtained from the DC method. The energy-
weighted density matrix for the entire system is constructed approximately by the sum of

the density matrix for subsystems, described as

subsystem
,AWE = Z PaW. (5.13)
=2 (e —&7 ) &5 CrnCly (5.14)
p

Therefore, the DC-HF energy gradient can be approximately expressed by using the

standard Pulay term formula in Eq. (5.12), shown as
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O ™) oH chre o(vu| /10) o(vA| uo)
P _ D>
aQ Z Hv Z

v o 0 0
g ? ? (5.15)
~Tr| W ﬁ
aQ
On the other hand, the partition matrix in Eq. (5.2) is rewritten as
« _ Py +BR* forue L(a)/\veL(a),
”V 0 otherwise
(5.16)
1/2 forueS(a
Pe = ues(a) (5.17)
0 otherwise

where L(a)=S(a)uB(«) . The exact Pulay term in the DC-HF energy gradient

calculation can be constructed by means of the definition of Eq. (5.16) and the natures of

Hermitian in D* and F“, which is given as

aDDC 8D“
Z aQ ﬂ _zz HV HV
" o ) (5.18)
Yy (6D”‘ j
a ueS(a) aQ u

Eq. (5.18) cannot be rewritten like Eq. (5.10) because of the existence of the partition
matrix. Kobayashi et al. proposed the different DC-HF energy gradient expression with
Eq. (5.16). In their approach, it is assumed that D* has the idempotence, which is
described as

D ~ D*S*D" (5.19)
from the Pulay term at the finite electronic temperature proposed by Niklasson. In
addition, it is assumed that D” is determined variationally. Under the condition that D*

has the idempotence and is the variational solution, the relationship equation is given as
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D" B e (5.20)
aQ aQ

By substituting Eq. (5.20) for Eq. (5.18) and using the Roothaan equation for subsystem,

the Pulay term can be described as

aDa a — a as\z aQa
2 (OQ F L_ > > >Db. o0 WirSar (5.21)

a pueS(a) a pueS(a)vio

Therefore, instead of the formula proposed by Yang and Lee, the alternative DC-HF

energy gradient can be expressed as

aESE(Kobayashi) _ Z DPe {6H‘;‘jfe .\ Z Do {2 8(1//,[ | ﬂ,O') 8(\//1 | ,UO'):|}

a(-x) uv - 8(-x) Ao r -

aQ aQ
—ZT{%SS xa}

a

, (5.22)

where X% =W*S*D”. When [nxm] represents the size of matrix (n is row and m is
column), the size of matrix for S* and D* in X* are [L(a)xS(a)] and [S(a)*L(a)],

respectively.
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5.3. Estimation of DC-HF energy gradient

I propose a method which estimates the DC-HF energy gradient based on the
philosophy of the automated DC-HF method. As mentioned in Chapter 3, the automated
DC-HF method!!! is introduced the two-layered buffer region proposed by Dixon and
Merz®), which is called the inner buffer region [Bi(a)] and the outer buffer region [Bo(a)],
respectively. In the automated DC-HF calculation, the density matrix change, AD,

between the inner and outer buffer regions is constructed, described as

AD,, = Z{Pﬁz fo(et —&5)C,Cl =P 2 (e — gS)CZPCj;} (5.23)
a p p

P’“ is the auxiliary partition matrix, expressed as

1 for ue S(a) Ave S(a)
P =41/2  for [ue S(a)nv e (B (a) v B,(a))] or vice versa (5.24)
0 otherwise

P'® and ¢ the auxiliary Fermi level in transferring the outer buffer region to inner
buffer region. In the present method, I consider ¢ =& and Eq. (5.23) is rewritten as
~AD;’ = Z(P'f - P;;)Zp: f,(e—&)CoCo =Y AP DY | (5.25)
where

\p _{1/2 for (ue S(a)AveB,(a)) orvice versa

. (5.26)
0 otherwise

If the density matrix is changed only AD in Eq. (5.25), the Pulay term proposed by

Kobyashi et al. can be described as
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a
Pulay ZZ[aS Wasa[Lo(a)xS(a)]ADa[S(a)xLo(a)]]

- , (5.27)
Wozsot[L0 (a)xS(a)] Doc[S(az)xBO (a)] j

[ OGB: (@)L (@]
. Q

ap

where L (a)=S(a)u B (a)uB,(a). Similarly, the one electron part of the Hellmann-

Feynman term in Eq. (5. 22) can be described with AD as

aH core

g5 ZADDC (5.28)

To reduce the computational cost of the two-electron integrals, the Schwarz inequality

and the Thompson inequality!®! are employed:

(ii | k)| \/\ ij | \\/\ KUK = AA, . (5.29)

(ii [ k)| \/\ i | i \\/\ Kk [11)] = MM, (5.30)
Therefore, the upper limit of the two-electron part of the Hellmann-Feynman term can be

described as

TEI

(vt 10') (Vﬂ, | ya)}
AD D?
957|280 [ Q Q
V) |20| |8 v/1|yc7| 631
bC H
<> |AD D
< gho o o el

By introducing Eqgs. (5.29) and (5.30) into the two-electron integrals term in Eq. (5.31),

the estimated DC-HF energy gradient is expressed as

| DCHF|<

ZA o +Z|AD

251B @)L (@)]
aQ

[ (Ao, + AL )+2A, +(Mo, +M )+ Mm].zcw

Ao

, (5.32)

+

2

a u

W2 Salbo (@)xS (@) yalS(«)xB, (@)l j

ap

where AIQJ_ is the first derivative of the Schwarz inequality!'® and Min is the first

derivative of the Thompson inequality:
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oi . 00 .
Ao, = [%”%Jj’ (5.33)

Mo, = |y (5.34
in aQ aQ . .
Because the summation of Cys in Eq. (5.32) is constant, the following index can be

considered as

core

OHE®
> ADDS —*
~ oQ

egrad <

+Z|ADZ‘V [Z(AV% +A o )+ 2A, +(Mvoﬂ +M o )+ MVJ
i

(5.35)
asa[Bo (a)xLy ()]

ZZ( WaSa[Luw)xsw)]Da[S(a)xBuw)]J
P aQ

+

uu
The above €"* can be further divided into the contribution from atom A, €™ .

Consequently, I propose the following automatic determination scheme for the buffer

region in the DC-HF energy gradient method:

i. Evaluation of eJ* after constructing F [DDC] for each SCF cycle.

ii. Transferring all atoms in the outer buffer region of subsystem a to its inner buffer
region.
iii. Inclusion of the atoms in the sphere with radius 2™ centered on atom 4 with

d d . .
e, e, into the new outer buffer region of subsystem a.

Note that the above procedure has not been implemented yet in the present paper.
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5.4. Numerical assessment

Pulay

o ) and the one electron part of the

In this work, the estimation of the Pulay term ( g

Hellmann-Feynman term in Eq. (5.35) (g5~ ) were implemented to the GAMESS

IL121 and assessed its accuracy for a-helix glycine oligomer (GLY)io. The

package!
structure was constructed by using the Discovery Studio 2017 R2 software.!'3! In the DC
method, the inverse temperature parameter, £, in Eq. (5.25) was set to 200 a.u. To examine
the estimated and actual energy errors, the automated DC-SCF method is not performed
throughout this Section.

Firstly, the buffer size dependence of the estimated Pulay term in the final SCF cycles
are shown in Table 5-1. In Table 5-1, the maximum absolute deviations (MaxADs) and
mean absolute deviations (MADs) between the DC-HF energy gradient and the standard
HF energy gradient for each buffer size are shown. In addition, the actual and the
estimated DC-HF energy errors are also given. Here, the 6-31G basis set!'* was adopted.

As expected, in both the DC-HF energy and DC-HF energy gradient calculations, the
actual errors decreased with the increasing buffer size. In the energy calculation, the order
of the estimated energy error at the final SCF step was consistent with that of the actual
error. In the energy gradient calculation, the order of the estimated Pulay term error at the

final SCF step tended to be also consistent with that of the actual error.

For the same system, I also examined the estimated one electron part of the Hellmann-

Feynman term, as shown in Table 5-2. In this term, except for r." =3.5A, the actual

errors also decreased with the increasing buffer size. The MaxAD in 1" =3.5A is
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smaller than that in r" =4.0 A because it may be “lucky cancellation”. In contrast to

the Pulay term, the order of the estimated MaxAD and MAD at the final SCF step was
two or three orders of magnitude smaller than that of the actual errors. The estimated error
decreased drastically than the actual error. It is because that the energy gradient may be
sensitive to the density matrix change, which is affected widely. Consequently, the size
of the outer buffer region in the energy error estimation may be insufficient in the energy

gradient error estimation.

Table 5-1. Buffer size dependence of the actual and estimated Pulay term for a-helix

glycine oligomer (GLY)10. Standard HF energy is —2142.6879 Eh.

‘ DC _ =Stand DC Stand v ( AEPC
rbm /A rbout /A EHF EHF —AE /Eh VEPulay VEPulay ( Pulay)
/En /Ey * bohr! /Ey * bohr!
MaxAD 0.0265 0.0317
3.5 4.5 +0.0553 +0.0540
MAD 0.0043 0.0027
MaxAD 0.0188 0.0209
4.0 5.0 -0.0397 -0.0511
MAD 0.0026 0.0014
MaxAD 0.0021 0.0007
4.5 5.5 +0.0027 +0.0022
MAD 0.0003 0.0002
MaxAD 0.0007 0.0007
5.0 6.0 +0.0002 —0.0007
MAD 0.0001 0.0001
MaxAD 0.0006 0.0003
5.5 6.5 +0.0001 —0.0003
MAD 0.0001 0.0000
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Table 5-2. Buffer size dependence of the actual and estimated one electron part of the
Hellmann-Feynman term for a-helix glycine oligomer (GLY)10. Standard HF energy

18 —2142.6879 En.

_ DC _ =Stand DC Stand v ( AEPS
rbm /A rbout /A EHF EHF *AE /Eh VEPuIay VEF'ulay ( Pulay )
/En /Ey * bohr! /Ey + bohr!
MaxAD 0.5021 0.2697
3.5 4.5 +0.0553 +0.0540
MAD 0.1032 0.0208
MaxAD 0.5795 0.0998
4.0 5.0 —-0.0397 —0.0511
MAD 0.0808 0.0072
MaxAD 0.0664 0.0076
4.5 5.5 +0.0027 +0.0022
MAD 0.0107 0.0007
MaxAD 0.0201 0.0010
5.0 6.0 +0.0002 —-0.0007
MAD 0.0037 0.0001
MaxAD 0.0160 0.0002
5.5 6.5 +0.0001 —0.0003
MAD 0.0031 0.0000
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5.5. Concluding remarks

In this study, I have proposed an approach to determine the appropriate size of the
buffer region in the DC-HF energy gradient calculation. This estimation approach is based
on the philosophy of the automated DC-HF method. From the energy gradient expression
proposed by Kobayashi et. al., the Pulay term in the estimated DC-HF energy gradient is
derived. In addition, Schwarz and Thompson inequalities were introduced to reduce the
computational cost of the two-electron integrals. In this paper, the estimation of the Pulay
term and the one electron part of the Hellmann-Feynman term were implemented to the
GAMESS package.

I applied the above terms to a-helix glycine oligomer (GLY)io and confirmed that
MaxAD and MAD for the estimated DC-HF energy gradient tended to be consistent with
the actual values in the Pulay term. However, MaxAD and MAD in the one electron part
of the Hellmann-Feynman term tended to be smaller than the actual value.

In the geometry optimization calculation, the energy gradient for each atom is
calculated in each optimization step. Therefore, the approach which determine the size of
the buffer region based on the energy gradient differentiation between the optimization

steps is proposed alternatively in the future work.
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6. General conclusion

In this study, to control automatically the errors between the standard and the DC
methods, I have developed the method which determines the appropriate size of the buffer
region automatically with the error estimation scheme for DC-SCF, DC-MP2 and DC-HF
energy gradient calculations.

In Chapter 3, the automatic error control method in the DC-SCF calculation was
developed. In this method, the two-layer buffer regions proposed by Dixon and Merz was
introduced and the density matrix change between the layers was constructed with it. The
first order atomic energy variation can be calculated from the density matrix change. The
appropriate size of the buffer region in the DC-SCF calculation can be constructed with
the atomic energy contribution as a criterion. The present method was applied to the water
cluster, protein and alkane systems and worked effectively for these molecule systems. In
addition, the present method achieved linear scaling as well as the conventional DC
method.

In Chapter 4, an extension of the automatic error control method to the DC-MP2
calculation was developed. With the help of the idea of atomic orbital (AO)-Laplace MP2
method proposed by Héser, the atomic energy variation in the buffer region can be
estimated from the DC-MP2 electron correlation energy in each subsystem. Because of
the short-range nature of the MP2 dynamical electron correlation, the appropriate size of
the buffer region in the DC-MP2 calculation can be smaller than that in the DC-HF
calculation. Therefore, the appropriate size of the buffer region in the DC-MP2

calculation can be determined automatically by reducing from the size of the buffer region
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in the prior DC-HF calculation with the estimated atomic energy. The present method was
applied to the 100 water cluster system and the chignolin system. It was confirmed that
the DC-MP2 energy error can be systematically controlled by the estimated atomic energy.
It was also confirmed that the linear-scaling behavior of the DC-MP2 method is preserved
even with the present automation scheme, from a calculation of linear polyene system.

In Chapter 5, I have proposed the automatic error control scheme for the DC-HF
energy gradient calculation. Based on the philosophy of the automated DC-HF method,
the Pulay term in the estimated energy gradient was constructed with the idea of the DC-
HF energy gradient expression proposed by Kobayashi et. al. In addition, to reduce the
computational cost of the two-electron integrals, the upper limit of the Hellmann-
Feynman term was constructed with Schwarz and Thompson inequalities. The automatic
determination of the buffer region in the DC-HF energy gradient calculation was proposed
with the above estimation. In this paper, the Pulay term and the one-electron part of the
Hellmann-Feynman term in the estimated DC-HF energy gradient were applied to the a-
helix glycine oligomer (GLY)10. It was confirmed that the maximum absolute deviation
(MaxAD) and the mean absolute deviation (MAD) in the Pulay term tended to be
consistent with the actual errors. However, MaxAD and MAD in the one electron part of
the Hellmann-Feynman term tended to be smaller than the actual ones. Improvement of
the present scheme or the alternative approach will be the scope of future studies.

The present study makes it possible to perform the chemical reaction analysis for large-
scale systems with the high accuracy and short computational time. In addition, because
the effort of preliminary assessment for determination of the size of the buffer region can
be reduced, the convenience of the DC method was improved. In the future, it is expected

that people from other fields such as biochemistry perform the quantum chemical
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calculation and I hope that this study can contribute to a theoretical understanding of

chemical phenomena for large-scale systems.
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