
 

Instructions for use

Title Domination for Latin Square Graphs

Author(s) Pahlavsay, Behnaz; Palezzato, Elisa; Torielli, Michele

Citation Graphs and combinatorics, 37, 971-985
https://doi.org/10.1007/s00373-021-02297-7

Issue Date 2021-03-29

Doc URL http://hdl.handle.net/2115/84577

Rights This is a post-peer-review, pre-copyedit version of an article published in Graphs and Combinatorics. The final
authenticated version is available online at: https://doi.org/10.1007/s00373-021-02297-7.

Type article (author version)

File Information Graphs Comb.37_971-985.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


DOMINATION FOR LATIN SQUARE GRAPHS

BEHNAZ PAHLAVSAY, ELISA PALEZZATO, AND MICHELE TORIELLI

Abstract. In combinatorics, a latin square is a n×n matrix filled
with n different symbols, each occurring exactly once in each row
and exactly once in each column. Associated to each latin square,
we can define a simple graph called a latin square graph. In this
article, we compute lower and upper bounds for the domination
number and the k-tuple total domination numbers of such graphs.
Moreover, we describe a formula for the 2-tuple total domination
number.

1. Introduction

Domination is well-studied in graph theory and the literature on this
subject has been surveyed and detailed in the two books by Haynes,
Hedetniemi, and Slater [8,9]. Throughout this paper, we use standard
notation for graphs, see for example [2].

Definition 1.1. Let G = (VG, EG) be a simple graph. A set S ⊆
VG is called a dominating set if every vertex v ∈ VG \ S has at least
one neighbour in S, i.e., |NG(v) ∩ S| ≥ 1, where NG(v) is the open
neighbourhood of v. The domination number, which we denote by γ(G),
is the minimum cardinality of a dominating set of G.

Similarly to [12], the notion of domination has a central role in this
paper. Among its many variations, we are also interested in k-tuple
total domination, which was introduced by Henning and Kazemi [10]
as a generalization of [7], and also recently studied in [13].

Definition 1.2. Let G = (VG, EG) be a simple graph and k ≥ 1. A
set S ⊆ VG is called a k-tuple total dominating set (kTDS) if every
vertex v ∈ VG has at least k neighbours in S, i.e., |NG(v) ∩ S| ≥ k.
The k-tuple total domination number, which we denote by γ×k,t(G), is
the minimum cardinality of a kTDS of G. We use min-kTDS to refer
to kTDSs of minimum size.

Since, by definition, every kTDS is a dominating set, we have that
for all k ≥ 1

γ(G) ≤ γ×k,t(G). (1)

An immediate necessary condition for a graph to have a k-tuple total
dominating set is that every vertex must have at least k neighbours.
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For example, for k ≥ 1, a k-regular graph G = (VG, EG) has only one
k-tuple total dominating set, namely VG itself. Moreover, notice that
a k-tuple total dominating set has at least k + 1 elements.

2. Latin squares

Latin squares have been around for several centuries. In recent years,
together with their associated graph, they have been intensively studied
because of their connections with other area of mathematics and their
practical applications. We refer to [4] for an introduction on latin
squares.

Definition 2.1. A latin square of order n ≥ 1 is a n × n matrix
containing n symbols such that each row and each column contains
exactly one copy of each symbol.

Definition 2.2. In a latin square L of order n, if, for some 1 ≤ l ≤ n,
the l2 cells defined by l rows and l columns form a latin square of order
l, it is called a latin subsquare of L.

Unless otherwise specified, in this paper we use [n] = {1, 2, . . . , n}
as the symbol set and also to index the rows and columns of a latin
square.

It is clear that, if we permute in any way the rows, or the columns,
or the symbols of a latin square, the result is still a latin square.

Let L be a latin square of order n with cells {(r, c) | r, c ∈ [n]},
then each cell contains a symbol from an alphabet of size n, and no
row or column of L contains a repeated symbol. Hence, given a cell
(r, c) containing the symbol s = Lr,c, we can represent it by the triple
(r, c, s).

Definition 2.3. For a latin square L, we define

E(L) = {(r, c, s) | r, c, s ∈ [n] and s = Lr,c}

to be the set of entries of L.

1 2 3
2 3 1
3 1 2

Figure 1. A latin square of order 3 and its associated
latin square graph.
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Definition 2.4. Two latin squares L and L′ (using the same symbol
set) are isotopic if there is a triple (σ, τ, δ), where σ is a row permuta-
tion, τ a column permutation, and δ a symbol permutation, carrying L
to L′. This means that if (r, c, s) is an entry of L, then (σ(r), τ(c), δ(s))
is an entry of L′. The triple (σ, τ, δ) is called an isotopy.

In the theory of latin squares, the notion of partial transversal plays
an important role.

Definition 2.5. Let L be a latin square of order n. A partial transver-
sal is a subset of E(L) such that no two entries share the same row,
column or symbol. We say that a partial transversal is maximal if it is
not properly contained in any other partial transversal. A transversal
is a partial transversal of cardinality n, i.e. it is a set of entries which
includes exactly one entry from each row, column and symbol.

Example 2.6. If we consider L the latin square of Figure 1, we can
easily construct a transversal by considering the elements on the main
diagonal, i.e. {(1, 1, 1), (2, 2, 3), (3, 3, 2)}.

The idea of constructing a simple graph from a latin square was
introduced by Bose in [3] as example of strongly regular graphs. See [6,
Section 10.4] for further discussion.

Definition 2.7. The latin square graph of a latin square L is the sim-
ple graph Γ(L) with vertex set E(L) and an edge between two distinct
entries whenever they share a row, a column or a symbol. Accordingly,
each edge of Γ(L) is called, respectively, a row edge, a column edge or
a symbol edge.

Remark 2.8. Latin square graphs are invariant under isotopy, i.e. if
two latin squares are isotopic, then their associated graphs are isomor-
phic.

It is trivial that Γ(L) is the complete graph on n2 vertices if and
only if n = 1, 2. A latin square graph Γ(L) is a 3(n− 1)-regular graph,
and any two different vertices (r, c, s) and (r, c′, s′) have n neighbors in
common, i.e. n − 2 vertices in the row r and the two vertices in the
columns c and c′ with symbols s′ and s, respectively. Similarly, any
two different vertices (r, c, s) and (r′, c, s′) have n neighbors in common.
Moreover, it can be easily seen that any two distinct vertices (r, c, s)
and (r′, c′, s) have also n neighbours in common.

As noted in [1], any maximal partial transversal of L corresponds
to a dominating set in Γ(L). Notice that, however, not all dominating
sets correspond to a maximal partial transversal. For example, if we
consider L the latin square of Figure 1, we can easily construct a dom-
inating set of Γ(L) that is not a partial transversal by considering the
set {(1, 1, 1), (2, 1, 2), (3, 1, 3)}.
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3. k-tuple total dominating set

In [11] and [5], the authors investigated the relationship between
domination in latin square graphs and transversal in latin squares,
motivating the study of various types of domination for such graphs.

Since every latin square graph Γ(L) is a 3(n−1)-regular graph, when
studying min-kTDS we should consider k ≤ 3(n−1). This fact together
with the definition of γ×k,t(G) give us the following.

Lemma 3.1. Let L be a latin square of order n. Then

γ×3(n−1),t(Γ(L)) = n2.

If we consider a latin square L of small order, we can easily compute
γ×k,t(Γ(L)).

Lemma 3.2. Let L be a latin square of order 2. Then γ×1,t(Γ(L)) = 2
and γ×2,t(Γ(L)) = 3.

Proof. This is a direct consequence of the fact that every k-tuple total
dominating set has at least k+ 1 elements and the fact that any choice
of two vertices in Γ(L) gives a 1TDS and any choice of 3 vertices in
Γ(L) gives a 2TDS. �

Lemma 3.3. Let L be a latin square of order 3. Then γ×1,t(Γ(L)) = 2
and γ×2,t(Γ(L)) = 3.

Proof. We first study γ×1,t(Γ(L)). Assume S = {(1, 1, s1), (1, 2, s2)}.
Then S is a 1TDS, in fact every vertex v of Γ(L) has at least one
neighbour in S. Hence γ×1,t(Γ(L)) ≤ |S| = 2. Since every 1-tuple total
dominating set has at least 2 elements, we have that γ×1,t(Γ(L)) = 2.

We now study γ×2,t(Γ(L)). Assume S = {(r, c, 1) | 1 ≤ r, c ≤ 3}.
Then S is a 2TDS, in fact every vertex v of Γ(L) has at least 2 neigh-
bours in S. Hence γ×2,t(Γ(L)) ≤ |S| = 3. Since every 2-tuple total
dominating set has at least 3 elements, we have that γ×2,t(Γ(L)) = 3.

�

We can now describe a general upper bound for γ×k,t(Γ(L)).

Theorem 3.4. Let L be a latin square of order n ≥ 4.Then

γ×k,t(Γ(L)) ≤


n− 1 if k = 1

an if k = 2a and 1 ≤ a ≤ n

an+ n− a if k = 2a+ 1 and 1 ≤ a ≤ n− 2.

Proof. Consider k = 1 and S = {(1, 1, s1), (1, 2, s2), . . . , (1, n−1, sn−1)},
i.e. S consists of the n − 1 vertices of Γ(L) corresponding to the first
n − 1 entries in the first row of L. Now if v ∈ S, then it has n − 2
neighbours in S. If v = (1, n, sn), then it has n − 1 neighbours in S.
If v = (r, c, s) with 2 ≤ r ≤ n and 1 ≤ c ≤ n − 1, then v has at least
1 (possibly two) neighbour in S, i.e. (1, c, sc). Finally, if v = (r, n, s)
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with 2 ≤ r ≤ n, then v has exactly 1 neighbour in S, i.e. (1, ci, si) with
si = s. This shows that S is a 1TDS. Hence γ×1,t(Γ(L)) ≤ |S| = n− 1.

Consider k = 2a and S = {(r, c, s) | 1 ≤ r, c ≤ n and 1 ≤ s ≤ a},
i.e. S consists of all the vertices of Γ(L) corresponding to entries of
L where the symbols 1, 2, . . . , a appear. Notice that in each row or
column of L, S has exactly a vertices. This shows that if v is not in S,
then it has exactly 2a neighbours in S. On the other hand, each v ∈ S
has n − 1 + 2(a − 1) = n + 2a − 3 ≥ 2a neighbour in S. This implies
that S is a 2aTDS. Hence γ×2a,t(Γ(L)) ≤ |S| = an.

Consider k = 2a + 1 and S = {(r, c, s) | 1 ≤ r, c ≤ n and 1 ≤
s ≤ a} ∪ {(1, c, s) | s ≥ a + 1}, i.e. S consists of all the vertices of
Γ(L) corresponding to entries of L where the symbols 1, 2, . . . , a appear
together with the remaining n−a entries of the first row of L. Consider
v = (r, c, s) a vertex of Γ(L) not in S. Then there are a elements of
S in the same row of v, a elements of S in the same column of v
and 1 element (1, c′, s) in S with c′ 6= c. Hence, v has exactly 2a + 1
neighbours in S. If v = (r, c, s) ∈ S with 1 ≤ s ≤ a, then it has at least
2(a−1)+n−1 = n+2a−3 ≥ 2a+1 neighbours in S. If v = (1, c, s) ∈ S
with s ≥ a + 1, then it has exactly n − 1 + a ≥ 2a + 1. This implies
that S is a (2a+ 1)TDS. Hence γ×2a+1,t(Γ(L)) ≤ |S| = an+ n− a. �

Using the previous results, we can now compute γ×2,t(Γ(L)) for any
latin square L.

Theorem 3.5. Let L be a latin square of order n ≥ 3. Then

γ×2,t(Γ(L)) = n.

Proof. If n = 3, by Lemma 3.3, γ×2,t(Γ(L)) = 3 = n.
Assume n ≥ 4. By Theorem 3.4, γ×2,t(Γ(L)) ≤ n. Suppose, seeking

a contradiction, that γ×2,t(Γ(L)) ≤ n − 1 and hence, there exists S a
2TDS with |S| = n − 1. Without loss of generalities, we can assume
that S has no vertices corresponding to entries from the last row or
column of L or corresponding to entries with the symbol n.

We claim that if S has no vertices corresponding to entries from k
rows (respectively k columns) of L, for some k ≥ 1, then S has no ver-
tices corresponding to entries from at least k+ 1 columns (respectively
k+ 1 rows) of L. To prove the claim we assume that S has no vertices
corresponding to entries from k rows of L. Since L is a latin square of
order n, in each one of these k rows there is one entry with symbol n,
and all these k entries are in different columns. If any of these k entries
with symbol n is in the last column of L, then the corresponding vertex
would have no neighbour in S, and hence, S would not be a 2TDS. We
can then assume that none of these k entries is in the last column of L.
Furthermore, because S is a 2TDS, each of the vertices corresponding
to these k entries with symbol n has at least 2 neighbours in S. This
implies that in L there are at least k columns with at least 2 entries
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corresponding to vertices in S. Since |S| = n−1, this implies that in L
there are at least k+ 1 columns (one is the last one) such that none of
the entries in these columns correspond to vertices in S. The same type
of argument works for the case that S has no vertices corresponding to
entries from k columns of L. This proves the claim.

Using the claim, we have that S has no vertices corresponding to
entries from k rows (and k columns) of L for all k ≥ 1, but this is
impossible. �

We can also describe a lower bound for γ×1,t(Γ(L)).

Theorem 3.6. Let L be a latin square of order n ≥ 2. Then

γ×1,t(Γ(L)) ≥ 4n− 2

7
.

Proof. If n = 2, 3 the result follows from Lemma 3.2 and Lemma 3.3.
Assume n ≥ 4, and consider S a 1TDS with |S| = γ×1,t(Γ(L)). For all
i = 1, . . . , n, define ri = |{(i, c, s) ∈ S | 1 ≤ c, s ≤ n}|, ci = |{(r, i, s) ∈
S | 1 ≤ r, s ≤ n}| and si = |{(r, c, i) ∈ S | 1 ≤ r, c ≤ n}|. Moreover,
define

r =
n∑
i=1
ri 6=0

(ri − 1), c =
n∑
i=1
ci 6=0

(ci − 1) and s =
n∑
i=1
si 6=0

(si − 1).

Let GS be the graph with vertex set S and edges as follows. Two ver-
tices in the same row (r, c1, s1), (r, c2, s2) ∈ S, with c1 < c2, are adjacent
if and only if there does not exist (r, c3, s3) ∈ S with c1 < c3 < c2. Two
vertices in the same column (r1, c, s1), (r2, c, s2) ∈ S, with r1 < r2, are
adjacent if and only if there does not exists (r3, c, s3) ∈ S with r1 < r3 <
r2. Two vertices with the same symbol (r1, c1, s), (r2, c2, s) ∈ S, with
r1 < r2, are adjacent if and only if there does not exist (r3, c3, s) ∈ S
with r1 < r3 < r2. By construction, |E(GS)| = r + c + s. Since S is a
1TDS, every vertex of S has at least one neighbour in S, and hence,
every such vertex corresponds to an entry in L that shares a common
row or column or symbol with at least one other entry corresponding
to a vertex in S. This implies that GS has no isolated vertex and hence

|E(GS)| = r + c + s ≥ |S|
2

=
γ×1,t(Γ(L))

2
.

By Theorem 3.4, |S| = γ×1,t(Γ(L)) ≤ n− 1. Hence, L has at least one
row and one column whose cells do not correspond to any entry of S.

Let c0 denote the rightmost column of L whose entries do not corre-
spond to any element of S and, similarly, r0 the bottommost row of L
whose entries do not correspond to any element of S. In c0, there are
n− γ×1,t(Γ(L)) + r entries that do not share a common row or column
with entries corresponding to vertices in S. Likewise, in r0 there are
n− γ×1,t(Γ(L)) + c entries that do not share a common row or column
with entries corresponding to vertices in S. Note there is one entry
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which is counted twice, i.e. the entry (r0, c0, s) shared by the column
c0 and the row r0. This implies that the total number of entries in
c0 and r0 that do not share a common row or column with entries
corresponding to vertices in S can be expressed as

(n− γ×1,t(Γ(L)) + r) + (n− γ×1,t(Γ(L)) + c)− 1.

Since S is a 1TDS all these vertices corresponding to entries in c0 and
r0 are dominated by elements of S that share the same symbol. Note
that any element of S share the same symbol with at most two vertices
corresponding to entries in all c0 and r0. It follows that

(n− γ×1,t(Γ(L)) + r) + (n− γ×1,t(Γ(L)) + c)− 1 ≤ 2(γ×1,t(Γ(L))− s)

and hence that

2n− 1 + (r + c + 2s) ≤ 4γ×1,t(Γ(L)).

However, since r + c + s ≥ γ×1,t(Γ(L))

2
and s ≥ 0, we have

(2n− 1) +
γ×1,t(Γ(L))

2
≤ 4γ×1,t(Γ(L))

or equivalently

4n− 2

7
≤ γ×1,t(Γ(L)).

�

1 2 3 4 5 6 7 8 9 10
2 3 4 5 1 7 8 9 10 6
3 4 5 1 2 8 9 10 6 7
4 5 1 2 3 9 10 6 7 8
5 1 2 3 4 10 6 7 8 9
6 7 8 9 10 1 2 3 4 5
7 8 9 10 6 2 3 4 5 1
8 9 10 6 7 3 4 5 1 2
9 10 6 7 8 4 5 1 2 3
10 6 7 8 9 5 1 2 3 4

Figure 2. A latin square of order 10.

Example 3.7. Consider L the latin square of Figure 2. If we consider
S = {(1, 2, 2), (1, 4, 4), (2, 5, 1), (3, 3, 5), (4, 5, 3), (5, 1, 5)}, then we have
that |S| = 6 and it is a 1TDS. On the other hand, by Theorem 3.6,
γ×1,t(Γ(L)) ≥ 6. This implies that γ×1,t(Γ(L)) = 6.
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4. q-step latin squares

There exist several known classes of latin squares. Between them we
recall the definition of the so called q-step latin squares.

Definition 4.1. A latin square L of order mq is said to be of q-step
type if it can be represented by a matrix of q × q blocks Aij as follows

L =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

... · · · ...
Am1 Am2 · · · Amm


where each block Aij is a latin subsquare of order q and two blocks Aij
and Ai′j′ contain the same symbols if and only if i + j ≡ i′ + j′ (mod
m).

Remark 4.2. Every cyclic latin square is a latin square of 1-step type.

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3

Figure 3. A 2-step latin square of order 6.

By Theorem 3.4, we know that γ×1,t(Γ(L)) ≤ n− 1. However, in the
case of q-step latin squares, we can describe a smaller upper bound.

Theorem 4.3. Let L be a q-step latin square of order n = mq ≥ 3. If
m ≥ q + 1, then γ×1,t(Γ(L)) ≤ n − q. If m ≤ q, then γ×1,t(Γ(L)) ≤
n−m+ 1.

Proof. If q = 1, this is a consequence of Theorem 3.4. We can suppose
q ≥ 2.

First assume that m ≥ q + 1 and consider S1 = {(r, c, s) | 1 ≤ r ≤
q, (r − 1)q + 1 ≤ c ≤ rq, 1 ≤ s ≤ n} and S2 = {(1, c, s) | q2 + 1 ≤ c ≤
n− q, 1 ≤ s ≤ n}. Then S = S1 ∪ S2. In other words if

L =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

... · · · ...
Am1 Am2 · · · Amm


S1 consists of the first row of the block A11, the second row of the
block A12, and so on until the last row of the block A1q. This implies
that |S1| = q2. Similarly, S2 is the first row of all the blocks A1j with
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q + 1 ≤ j ≤ m − 1, and |S2| = (m − 1)q − q2. This implies that
|S| = (m−1)q = n− q. By construction S is a 1TDS. In fact, if v ∈ S,
then it has at least q − 1 neighbours in S, if v /∈ S then it has at least
one neighbour in S. Hence γ×1,t(Γ(L)) ≤ n− q.

Assume now that m ≤ q and consider S1 = {(r, c, s) | 1 ≤ r ≤
m−1, (r−1)q+1 ≤ c ≤ rq, 1 ≤ s ≤ n} and S2 = {(r, (m−1)q, s) |m ≤
r ≤ q, 1 ≤ s ≤ n}. Then S = S1 ∪ S2. In other words, S1 consists
of the first row of the block A11, the second row of the block A12,
and so on until the (m− 1)-th row of the block A1(m−1). This implies
that |S1| = (m − 1)q. Similarly, S2 is the bottom part of the last
column of the block A1(m−1), and |S2| = q − (m − 1). This implies
that |S| = mq − m + 1 = n − m + 1. By construction S is a 1TDS.
In fact, if v ∈ S1, then it has q − 1 neighbours in S, if v ∈ S2, then it
has q − (m− 1) ≥ 1 neighbours in S, if v /∈ S then it has at least one
neighbour in S. Hence γ×1,t(Γ(L)) ≤ n−m+ 1. �

If we use the technique described in the proof of Theorem 4.3, we
can easily construct 1TDS for q-step latin squares.

Example 4.4. Consider L the 2-step latin square of Figure 3. In this
case, q = 2 and m = 3. Consider S = {(1, 1, 1), (1, 2, 2), (2, 3, 4), (2, 4, 3)},
then we have that |S| = 6 − 2 = 4 and it is a 1TDS as described
in the proof of Theorem 4.3. On the other hand, by Theorem 3.6,
γ×1,t(Γ(L)) ≥ 4. This implies that γ×1,t(Γ(L)) = 4.

Example 4.5. Consider L the 3-step latin square of Figure 4. In this
case, q = m = 3. If we consider S = {(1, 1, 1), (1, 2, 2), (1, 3, 3), (2, 4, 5),
(2, 5, 6), (2, 6, 4), (3, 6, 5)}, we have that |S| = 9− 3 + 1 = 7 and it is a
1TDS as described in the proof of Theorem 4.3.

1 2 3 4 5 6 7 8 9
2 3 1 5 6 4 8 9 7
3 1 2 6 4 5 9 7 8
4 5 6 7 8 9 1 2 3
5 6 4 8 9 7 2 3 1
6 4 5 9 7 8 3 1 2
7 8 9 1 2 3 4 5 6
8 9 7 2 3 1 5 6 4
9 7 8 3 1 2 6 4 5

Figure 4. A 3-step latin square of order 9.

5. Dominating set

Similarly to the case of 1TDS and 2TDS, if we consider latin squares
of small order, we can easily compute their domination number.
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Lemma 5.1. Let L be a latin square of order 2 ≤ n ≤ 5. Then

γ(Γ(L)) =

{
n− 1 if 2 ≤ n ≤ 4

3 if n = 5.

Putting together (1) and Theorem 3.4, we have that γ(Γ(L)) ≤ n−1.
However, we can describe a smaller upper bound.

Theorem 5.2. Let L be a latin square of order n ≥ 5. Then

γ(Γ(L)) ≤

{
n− 2 if 5 ≤ n ≤ 21

n− (d
√

2n+7−1
2
e − 1) if n ≥ 22.

Proof. Assume first that 5 ≤ n ≤ 21. By Lemma 5.1, we can assume
that 6 ≤ n ≤ 21. Without loss of generality, we can assume that the
bottom right 2× 2 submatrix of L is the square in Figure 5, for some
symbols a, b 6= 1.

a 1
1 b

Figure 5. Square of order 2.

Assume that a = b and let L′ be the (n − 2) × (n − 2) submatrix
of L obtained from L by deleting the last two rows and the last two
columns (notice that L′ is not a latin square in general). In L′ there
are exactly n−2 entries with symbol a and n−2 entries with symbol 1.
Let v1 = (r1, c1, a) and v2 = (r2, c2, 1) be such entries in L′ with r1 6= r2

and c1 6= c2. For all i ∈ {3, . . . , n−2}, let vi = (ri, ci, si) be an entry in
L′ with ri 6= rj, ci 6= cj for all j ∈ {1, . . . , i − 1}, and si ∈ {1, . . . , n}.
Consider S = {v1, v2, v3, . . . , vn−2}. By construction S dominates all
the vertices of Γ(L) that correspond to entries in the first n − 2 rows
of L by row, to the entries of L in the first n − 2 columns by column
and to the bottom right 2× 2 submatrix of L by symbol. This implies
that S is a dominating set for Γ(L), and hence γ(Γ(L)) ≤ |S| = n− 2.

Assume that a 6= b and let L′ be the (n−2)× (n−2) submatrix of L
obtained from L by deleting the last two rows and the last two columns
(notice that L′ is not a latin square in general). In L′ there are exactly
n−3 entries with symbol a. Let v1 = (r1, c1, a) be one of such entries in
L′. Since n ≥ 6, we can assume that v1 is chosen in such way that if in
L′ we have entries (r1, c

′, 1) and (r′, c1, 1), then in L we have at most one
of the entries (n−1, c′, b) and (r′, n−1, b). In L′ there are at least n−5
entries with symbol b that are not in the row r1 or in the column c1.
Let v2 = (r2, c2, b) be one such entry in L′ such that the entry (r1, c2, 1)
or (r2, c1, 1) is an entry in L′. Notice that such entry v2 always exists
by the choice of v1. By construction, in L′ there are at least n − 5
entries with symbol 1 that are not in the rows r1, r2 or in the columns
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c1, c2. Since n ≥ 6, we can consider v3 = (r3, c3, 1) be one of such
entries in L′. For all i ∈ {4, . . . , n− 2}, let vi = (ri, ci, si) be an entry
in L′ with ri 6= rj, ci 6= cj for all j ∈ {1, . . . , i− 1}, and si ∈ {1, . . . , n}.
Consider S = {v1, v2, v3, v4, . . . , vn−2}. By construction S dominates
all the vertices of Γ(L) that correspond to entries in the first n−2 rows
of L by row, to the entries of L in the first n − 2 columns by column
and to the bottom right 2× 2 submatrix of L by symbol. This implies
that S is a dominating set for Γ(L), and hence γ(Γ(L)) ≤ |S| = n− 2.

Assume now that n ≥ 22. The previous argument can be easily
generalized. Consider 2 ≤ k ≤ dn

2
e, let L′ be the (n − k) × (n − k)

submatrix of L obtained from L by deleting the last k rows and the last
k columns, and let L′′ be the k× k submatrix of L obtained from L by
deleting the first n−k rows and the first n−k columns (notice that L′

and L′′ are not latin squares in general). We construct S a diagonal of
L′ (i.e., n − k entries in distinct rows and columns) containing all the
symbols that appear in the entries of L′′ as follows. We choose entries
in L′ which match the symbols that appear in the entries of L′′ one by
one. Consider (r, c, s) an entry of L′′. Then there are at most 2k − 1
entries in L with symbol s that are not in L′. On the other hand, in L′′

appear at most k2 symbols. This implies that, when processing symbol
s in L′′, we can choose any entry of L′ with symbol s other than the at
most 2k − 1 copies of s outside of L′, and the at most 2(k2 − 1) copies
of s inside of L′ which occur in the same row or column as a previously
chosen entry. Thus, this works if n > 2k−1+2(k2−1), or equivalently
k < (

√
2n+ 7 − 1)/2 which occurs when k ≤ d(

√
2n+ 7 − 1)/2e − 1.

Now that all the symbols appearing in L′′ have been taken care, we can
complete S with enough entries of L′ belonging to rows and columns
without a chosen entry. In this way, S is a dominating set for Γ(L)
with |S| = n− k. �

Remark 5.3. Notice that the first part of the proof of Theorem 5.2
works for any n ≥ 5. However, starting from n = 22, where n − 2 =

20 > 19 = n− (d
√

2n+7−1
2
e− 1), n− (d

√
2n+7−1

2
e− 1) is a smaller upper

bound than n− 2.

In the case of 1-step latin squares, we can describe an even smaller
upper bound than the one of Theorem 5.2.

Theorem 5.4. Let L be a 1-step (i.e. cyclic) latin square of order
n = 3f + g where f ≥ 1 and 0 ≤ g < 3. Then γ(Γ(L)) ≤ 2f + g.

Proof. First assume that g = 0. Split L into 9 regions of equal size like
a sudoku. Label the bottom regions of L by I-III from left to right, the
middle regions by IV-VI, and the top regions by VII-IX. Construct S
by taking the vertices corresponding to the entries on the first upper
diagonal in region I together with the vertex corresponding to the entry
in the bottom left corner of region I, and the vertices corresponding to
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entries along the main diagonal of region IX. In this construction it
can be seen that |S| = 2f and that there is exactly one element of S
in each column and row of regions I and IX. The set S constructed in
this way is a dominating set. To see this, one can simply note that
the entries in region I-III and regions VII-IX are all dominated row-
wise by the elements in regions I and IX respectively. Regions IV and
VI are dominated column-wise by the elements in regions I and IX
respectively. This leaves region V which is diagonally dominated by
the elements in regions I and IX. This implies that γ(Γ(L)) ≤ 2f .

Assume now that 1 ≤ g ≤ 2. In this case, consider L′ the submatrix
of L obtained by deleting the last g rows and g columns. By construc-
tion L′ is a 3f×3f submatrix of L. Similarly to the case g = 0, we can
construct a dominating set S ′ for Γ(L′) such that |S ′| = 2f . To obtain
S a dominating set for Γ(L), it is enough to add to S ′ the g vertices
corresponding to entries in the last g rows on the main diagonal of L.
S is clearly a dominating set for Γ(L) and |S| = 2f + g. This implies
that γ(Γ(L)) ≤ 2f + g. �

If we use the technique described in the proof of Theorem 5.4, we
can easily construct dominating set for cyclic latin squares.

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 1 2
4 5 6 7 8 9 1 2 3
5 6 7 8 9 1 2 3 4
6 7 8 9 1 2 3 4 5
7 8 9 1 2 3 4 5 6
8 9 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7 8

Figure 6. A cyclic latin square of order 6 and one of
order 9.

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4
6 7 1 2 3 4 5
7 1 2 3 4 5 6

Figure 7. A cyclic latin square of order 7.

Example 5.5. Consider L1 the cyclic latin square of order 6 of Fig-
ure 6. If we consider S1 = {(1, 5, 5), (2, 6, 1), (5, 2, 6), (6, 1, 6)}, then
|S1| = 4 and it is a dominating set for Γ(L1).
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1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1
3 4 5 6 7 8 1 2
4 5 6 7 8 1 2 3
5 6 7 8 1 2 3 4
6 7 8 1 2 3 4 5
7 8 1 2 3 4 5 6
8 1 2 3 4 5 6 7

Figure 8. A cyclic latin square of order 8.

Consider L2 the cyclic latin square of order 9 of Figure 6. If we con-
sider S2 = {(1, 7, 7), (2, 8, 9), (3, 9, 2), (7, 2, 8), (8, 3, 1), (9, 1, 9)}, then
|S2| = 6 and it is a dominating set for Γ(L2).

Consider L3 the cyclic latin square of Figure 7. If we consider S3 =
{(1, 5, 5), (2, 6, 7), (5, 2, 6), (6, 1, 6), (7, 7, 6)}, then |S3| = 5 and it is a
dominating set for Γ(L3).

Consider L4 the cyclic latin square of Figure 8. If we consider S4 =
{(1, 5, 5), (2, 6, 7), (5, 2, 6), (6, 1, 6), (7, 7, 5), (8, 8, 7)}, then |S4| = 6 and
it is a dominating set for Γ(L4).

We can now describe a lower bound on γ(Γ(L)).

Theorem 5.6. Let L be a latin square of order n ≥ 5. Then

γ(Γ(L)) ≥ dn
2
e.

Proof. Assume there exists S a dominating set of Γ(L) such that |S| <
n
2
. This implies that there are more than n

2
rows and n

2
columns of L

whose entries do not correspond to vertices in S. Let L′ be the p × q
submatrix of L obtained by deleting the rows and columns that contain
cells corresponding to the entries of S, where p, q ≥ n−|S| (notice that
L′ is not a latin square in general). Since |S| < n

2
, then there exist a

symbol s0 that does not appear in any entry in S. Moreover, since
n− |S| > n

2
, then every symbol must occur in L′. In particular, there

exists one entry of the form (r, c, s0) ∈ E(L′). However, (r, c, s0) has
no neighbours in S, but this is an absurd. Hence, γ(Γ(L)) ≥ dn

2
e. �

Remark 5.7. By [1, Theorem 12], the lower bound described in The-
orem 5.6 is tight in all cases.

Example 5.8. Consider L the latin square of Figure 9. If we con-
sider S = {(4, 7, 3), (5, 5, 4), (6, 4, 2), (7, 6, 1)}, then |S| = 4 and it is a
dominating set for Γ(L). By Theorem 5.6, γ(Γ(L)) ≥ 7

2
. However, the

domination number is an integer, and hence γ(Γ(L)) = 4.

Theorem 5.9. Let L be a 1-step (i.e. cyclic) latin square of even order
n. If n

2
is odd, then γ(Γ(L)) = n

2
. If n

2
is even, then γ(Γ(L)) ≤ n

2
+ 1.
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1 2 3 4 5 6 7
2 3 1 5 6 7 4
3 1 2 6 7 4 5
4 5 6 7 1 2 3
5 6 7 1 4 3 4
6 7 4 2 3 5 1
7 4 5 3 2 1 6

Figure 9. A latin square of order 7 with γ(Γ(L)) = 4.

Proof. Let L′ be the n
2
× n

2
submatrix of L obtained from L by deleting

every second row and every second column. Notice that L′ is isotopic
to a cyclic Latin square. By [14], L′ has a transversal if and only if n

2
is

odd. This implies that if n
2

is odd, we can consider S a transversal of
L′. However such S forms a dominating set of Γ(L). By Theorem 5.6,
γ(Γ(L)) = n

2
.

On the other hand, if n
2

is even, we can construct S ′ a partial
transversal of L′ of cardinality (n

2
)−1. This implies that adding two en-

tries to S ′ we can obtain S a dominating set of Γ(L) with |S| = (n
2
)+1.

Hence γ(Γ(L)) ≤ (n
2
) + 1. �

In the proof of [1, Theorem 13], it is shown that if you take a dom-
inating set of size n − d, then it must miss at least d rows, at least d
columns and at least d symbols. If you look at the submatrix formed
by the rows that are missed and the columns that are missed, then it
cannot contain any of the symbols that are missed. This fact allows us
to rewrite [1, Theorem 13], and obtain the following result.

Theorem 5.10. Fix ε > 0. Almost all latin squares will not have a
dominating set of size less than n−O(n

2
3

+ε).
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