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A systematic analysis of nuclear deformation is made for neutron-rich Ti, Cr, and Fe isotopes to explore the
nuclear structure in the island of inversion near N = 40, where strong nuclear deformation is predicted. The
nuclear ground states are obtained by the Skyrme-Hartree-Fock method in three-dimensional coordinate space,
which properly describes any nuclear shape. Three types of Skyrme interactions are employed to generate various
deformed states in its isotopic chain. We find that in the island of inversion the occupation of highly elongated
intruder orbits induces not only large quadrupole deformation but also large hexadecapole deformation. This
appears as a sizable enhancement of the nuclear matter radius, showing the characteristic shell effect of the
density profile near the nuclear surface. We show that the edge of the island of inversion, where the intruder orbit
starts being occupied, can be determined by measuring the enhancement of the total reaction cross section at
high incident energy. The possibility of constraining the hexadecapole deformation by a measurement of the
total reaction cross sections is discussed.

DOI: 10.1103/PhysRevC.105.014316

I. INTRODUCTION

Recent theoretical and experimental studies on short-lived
nuclei are addressing the nature of a proposed island of in-
version region near N = 40, and suggest that nuclear stability
is enhanced in neutron-rich isotones around 64Cr [1] and
62Ti [2]. The concept of the island of inversion [3] was first
proposed to explain unexpected natures such as excess sta-
bilization of atomic masses and low-lying first 2+ energies
of even-even nuclei around 32Mg [4–6]. Similar scenarios
were suggested to explain the onset of nuclear deformation
in neutron-rich magic nuclei at N = 8 [7–9] and 28 [10–13].
Also, the Jahn-Teller stabilization at N = 40 was theoretically
predicted [14]. Since this suggestion, many experimental re-
sults on the N = 40 island of inversion were reported: the
systematics of the atomic masses [2,15–17], low-lying excited
states [18–24], and quadrupole collectivity [25,26]. Despite
the above experimental information in this mass region, the
whole picture of the island of inversion near N = 40 is still
uncertain such as divergence between the peaks of the mass
stability and the quadrupole collectivity. Therefore, careful
investigations through various observables are crucially im-
portant.

Strong nuclear deformation is one of the most prominent
indications of the island of inversion. In this paper, the edge
of the island of inversion near N = 40 is defined as the oc-
cupation of the intruder orbit stemming from the spherical
0g9/2 orbit, leading to large deformation, which is a natural
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extension of the island of inversion near N = 20, where the
intruder orbit from the spherical 0 f7/2 orbit is occupied. We
remark that the effect of the configuration mixing around 64Cr
was discussed in detail [1]. To know the structure information
on the occupation of the intruder orbits related to f p- and
gds-configuration mixing, it is more advantageous to study
observables such as transition probabilities and nuclear radii.

Generally, the direct determination of the nuclear defor-
mation has some difficulty; e.g., one has to assume a simple
structure model to extract the quadrupole deformation pa-
rameter from observed electric quadrupole transition strength
[27]. Meanwhile, one promising measure that reflects the nu-
clear deformation is the nuclear matter radius. The nuclear
deformation drastically changes the density profiles near the
nuclear surface, leading to the enhancement of the nuclear
radius. Measuring the total reaction or interaction cross sec-
tion at high incident energy has been one of the standard
methods and has found various exotic phenomena such as
halos [28,29] and developed neutron skin [30] in neutron-rich
nuclei far from the β stability line. Recent developments of
the radioactive beam facility extend the applicable mass re-
gion: near dripline nucleus 29F [31] and medium-mass nuclei
beyond N = 28, 42−51Ca [32]. One of the advantages of the
total reaction cross section study is that the reaction theory
has been well tested, allowing us to directly relate the cross
section with the nuclear radius. Extracting nuclear size prop-
erties in the isotopic chain reveals structure changes due to
excess neutrons. A systematic measurement of the cross sec-
tions for neutron-rich Ne and Mg clearly showed the evolution
of the nuclear deformation with the help of reliable micro-
scopic theoretical models [33–40]. The sudden increases of
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the total reaction cross section at the edge of the island
of inversion near N = 20 were explained by the enhance-
ment of the nuclear matter radius coming from a diffused
nuclear surface induced by the strongly deformed nuclear
state.

Extending this idea, in this paper, we study the nuclear
shape of Ti, Cr, and Fe isotopes and discuss the possibility
to determine the edge of the island of inversion near N = 40
using the total reaction cross sections. The territory of the
island of inversion in this mass region has been explored
in large-scale shell-model calculations [1]. The experimental
indication that the border of the island of inversion goes be-
yond N = 50 was obtained in Ref. [41]. This work will show
the utility of the total reaction cross section measurement to
determine the location of the island of inversion in the nuclear
landscape. In the Ti, Cr, and Fe isotopes, the nuclear defor-
mation is strongly model dependent in N = 34–42. Though
most of the nuclei have a prolate shape, which is the so-called
prolate dominance [42–44], some nuclei may exhibit oblate
deformation. The shape of the wave function is determined
with a delicate balance of the single-particle (s.p.) energies
as the energy surface is soft with respect to the quadrupole
deformation parameter γ in this mass region [45,46]. Re-
cently, the deformation effect on the nuclear density profile
was discussed in detail [47]. The nuclear density was changed
not only for the surface region but also the internal region by
the nuclear deformation. Here we systematically investigate
how those different density profiles are observed in the total
reaction cross sections of Ti, Cr, and Fe isotopes at high
incident energy.

The paper is organized as follows. In the next section,
we briefly describe the microscopic structure and reaction
models employed in this paper. Setups of the Skyrme-Hartree-
Fock (HF) method and the Glauber model are given in
Secs. II A and II B, respectively. We perform the HF cal-
culations in three-dimensional Cartesian coordinates, which
can express any deformed shape. The model dependence is
investigated by examining three sets of the Skyrme-type ef-
fective interactions. Using the density distributions obtained
by the HF calculations, we compute the total reaction cross
sections using the Glauber model without introducing any
adjustable parameters. Section III presents our results. First,
in Sec. III A we discuss structure changes of Ti, Cr, and Fe
isotopes near N = 40, especially focusing on their nuclear
deformation at around the neutron numbers N = 34, 36, and
40 by the microscopic mean-field model. A comparison of
the calculated results with the experimental evaluation in-
cluding recent data of the two-neutron separation energy is
made. Following this comparison, we show in Sec. III B that
a systematic measurement of the total reaction cross sections
becomes important to determine the location of the island of
inversion near N = 40. Section III C discusses the role of the
intruder s.p. orbits to determine the nuclear shape, especially
focusing on the hexadecapole deformation. In Sec. III D, we
address the possibility to determine these deformation pa-
rameters from the nuclear radius using a macroscopic model
approach. The characteristics of the density profile of the
nuclei in the island of inversion are elucidated. Our conclusion
is made in Sec. IV.

II. METHODS

A. Skyrme-Hartree-Fock calculation in three-dimensional
coordinate space

In this paper, we employ the Skyrme-HF calculation in
three-dimensional (3D) coordinate representation. Since all
details can be found in Refs. [38,48,49], we only give a min-
imum explanation for the present analysis. The ground-state
wave function is expressed as the product of deformable s.p.
orbits represented by the 3D Cartesian mesh, which is flexible
enough to describe higher-order multipole deformation such
as the hexadecapole one. We obtain these s.p. orbits fully
self-consistently in the sphere of radius 20 fm based on the
Skyrme energy density functional [50], in which the total
energy is a functional of the intrinsic density E [ρint] and is
minimized using the imaginary-time method [51]. Three kinds
of Skyrme parameter sets, SkM∗ [52], SLy4 [53], and SkI3
[54], are employed to obtain various density profiles. The
SkM∗ interaction is one of the most used Skyrme interac-
tions for nuclear structure calculation. The SLy4 interaction
is constructed to reproduce a theoretical equation of state [55]
and experimental data in a wide mass region, especially for
neutron-rich nuclei. The SkI3 interaction is designed with
attention to the reproducibility of s.p. levels of 208Pb. There
have been proposed a lot of the Skyrme interaction sets in
the market [56]. Investigations of these three interactions
are useful as they produce, e.g., different deformations and
isovector density profiles [38,47,62]. The pairing interaction
may change the nuclear deformation and induces the frac-
tional occupation probability near the Fermi level. We remark
that an elaborated beyond-mean-field calculation was done in
this mass region [57]. The purpose of this study is to elucidate
the effect of various nuclear deformations on the total reaction
cross section. For the sake of simplicity, we only include the
nuclear deformation, which is the most essential ingredient to
determine the nuclear density profile. The pairing correlation
is ignored in the present analysis as it induces further model
dependence [58–62].

Once the ground-state wave function is obtained, the mean
value of an operator X (x, y, z) can be obtained by

〈X 〉 = 1

A

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ρint (x, y, z)X (x, y, z). (1)

The quadrupole deformation parameter is calculated as

β2 =
√

β2
20 + β2

22, (2)

where

β20 =
√

π

5

〈2z2 − x2 − y2〉
〈r2〉 , (3)

β22 =
√

3π

5

〈x2 − y2〉
〈r2〉 , (4)

with r2 = x2 + y2 + z2. We take z as the quantization axis
and choose it as the largest (smallest) principal axis for pro-
late (oblate) deformation. We note that the ground-state wave
function can be triaxially deformed as indicated by tan γ =
β22/β20 with 0◦ < γ < 60◦ in the present calculations.
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The ground-state wave function may exhibit higher-order
multipole deformation. We also calculate the hexadecapole
deformation parameter defined by, e.g., see Ref. [63],

β4 =
[

4∑
m=−4

β2
4m

] 1
2

(5)

with

β4m = 4π

3R4
〈r4Y4m〉, (6)

where R =
√

5
3 〈r2〉 is the nuclear radius. For later conve-

nience, we define the hexadecapole moment operator as
Q4m = r4Y4m, more explicitly with m = 0

Q40 = 3

16

√
1

π
(35z4 − 30z2r2 + 3r4). (7)

B. Total reaction cross sections by Glauber theory

To bridge a gap between the density profiles obtained by
the structure calculation and reaction observables, we need
an appropriate reaction model. Here we consider the total
reaction cross section on a carbon target at a high incident
energy of more than a hundred MeV. The Glauber theory [64]
formulated based on the adiabatic and eikonal approximations
efficiently describes high-energy nucleus-nucleus collisions
of interest. In the Glauber formalism, the total reaction cross
section is evaluated by

σR =
∫

db(1 − |eiχ (b)|2), (8)

where the squared modulus of the phase-shift function eiχ (b) is
integrated over the impact parameter vector b. The evaluation
of eiχ (b) is in general demanding because it involves multi-
dimensional integration [65–67]. To incorporate the multiple
scattering effect efficiently, here we employ the nucleon-target
formalism (NTG) as given in Ref. [68]:

iχ (b) ≈ −
∫

drP ρP(rP )

×
[

1 − exp

{
−

∫
drT ρT (rT )�NN (sP − sT + b)

}]
,

(9)

where rP(T ) = (sP(T ), zP(T ) ) denotes the two-dimensional co-
ordinate of the projectile (target) nucleus perpendicular to
the beam direction, zP(T ). The NTG includes higher multiple-
scattering terms and is known to give a better description than
optical-limit approximation [66,69–71]; hence it has been em-
ployed as a standard tool to analyze the nuclear matter radius
from measured cross sections [31,33,34,72,73]. The theory
requires the projectile ρP(rP ) and target density distributions
ρT (rT ) and the profile function �NN . We employ for the
target nucleus 12C the harmonic-oscillator type density [71]
that reproduces the rms point-proton radius of 12C, 2.33 fm
[74]. The parameters of the profile function are taken from
Ref. [75], which has been well tested, showing satisfactory de-
scriptions of nucleus-nucleus collisions including short-lived
nuclei, e.g., in Refs. [38,40,61,66,76]. We use the density

distributions obtained from the HF calculations as the input
projectile density distributions obtained by averaging over
angles r̂ = (θ, φ) [38]:

ρP(r) = 1

4π

∫
d r̂ ρint (r, r̂). (10)

Note that in this work we treat all the physical quantities in the
intrinsic frame, e.g., without angular momentum projection.
The validity of this averaging treatment of the intrinsic den-
sity was confirmed in Ref. [37] through a comparison of the
angular-momentum-projected density. Since the theory has no
adjustable parameter, the total reaction cross section properly
reflects the characteristics of the density profile obtained from
the microscopic structure model.

III. RESULTS AND DISCUSSION

A. Nuclear quadrupole deformation and structure
of Ti, Cr, and Fe isotopes

Figure 1 displays the calculated quadrupole deformation
parameter of Ti, Cr, and Fe isotopes. For convenience, we
use the familiar notation −β2 for oblate shapes. As we see
in the figure, the nuclear deformation is strongly interaction
dependent in N = 34–42 because the energy surface is soft
with respect to the quadrupole deformation parameter γ in
this mass region [45,46] like as near N = 20. In fact, some
nuclear states exhibit a triaxial shape: 62Ti (γ = 8.1◦) for
SkM∗; 56Cr (γ = 14.3◦), 60Cr (γ = 32.5◦), and 64Fe (γ =
28.2◦) for SLy4; and 54Ti (γ = 24.4◦), 58Ti (γ = 43.5◦), 60Cr
(γ = 39.2◦), 58Fe (γ = 17.2◦), 62Fe (γ = 19.6◦), and 64Fe
(γ = 21.9◦) for SkI3. Since the effect of the triaxiality is
small for the enhancement of the nuclear radius as verified for
Ne isotopes [37], quadrupole deformation with 0◦ < γ < 30◦
(30◦ < γ < 60◦) is treated as prolate (oblate) in the figure for
simplicity. The SkM∗ interaction tends to give strong defor-
mation and the other interactions favor a less deformed shape.
The most striking difference appears at N � 34 in which the
prolate deformation grows for the SkM∗ interaction, while the
others exhibit a less deformed shape. These differences can
be attributed to the neutron s.p. level structure which can be
explained in a similar way like in the island of inversion found
near N = 20. On moving N = 34 to 36, the SkM∗ interaction
makes the occupancy of the intruder orbit with the asymptotic
quantum number [nnz�]� = [440]1/2 [77] stemming from
the spherical 0g9/2 orbit and causes large prolate deformation.
On the other hand, the SLy4 and SkI3 interactions increase the
occupancy of the f p-shell orbit that results in much smaller
β2 values compared with the SkM∗ interaction. This is be-
cause the 0 f5/2–0g9/2 level spacings for the SLy4 and SkI3
interactions are larger than that for the SkM∗ interaction. In
fact, the calculated 0 f5/2–0g9/2 level spacings in a spherical
90Zr are 3.14 MeV, 4.99 MeV, and 7.09 MeV for the SkM∗,
SLy4, and SkI3 interactions, respectively. For the SLy4 and
SkI3 interactions, since the 0 f5/2–0g9/2 level spacings are
large, the occupation of the [440]1/2 orbit, i.e., two-particle-
two-hole (2p-2h) state, requires more energy than the energy
that can be obtained from reduction, whereas the occupation
of the [440]1/2 orbit is realized with the SkM* interaction
because of the small 0 f5/2–0g9/2 level spacing. With the SkM∗
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FIG. 1. Quadrupole deformation parameter β2 of (a) Ti, (b) Cr, and (c) Fe isotopes as a function of the neutron number. Triaxial deformation
with 0◦ < γ < 30◦ (30◦ < γ < 60◦) is treated as prolate (oblate). The thin lines that connect theoretical results are to guide the eye. The cross
symbols with an error bar indicate the empirical |β2| values evaluated by measured quadrupole transition strength [27].

interaction, the largest deformation for Ti, Cr, and Fe isotopes
at N = 38 is found with occupancy of the [440]1/2 and
[431]3/2 orbits. At N = 42, the SLy4 interaction prefers ad-
ditional occupancy of the orbit originated from the spherical
0g9/2 orbit, yielding different N dependence of the nuclear
deformation from the SkI3 interaction.

Since the nuclear structure strongly depends on the Skyrme
interaction employed, it is needed to verify these theoret-
ical models through a comparison with experimental data.
Figure 1 also displays the experimental evaluations of |β2|
[27]. Though they are model dependent, relying on a sim-
ple collective model, and only show the magnitude of the
quadrupole deformation, their trend can be a guide to the
nuclear deformation in this mass region. All the evaluated |β2|
values exhibit large quadrupole deformation N � 36. Their
trends in Cr and Fe isotopes follow the results of the SkM∗

interaction. The SLy4 and SkI3 interactions are relatively less
reproductive, predicting small collectivity for the Cr and Fe
isotopes at N = 36–40. In Ti isotopes, the magnitudes of the
experimental evaluations are consistent with all the theoretical
results because of their large uncertainties. Based on the sys-
tematic relation between the |β2| value and 2+

1 energies, the
low-lying 2+

1 states in 60,62Ti strongly show large quadrupole
collectivity [22,24]. Therefore, also in Ti isotopes, the SkM∗

interaction appears to be the most reasonable among the three
interactions employed in this paper.

Since the nuclear deformation is sensitive to the energy
levels near the Fermi level, we also compare our results
with available experimental data of the two-neutron separation
energy, which has intensively been studied in recent years.
Figure 2 plots the two-neutron separation energies (S2n) of
Ti, Cr, and Fe isotopes. The experimental data are taken from
the AME2020 database [78] and recent measurements [2,79].
Overall agreement is obtained for all interactions employed
here around N = 34–36. In N � 34, the SkI3 interaction tends
to overestimate the data. The SLy4 interaction gives excellent
agreement with the experimental data. The SkM∗ predic-
tion nicely follows the experimental results in Ti isotopes
but slightly overestimates the data in Cr and Fe isotopes. It
appears that these effective interactions may not be accurate

enough to describe the two-neutron separation energies in
this mass region. We note, however, that the behavior does
not follow that of the nuclear deformation though we see
notable differences in the nuclear deformations as given in
Figs. 1 and 5. On the other side, the S2n trends may indicate
that the enhancement of nuclear stability in this region could
be affected not only from the quadrupole deformation but also
from the other effects, e.g., the core swelling effect [47,49].

B. Nuclear radii and total reaction cross sections
in the island of inversion near N = 40

In Sec. III A, we overviewed the experimental situation on
the structure of the Ti, Cr, and Fe isotopes and found that
more experimental data are needed to establish the structure
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 26  28  30  32  34  36  38  40  42  44  46
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Cr

(+5 MeV)
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(+10 MeV)

S
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)

Neutron number

SkM*
SLy4
SkI3
Expt.

FIG. 2. Two-neutron separation energies of Ti, Cr, and Fe iso-
topes as a function of the neutron number. For clarity, 5 MeV for Cr
and 10 MeV for Fe are respectively added to the results. The SkM∗,
SLy4, and SkI3 interactions are employed. The theoretical results
for N even nuclei are plotted. The lines are to guide the eye. The
experimental data are taken from Refs. [2,78,79].
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FIG. 3. Rms matter radii of Ti, Cr, and Fe isotopes as a function
of the neutron number. For clarity, 0.2 and 0.4 fm are added to the
results of Cr and Fe, respectively. The lines are to guide the eye. The
SkM∗, SLy4, and SkI3 interactions are employed.

of those isotopes near N = 40. This motivates us to study
the systematics of nuclear matter radii, which are sensitive
to changes in the nuclear deformation. Figure 3 displays the
root-mean-square (rms) matter radii of Ti, Cr, and Fe iso-
topes, rm =

√
〈r2〉. For the same Skyrme interaction, similar

neutron-number dependence is predicted for the rms radii
of those isotopes. However, the SkM∗ interaction exhibits
different characteristics compared with the SLy4 and SkI3
ones. The SkM∗ predicts a sudden increase of the rms radius
at N = 34, which is exactly a consequence of the onset of
the intruder configuration and resultant nuclear deformation
as given in Figs. 1 and 5. The nuclear radii obtained with
the SLy4 and SkI3 interactions are largely enhanced not at
N = 34 but at N = 42, which are comparable to those ob-
tained with the SkM* interaction. These calculations clearly
demonstrate a strong correlation between the occupation of
the intruder configuration and the sudden increase of the nu-
clear radius. Therefore the edge of the island inversion can be
observed experimentally as the sudden increase of the nuclear
radius.

We examine how those differences are significant in cross
section measurement. It is again stressed that the cross sec-
tion calculations do not include adjustable parameters and the
reliability of the adopted Glauber model has been established.
As inputs to the theory are the density distributions obtained
by the microscopic mean-field model, a systematic trend of
the cross sections will properly describe the structure changes
owing to the nuclear deformation. Figure 4 displays the total
reaction cross sections on a carbon target. The incident energy
is chosen as 240 MeV/nucleon, where the recent interac-
tion cross section measurements were performed [31,32]. The
differences of the nuclear radii in 34 < N < 40 are further
emphasized in the total reaction cross sections using a car-
bon target because the carbon target has more sensitivity of
the density profile beyond the nuclear surface [38,80]. The

 1500
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FIG. 4. Total reaction cross sections on a carbon target at 240
MeV/nucleon of Ti, Cr, and Fe isotopes as a function of the neutron
number. For clarity, 200 and 400 mb are added to the results of Cr
and Fe, respectively. The lines are to guide the eye. The SkM∗, SLy4,
and SkI3 interactions are employed.

cross section differences in 34 < N < 40 are large at most
more than 2%, which can be distinguished by measurement
as its uncertainty is typically � 1% [31,32]. A systematic
cross section measurement of these isotopes is of cardinal
importance because it will offer further evidence to determine
the edge of the island of inversion near N = 40, where the
strong deformation is predicted.

C. Enhancement of hexadecapole deformation
in the island of inversion

In this section, we discuss a unique feature of the nu-
clear deformation in the island of inversion. As discussed in
Sec. III A, the occupation of the [440]1/2 orbital is a key to
determine the quadrupole deformation in N � 34. Because
this is the most elongated along the z axis, the occupancy
may induce higher multipole deformation, i.e., hexadecapole
deformation. Figure 5 plots the hexadecapole deformation
parameter β4 for Ti, Cr, and Fe isotopes. As we see in the
figure, the β4 value drastically increases at N = 36 for SkM*
and N = 42 for SLy4 and SkI3, where the [440]1/2 orbit is
occupied, i.e., the island inside.

To see the role of the elongated orbitals more quanti-
tatively, we calculate the hexadecapole moment 〈Q40〉sp =
〈[nnz�]�|Q40|[nnz�]�〉 for each s.p. orbit with the asymp-
totic quantum number [nnz�]�, and evaluate its cumulative
sum in order of the s.p. energy from lowest to highest. We
confirm that contributions of the other hexadecapole mo-
ments 〈Q4m〉sp with m �= 0 for all contributed s.p. orbits are
negligible at most ≈1 fm4, and thus 〈Q40〉sp can be a good
measure of the nuclear hexadecapole deformation. As we see
in Sec. III A, the SkM∗ interaction can be the most favorable
choice among the three interactions employed in this paper.
Hereafter we only discuss the results obtained with the SkM∗
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FIG. 5. Hexadecapole β4 deformation parameters of (a) Ti, (b) Cr, and (c) Fe isotopes as a function of the neutron number.

interaction otherwise noted. Figure 6 compares these obtained
cumulative sums for N = 38 isotones, where the β4 values are
largest. We sum up proton and neutron contributions simulta-
neously and hence only the neutron contribution is considered
when the horizontal axis exceeds the proton number for each
isotope. We find sudden increases at N = 10, 22, and 36,
which correspond to the occupation of the [nn0]1/2 orbital
with n = 2, 3, and 4, respectively. By further adding more
neutrons to these neutron numbers, the hexadecapole moment
decreases due to the occupation of less prolate orbitals. The
〈Q40〉sp value tends to be large for prolately deformed orbitals
and the smaller 〈Q40〉sp value is found for oblate deforma-
tion, which can be expected from the definition of Q40 of
Eq. (7). An approximate expression of the hexadecapole mo-
ment of the axially symmetric anisotropic harmonic-oscillator
s.p. orbit with the asymptotic quantum number [nnz�] can be
obtained as [81]

〈nnz�|Q40|nnz�〉 =
√

9

4π

(
h̄2

2Mω

)2

× 3

4
(27n2

z − 22nzn + 3n2

− �2 − 6nz − 2n), (11)

where M is the nucleon mass. By taking h̄ω = 40A−1/3 MeV
with A = 62, we get 〈nn0|Q40|nn0〉 = 43, 130, and 260 fm4

for n = 2, 3, and 4, respectively, which roughly explains
the trend obtained by the HF calculations: The correspond-
ing increases of the cumulative 〈Q40〉sp can be found in
Fig. 6, whose values are 191.9/4 = 48.0, 379.7/4 = 94.9,
and 332.7/2 = 166.3 fm4 at the neutron/proton number 10,
24, and 36 for 62Cr. The contribution of the [440]1/2 orbit
is large and comparable to that of the [330]1/2 orbit despite
that only 2 neutrons are occupied in this orbit, while in the
[220]1/2 and [330]1/2 orbits an additional 2 protons con-
tribute to the hexadecapole moment.

For 64Fe, an increase of the 〈Q40〉sp value is rather milder
than the others. This is because the proton number Z = 26
fills the [312]5/2 orbit, in which the 〈312|Q40|312〉 value
is negative, leading to smaller hexadecapole deformation in
total. In the case of light nuclei, this proton configuration

effect is more drastic. For example, for Ne, Mg, and Si in
the island of inversion near N = 20, a sudden increase of
the 〈Q40〉sp value is also found when the [330]1/2 orbit is
occupied at N = 20 for 30Ne and 32Mg. In fact, the β4 value
increases from N = 18 to 20: from β4 = 0.03 to 0.22 for Ne,
from β4 = 0.00 to 0.15 for Mg with the SkM∗ interaction. In
contrast, for Si, the state exhibits a spherical shape because
the proton number Z = 14 favors the oblate deformation. We
also note that the large β4 values for N ≈ Z of Ti, Cr, and Fe
isotopes come from large hexadecapole moments due to the
occupancy of the [330]1/2 orbit for both proton and neutron.

The density distribution of the deformed nuclear state of-
fers a more intuitive picture of the role of the intruder orbits
for the nuclear hexadecapole deformation. Figure 7(a) draws a
contour plot of the intrinsic density distribution of 58Ti, where
the last two neutrons fill in the [440]1/2 orbit with the SkM∗

interaction regarded as the edge of the island of inversion. The
nuclear radii R, R(1 + β2Y20), and R(1 + β2Y20 + β4Y40) are
also plotted as a guide of the nuclear deformation. As clearly
seen in the figure, a nuclear radius only with the quadrupole
component (1 + β2Y20) does not describe the total density
distribution properly, while the nuclear radius that includes
the hexadecapole component nicely follows the contour of
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FIG. 6. Cumulative single-particle hexadecapole moment of the
N = 38 isotones. The arrows indicate N, Z = 10, 22, and N = 36,
where [nn0]1/2 orbit is occupied. The SkM∗ interaction is employed.
See text for details.
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FIG. 7. Contour plot of the intrinsic density distribution of 58Ti with the SkM∗ interaction, (a) total, (b) the sum of the [220]1/2, [330]1/2,
and [440]1/2 orbits, and (c) the others. The sum of the density distributions of (b) and (c) corresponds to (a). The values at the peaks are
(a) 0.184 (b) 0.096 fm−3, and (c) 0.171 fm−3. The contours are drawn in intervals of 0.005 fm−3. Thick lines denote the nuclear radii considering
spherical (1), quadrupole (1 + β2Y20 ) deformation, and hexadecapole deformation (1 + β2Y20 + β4Y40 ).

the total density distribution, showing a “lemon” like shape.
Figure 7(b) displays the intrinsic densities of the sum of the
[220]1/2, [330]1/2, and [440]1/2 orbits which give the three
largest hexadecapole moments, and the remaining density
subtracted from the total one is also plotted in Fig. 7(c). The
role of these elongated orbitals is apparent: The kurtosis of
the total density distribution comes from these orbitals, while
the remaining density shows an almost spherical shape.

In general, the occupation of the [nn0]1/2 orbitals strongly
enhances the hexadecapole deformation. A sudden increase
of both the nuclear quadrupole and hexadecapole deformation
is a strong indication of the edge of the island of inversion.
Determination of the nuclear hexadecapole deformation will
have of particular importance as it is sensitive to the occupa-
tion of the intruder [nn0]1/2 orbit. We note that the inclusion
of the pairing correlations induces the fractional occupation
number of the s.p. orbits near the Fermi level. An increase of
the nuclear deformation parameters can be somewhat milder
compared to the present results.

D. Quadrupole and hexadecapole deformation effects
on nuclear radius and surface density profile

As we see in Sec. III C, the strong nuclear deformation is
induced by the occupation of the intruder orbit and crucially
affects the nuclear density profile near the nuclear surface.
This appears simply as the enhancement of the nuclear ra-
dius. One may think that the deformation parameters can be
extracted from the change of the nuclear radius. For small
surface deformation with 1 + ∑

λ�2∈even β̄λYλ0, the following
formula has often been used to estimate the enhancement of
the nuclear radius from the spherical limit [37,82]:

�
[
r2

mac.

] ≈ 5

4π

∑
λ�2∈even

β̄2
λ. (12)

We note that the hexadecapole deformation also induces
the radius enhancement, which is usually ignored. However,
we see the calculated β4 values grow for N > 34 and be-
come even comparable to the β2 value. Since Eq. (12) could
offer a direct relationship between the nuclear radius and
deformation, it is worthwhile to investigate the applicable
range of the formula. To prepare the nuclear radii with a

spherical limit, we calculate the nuclear radii obtained from
the spherical constrained HF calculations using the filling
approximation [47,49]. Figure 8 compares the the relative dif-
ference between the mean-square matter radii of the full and
spherical constrained HF calculations �[r2

HF] = [r2
m(full) −

r2
m(sph.)]/r2

m(sph.) and �[r2
mac.] with β̄2, β̄4 and only with β̄2.

Here we regard β̄λ as βλ which is calculated from the HF
intrinsic moments of Eqs. (2) and (5). The results with the
SkM∗ interaction are shown as it exhibits the largest defor-
mation among the other interactions. We find that the simple
formula of Eq. (12) works well for N � 34 where |β2| � 0.2.
The β4 contribution is minor as the β4 value is also small in
such small |β2| values. For N � 36, the square radii from the
formula significantly overestimate the prediction of the HF
calculations. We also find large β4 contributions accompanied
with large quadrupole deformation β2 � 0.2, which induce
a further deviation from the HF result. We also evaluate the
hexacontatetrapole deformation parameters β6 for all nuclei
studied in this paper and confirm they are small, less than 0.01.

To incorporate the finite thickness of the nuclear surface
which is ignored in Eq. (12), we consider a deformed Fermi-
type (DF) density distribution

ρDF(r) = 1

4π

∫
d r̂

ρ0

1 + exp [(r − R(θ ))/a(θ )]
(13)

with axially symmetric deformed nuclear surface [81,83]

R(θ ) = R′
0[1 + β̄2Y20(θ ) + β̄4Y40(θ )], (14)

a(θ ) = a0

√
1 + [β̄2∇Y20(θ )|r=R(θ ) + β̄4∇Y40(θ )|r=R(θ )]

2
.

(15)

First, R′
0 = R0 and a0 are determined by a least-squares fit-

ting of the spherical constrained HF density as prescribed in
Refs. [84,85] with a spherical limit β̄2, β̄4 = 0. The ρ0 value
is determined by the normalization 4π

∫ ∞
0 r2ρDF(r) = A for

given R0 and a0. Then β̄2 and β̄4 are determined to simul-
taneously reproduce the β2 and β4 values obtained from the
HF calculation. The R′

0 value is uniquely determined by
the volume conservation. Note that β̄2 and β̄4 correlate with
the intrinsic deformation parameters β2 and β4, that is, the
surface deformation with β̄2 (β̄4) also induce β4 (β2) in the in-
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of Eq. (12) including both the quadrupole and hexadecapole deformation parameters (β2, β4), and that only with β2 for (a) Ti, (b) Cr, and (c) Fe
isotopes. The SkM∗ interaction is employed for the HF calculations. The results with the deformed Fermi-type (DF) density distributions are
also plotted. See text for details.

trinsic density distribution defined in Eq. (13). Figure 8 shows
these �[r2] obtained with the DF density distributions. The
results are almost identical with the ones obtained by the
formula of Eq. (12) which assumes a sharp cut radius. This
indicates that the surface density profile in the island of inver-
sion cannot be explained by simple geometric deformation;
i.e., the R0 and a0 values are no longer fixed parameters.

To quantify the changes of the surface density by the nu-
clear deformation, we evaluate the resultant nuclear surface
diffuseness a in a spherical limit for each density distribu-
tion by using the same way described above. Note that the
one with the spherical constrained HF corresponds to a0.
Figure 9 plots the diffuseness parameters of the full HF, DF,
and spherical constrained HF. The behavior of the a0 value
can be explained by considering a standard shell model filling
[87]: The constant behavior is due to the occupation of the
high-l orbits, 0 f7/2, 0 f5/2, and 0g9/2, while the low-l orbits,
1p3/2 and 1p1/2, in 28 � N � 34 enhance the surface diffuse-
ness. Compared with the diffuseness parameter extracted from
the spherical constraint HF density, the a value of both HF
and DF is significantly enhanced by the nuclear deformation.

The diffuseness parameters obtained by the DF distributions
overestimate the full HF ones in 36 � N � 40 despite that
the DF results nicely agree with the HF results of the outside
of the island of inversion. We calculate the �[r2

m] value with
the DF density by varying a0 so as to reproduce the resultant
diffuseness parameter a for the HF calculation. As shown in
Fig. 8, the results are improved for 36 � N � 40, implying
the surface diffuseness changes beyond the geometrical one,
while the systematic behavior due to the nuclear deformation
is still present, and thus the nuclear deformation parameters
can be constrained if one knows details about the nuclear
density profile near the nuclear surface.

We note that this reduction of the diffuseness parameter
is nontrivial because the nuclear deformation correction to
the surface diffuseness is always positive. See Eq. (15). We
remark that anticorrelation between the nuclear deformation
and surface diffuseness was reported in Ref. [83]. Reference
[47] demonstrated that the nuclear deformation changes the
density profile drastically and depends strongly on the shell
structure near the Fermi level. From a microscopic point
of view, in N > 34, the intruder [440]1/2 orbit induces the

FIG. 9. Diffuseness parameter extracted from the full HF, deformed Fermi-type (DF), and spherical constrained HF densities for (a) Ti,
(b) Cr, and (c) Fe isotopes. The SkM∗ interaction is employed. See text for details.
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mixing of the spherical 0g9/2, 1d5/2, and 2s1/2 orbits. The
lower angular momentum orbits, 1d5/2 and 2s1/2, play a role
to enhance the nuclear radius owing to the large penetrability
of the neutrons near the nuclear surface, while the 0g9/2 orbit
suppresses the enhancement of the nuclear radius, which has
the sharpest nuclear surface distribution. In fact, the neutron
occupation number of the 0g9/2, 1d5/2, and 2s1/2 orbits was
found to be 2.61, 0.95, and 0.04, respectively, for 62Cr [47].
We also remark that this large mixing of the 0g9/2 orbit is con-
sistent with the finding of Ref. [1]. Consequently, the resulting
small surface diffuseness leads to the reduction of �[r2

m] at
N � 36. This shell effect induces the nontrivial change of the
nuclear density profile, which cannot be explained from the
simple geometric formulas. Similar behavior but a mixing of
1p3/2 and 0 f7/2 at the island of inversion N � 20 for Ne and
Mg isotopes was reported in Ref. [85].

Figure 10 displays the total reaction cross sections cal-
culated with the full HF, spherical HF, DF, and diffuseness-
corrected DF density distributions of Cr isotopes at 240
MeV/nucleon. For the sake of comparison, the cross sec-
tion values with the DF density distributions are normalized
to the full HF result at N = 32. The use of a carbon target
has an advantage for studying details of the nuclear density
profile, i.e., the deformation effect on the nuclear surface,
because the density profile near the nuclear surface is more
pronounced than a proton target [80]. In fact, we see a strong
sensitivity in the cross section differences in N � 34, which
can be distinguished with the present experimental precision
[31,32]. Therefore, a systematic measurement of the total
reaction cross sections in the isotope chains is strongly desired
to get the structure information at the edge of and in the
island of inversion. We also remark that proton-nucleus elastic
scattering at forward angles is useful to obtain the nuclear
surface diffuseness [84–86] as complementary evidence.

It should be noted that this finding opens the possibil-
ity of determining the hexadecapole deformation parameter
from measurements of the total reaction cross sections. For
example, one may assume the DF density distribution of
Eq. (13), which includes four free parameters. They can be
fixed by measurements of the total reaction cross sections at

various incident energies and target nuclei. The parameters
can further be constrained with information of the quadrupole
deformation which can be deduced from a measurement of the
electric-quadrupole transition strength. A careful investigation
is necessary to extract these parameters quantitatively.

IV. CONCLUSION

We have made a systematic analysis of nuclear deformation
and discuss their effects on the nuclear radius or the total
reaction cross section for even-even neutron-rich Ti, Cr, and
Fe isotopes using reliable microscopic mean-field structure
and reaction models. We have evaluated three standard sets
of effective interactions for the mean-field calculations to
examine the model dependence that comes from the nuclear
deformation.

Using those obtained density distributions, we have cal-
culated the total reaction cross sections without introducing
any free parameter. In general, the cross section is enhanced
if the nucleus exhibits strong deformation. We show that the
enhancement is significant and can be identified with the
recent experimental precision. Given the present comparison
of the theoretical calculations with the available experimen-
tal evaluations of the quadrupole deformation and the recent
data of the two-neutron separation energies, N > 36 is most
likely in the island of inversion, where a sudden increase
of nuclear deformation is predicted. The total reaction cross
section offers more concrete evidence to determine the edge
of the island of inversion near N = 40.

Characteristic nuclear deformation is found in the island
of inversion: Strong hexadecapole deformation occurs si-
multaneously with the quadrupole deformation due to the
occupation of the strongly deformed [nn0]1/2 Nillson orbit.
This characteristic structure drastically changes the density
profile of these nuclei. However, we find that the nuclear
radius enhancement in the island of inversion cannot be ex-
plained by a simple geometrical deformation model, which
implies nontrivial changes of the density profile that come
from the shell structure near the Fermi level. This motivates
us to study higher-order size properties of nuclei further than
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the nuclear radius, e.g., nuclear diffuseness [84], and higher
radial moments [88].

The determination of both the nuclear radii and surface
density profile will open a way to determine the deformation
parameters of these nuclei, especially for the hexadecapole
deformation. For this purpose, measurements of the total re-
action cross sections for those isotopes at different incident
energies and target nuclei are highly desired. Complemen-
tary information of the experimental quadrupole deformation

parameter and nuclear surface diffuseness can further help
determine the higher-order term of the nuclear deformation.
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