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REPRESENTATION FORMULA FOR DISCRETE INDEFINITE AFFINE

SPHERES

SHIMPEI KOBAYASHI AND NOZOMU MATSUURA

Abstract. We present a representation formula for discrete indefinite affine spheres via
loop group factorizations. This formula is derived from the Birkhoff decomposition of loop
groups associated with discrete indefinite affine spheres. In particular we show that a discrete
indefinite improper affine sphere can be constructed from two discrete plane curves.

Introduction

Around 1908 Tzitzeica introduced surfaces in [25]–[30], which are now called proper affine
spheres with center at the origin, with the property that the Gaussian curvature is proportional
to the fourth power of the support function from the origin. He observed that this property
is invariant under an affine transformation fixing the origin. This work is regarded as the
source of affine differential geometry of surfaces, and gives his name to the structure equation
of proper affine spheres. The reader is referred to [23] for an account of the Tzitzeica equation
within its classical context of surface theory in equicentroaffine geometry. The Tzitzeica
equation is now known to be one of the most famous soliton equations in the theory of
integrable systems ([7], [17], [31], [12]). In fact it is obtained by a so-called B-type reduction
of the 2-dimensional Toda lattice equation ([19]). The proper affine sphere can be understood
as an affine geometric analogue of the sphere, in a sense that its affine normals meet at the
origin. When the affine normals are parallel, the surface can be regarded as an analogue of
the plane, and is called an improper affine sphere. The improper affine sphere is described by
the Liouville equation, which is also known to be integrable.

It is a distinctive feature of integrable systems that we can discretize them while keeping
their integrability. For example, a discrete Liouville equation was derived in [10] using the
bilinear techniques, and the corresponding discrete improper affine sphere was introduced in
[16]. As for the Tzitzeica equation, an integrable discrete model was proposed in [3], which can
be written into the trilinear equation in terms of the τ function. Their approaches in finding
the discrete equations belong to the theory of discrete differential geometry (DDG), which
investigates the geometric objects that are described by integrable partial difference equations,
refer to [4] for a comprehensive introduction to DDG. We expect that investigating discrete
objects may offer a better understanding way of smooth objects, and as a consequence of it,
DDG can be applied to practical use in architecture, computer vision, operations research
and so on. See, for instance, [21], [5] and [9].
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The interrelations existing between integrable systems and geometry are described by the
Gauss-Weingarten formula, because the moving frames of surfaces give the Lax pairs of soliton
equations. Besides that, it is the point that we are able to introduce a natural parameter into
the Lax pair, which is often called the spectral parameter. Thus we can investigate surfaces
from a view point of the loop group theory, which also helps us in deriving discrete counterparts
of surfaces. Indeed, on the indefinite affine spheres, the loop group discretization method has
been demonstrated in [3]. Further, we can make a use of the Birkhoff decomposition of loop
groups so as to give construction methods for special classes of discrete surfaces. For example,
discrete counterparts for the surfaces with constant negative curvature can be defined and
constructed via loop group method ([20], [13]), where a discrete analogue of separation of
variables for sine-Gordon equation ([14]) is presented.

In this paper, we give a construction method for discrete indefinite affine spheres by using
a loop group method. In particular we show that a discrete indefinite improper affine sphere
can be constructed from two discrete plane curves. The paper is organized as follows: in
Section 1, after explaining some basic notions of affine differential geometry, we prepare loop
groups associated with affine spheres. We close the section by rephrasing the representation
formula by Blaschke for improper affine spheres and illustrating some examples that may
have singularities. In Section 2, we discretize the representation formula, so that the discrete
improper affine spheres, which may have singularities, are constructed from two planar discrete
curves.

1. Indefinite affine spheres

1.1. Preliminaries. Let f be an immersion from a domain D ⊂ R2 to the affine space(
R3,det

)
. Here we use determinant function as a fixed volume element on R3. Let ξ be an

transversal vector field to f , that is, for each (x, y) ∈ D the vector ξ (x, y) never tangent to
the surface f (D). A symmetric bilinear function h = [hij ] is defined by the Gauss formula

∂2xf = w1
11∂xf + w2

11∂yf + h11ξ,

∂y∂xf = w1
12∂xf + w2

12∂yf + h12ξ,

∂2yf = w1
22∂xf + w2

22∂yf + h22ξ,

where ∂x = ∂/∂x and ∂y = ∂/∂y. It is easy to check that the rank of h is independent of the
choice of ξ. If the rank of h is 2, h can be treated as a nondegenerate metric on D. This is the
basic assumption on which Blaschke [1] developed the affine differential geometry of surfaces.
We can define canonical transversal vector field by the properties that the induced volume
element on D coincides with the volume element of the affine metric h, namely

(1.1) det [∂xf, ∂yf, ξ]
2 =

∣∣∣h11h22 − (h12)
2
∣∣∣ ,

and both ∂xξ and ∂yξ are tangent to f (D). Such a ξ is unique up to sign, and is called the
affine normal field. The immersion f with the affine normal field ξ is called the Blaschke
immersion, and the map F̃ : D → GL3R, (x, y) 7→ [∂xf, ∂yf, ξ] is called a moving frame of f .
It is known that, for a Blaschke immersion f , half of the Laplacian (1/2)∆f relative to the
affine metric h is equal to the affine normal field ξ.

For a Blaschke immersion f , the affine shape operator s = [sij ] is defined by the Weingarten
formula

∂xξ = −s11∂xf − s21∂yf,

∂yξ = −s12∂xf − s22∂yf.
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If the affine shape operator s is proportional to the identity, that is s = H id, then the Blaschke
immersion f is called an affine sphere. By virtue of the integrability condition, this function
H should be a constant. If H = 0 then f is called an improper affine sphere, and if H ̸= 0
then f is called a proper affine sphere. On use of a scaling transformation of the ambient
space and a change of the orientation f 7→ −f , we can normalize the constant H to be −1 if
H ̸= 0. For example, a graph immersion

f (x, y) =

 x
y

ψ (x, y)


is an improper affine sphere with the constant affine normal field ξ (x, y) = t [0, 0, 1] if and
only if ψ satisfies the Monge-Ampère equation

(1.2)
(
∂2xψ

) (
∂2yψ

)
− (∂x∂yψ)

2 = ±1.

In general, if f is an improper affine sphere, then the affine normals are parallel in R3. If f
is a proper affine sphere, then the affine normals meet at one point in R3, which is called the
center.

Let f be an affine sphere whose affine metric h has signature (+,−). We call such an f
indefinite affine sphere in short. The affine normal field may be expressed as

ξ = −Hf + (1 +H) ξ0,

where H ∈ {−1, 0} and ξ0 is a constant vector. By an appropriate affine transformation on
R3 we can fix ξ0 to be t [0, 0, 1]. We shall employ the asymptotic coordinate systems with

respect to h, and substitute the symbols (x, y) with (u, v). As far as det F̃ ̸= 0, without loss

of generality we can assume that det F̃ > 0, and define three functions ω, A, B by

ω = det F̃ , A = det
[
∂uf, ∂

2
uf, ξ

]
, B = det

[
∂2vf, ∂vf, ξ

]
.

We rewrite the Gauss-Weingarten formulas as

(1.3) ∂uF̃ = F̃

∂u logω 0 −H
Aω−1 0 0

0 ω 0

 , ∂vF̃ = F̃

0 Bω−1 0
0 ∂v logω −H
ω 0 0

 .
The compatibility condition between these two equations, namely ∂u∂vF̃ = ∂v∂uF̃ , is given
by the three partial differential equations

∂v∂ulogω +ABω−2 +Hω = 0,(1.4)

∂vA = 0, ∂uB = 0.(1.5)

The equations in (1.5) are clearly solved as A = A (u) and B = B (v) respectively. Equation
(1.4) is called the Tzitzeica equation if H = −1, and the Liouville equation if H = 0. It is
known that general solutions to the Liouville equation are given by two real functions of one
variables, see the formula (1.29) in Remark 1.7.

Conversely, a triad (ω,A,B) of solutions to the system (1.4)–(1.5), or in other words,
a pair of the affine metric h = 2ω dudv and the cubic form C = Adu3 + B dv3, gives a
unique indefinite affine sphere up to equiaffine transformations. Since the system (1.4)–(1.5)
is invariant under a transformation

A 7→ λ3A, B 7→ λ−3B, λ ∈ R× = R \ {0} ,
if (ω,A,B) is a triad of solutions to (1.4)–(1.5) then

(
ω, λ3A, λ−3B

)
is also a triad of solutions

to the same system. Therefore, there exists a family of indefinite affine spheres
{
fλ
}
that is

parametrized by λ ∈ R×, and f1 is the original affine sphere f . This 1-parameter family of
3



indefinite affine spheres, which we call the associated family of f , has the property that they
have the same affine metric and the same constant affine mean curvature (1/2) tr s = H.

1.2. Loop group description. We define a gauged frame F of fλ by

(1.6) F =
[
∂uf

λ, ∂vf
λ, ξλ

]
diag

(
λ−1ω−1/2, λ ω−1/2, 1

)
,

where ξλ = −Hfλ + (1 +H) ξ0. For any ((u, v) , λ) ∈ D × R×, the frame F takes values in
the special linear group SL3R and satisfies the partial differential equations

(1.7) ∂uF = FU, ∂vF = FV,

where

U =

(1/2) ∂u logω 0 −λHω1/2

λAω−1 − (1/2) ∂u logω 0

0 λω1/2 0

 ,
V =

− (1/2) ∂v logω λ−1Bω−1 0

0 (1/2) ∂v logω −λ−1Hω1/2

λ−1ω1/2 0 0

 .
(1.8)

By multiplying F by some constant matrix from the left if necessary, we can assume that

(1.9) F (0, 0, λ) = id

at the base point (u, v) = (0, 0). The gauged frame F which satisfies the system (1.7)–(1.8)
with initial condition (1.9) will be called the extended frame of an indefinite affine sphere f .

Moreover one can check that the matrices U = U (λ) and V = V (λ) in (1.8) satisfy

−tU (−λ)T = T U (λ) , −tV (−λ)T = T V (λ) ,(1.10)

U (qλ) = QU (λ)Q−1, V (qλ) = QV (λ)Q−1,(1.11)

where

T =

0 1 0
1 0 0
0 0 −H

 , Q = diag
(
q, q2, 1

)
, q = e2π

√
−1/3.

Therefore F must satisfy

tF (−λ)−1
T = TF (λ) ,(1.12)

F (qλ) = QF (λ)Q−1,(1.13)

and hence the loop algebra and the loop group can be introduced ([8]) as

Λsl3R =
{
Φ: S1 → sl3C

∣∣∣ Φ (λ) = Φ(λ) , −tΦ(−λ)T = T Φ(λ) , Φ(qλ) = QΦ(λ)Q−1
}
,

ΛSL3R =
{
ϕ : S1 → SL3C

∣∣∣ ϕ (λ) = ϕ (λ) , tϕ (−λ)−1
T = T ϕ (λ) , ϕ (qλ) = Qϕ (λ)Q−1

}
.

Here the overlines mean complex conjugate, and sl3C is the Lie algebra of SL3C, that is, sl3C
is the set of trace-free matrices. It should be noted that the extended frame F is ΛSL3R-
valued function on D, because F , which is originally defined on λ ∈ R×, can be analytically
extended to C×. The subgroups

Λ+SL3R =
{
ϕ ∈ ΛSL3R

∣∣ ϕ (λ) =∑∞
k=0 λ

kϕk
}
,

Λ−SL3R =
{
ϕ ∈ ΛSL3R

∣∣ ϕ (λ) =∑∞
k=0 λ

−kϕk
}
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will play important roles in the following discussions, together with

Λ+
∗ SL3R =

{
ϕ ∈ Λ+SL3R

∣∣ ϕ (λ) = id+
∑∞

k=1 λ
kϕk
}
,

Λ−
∗ SL3R =

{
ϕ ∈ Λ−SL3R

∣∣ ϕ (λ) = id+
∑∞

k=1 λ
−kϕk

}
.

Similarly subalgebras Λ+sl3R, Λ−sl3R and Λ+
∗ sl3R, Λ−

∗ sl3R are defined. We note that Φ± ∈
Λ±
∗ sl3R have the expansion Φ± (λ) =

∑∞
k=1 λ

±kΦk, where double signs correspond.

Proposition 1.1. Let F (λ) =
∑∞

k=−∞ λkFk ∈ ΛSL3C satisfy the twisted condition (1.13).
Then coefficient matrices of F (λ) are of the form

F3l = diag (∗, ∗, ∗) , F3l+1 =

0 0 ∗
∗ 0 0
0 ∗ 0

 , F3l+2 =

0 ∗ 0
0 0 ∗
∗ 0 0


for all integers l.

Proof. Because QF (λ)Q−1 =
∑

k∈Z λ
kQFkQ

−1 and

F (qλ) =
∑
k∈Z

λkqkFk =
∑
l∈Z

(
λ3lF3l + λ3l+1qF3l+1 + λ3l+2q2F3l+2

)
,

we have F3l = QF3lQ
−1, qF3l+1 = QF3l+1Q

−1, and q2F3l+2 = QF3l+2Q
−1. □

We now recall Birkhoff decomposition theorem for the loop group ΛSL3R.

Theorem 1.2 (Birkhoff decomposition [8], [22]). The respective multiplication maps

Λ+
∗ SL3R× Λ−SL3R → ΛSL3R and Λ−

∗ SL3R× Λ+SL3R → ΛSL3R
are diffeomorphisms onto its images. Moreover, the images Λ+

∗ SL3R ·Λ−SL3R and Λ−
∗ SL3R ·

Λ+SL3R are both open and dense in ΛSL3R, which will be called the big cells.

Roughly speaking, Theorem 1.2 says that for almost all g ∈ ΛSL3R, there uniquely exist
pairs (g+, g−) ∈ Λ+

∗ SL3R× Λ−SL3R and (g̃−, g̃+) ∈ Λ−
∗ SL3R× Λ+SL3R such that

(1.14) g = g+g− = g̃−g̃+.

The following theorem has been proven for indefinite proper affine spheres (H = −1) in [8,
Proposition 5.2 and Theorems 7.1, 6.1]. Here we show a proof which is valid for both H = −1
or H = 0.

Theorem 1.3. Let f be an indefinite affine sphere, and (u, v) ∈ D be its asymptotic coor-
dinates. Consider the Birkhoff decompositions for the extended frame F near (u, v) = (0, 0)
as

(1.15) F = F+F− = G−G+,

where F+ ∈ Λ+
∗ SL3R, F− ∈ Λ−SL3R, G+ ∈ Λ+SL3R and G− ∈ Λ−

∗ SL3R. Then F+ and G−
do not depend on v and u respectively, and their Maurer-Cartan forms are given as

(1.16) F−1
+ dF+ = ξ+, G−1

− dG− = ξ−,

where

(1.17) ξ+ = λ

0 0 −Hα
β 0 0
0 α 0

 du, ξ− = λ−1

0 σ 0
0 0 −Hρ
ρ 0 0

 dv.
Here the functions α, β depend only on u, and ρ, σ only on v. Moreover, α and ρ have no
zeros near the base point (u, v) = (0, 0).
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Conversely, let (ξ+, ξ−) be a pair of 1-forms as (1.17), and (F+, G−) be a pair of solutions
to the linear ordinary differential equations

(1.18) dF+ = F+ξ+, dG− = G−ξ−

with the initial condition F+ (0, λ) = G− (0, λ) = id. Define V+ ∈ Λ+
∗ SL3R and V− ∈ Λ−SL3R

by the Birkhoff decomposition for G−1
− F+ near (u, v) = (0, 0) as

(1.19) G−1
− F+ = V+V

−1
− ,

and write F̂ = F+V− = G−V+. Then there exists a diagonal matrix D = diag
(
d, d−1, 1

)
with

some non-vanishing function d = d (u, v) such that D0
−1F̂D, where D0 = D|(u,v)=(0,0), is

the extended frame of an indefinite affine sphere f with the cubic differential C = α2β du3 +
ρ2σ dv3. In particular, in case of proper affine spheres (H = −1), the third column of D0

−1F̂D
directly gives the position vector of f .

Remark 1.4. The pair of 1-forms defined in (1.17) will be called the pair of normalized po-
tentials for an indefinite affine sphere. It should be noted that the resulting indefinite affine
sphere which is constructed from a pair of normalized potentials would have singularities
where G−1

− F+ is outside of the big-cell for the Birkhoff decomposition.

Proof. Let F be an extended frame, and define F+ and F− by (1.15). Therefore we have
F+ = FF−1

− and so that

F−1
+ ∂vF+ = F−F

−1∂v
(
FF−1

−
)
= (F−V − ∂vF−)F

−1
− ,

where V is given by (1.8). Since V takes values in Λ−sl3R, the right-hand side takes values
in it. Moreover since F+ takes values in Λ+

∗ SL3R, the left-hand side takes values in Λ+
∗ sl3R.

Thus we have F−1
+ ∂vF+ = 0, which shows that F+ does not depend on v. Similarly ∂uG− = 0.

Next, we compute F−1
+ dF+ and G−1

− dG−. We have

F−1
+ dF+ = F−F

−1d
(
FF−1

−
)
= (F−U − ∂uF−)F

−1
− du

where U is given by (1.8). Since U has the form U = U0 + λU1 and F− takes values in
Λ−SL3R, we have

ξ+ = F−1
+ dF+ =

(
X0 + λX1

)
du.

Here X0 = 0 because ξ+ should be a Λ+
∗ sl3R-valued 1-form. The twisted condition (1.11)

implies that X1 have the form

X1 =

 0 0 x13
x21 0 0
0 x32 0

 ,
where xij are some functions in u. Further the twisted condition (1.10) implies that x13 =
−Hx32. Thus we have (1.17) on setting α = x32 and β = x21. If we write F− and its inverse
as

F− = I0 + λ−1I1 + · · · , F−1
− = J0 + λ−1J1 + · · · ,

where id = F−F
−1
− = I0J0 + λ−1

(
I0J1 + I1J0

)
+ · · · , then we in particular have I0J0 = id.

Further, from the twisted conditions (1.13) and (1.12), it follows that

I0 = diag
(
i, i−1, 1

)
, J0 = diag

(
i−1, i, 1

)
,
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where i is some function in (u, v) with no zeros. Noticing that λX1 = (F−U − ∂uF−)F
−1
− , it

is easy to see that X1 is computed as

X1 = I0U1J0 =

 0 0 −H iω1/2

A i−2ω−1 0 0

0 i ω1/2 0

 ,
which shows that α = x32 = i ω1/2 has no zeros. Similarly we can show that ρ has no zeros.

Conversely let F+ and G− be the solutions of (1.18) with initial condition F+ (0, λ) =
G− (0, λ) = id and consider the Birkhoff decomposition near (u, v) = (0, 0) as (1.19) with

V+ ∈ Λ+
∗ SL3R and V− ∈ Λ−SL3R. Then the Maurer-Cartan form of F̂ = F+V− = G−V+ is

computed as

F̂−1dF̂ = (F+V−)
−1 d (F+V−) = V −1

− (ξ+V− + dV−) ,(1.20)

F̂−1dF̂ = (G−V+)
−1 d (G−V+) = V −1

+ (ξ−V+ + dV+) .(1.21)

We write

V− = K0 + λ−1K1 + · · · , V −1
− = L0 + λ−1L1 + · · ·

with the matrices

K0 = diag
(
k, k−1, 1

)
, L0 = diag

(
k−1, k, 1

)
,

where k is some function in (u, v) which has no zeros. Noticing that V+ is Λ+
∗ SL3R-valued, it

follows from (1.20)–(1.21) that F̂−1dF̂ is given by

F̂−1∂uF̂ = λL0

0 0 −Hα
β 0 0
0 α 0

K0,

F̂−1∂vF̂ = λ−1

0 σ 0
0 0 −Hρ
ρ 0 0

+ L0 ∂vK0.

We introduce a gauge D = diag
(
d, d−1, 1

)
, then F = F̂D satisfies that

F−1∂uF = λ

 0 0 −Hαk−1d−1

βk2d2 0 0
0 αk−1d−1 0

+

d−1∂ud 0 0
0 −d−1∂ud 0
0 0 0

 ,
F−1∂vF = λ−1

 0 σd−2 0
0 0 −Hρd
ρd 0 0

+

d−1∂vd+ k−1∂vk 0 0
0 −d−1∂vd− k−1∂vk 0
0 0 0

 .
We define ω, A, B by

ω =
αρ

k
, A = α2β, B = ρ2σ.

If necessary changing u→ −u and/or v → −v, we can assume ω > 0, and choose d = ρ−1ω1/2.
It is easy to check that these matrices F−1∂uF and F−1∂vF coincide with (1.8). Thus D0

−1F ,
where D0 = D|(u,v)=(0,0), satisfies D0

−1F (0, 0, λ) = id, and hence is the extended frame of
some indefinite affine sphere. □
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1.3. Indefinite improper affine spheres. When H = 0, there exists an integral formula in
terms of four functions of one variables, which is known as the Blaschke representation. We
first show a fundamental lemma.

Lemma 1.5. Let H = 0. Then the pair of solutions (F+, G−) to the system (1.16) and (1.17)
with the initial condition F+ (0, λ) = G− (0, λ) = id is explicitly given by

(1.22) F+ =

 1 0 0
λb 1 0
λ2c λa 1

 , G− =

 1 λ−1s 0
0 1 0

λ−1r λ−2t 1

 ,
where a, b, c, r, s, t are defined as

a (u) =

∫ u

0
α(k) dk, b (u) =

∫ u

0
β(k) dk, c (u) =

∫ u

0
a(k)β(k) dk,(1.23)

r (v) =

∫ v

0
ρ(k) dk, s (v) =

∫ v

0
σ(k) dk, t (v) =

∫ v

0
r(k)σ(k) dk.(1.24)

Moreover, if 1 − bs ̸= 0, then V+ ∈ Λ+
∗ SL3R and V− ∈ Λ−SL3R, defined by the Birkhoff

decomposition of G−1
− F+ as (1.19), are given as

V+ =

 1 0 0

λb (1− bs)−1 1 0

λ2c (1− bs)−1 λ (a (1− bs) + cs) 1

 ,(1.25)

V− =

 (1− bs)−1 λ−1s 0
0 1− bs 0

λ−1
(
r + bt (1− bs)−1 ) λ−2t 1

 .(1.26)

Proof. It is easy to check that F+, G− in (1.22) satisfy (1.16) and (1.17) with H = 0, and
F+ (0, λ) = G− (0, λ) = id. The loops V+, V− in (1.25), (1.26) clearly belong to Λ+

∗ SL3R,
Λ−SL3R respectively. Because F+V− = G−V+, the decomposition (1.19) holds. □

The condition 1 − bs ̸= 0 in Lemma 1.5 means that G−1
− F+ belongs to the big cell of the

Birkhoff decomposition.

Theorem 1.6. Let α, β, ρ, σ be functions in one variables, and define a, b, c, r, s, t by
(1.23) and (1.24). Let F+, G−, V+, V− be the loops given by (1.22), (1.25), (1.26), and

define F̂ by F̂ = F+V− = G−V+. We assume that α, ρ, 1 − bs have no zeros. Then there

exists a diagonal matrix D = diag
(
d, d−1, 1

)
with some function d such that D0

−1F̂D, where
D0 = D|(u,v)=(0,0), is the extended frame of some indefinite improper affine sphere f . The
data solving the integrability condition (1.4)–(1.5) with H = 0 are given as

(1.27) ω = (1− bs)αρ, A = α2β, B = ρ2σ.

Moreover, the associated family of f is given by the representation formula

(1.28) fλ =

 λa+ λ−2 (rs− t)
λ2 (ab− c) + λ−1r

ar − (ab− c) (rs− t) + λ3
∫ u
0 α(k)c(k) dk + λ−3

∫ v
0 ρ(k)t(k) dk

 ,
where λ ∈ R×. All indefinite improper affine spheres are locally constructed in this way.
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Proof. First a straightforward computation shows that Maurer-Cartan form of F̂ is given by

F̂−1∂uF̂ = V −1
+ ∂uV+ =

 0 0 0

λβ (1− bs)−2 0 0
0 λα (1− bs) 0

 = Û ,

F̂−1∂vF̂ = V −1
− ∂vV− =

bσ (1− bs)−1 λ−1σ 0

0 −bσ (1− bs)−1 0
λ−1ρ 0 0

 = V̂ .

Next we take a diagonal gaugeD = diag
(
d, d−1, 1

)
. Then the Maurer-Cartan form of F = F̂D

is given by

F−1∂uF = D−1
(
ÛD + ∂uD

)
=

 ∂u log d 0 0

λβd2 (1− bs)−2 −∂u log d 0
0 λαd−1 (1− bs) 0

 ,
F−1∂vF = D−1

(
V̂ D + ∂vD

)
=

bσ (1− bs)−1 + ∂v log d λ−1σd−2 0

0 −bσ (1− bs)−1 − ∂v log d 0
λ−1ρd 0 0

 .
If necessary, changing u→ −u and/or v → −v, we can assume (1− bs)αρ > 0. Then setting
(1.27) and

d =

√
(1− bs)αρ

ρ
=
ω1/2

ρ
,

this system accords with (1.7)–(1.8). To obtain the representation formula (1.28), we consider

an another diagonal gauge D̃ = diag
(
λω1/2, λ−1ω1/2, 1

)
as introduced in (1.6). Therefore

F̃ = FD̃ satisfies that

F̃−1∂uF̃ =

 ∂u logω 0 0
λ3Aω−1 0 0

0 ω 0

 , F̃−1∂vF̃ =

0 λ−3Bω−1 0
0 ∂v logω 0
ω 0 0

 .
Thus F̃ is a family of moving frames of indefinite improper affine spheres. The moving frame
F̃ can be computed explicitly as

F̃ = G−V+DD̃ =

 λα λ−2ρs 0
λ2αb λ−1ρ 0(

λ3c+ bt+ r (1− bs)
)
α
(
λ−3t+ cs+ a (1− bs)

)
ρ 1

 .
Since the moving frame is defined by F̃ =

[
∂uf

λ, ∂vf
λ, ξ0

]
, we integrate the first column of F̃

by u and have

fλ =

 λa
λ2 (ab− c)

ar − (rs− t) (ab− c) + λ3
∫ u
0 α(k)c(k) dk

+

xy
z

 ,
where x, y, z are some functions in v. Therefore from the second column of F̃ , we have λ−2ρs

λ−1ρ(
λ−3t+ cs+ a (1− bs)

)
ρ

 = ∂vf
λ =

 x′

y′

ar′ − (rs− t)′ (ab− c) + z′

 .
Therefore

x = λ−2 (rs− t) , y = λ−1r, z = λ−3

∫ v

0
ρ(k)t(k) dk,

which shows (1.28). □
9



Remark 1.7. For given functions A and B, it is known that a general solution to the Liouville
equation (1.4) with H = 0 is represented as

(1.29) ω (u, v) =

(∫ u

0
ϕ (k) dk −

∫ v

0
ψ (k) dk

)(
−A (u)B (v)

ϕ (u)ψ (v)

)1/2

,

where ϕ and ψ are arbitrary functions with no zeros in one variables.

Corollary 1.8 (Representation formula). Let γ1, γ2 be plane curves defined on intervals I1,
I2 respectively. Assume that both the intervals contain 0. Then the map

(1.30) f (u, v) =

[
γ1 (u) + γ2 (v)

z (u, v)

]
,

where the height z is defined by

(1.31) z (u, v) = det [γ1 (u) , γ2 (v)] +

∫ u

0
det
[
γ1 (k) , γ

′
1 (k)

]
dk −

∫ v

0
det
[
γ2 (k) , γ

′
2 (k)

]
dk,

is an indefinite improper affine sphere with the affine normal t [0, 0, 1], which is parametrized
by the asymptotic coordinates (u, v) ∈ D = I1 × I2. Its affine metric h = 2ω dudv and cubic
form C = Adu3 +B dv3 are given by

ω = det
[
γ′1 (u) , γ

′
2 (v)

]
, A = det

[
γ′1 (u) , γ

′′
1 (u)

]
, B = det

[
γ′′2 (v) , γ

′
2 (v)

]
.

The singular set of f is S =
{
(u, v) ∈ D

∣∣ det [γ′1 (u) , γ′2 (v)] = 0
}
. Moreover the associated

family of f is given by the transformation

γ1 7→
[
λ 0
0 λ2

]
γ1, γ2 7→

[
λ−2 0
0 λ−1

]
γ2

where λ ∈ R×. Conversely all indefinite improper affine spheres can be locally constructed in
this way.

Proof. First, introducing functions p = ab− c and q = rs− t, we rephrase (1.28) as

(1.32) fλ =

 λa+ λ−2q
λ2p+ λ−1r

ar − pq + λ3
∫ u
0 (ap′ − a′p) dk − λ−3

∫ v
0 (qr′ − q′r) dk

 ,
where we use the identities

αc = a′c+ a
(
ab′ − c′

)
= a2b′ − ac′ + a′c

= ap′ − a′p,

and ρt = q′r − qr′. We note that a (0) = p (0) = q (0) = r (0) = 0. We then consider an
equiaffine transformation of fλ as

f̃λ =

 1 0 0
0 1 0

λ−1r0 − λ2p0 λa0 − λ−2q0 1

 fλ +

 λa0 + λ−2q0
λ2p0 + λ−1r0
a0r0 − p0q0

 ,
where a0, r0, p0 and q0 are some constants. A straightforward computation shows that

f̃λ =

 λã+ λ−2q̃
λ2p̃+ λ−1r̃

ãr̃ − p̃q̃ + λ3
∫ u
0 (ãp̃′ − ã′p̃) dk − λ−3

∫ v
0 (q̃r̃′ − q̃′r̃) dk

 ,
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where ã = a+ a0, p̃ = p+ p0, q̃ = q + q0 and r̃ = r + r0. Thus we obtain (1.30) on writing

γ1 (u) =

[
ã (u)
p̃ (u)

]
, γ2 (v) =

[
q̃ (v)
r̃ (v)

]
.

Since γ1 and γ2 are arbitrary, (1.30) gives the all improper indefinite affine spheres. □

The formula (1.32) is exactly the same that is represented in [1, p. 216]. In contrast
to the Blaschke’s proof which utilized the Lelieuvre’s formula, our proof is based on the
decomposition of the extended frame.

Remark 1.9. The representation formula (1.30) is also formulated in [6] with their concern in
computer vision. They have given a geometric interpretation of the height function (1.31) as
follows. Consider the curves 2γ1 and 2γ2, and fix two points 2γ1 (u) and 2γ2 (v) arbitrarily.
We assume both u and v are positive for simplicity, and denote by Ω the region enclosed by
the union of four curves

C1 : [0, v] ∋ k 7→ 2γ2 (k) ,

C2 : [0, 1] ∋ k 7→ 2γ2 (v) + k (2γ1 (u)− 2γ2 (v)) ,

C3 : [0, u] ∋ k 7→ 2γ1 (−k + u) ,

C4 : [0, 1] ∋ k 7→ 2γ1 (0) + k (2γ2 (0)− 2γ1 (0)) .

Then the value |z (u, v)| gives the area of the region Ω. We will again mention this fact in a
simplified case, see Example 2.

We illustrate some examples of indefinite improper affine spheres by using the representation
formula (1.30). The resulting surfaces usually have singularities, and hence are sometimes
called indefinite improper affine maps, which were introduced in [18] for non-convex improper
affine surfaces as an analogue of convex ones [15].

Example 1. Let P and R be smooth functions in one variables. We substitute graphs

γ1 (u) =

[
u

P ′ (u)

]
, γ2 (v) =

[
R′ (v)
v

]
into the representation formula (1.30), and have an indefinite improper affine sphere

(1.33) f (u, v) =

 u+R′ (v)
v + P ′ (u)

(u+R′ (v)) (v + P ′ (u))− 2 (P (u) +R (v) + P ′ (u)R′ (v))

 .
Its data is ω = 1−P ′′ (u)R′′ (v), A = P ′′′ (u), B = R′′′ (v). It describes a subclass of indefinite
improper affine spheres that may have singularities. In view of singularity theory it is known
that a cuspidal cross cap, which is one of the typical singularities as well as cuspidal edges or
swallowtails, never appear on indefinite improper affine spheres. See [18] and [11] for details.

Especially we set R = 0 so that we have a smooth indefinite improper affine sphere

(1.34) f (u, v) =

 u
w

uw − 2P (u)

 ,
where w = v+P ′ (u). Further, the most simplest choice P = 0 gives the hyperbolic paraboloid,
or the choice P (u) = (1/6)u3 gives the Cayley surface. It is known that if the affine metric
of an indefinite improper affine sphere is flat then it is locally of the form (1.34).
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Example 2. If γ1 is the same as γ2, we write them as γ, the formula (1.30) becomes

f (u, v) =

[
γ (u) + γ (v)
z (u, v)

]
,(1.35)

z (u, v) = det [γ (u) , γ (v)] +

∫ u

v
det
[
γ (k) , γ′ (k)

]
dk.(1.36)

It has the data

ω =
∣∣det [γ′ (u) , γ′ (v)]∣∣ , A = det

[
γ′ (u) , γ′′ (u)

]
, B = −det

[
γ′ (v) , γ′′ (v)

]
.

A geometric interpretation of the function (1.36) is given in [5], which is called the inner area
distance in their language. Here we briefly explain what it is. Consider the curve 2γ, and fix
two points G0 and G1 on its image arbitrarily. We write

G0 = 2γ (u) = 2

[
a (u)
p (u)

]
, G1 = 2γ (v) = 2

[
a (v)
p (v)

]
,

and assume u < v for simplicity. We denote by Ω the region bounded by the union of two
curves, the arc C1 : [u, v] ∋ k 7→ 2γ (k) and the line segment C2 : [0, 1] ∋ k 7→ G1+k (G0 −G1).
Then, by the Green’s theorem, the area of Ω ⊂

(
R2, (x, y)

)
is computed by the line integral

1

2

∫
C1+C2

−y dx+ x dy =

∫ v

u

(
−p (k) a′ (k) + a (k) p′ (k)

)
dk

+

∫ 1

0
− (p (v) + k (p (u)− p (v))) (a (u)− a (v)) dk

+

∫ 1

0
(a (v) + k (a (u)− a (v))) (p (u)− p (v)) dk

= − z (u, v) .

Namely, the representation formula (1.35) says that, at the midpoint of the line segment
connecting 2γ (u) and 2γ (v), the height z (u, v) is given by the signed area of the region Ω.
We also note that it is found in [5] that, when γ is closed, we can introduce new variables x,
y and ψ by the graph expression of (1.35) as x

y
ψ (x, y)

 =

[
γ (u) + γ (v)
z (u, v)

]
so as to obtain a solution to the Monge-Ampère equation with the Dirichlet boundary condi-
tion

(1.37)
(
∂2xψ

) (
∂2yψ

)
− (∂x∂yψ)

2 = −1, ψ
∣∣
∂Γ

= 0,

where Γ denotes the region bounded by the closed curve 2γ. We can readily verify (1.37) by
a direct computation as follows. From the definition of new variables we have that

∂uψ = det
[
γ (u)− γ (v) , γ′ (u)

]
,

∂vψ = det
[
γ (u)− γ (v) , γ′ (v)

]
,

and the differential relation [∂u, ∂v] = [∂x, ∂y] [γ
′ (u) , γ′ (v)]. This implies that[

∂yψ
∂xψ

]
=

[
1 0
0 −1

]
(γ (u)− γ (v)) ,
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and hence we have the Hesse matrix of ψ as

[
∂y

[
∂yψ
∂xψ

]
, ∂x

[
∂yψ
∂xψ

]]
=

1

detM (u, v)
M (u, v) tM (v, u) ,

where

M (u, v) =

[
1 0
0 −1

] [
γ′ (u) , γ′ (v)

]
.

Therefore the determinant of Hesse matrix of ψ is identically −1 bacause det tM (v, u) =
−detM (u, v). Thus the formula (1.35) also provides us with a construction method of solu-
tions to (1.37). Now we illustrate some examples by taking several closed curves γ.

(1) First one is given by the circle

γ (u) =

[
cosu
sinu

]
,

which leads to

f (u, v) =

 cosu+ cos v
sinu+ sin v

u− v − sin (u− v)

 = 2

 cosx cos y
cosx sin y

x− cosx sinx

 ,
where x = (u− v) /2 and y = (u+ v) /2. Its data is

ω = sin (u− v) , A = 1, B = −1.

Therefore f has singularities at S =
{
(u, v) ∈ R2

∣∣ u ≡ v (mod π)
}
.

Figure 1. An indefinte improper affine sphere f (0 < x < π/2, −π ≤ y < π)
over the region enclosed by 2γ.
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Figure 2. Left: an indefinite improper affine map f , which is a series of
surfaces in Figure 1, joined along cuspidal edges and at cone points. Right:
the graph of ω, which gives the affine metric of f apart from S.

(2) Second example is given by the square

γ (u) =

[
|cosu| cosu
|sinu| sinu

]
.

We have that det [γ (u) , γ′ (u)] = |sin 2u| for u ∈ R \ (π/2)Z, which follows from

γ′ (u) = 2

[
− |cosu| sinu
|sinu| cosu

]
, γ′′ (u) = 2 cos 2u

[
− sign (cosu)
sign (sinu)

]
,

where

signx =


1 (x > 0)

0 (x = 0)

−1 (x < 0) .

It is convenient for the following discussion to interpret γ′ (k) = 0 and γ′′ (k) ∥ γ (k)
for all k ∈ (π/2)Z. It holds for all u ∈ R that∫ u

0
|sin 2k| dk =

⌈
2

π
u

⌉
− sign (sin 2u)

2
(cos 2u+ sign (sin 2u)) ,

where we denote by ⌈u⌉ the ceiling of u, that is, the smallest integer greater than or
equal to u. Thus we have for u, v ∈ R \ (π/2)Z that

f (u, v) =

|cosu| cosu+ |cos v| cos v
|sinu| sinu+ |sin v| sin v

z (u, v)

 ,
where

z (u, v) = |cosu sin v| cosu sin v − |cos v sinu| cos v sinu
+ ⌈(2/π)u⌉ − (1/2) sign (sin 2u) (cos 2u+ sign (sin 2u))

− ⌈(2/π) v⌉+ (1/2) sign (sin 2v) (cos 2v + sign (sin 2v)) .

Its data is A = B = 0 and

ω = 4 (− |cosu sin v| cos v sinu+ |cos v sinu| cosu sin v) .
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The singular set S is a checkerboard

S =

{
(u, v) ∈ R2

∣∣∣∣ u ∈ π

2
Z or v ∈ π

2
Z or

⌈
2

π
u

⌉
≡
⌈
2

π
v

⌉
(mod 2)

}
.

Figure 3. An indefinite improper affine map f (left), and its affine metric ω (right).

(3) Last example is given by the curve

γ (u) = cosu

[
1/2 + cos2 u

2 sinu

]
.

We have det [γ (u) , γ′ (u)] =
(
3 + 2 sin2 u

)
cos3 u and hence

(1.38)

∫ u

0
det
[
γ (k) , γ′ (k)

]
dk =

5

2
sinu+

5

24
sin 3u− 1

40
sin 5u.

Therefore

f (u, v) =

(1 + (1/2) cos 2u) cosu+ (1 + (1/2) cos 2v) cos v
sin 2u+ sin 2v

z (u, v)

 ,
where

z (u, v) = − cosu cos v (sinu− sin v) (3 + 2 sinu sin v)

+
5

2
(sinu− sin v) +

5

24
(sin 3u− sin 3v)− 1

40
(sin 5u− sin 5v) .

Its data is

ω = − (sinu− sin v) (4 + 8 sinu sin v + 3 cos 2u cos 2v) ,

A =
1

2
(19− 8 cos 2u+ 3 cos 4u) cosu,

B = −1

2
(19− 8 cos 2v + 3 cos 4v) cos v.

The singular set of f is S = S1 ∪ S2, where
S1 =

{
(u, v) ∈ R2

∣∣ v ≡ u (mod 2π) , v ≡ −u+ π (mod 2π)
}
,

S2 =
{
(u, v) ∈ R2

∣∣ 4 + 8 sinu sin v + 3 cos 2u cos 2v = 0
}
.
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The sets S1 and S2 consist of lines and circlelike curves, respectively. The surface is
compact and of genus 1.

Figure 4. An indefinite improper affine map f (left), and its affine metric ω (right).

2. Discrete indefinite affine spheres

In the previous section we derived Theorem 1.3 and Corollary 1.8 which offer a Weierstrass
type representation formula of indefinite affine spheres. Based on a technique of decom-
positions of the loop group, we shall generalize this formula to discrete case, and obtain a
Weierstrass type representation formula for discrete indefinite affine spheres.

2.1. Definitions. Let f : Z2 → R3, (n,m) 7→ fmn be a map. We call f a discrete indefinite
affine sphere if it satisfies the following two properties ([3], [2], [16]):

(1) Every five points fmn , fmn±1, f
m±1
n lie on a plane.

(2) The line ℓmn connecting two points fm+1
n+1 + fmn and fmn+1 + fm+1

n satisfies either of the
following two conditions:
(a) All the lines ℓmn meet at one point in R3.
(b) All the lines ℓmn are parallel to each other.

A discrete indefinite affine sphere f is said to be proper if it satisfies the condition (2a), or
improper if (2b).

If f is a discrete indefinite affine sphere, the vector fm+1
n+1 − fmn+1 − fm+1

n + fmn is parallel to
the discrete affine normal

(2.1) ξmn = −H
fmn+1 + fm+1

n

2
+ (1 +H) ξ0,

where ξ0 is a constant vector. Here we set H = −1 if f is proper, and H = 0 if f is improper.
Without loss of generality we can fix ξ0 to be t [0, 0, 1]. Taking into account a continuum
limit, we introduce positive numbers ϵ and δ, which play a role of lattice intervals. In view of
this it may be better to regard f as a map f : ϵZ× δZ → R3, and hence entries of f depend
on ϵ and δ. We define

F̃m
n =

[
fmn+1 − fmn

ϵ
,
fm+1
n − fmn

δ
, ξmn

]
.
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We suppose that det F̃m
n ̸= 0, then there exist functions ω, A, B such that

fmn+1 − 2fmn + fmn−1

ϵ2
=

(
ωm
n − ωm

n−1

ϵωm
n

+
δH

2
ωm
n−1

)
fmn+1 − fmn

ϵ
+
Am

n

ωm
n

fm+1
n − fmn

δ
,(2.2)

fm+1
n+1 − fmn+1 − fm+1

n + fmn
ϵδ

= ωm
n ξ

m
n ,(2.3)

fm+1
n − 2fmn + fm−1

n

δ2
=
Bm

n

ωm
n

fmn+1 − fmn
ϵ

+

(
ωm
n − ωm−1

n

δωm
n

+
ϵH

2
ωm−1
n

)
fm+1
n − fmn

δ
.(2.4)

Equations (2.2) and (2.4) are consequences of the property (1). See [3, p. 118] or [16, Propo-
sition 3.4] for a proof. Throughout the paper we further impose on f the volume condition

det F̃m
n =

2ωm
n

2− ϵδHωm
n

,

which can be regarded as a discrete analogue of (1.1). We write

(2.5) gmn =
2

2− ϵδHωm
n

to have expressions ωm
n g

m
n = det F̃m

n and

Am
n g

m
n = det

[
fmn+1 − fmn

ϵ
,
fmn+1 − 2fmn + fmn−1

ϵ2
, ξmn

]
,

Bm
n g

m
n = det

[
fm+1
n − 2fmn + fm−1

n

δ2
,
fm+1
n − fmn

δ
, ξmn

]
.

From the compatibility condition among (2.2)–(2.4), it follows that ω, A, B satisfy the system

ωm+1
n+1 ω

m
n −

ωm
n+1ω

m+1
n

gm+1
n+1 g

m
n

+ ϵδAm
n+1B

m+1
n+1 = 0,(2.6)

gm+1
n+1 A

m+1
n+1 = gmn A

m
n+1, gm+1

n+1 B
m+1
n+1 = gmn B

m+1
n .(2.7)

Indeed, the matrix F̃m
n varies according to the system

(2.8) F̃m
n+1 = F̃m

n Ũ
m
n , F̃m+1

n = F̃m
n Ṽ

m
n ,

where coefficient matrices are computed as

Ũm
n =


ωm
n+1

ωm
n
gmn+1 0 −ϵH2

(
1 +

ωm
n+1

ωm
n
gmn+1

)
ϵ
Am

n+1

ωm
n
gmn+1 1 −ϵ2H2

Am
n+1

ωm
n
gmn+1

ϵ2Am
n+1g

m
n+1 ϵωm

n
1
gmn

− ϵ3H2 A
m
n+1g

m
n+1

 ,(2.9)

Ṽ m
n =


1 δB

m+1
n
ωm
n
gm+1
n −δ2H2

Bm+1
n
ωm
n
gm+1
n

0 ωm+1
n
ωm
n
gm+1
n −δH2

(
1 + ωm+1

n
ωm
n
gm+1
n

)
δωm

n δ2Bm+1
n gm+1

n
1
gmn

− δ3H2 B
m+1
n gm+1

n

 .(2.10)

The compatibility condition Ũm
n Ṽ

m
n+1 = Ṽ m

n Ũm+1
n is (2.6)–(2.7). Therefore the system (2.8)–

(2.10), or equivalently (2.2)–(2.4), has a solution if and only if (2.6)–(2.7) hold. The system
(2.6)–(2.7) is a discrete analogue of the system (1.4)–(1.5), and hence called the discrete
Tzitzeica equation if H = −1, or the discrete Liouville equation if H = 0. Since this system
(2.6)–(2.7) is invariant under the transformation

Am
n 7→ λ3Am

n , Bm
n 7→ λ−3Bm

n , λ ∈ R×,
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the discrete affine sphere f has 1-parameter family, which we call the associated family of f .
The associated family preserves ω.

2.2. Loop group description. In order to derive a representation formula for discrete indef-
inite affine spheres, we use decomposition techniques of loop groups. To begin with, following
[3], we describe the discrete indefinite affine spheres in terms of the loop groups. We set

(2.11) Fm
n = F̃m

n

λ−1 0 ϵH/2

0 λ (ωm
n g

m
n )−1 δH/2

0 0 1

 .
Then the map F is SL3R-valued, and satisfies the system

(2.12) Fm
n+1 = Fm

n U
m
n , Fm+1

n = Fm
n V

m
n ,

where U and V are computed as

Um
n =


ωm
n+1g

m
n+1

ωm
n

− H
2 A

m
n+1g

m
n+1 (ϵλ)

3 −H
2

ωm
n

ωm
n+1g

m
n+1

(ϵλ)2 −Hϵλ
Am

n+1g
m
n+1ϵλ

ωm
n

ωm
n+1g

m
n+1

0

Am
n+1g

m
n+1 (ϵλ)

2 ωm
n

ωm
n+1g

m
n+1

ϵλ 1

 ,(2.13)

V m
n =


1
gmn

Bm+1
n

ωm+1
n ωm

n gmn
δλ−1 0

−H
2 (ωm

n )2 gmn
(
δλ−1

)2
gmn − H

2
Bm+1

n ωm
n gmn

ωm+1
n

(
δλ−1

)3 −Hωm
n g

m
n δλ

−1

ωm
n δλ

−1 Bm+1
n

ωm+1
n

(
δλ−1

)2
1

 .(2.14)

The consistency of (2.12), that is, Um
n V

m
n+1 = V m

n Um+1
n , is of course given by (2.6)–(2.7). By

multiplying F by some constant matrix from the left if necessary, without loss of generality
we can assume that

(2.15) F 0
0 = id

at the base point (n,m) = (0, 0). The family of gauged frames F defined by (2.11) with
the initial condition (2.15) will be called the extended frame of discrete affine sphere f . The

extended frame F is obviously a ΛSL3R-valued map. Conversely, if the matrices U
m
n and V

m
n

have similar entries as (2.13) and (2.14) respectively, then they give the extended family of
discrete indefinite affine spheres. In fact we have the following proposition, which has been
shown for the discrete indefinite proper affine spheres (H = −1) in [3, Theorem in Section 6].

Proposition 2.1. Let Um
n and V m

n be matrices which depend on a parameter λ ∈ R× as

Um
n = U0

n,m + λU1
n,m + λ2U2

n,m + λ3U3
n,m,

V m
n = V 0

n,m + λ−1V 1
n,m + λ−2V 2

n,m + λ−3V 3
n,m.

(2.16)

Here coefficient matrices U i and V i, which are labeled by the index i (0 ≤ i ≤ 3), have the
entries

U0
n,m = diag

(
1/u22n,m, u

22
n,m, 1

)
, U3

n,m = diag
(
− (H/2)

(
u13n,m

)2
u21n,m, 0, 0

)
,

U1
n,m =

 0 0 −Hu13n,m
u21n,m 0 0
0 u22n,mu

13
n,m 0

 , U2
n,m =

 0 −H
2 u

22
n,m

(
u13n,m

)2
0

0 0 0
u13n,mu

21
n,m 0 0

 ,
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and

V 0
n,m = diag

(
v11n,m, 1/v

11
n,m, 1

)
, V 3

n,m = diag
(
0, − (H/2)

(
v23n,m

)2
v12n,m, 0

)
,

V 1
n,m =

 0 v12n,m 0
0 0 −Hv23n,m

v11n,mv
23
n,m 0 0

 , V 2
n,m =

 0 0 0

−H
2 v

11
n,m

(
v23n,m

)2
0 0

0 v23n,mv
12
n,m 0

 ,
with some functions u21, v12, and nowhere vanishing functions u13, u22, v11, v23, and a
constant H ∈ {−1, 0}. If U and V satisfy the relation Um

n V
m
n+1 = V m

n U
m+1
n for all λ, then

there exist a map F and a gauge D such that

(1) F satisfies the system Fm
n+1 = Fm

n U
m
n , Fm+1

n = Fm
n V

m
n and

(2)
(
D0

0

)−1
Fm

n D
m
n is the extended frame of some discrete indefinite affine sphere.

Proof. Because of the relation Um
n V

m
n+1 = V m

n U
m+1
n , the existence of F is clear. We fix a

positive number ϵ, and set

Fm
n = Fm

n D
m
n , Dm

n = diag
(
u13n,m/ϵ, ϵ/u

13
n,m, 1

)
.

Then F satisfies Fm
n+1 = Fm

n U
m
n and Fm+1

n = Fm
n V

m
n , where

Um
n = (Dm

n )−1 Um
n D

m
n+1

=


u13
n+1,m

u13
n,mu22

n,m
− λ3H2 u

13
n,mu

21
n,mu

13
n+1,m −H

2 λ
2 ϵ

2u13
n,mu22

n,m

u13
n+1,m

−Hϵλ

λ
u13
n,mu21

n,mu13
n+1,m

ϵ2
u13
n,mu22

n,m

u13
n+1,m

0

λ2
u13
n,mu21

n,mu13
n+1,m

ϵ λ
ϵu13

n,mu22
n,m

u13
n+1,m

1

 ,
V m
n = (Dm

n )−1 V m
n D

m+1
n

=


v11n,mu13

n,m+1

u13
n,m

ϵ2v12n,m

λu13
n,mu13

n,m+1
0

−H
2

u13
n,mu13

n,m+1v
11
n,m(v23n,m)

2

λ2ϵ2
u13
n,m

u13
n,m+1v

11
n,m

− H
2

u13
n,mv12n,m(v23n,m)

2

λ3u13
n,m+1

−H u13
n,mv23n,m

λϵ

v11n,mv23n,mu13
n,m+1

λϵ

ϵv12n,mv23n,m

λ2u13
n,m+1

1

 .
Next we fix a positive number δ and introduce sequences ω, A, B by

ωm
n =

v11n,mv
23
n,mu

13
n,m+1

ϵδ
,

and

Am
n =

u13n−1,mu
21
n−1,mu

13
n,m

ϵ3gmn
, Bm

n =
ϵ v12n,m−1v

23
n,m−1

δ2u13n,m
ωm
n ,

where g is defined by (2.5). Therefore the matrices Um
n and V m

n are written as

Um
n =

 1
rmn

− λ3ϵ3H2 A
m
n+1g

m
n+1 −H

2 λ
2ϵ2rmn −Hϵλ

λϵAm
n+1g

m
n+1 rmn 0

λ2ϵ2Am
n+1g

m
n+1 λϵrmn 1

 ,

V m
n =


1
hm
n

δBm+1
n

λωm
n ωm+1

n hm
n

0

−H
2

δ2(ωm
n )2hm

n
λ2 hmn − H

2
δ3Bm+1

n ωm
n hm

n

λ3ωm+1
n

−H δhm
n ωm

n
λ

δωm
n
λ

δ2Bm+1
n

λ2ωm+1
n

1

 ,
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where

hmn =
u13n,m

u13n,m+1v
11
n,m

, rmn =
u13n,mu

22
n,m

u13n+1,m

.

We note that the condition Um
n V

m
n+1 = V m

n U
m+1
n is equivalent to

(2.17) Um
n V

m
n+1 = V m

n Um+1
n ,

which implies that

hmn = gmn , rmn =
ωm
n

ωm
n+1g

m
n+1

.

In fact, comparing the (2, 2)- and (3, 2)-entries of the both sides of (2.17), we have

hmn+1r
m
n +

ϵδgmn+1A
m
n+1B

m+1
n+1

hmn+1ω
m
n+1ω

m+1
n+1

=
hmn r

m+1
n

(gmn )2
,

hmn+1r
m
n +

ϵδgmn+1A
m
n+1B

m+1
n+1

hmn+1ω
m
n+1ω

m+1
n+1

=
rm+1
n

gmn
.

Then it immediately follows that h should be g. Further, from (1, 2)- and (3, 2)-entries of
(2.17), we have

gmn+1B
m+1
n+1

(
2− ϵδH (1 + rmn )ωm

n+1

)
ωm+1
n

2ωm+1
n+1 B

m+1
n rm+1

n
=

2rmn ω
m
n+1

gmn ω
m
n

(
2− ϵδH (1 + rmn )ωm

n+1

) ,
gmn+1B

m+1
n+1

(
2− ϵδH (1 + rmn )ωm

n+1

)
ωm+1
n

2ωm+1
n+1 B

m+1
n rm+1

n
= 1,

which implies that rmn ω
m
n+1g

m
n+1 = ωm

n . Thus Um
n and V m

n become exactly the same as (2.13)

and (2.14). We conclude that
(
D0

0

)−1
Fm
n is the extended frame of some discrete indefinite

affine sphere. □

We are now in position to state one of the main theorems of this paper, which is a discrete
analogue of Theorem 1.3.

Theorem 2.2. Let ϵ and δ be positive numbers, and F : Z2 → ΛSL3R be the extended frame
of a discrete indefinite affine sphere with the discrete affine normal (2.1). By the Birkhoff
decomposition, we decompose Fm

n near (n,m) = (0, 0) as

(2.18) Fm
n = F+

n,mF
−
n,m = G−

n,mG
+
n,m,

where F+
n,m ∈ Λ+

∗ SL3R, F−
n,m ∈ Λ−SL3R, G−

n,m ∈ Λ−
∗ SL3R and G+

n,m ∈ Λ+SL3R. Then F+

and G− do not depend on m and n, respectively, that is, they satisfy that

F+
n,m+1 = F+

n,m, G−
n+1,m = G−

n,m.

We write F+
n for F+

n,m and G−
m for G−

n,m, so that we have the ordinary difference equations

(2.19) F+
n+1 = F+

n ξ
+
n , G−

m+1 = G−
mξ

−
m
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with

ξ+n =

1− H
2 (αn+1)

2βn+1(ϵλ)
3 −H

2 (αn+1)
2(ϵλ)2 −Hαn+1ϵλ

βn+1ϵλ 1 0
αn+1βn+1(ϵλ)

2 αn+1ϵλ 1

 ,(2.20)

ξ−m =

 1 σm+1δλ
−1 0

−H
2 (ρm+1)

2(δλ−1)2 1− H
2 σm+1(ρm+1)

2(δλ−1)3 −Hρm+1δλ
−1

ρm+1δλ
−1 σm+1ρm+1(δλ

−1)2 1

 ,(2.21)

where functions α, β depend only on n, and σ, ρ only on m. Moreover αn ̸= 0 and ρm ̸= 0 for
all n and m.

Conversely, let αn, βn be functions depending only on n, and σm, ρm functions depending
only on m. Assume that αn and ρm have no zeros. Let F+

n and G−
m be solutions to the

system (2.19)–(2.21) with the initial condition F+
0 = G−

0 = id. Define V +
n,m ∈ Λ+

∗ SL3R and

V −
n,m ∈ Λ−SL3R by the Birkhoff decomposition for (G−

m)
−1
F+
n near (n,m) = (0, 0) as

(2.22)
(
G−

m

)−1
F+
n = V +

n,m

(
V −
n,m

)−1
,

and write F̂m
n = F+

n V
−
n,m = G−

mV
+
n,m. Then there exists a diagonal matrix Dm

n such that(
D0

0

)−1
F̂m
n D

m
n is the extended frame of a discrete indefinite affine sphere fmn . In particular,

in case of discrete indefinite proper affine spheres (H = −1), the third column of the extended

frame
(
D0

0

)−1
F̂m
n D

m
n directly gives the position vector of fmn .

Proof. Let F be an extended frame, and define F+ and F− by (2.18). Therefore we have

F+
n,m = Fn,m

(
F−
n,m

)−1
and so that

(
F+
n,m

)−1
F+
n,m+1 = F−

n,m (Fm
n )−1 Fm+1

n

(
F−
n,m+1

)−1
= F−

n,mV
m
n

(
F−
n,m+1

)−1
,

where V m
n is given by (2.14). The left-hand side takes values in Λ+

∗ SL3R and the right-hand

side takes values in Λ−SL3R. Thus
(
F+
n,m

)−1
F+
n,m+1 = id. Similarly

(
G−

n,m

)−1
G−

n+1,m is

identity matrix. Therefore F+ and G− do not depend on m and n, respectively.

Next, let us compute (F+
n )

−1
F+
n+1 and (G−

m)
−1
G−

m+1. It is straightforward to see that

(
F+
n

)−1
F+
n+1 = F−

n,m (Fm
n )−1 Fm

n+1

(
F−
n+1,m

)−1
= F−

n,mU
m
n

(
F−
n+1,m

)−1
,

where Um
n is given by (2.13). Since Um

n has the form Um
n =

∑3
k=0 λ

kUk
n,m and F−

n,m takes

values in Λ−SL3R, we have

ξ+n =
(
F+
n

)−1
F+
n+1 = X0

n + λX1
n + λ2X2

n + λ3X3
n.

With the expansions

F−
n,m = I0n,m + λ−1I1n,m + λ−2I2n,m + λ−3I3n,m + · · · ,(

F−
n,m

)−1
= J0

n,m + λ−1J1
n,m + λ−2J2

n,m + λ−3J3
n,m + · · · ,
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it is easy to see that X0
n, X

1
n, X

2
n, X

3
n are computed as

X0
n = I0n,mU

3
n,mJ

3
n+1,m + I1n,mU

3
n,mJ

2
n+1,m + I2n,mU

3
n,mJ

1
n+1,m + I3n,mU

3
n,mJ

0
n+1,m

+ I0n,mU
2
n,mJ

2
n+1,m + I1n,mU

2
n,mJ

1
n+1,m + I2n,mU

2
n,mJ

0
n+1,m

+ I0n,mU
1
n,mJ

1
n+1,m + I1n,mU

1
n,mJ

0
n+1,m + I0n,mU

0
n,mJ

0
n+1,m,

X1
n = I0n,mU

3
n,mJ

2
n+1,m + I1n,mU

3
n,mJ

1
n+1,m + I2n,mU

3
n,mJ

0
n+1,m

+ I0n,mU
2
n,mJ

1
n+1,m + I1n,mU

2
n,mJ

0
n+1,m + I0n,mU

1
n,mJ

0
n+1,m,

X2
n = I0n,mU

3
n,mJ

1
n+1,m + I1n,mU

3
n,mJ

0
n+1,m + I0n,mU

2
n,mJ

0
n+1,m,

X3
n = I0n,mU

3
n,mJ

0
n+1,m.

From Proposition 1.1, every one of
{
I0n,m, J

0
n,m, I

3
n,m, J

3
n,m

}
,
{
I1n,m, J

1
n,m

}
,
{
I2n,m, J

2
n,m

}
has

the following form

diag (∗, ∗, ∗) ,

0 ∗ 0
0 0 ∗
∗ 0 0

 ,
0 0 ∗
∗ 0 0
0 ∗ 0

 ,
respectively. Since ξ+n takes values in Λ+

∗ SL3R, thus X0
n = id. Noticing that U1

n,m, U2
n,m, U3

n,m

are given by (2.13), it readily follows that the coefficients Xk
n have the form

X3
n = diag

(
x11n , 0, 0

)
, X1

n =

 0 0 x13n
x21n 0 0
0 x32n 0

 , X2
n =

 0 x12n 0
0 0 0
x31n 0 0

 ,
where xijn are some functions in n. Thus we have

ξ+n =

1 + λ3x11n λ2x12n λx13n
λx21n 1 0
λ2x31 λx32n 1

 .
We now consider the twisted condition (1.12), namely tξ (−λ)Tξ (λ) = T . It is easy to see
that the twisted condition is equivalent to the system

x13n = −Hx32n , x31n = x21n x
32
n , x12n = −H

2

(
x32n
)2
, x11n = −H

2

(
x32n
)2
x21n .

Thus we have

ξ+n =

1− λ3H2
(
x32n
)2
x21n −λ2H2

(
x32n
)2 −λHx32n

λx21n 1 0
λ2x21n x

32
n λx32n 1


and the expression (2.20) on rewriting x32n = ϵαn+1 and x21n = ϵβn+1. We write P (i, j) for
the (i, j)-entry of a matrix P , and show that αn+1 has no zeros as follows. We compute x32n ,
x12n and X0

n(2, 2) so that we have

x32n = ϵ
(
−2 + ϵHI1n,m(3, 1)

)
Cm
n ,(2.23)

x12n = ϵ2HI0n,m(1, 1)Cm
n ,(2.24)

X0
n(2, 2) =

(
− 2

I0n,m(1, 1)
+ ϵ2HI2n,m(2, 1)− 2ϵI2n,m(2, 3)

)
Cm
n ,(2.25)

where we set

amn =
ωm
n+1g

m
n+1

ωm
n

̸= 0, bmn = Am
n+1g

m
n+1, Cm

n = −
1 + amn b

m
n J

0
n+1,m(1, 1)J1

n+1,m(1, 2)

2amn J
0
n+1,m(1, 1)

.

22



Because of the condition X0
n(2, 2) = 1, expressions (2.23) and (2.25) imply that x32n has

no zeros if H = 0. When H = −1, expressions (2.24) and (2.25) imply x32n ̸= 0 because

x12n = −(H/2)
(
x32n
)2
. Similarly, (G−

m)
−1
G−

m+1 can be computed as in (2.21) with a nowhere
vanishing function ρm.

Conversely, let (F+
n , G

−
m) be a pair solutions of (2.19) such that F+

0 = G−
0 = id. We write

ξ+n =
3∑

j=0

λjXj
n, ξ−m =

3∑
j=0

λ−jY j
m,

where coefficient matrices Xj and Y j are defined by (2.20) and (2.21). Consider the Birkhoff

decomposition of (G−
m)

−1
F+
n near (n,m) = (0, 0) as (G−

m)
−1
F+
n = V +

n,m

(
V −
n,m

)−1
and define

F̂m
n = F+

n V
−
n,m = G−

mV
+
n,m. We express

V −
n,m =

∞∑
j=0

λ−jKj
n,m, V +

n,m =
∞∑
j=0

λjM j
n,m.

Their inverses are

(
V −
n,m

)−1
=

∞∑
j=0

λ−jLj
n,m,

(
V +
n,m

)−1
=

∞∑
j=0

λjN j
n,m,

with K0
n,mL

0
n,m = id and M0

n,m = N0
n,m = id, and for all j ≥ 0 it holds that

j+1∑
k=0

Kk
n,mL

j+1−k
n,m = 0,

j+1∑
k=0

Mk
n,mN

j+1−k
n,m = 0.

Namely the matrices Lj+1 and N j+1 are computed as

L1
n,m = −L0

n,mK
1
n,mL

0
n,m,

L2
n,m = −L0

n,m

(
K2

n,m −K1
n,mL

0
n,mK

1
n,m

)
L0
n,m,

L3
n,m = −L0

n,m

(
K3

n,m −K1
n,mL

0
n,mK

2
n,m −K2

n,mL
0
n,mK

1
n,m

+K1
n,mL

0
n,mK

1
n,mL

0
n,mK

1
n,m

)
L0
n,m,

N1
n,m = −M1

n,m,

N2
n,m = −M2

n,m +
(
M1

n,m

)2
,

N3
n,m = −M3

n,m +M1
n,mM

2
n,m +M2

n,mM
1
n,m −

(
M1

n,m

)3
,

and so forth. Further, from the twisted condition (1.12), it holds that

(−1)j tLj
n,mT = TKj

n,m, (−1)j tN j
n,mT = TM j

n,m

for all j ≥ 0. In particular, setting j = 0, we have that

K0
n,m = diag (kmn , 1/k

m
n , 1) , L0

n,m =
(
K0

n,m

)−1
,
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where k is some sequence which has no zeros. For higher j, we have that

K1
n,m =

 0 κ12n,m 0

0 0 − H
kmn
κ31n,m

κ31n,m 0 0

 ,
K2

n,m =

 0 0 H
(
kmn κ

32
n,m − κ12n,mκ

31
n,m

)
− H

2kmn

(
κ31n,m

)2
0 0

0 κ32n,m 0

 ,
K3

n,m = diag

(
(kmn )2 κ22n,m +

H

2
κ31n,m

(
2kmn κ

32
n,m − κ12n,mκ

31
n,m

)
, κ22n,m, κ

33
n,m

)
,

M1
n,m =

 0 0 −Hµ32n,m
µ21n,m 0 0
0 µ32n,m 0

 ,
M2

n,m =

 0 −H
2

(
µ32n,m

)2
0

0 0 H
(
µ31n,m − µ21n,mµ

32
n,m

)
µ31n,m 0 0

 ,
M3

n,m = diag

(
µ11n,m, µ

11
n,m +

H

2
µ32n,m

(
2µ31n,m − µ21n,mµ

32
n,m

)
, µ33n,m

)
,

and so on. Here κij and µij are some sequences in n, m. Now we are ready to compute the

Maurer-Cartan form of F̂ . As for
(
F̂m
n

)−1
F̂m
n+1, we have(

F̂m
n

)−1
F̂m
n+1 =

(
V +
n,m

)−1
V +
n+1,m,(2.26) (

F̂m
n

)−1
F̂m
n+1 =

(
V −
n,m

)−1
ξ+n V

−
n+1,m.(2.27)

Comparing these two expressions, it readily follows that there exist matrices such that(
F̂m
n

)−1
F̂m
n+1 = id+λÛ1

n,m + λ2Û2
n,m + λ3Û3

n,m.

Similarly, from (
F̂m
n

)−1
F̂m+1
n =

(
V −
n,m

)−1
V −
n,m+1,(2.28) (

F̂m
n

)−1
F̂m+1
n =

(
V +
n,m

)−1
ξ−mV

+
n,m+1,(2.29)

we have that (
F̂m
n

)−1
F̂m+1
n = V̂ 0

n,m + λ−1V̂ 1
n,m + λ−2V̂ 2

n,m + λ−3V̂ 3
n,m.

From (2.27) and (2.29), it readily follows that the coefficient matrices are of the form

Û1
n,m =

0 0 ∗
∗ 0 0
0 ∗ 0

 , Û2
n,m =

0 ∗ 0
0 0 0
∗ 0 0

 , Û3
n,m = diag (∗, 0, 0) ,(2.30)

V̂ 1
n,m =

0 ∗ 0
0 0 ∗
∗ 0 0

 , V̂ 2
n,m =

0 0 0
∗ 0 0
0 ∗ 0

 , V̂ 3
n,m = diag (0, ∗, 0) ,(2.31)
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and V̂ 0
n,m is diagonal. On the other hand, from (2.26), we have

Û1
n,m =M1

n+1,m +N1
n,m

=M1
n+1,m −M1

n,m

=

 0 0 −Hu13n,m
u21n,m 0 0
0 u13n,m 0

 ,
Û2
n,m =M2

n+1,m +N1
n,mM

1
n+1,m +N2

n,m

=M2
n+1,m −M2

n,m −M1
n,mÛ

1
n,m

=

 0 −H
2

(
u13n,m

)2
0

0 0 Hu23n,m
u31n,m 0 0

 ,(2.32)

Û3
n,m =M3

n+1,m +N1
n,mM

2
n+1,m +N2

n,mM
1
n+1,m +N3

n,m

=M3
n+1,m −M3

n,m −M1
n,mÛ

2
n,m −M2

n,mÛ
1
n,m

= diag
(
u11n,m, u

22
n,m, ∗

)
,(2.33)

where

u13n,m = µ32n+1,m − µ32n,m,

u21n,m = µ21n+1,m − µ21n,m,

u23n,m = µ31n+1,m − µ31n,m − µ32n+1,mu
21
n,m,

u31n,m = µ31n+1,m − µ31n,m − µ32n,mu
21
n,m,

u11n,m = µ11n+1,m − µ11n,m + (H/2)µ32n,m
(
µ32n+1,m + u13n,m

)
u21n,m,

u22n,m = µ11n+1,m − µ11n,m + (H/2)µ32n+1,m

(
µ31n+1,m − µ31n,m + u23n,m

)
.

Similarly, from (2.28), we have

V̂ 0
n,m = L0

n,mK
0
n,m+1 = diag

(
km+1
n

kmn
,
kmn
km+1
n

, 1

)
,
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and hence we have that

V̂ 1
n,m = L0

n,mK
1
n,m+1 + L1

n,mK
0
n,m+1

= L0
n,m

(
K1

n,m+1 −K1
n,mV̂

0
n,m

)
=

 0 v12n,m 0
0 0 −Hv23n,m

km+1
n
kmn

v23n,m 0 0

 ,
V̂ 2
n,m = L0

n,mK
2
n,m+1 + L1

n,mK
1
n,m+1 + L2

n,mK
0
n,m+1

= L0
n,m

(
K2

n,m+1 −K2
n,mV̂

0
n,m −K1

n,mV̂
1
n,m

)
=

 0 0 Hv13n,m
−H

2
km+1
n
kmn

(
v23n,m

)2
0 0

0 v32n,m 0

 ,(2.34)

V̂ 3
n,m = L0

n,mK
3
n,m+1 + L1

n,mK
2
n,m+1 + L2

n,mK
1
n,m+1 + L3

n,mK
0
n,m+1

= L0
n,m

(
K3

n,m+1 −K3
n,mV̂

0
n,m −K2

n,mV̂
1
n,m −K1

n,mV̂
2
n,m

)
= diag

(
v11n,m, v

22
n,m, ∗

)
,(2.35)

where

v12n,m =
κ12n,m+1

kmn
−
κ12n,m

km+1
n

,

v23n,m =
kmn
km+1
n

κ31n,m+1 − κ31n,m,

v13n,m =
km+1
n

kmn

(
κ32n,m+1 −

kmn
km+1
n

κ32n,m

)
− κ31n,m+1v

12
n,m,

v32n,m = κ32n,m+1 −
kmn
km+1
n

κ32n,m − κ31n,mv
12
n,m,

v11n,m =
km+1
n

kmn

(
km+1
n κ22n,m+1 − kmn κ

22
n,m +

H

2
κ31n,m+1

(
κ32n,m+1 −

kmn
km+1
n

κ32n,m +
kmn
km+1
n

v13n,m

))
,

v22n,m =
kmn
km+1
n

(
km+1
n κ22n,m+1 − kmn κ

22
n,m

)
+
H

2
κ31n,m

(
κ32n,m+1 −

kmn
km+1
n

κ32n,m + v32n,m

)
.

For H ̸= 0, comparing (2.32) and (2.30), we have u23n,m = 0, which implies u31n,m = u13n,mu
21
n,m.

For H = 0, by using (2.27), we have u31n,m = u13n,mu
21
n,m. Comparing (2.33) and (2.30), we have

u22n,m = 0, which implies

u11n,m =
H

2
µ32n,m

(
µ32n+1,m + u13n,m

)
u21n,m − H

2
µ32n+1,m

(
µ31n+1,m − µ31n,m

)
=
H

2

(
µ32n+1,m − u13n,m

) (
µ32n+1,m + u13n,m

)
u21n,m − H

2

(
µ32n+1,m

)2
u21n,m

= −H
2

(
u13n,m

)2
u21n,m.

For H ̸= 0, comparing (2.34) and (2.31), we have v13n,m = 0, which implies v32n,m = v23n,mv
12
n,m.

For H = 0, by using (2.29), we have v32n,m = v23n,mv
12
n,m. Comparing (2.35) and (2.31), we have
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v11n,m = 0, which implies

v22n,m = −H
2

kmn
km+1
n

κ31n,m+1

(
κ32n,m+1 −

kmn
km+1
n

κ32n,m

)
+
H

2
κ31n,m

(
κ32n,m+1 −

kmn
km+1
n

κ32n,m + v32n,m

)
= −H

2

(
kmn
km+1
n

κ31n,m+1 − κ31n,m

)(
κ32n,m+1 −

kmn
km+1
n

κ32n,m

)
+
H

2
κ31n,mv

32
n,m

= −H
2
v23n,m

(
v32n,m + κ31n,mv

12
n,m

)
+
H

2
κ31n,mv

32
n,m

= −H
2

(
v23n,m

)2
v12n,m.

Finally, again from (2.27) and (2.29), we have(
u13n,m

)2
=
ϵ2 (αn+1)

2

kmn

(
1

kmn+1

+ ϵβn+1κ
12
n+1,m

)
,

(
v23n,m

)2
=

kmn
km+1
n

δ2 (ρm+1)
2 (1 + δσm+1µ

21
n,m+1

)
.

On the other hand, a straightforward computation shows that (2, 2)-entry of the constant

coefficient with respect to λ for (F̂m
n )−1F̂m

n+1 and (1, 1)-entry of the constant coefficient with

respect to λ for (F̂m
n )−1F̂m+1

n can be respectively computed as

1 =

(
1

2
+
ϵαHκ31n,m

4kmn

)(
1

kmn+1

+ ϵβn+1κ
12
n+1,m

)
,

0 ̸= km+1
n

kmn
=

(
1 +

δρH

2
µ32n,m

)2 (
1 + δσm+1µ

21
n,m+1

)
.

Thus 1/kmn+1 + ϵβn+1κ
12
n+1,m and 1 + δσm+1µ

21
n,m+1 have no zeros near (0, 0), which implies

that u13n,m and v23n,m never vanish near (n,m) = (0, 0).

Thus, coefficient matrices Û j
n,m, V̂ j

n,m satisfy the assumption of Proposition 2.1. Therefore

by Proposition 2.1 there exists a diagonal gauge Dm
n such that

(
D0

0

)−1
F̂m
n D

m
n is the extended

frame for some discrete indefinite affine sphere. □

Remark 2.3. In case of discrete proper affine spheres (H = −1), the functions Am
n and Bm

n do
not have simple expressions among the functions αn, βn, ρm and σm. On the other hand, in
case of discrete improper affine spheres (H = 0), they are simply represented as (2.44) below.

2.3. discrete indefinite improper affine spheres. For the rest of this paper, we shall be
concerned only with discrete indefinite improper affine spheres (H = 0). Equations in (2.7)
are simplified as

Am+1
n+1 = Am

n+1, Bm+1
n+1 = Bm+1

n ,

which indicate that A and B depend only on n and m, respectively. Hence we write An for
Am

n and Bm for Bm
n . Thus the discrete Liouville equation (2.6) is written as

(2.36) ωm+1
n+1 ω

m
n − ωm

n+1ω
m+1
n + ϵδAn+1Bm+1 = 0.

We now introduce a notation of summation of a sequence x as

∑n

k
xk =


∑n

k=1 xk (n ≥ 1)

0 (n = 0)

−
∑0

k=n+1 xk (n ≤ −1) .
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It holds for all integers n that ∑n
kxk −

∑n−1
k xk = xn,∑n−1

k xk −
∑n

kxk−1 = −x0,

and hence
∑n

k (xk − xk−1) = xn−x0. In particular we have a formula of summation by parts

(2.37)
∑n

kxk (yk − yk−1) = −x0y0 + xnyn −
∑n

k (xk − xk−1) yk−1,

which holds for all integers n. Then the ordinary difference equations (2.19) can be explicitly
computed as follows.

Lemma 2.4. Let H = 0. Then the pair of solutions (F+
n , G

−
m) to the system (2.19)–(2.21)

with the initial condition F+
0 = G−

0 = id is explicitly given by

(2.38) F+
n =

 1 0 0
bnλ 1 0
cnλ

2 anλ 1

 , G−
m =

 1 smλ
−1 0

0 1 0
rmλ

−1 tmλ
−2 1

 ,
where a, b, c, r, s, t are defined as

an = ϵ
∑n

k
αk, bn = ϵ

∑n

k
βk, cn = ϵ

∑n

k
akβk,(2.39)

rm = δ
∑m

k
ρk, sm = δ

∑m

k
σk, tm = δ

∑m

k
rkσk.(2.40)

Moreover, assume 1 − bnsm ̸= 0, and define V +
n,m ∈ Λ+

∗ SL3R and V −
n,m ∈ Λ−SL3R by the

Birkhoff decomposition of (G−
m)

−1
F+
n as

(2.41)
(
G−

m

)−1
F+
n = V +

n,m

(
V −
n,m

)−1
.

Then V ± are explicitly given as

V +
n,m =

 1 0 0

bn (1− bnsm)−1 λ 1 0

cn (1− bnsm)−1 λ2 (an − sm (anbn − cn))λ 1

 ,(2.42)

V −
n,m =

 (1− bnsm)−1 smλ
−1 0

0 1− bnsm 0(
rm + bntm (1− bnsm)−1

)
λ−1 tmλ

−2 1

 .(2.43)

Proof. It is easy to check that matrices (2.38) satisfy the system (2.19)–(2.21) with H = 0
and F+

0 = G−
0 = id. The decomposition (2.41) is also easily checked. □

Theorem 2.5. Let ϵ, δ be positive numbers, and α, β, ρ, σ be functions in one variables, and
F+, G−, V +, V − be the loops given by (2.38), (2.42), (2.43). Define a, b, c, r, s, t by (2.39),

(2.40), and F̂ by F̂m
n = F+

n V
−
n,m = G−

mV
+
n,m. We assume that sequences α, ρ and 1− bs have

no zeros. Then there exists a diagonal matrix Dm
n such that

(
D0

0

)−1
F̂m
n D

m
n is the extended

frame of some discrete indefinite improper affine sphere f , whose data solving the discrete
Liouville equation (2.36) are given as

(2.44) ωm
n = (1− bnsm)αn+1ρm+1, An = αn+1αnβn, Bm = ρm+1ρmσm.

Moreover, the associated family of f is given by the representation formula

(2.45) fmn =

 λan + λ−2 (rmsm − tm)
λ2 (anbn − cn) + λ−1rm

anrm − (anbn − cn) (rmsm − tm) + λ3ϵ
∑n

kαkck−1 + λ−3δ
∑m

k ρktk−1

 ,
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where λ ∈ R×. All discrete indefinite improper affine spheres are locally constructed in this
way.

Proof. First a straightforward computation shows that Maurer-Cartan form of F̂ is computed
as (

F̂m
n

)−1
F̂m
n+1 =

(
V −
n,m

)−1
ξ+n V

−
n+1,m

=

 1 0 0
βn+1

(1−bnsm)(1−bn+1sm)ϵλ 1 0
αn+1βn+1

1−bn+1sm
(ϵλ)2 αn+1 (1− bnsm) ϵλ 1

 ,
(
F̂m
n

)−1
F̂m+1
n =

(
V +
n,m

)−1
ξ−mV

+
n,m+1

=


1−bnsm

1−bnsm+1
σm+1δλ

−1 0

0 1−bnsm+1

1−bnsm
0

ρm+1(1−bnsm)
1−bnsm+1

δλ−1 ρm+1σm+1

(
δλ−1

)2
1

 .
Next we take a diagonal gauge Dm

n = diag (dmn , 1/d
m
n , 1) so that the Maurer-Cartan form of

Fm
n = F̂m

n D
m
n is

(Fm
n )−1 Fm

n+1 =


dmn+1

dmn
0 0

βn+1dmn+1d
m
n

(1−bnsm)(1−bn+1sm)ϵλ
dmn
dmn+1

0
αn+1βn+1dmn+1

1−bn+1sm
(ϵλ)2 αn+1(1−bnsm)

dmn+1
ϵλ 1

 ,

(Fm
n )−1 Fm+1

n =


dm+1
n
dmn

1−bnsm
1−bnsm+1

σm+1

dm+1
n dmn

δλ−1 0

0 dmn
dm+1
n

1−bnsm+1

1−bnsm
0

ρm+1(1−bnsm)dm+1
n

1−bnsm+1
δλ−1 ρm+1σm+1

dm+1
n

(
δλ−1

)2
1

 .
This should be compared with (2.13)–(2.14) with H = 0, thus we have (2.44) and

dmn = (1− bnsm)αn+1.

To obtain the formula (2.45), we consider an another diagonal gauge as introduced in (2.11).

Namely, setting F̃m
n = Fm

n D̃
m
n where D̃m

n = diag
(
λ, λ−1ωm

n , 1
)
, we have

(
F̃m
n

)−1
F̃m
n+1 =


αn+2

αn+1

1−bn+1sm
1−bnsm

0 0
αn+2βn+1ϵ

ρm+1(1−bnsm)λ
3 1 0

αn+2αn+1βn+1ϵ
2λ3 αn+1ρm+1 (1− bnsm) ϵ 1

 = Ũm
n ,(2.46)

(
F̃m
n

)−1
F̃m+1
n =

 1 σm+1ρm+2

αn+1(1−bnsm)δλ
−3 0

0 ρm+2(1−bnsm+1)
ρm+1(1−bnsm) 0

αn+1ρm+1 (1− bnsm) δ ρm+2ρm+1σm+1δ
2λ−3 1

 = Ṽ m
n .(2.47)

Of course this pair of matrices
(
Ũm
n , Ṽ

m
n

)
accords with (2.9) and (2.10). The frame F̃ can be

computed explicitly as

F̃m
n = G−

mV
+
n,mD

m
n D̃

m
n = [vmn , w

m
n , ξ0] ,
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where

vmn = αn+1

 λ
bnλ

2

rm − bn (rmsm − tm) + cnλ
3

 ,
wm
n = ρm+1

 smλ
−2

λ−1

an − sm (anbn − cn) + tmλ
−3

 .
By definition of the moving frame, we have

vmn =
fmn+1 − fmn

ϵ
, wm

n =
fm+1
n − fmn

δ
.

Hence, noticing (2.37), a0b0 = 0 and the relations

anbn − cn = anbn − ϵ
∑n

kakβk

= anbn −
∑n

kak (bk − bk−1)

=
∑n

k (ak − ak−1) bk−1

= ϵ
∑n

kαkbk−1

and rmsm − tm = δ
∑m

k ρksk−1, it follows for all integers n and m that

fmn − f00

=
∑n

k

(
f0k − f0k−1

)
+
∑m

l

(
f ln − f l−1

n

)
= ϵ

∑n
k v

0
k−1 + δ

∑m
l w

l−1
n

= ϵ
∑n

k αk

 λ
bk−1λ

2

ck−1λ
3

+ δ
∑m

l ρl

 sl−1λ
−2

λ−1

an − sl−1 (anbn − cn) + tl−1λ
−3


=

 λan + λ−2 (rmsm − tm)
λ2 (anbn − cn) + λ−1rm

anrm − (anbn − cn) (rmsm − tm) + λ3ϵ
∑n

kαkck−1 + λ−3δ
∑m

l ρltl−1

 .
Thus we have the representation formula (2.45) up to equiaffine transformations. □

Remark 2.6. For given functions An, Bm and positive constants ϵ, δ, it is known that a general
solution to the discrete Liouville equation (2.36) can be expressed as

ωm
n =

ϵ (p0 +
∑n

kAkϕkϕk−1) + δ (q0 +
∑m

l Blψlψl−1)

ϕnψm
,

where ϕ and ψ are arbitrary functions with no zeros in one variables, and p0 and q0 are
arbitrary constants. See, for example, [24]. On the other hand, our formula (2.44) tells that
a general solution also has an expression

ωm
n = αn+1ρm+1

(
1− ϵδ

∑n

k

Ak

αk+1αk

∑m

l

Bl

ρl+1ρl

)
,

where α and ρ are arbitrary functions with no zeros in one variables. As the most simplest
solutions, by setting ϕ = ψ = α = ρ = 1 and p0 = q0 = 0, these formulas give an additive one
ωm
n = ϵ

∑n
kAk + δ

∑m
l Bl and a multiplicative one ωm

n = 1− ϵδ
∑n

kAk
∑m

l Bl, respectively.

We conclude this paper with one of our main results, which offers a representation formula
using two discrete plane curves for a discrete indefinite improper affine sphere.
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Corollary 2.7 (Representation formula). Fix positive numbers ϵ and δ. For maps a, p : ϵZ →
R and q, r : δZ → R, set

γ1n =

[
an
pn

]
, γ2m =

[
qm
rm

]
.

Then the map

fmn =

[
γ1n + γ2m
zmn

]
,(2.48)

where

zmn = det
[
γ1n, γ

2
m

]
+
∑n

k
det
[
γ1k−1, γ

1
k

]
−
∑m

k
det
[
γ2k−1, γ

2
k

]
(2.49)

is a discrete indefinite improper affine sphere with the affine normal t [0, 0, 1]. Its data solving
the discrete Liouville equation (2.36) is

ωm
n = det

[
γ1n+1 − γ1n

ϵ
,
γ2m+1 − γ2m

δ

]
,

An = det

[
γ1n+1 − γ1n

ϵ
,−

γ1n − γ1n−1

ϵ2

]
,

Bm = det

[
−
γ2m − γ2m−1

δ2
,
γ2m+1 − γ2m

δ

]
.

Moreover the associated family of f is given by the transformation

γ1 7→
[
λ 0
0 λ2

]
γ1, γ2 7→

[
λ−2 0
0 λ−1

]
γ2

where λ ∈ R×. Conversely all discrete indefinite improper affine spheres can be constructed
in this way.

Proof. First, introducing functions pn = anbn − cn and qm = rmsm − tm, we rephrase (2.45)
as

(2.50) fmn =

 λan + λ−2qm
λ2pn + λ−1rm

anrm − pnqm + λ3
∑n

k (ak−1pk − akpk−1)− λ−3
∑m

k (rkqk−1 − rk−1qk)

 ,
where we use the identities

ϵαkck−1 = (ak − ak−1) ck−1

= akck−1 + ak−1 (ϵakβk − ck)

= akck−1 + akak−1 (bk − bk−1)− ak−1ck

= ak−1pk − akpk−1,

and δρktk−1 = rk−1qk − rkqk−1. Note that a0 = p0 = q0 = r0 = 0. We then consider an
equiaffine transformation of fmn as

f̃mn =

 1 0 0
0 1 0

λ−1r̃0 − λ2p̃0 λã0 − λ−2q̃0 1

 fmn +

 λã0 + λ−2q̃0
λ2p̃0 + λ−1r̃0
ã0r̃0 − p̃0q̃0

 ,
where ã0, r̃0, p̃0 and q̃0 are some constants. A straightforward computation shows that

f̃mn =

 λãn + λ−2q̃m
λ2p̃n + λ−1r̃m

ãnr̃m − p̃nq̃m + λ3
∑n

k (ãk−1p̃k − ãkp̃k−1)− λ−3
∑m

k (r̃kq̃k−1 − r̃k−1q̃k)

 ,
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where ãn = an + ã0, p̃n = pn + p̃0, q̃n = qn + q̃0 and r̃ = r + r̃0. Thus we obtain (2.48) on
writing

γ1n =

[
ãn
p̃n

]
, γ2m =

[
q̃m
r̃m

]
.

Since γ1n and γ2m are arbitrary, (2.48) gives the all improper indefinite affine spheres. □
Remark 2.8. We recall that the height function z defined by (1.31) satisfies ∂u∂vz (u, v) =
det [γ′1 (u) , γ

′
2 (v)]. As a discrete analogue of this, the sequence z defined by (2.49) satisfies a

difference equation

(2.51) zm+1
n+1 − zmn+1 − zm+1

n + zmn = det
[
γ1n+1 − γ1n, γ

2
m+1 − γ2m

]
.

In particular, if ϵ = δ and γ1i = γ2i for all i ∈ Z, then z satisfies zii = zi±1
i = 0 for all i ∈ Z,

and then every zi±2
i can be fast computed by using the recurrent relation (2.51). Iterating

this, we can obtain all the values zmn numerically. Refer to Example 4 for specific examples,
where we explicitly calculate z as a function in (n,m).

We fix positive numbers ϵ and δ arbitrarily to illustrate examples of discrete indefinite
improper affine spheres by taking several discrete curves.

Example 3. Let Pn and Rm be arbitrary sequences which possibly depend on ϵ and δ respec-
tively. We denote by ∆P and ∆R the forward differences of them, that is,

∆Pn =
Pn+1 − Pn

ϵ
, ∆Rm =

Rm+1 −Rm

δ
.

We substitute discrete curves

γ1n =

[
ϵn
∆Pn

]
, γ2m =

[
∆Rm

δm

]
into the representation formula (2.48), and have a discrete indefinite improper affine sphere

fmn =

 ϵn+∆Rm

δm+∆Pn

(ϵn+∆Rm) (δm+∆Pn)− 2 (∆Pn) (∆Rm)− Pn+1 − Pn −Rm+1 −Rm

 .
Its data is

ωm
n = 1− ϵ−2δ−2 (Pn+2 − 2Pn+1 + Pn) (Rm+2 − 2Rm+1 +Rm) ,

An = ϵ−3 (Pn+2 − 3Pn+1 + 3Pn − Pn−1) ,

Bm = δ−3 (Rm+2 − 3Rm+1 + 3Rm −Rm−1) .

Example 4. We illustrate discrete counterparts to those surfaces given in Example 2. Fix
positive numbers q1, q2 arbitrarily and introduce positive numbers

θ1 =
2

ϵ
arctan

( ϵ
2
q1

)
, θ2 =

2

δ
arctan

(
δ

2
q2

)
.

(1) First example is given by the discrete curves

γ1n =

[
cos (θ1ϵn)
sin (θ1ϵn)

]
, γ2m =

[
cos (θ2δm)
sin (θ2δm)

]
.

Substituting these into the representation formula, we have

fmn =

 cos (θ1ϵn) + cos (θ2δm)
sin (θ1ϵn) + sin (θ2δm)

− sin (θ1ϵn− θ2δm) + n sin (θ1ϵ)−m sin (θ2δ)

 .
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The data solving the discrete Liouville equation (2.36) are given by constants

An =
8

ϵ3
sin3

( ϵ
2
θ1

)
cos
( ϵ
2
θ1

)
=

16q31(
4 + ϵ2q21

)2 ,
Bm = − 8

δ3
sin3

(
δ

2
θ2

)
cos

(
δ

2
θ2

)
= − 16q32(

4 + δ2q22
)2 ,

and a sequence

ωm
n =

4q1q2√
4 + ϵ2q21

√
4 + δ2q22

sin

(
ϵ

2
θ1 (2n+ 1)− δ

2
θ2 (2m+ 1)

)
.

Therefore f is singular if n, m satisfy

ϵθ1 (2n+ 1) ≡ δθ2 (2m+ 1) (mod 2π).

(d) q = 2 tan (π/4) (e) q = 2 tan (π/6) (f) q = 2 tan (π/12)

Figure 5. Discrete indefinite improper affine spheres fmn with ϵ = δ = 1 and
q = q1 = q2, which exhibit cone points. The figures in upper line show views
from the top.

(2) Second example is given by

γ1n =

[
|cos (θ1ϵn)| cos (θ1ϵn)
|sin (θ1ϵn)| sin (θ1ϵn)

]
, γ2m =

[
|cos (θ2δm)| cos (θ2δm)
|sin (θ2δm)| sin (θ2δm)

]
.

We assume that both the images of γ1 and γ2 contain four points

±
[
1
0

]
, ±

[
0
1

]
,
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which we can always achieve by choosing q1, q2 appropriately. By virtue of this as-
sumption, we are able to assume that 0 < θ1ϵ ≤ π/2 and cos (θ1ϵ (n− 1)) cos (θ1ϵn) ≥
0 and sin (θ1ϵ (n− 1)) sin (θ1ϵn) ≥ 0. Therefore the differences of γ1 can be written
into simple forms as

γ1n − γ1n−1 = 2 sin (θ1ϵ)

− ∣∣∣cos θ1ϵ(2n−1)
2

∣∣∣ sin θ1ϵ(2n−1)
2∣∣∣sin θ1ϵ(2n−1)

2

∣∣∣ cos θ1ϵ(2n−1)
2

 .
Hence we have that

det
[
γ1n−1, γ

1
n

]
= det

[
γ1n, γ

1
n − γ1n−1

]
= sin (θ1ϵ) |sin (θ1ϵ (2n− 1))| .

Further, on choosing the parameter q1 as

q1 =
2

ϵ
tan

π

4N1

with a positive integer N1, which is equivalent to setting θ1ϵ = π/ (2N1), it holds for
all n ∈ Z that∑n

k
det
(
γ1k−1, γ

1
k

)
=
∑n

k
sin

π

2N1

∣∣∣∣sin (2k − 1)π

2N1

∣∣∣∣
=

⌊
n

N1

⌋
+

1

2

(
1− (−1)⌊n/N1⌋ cos

nπ

N1

)
.

Here ⌊u⌋ is the floor of u, that is, the greatest integer less than or equal to u. We
apply the same discussion as above to γ2, and set q2 = (2/δ) tan (π/ (4N2)) to have

fmn =


∣∣∣cos nπ

2N1

∣∣∣ cos nπ
2N1

+
∣∣∣cos mπ

2N2

∣∣∣ cos mπ
2N2∣∣∣sin nπ

2N1

∣∣∣ sin nπ
2N1

+
∣∣∣sin mπ

2N2

∣∣∣ sin mπ
2N2

zmn

 ,
zmn =

∣∣∣cos nπ
2N1

sin mπ
2N2

∣∣∣ cos nπ
2N1

sin mπ
2N2

−
∣∣∣sin nπ

2N1
cos mπ

2N2

∣∣∣ sin nπ
2N1

cos mπ
2N2

+
⌊

n
N1

⌋
−
⌊

m
N2

⌋
− 1

2

(
(−1)⌊n/N1⌋ cos nπ

N1
− (−1)⌊m/N2⌋ cos mπ

N2

)
.

Its data is

An =

{
2
ϵ3
sin4 π

2N1
n ∈ N1Z

0 n ̸∈ N1Z,

Bm =

{
− 2

δ3
sin4 π

2N2
m ∈ N2Z

0 m ̸∈ N2Z,

ωm
n = 4

ϵδ sin
π

2N1
sin π

2N2

(∣∣∣cos (2n+1)π
4N1

sin (2m+1)π
4N2

∣∣∣ sin (2n+1)π
4N1

cos (2m+1)π
4N2

− cos (2n+1)π
4N1

sin (2m+1)π
4N2

∣∣∣sin (2n+1)π
4N1

cos (2m+1)π
4N2

∣∣∣)
=

{
0 (n,m) ∈ S
2
ϵδ sin

π
2N1

sin π
2N2

sin (2n+1)π
2N1

sin (2m+1)π
2N2

(n,m) ̸∈ S.

The singular set S consists of integer points in a checkerboard, that is

S =
{
(n,m) ∈ Z2

∣∣ ⌊n/N1⌋ ≡ ⌊m/N2⌋ (mod 2)
}
.
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(d) N = 1 (e) N = 2 (f) N = 3

Figure 6. Discrete indefinite improper affine spheres fmn with ϵ = δ = 1 and
N = N1 = N2. The figures in upper line show views from the top.

(3) Third example is given by

γ1n = cos (θ1ϵn)

[
1/2 + cos2 (θ1ϵn)

2 sin (θ1ϵn)

]
, γ2m = cos (θ2δm)

[
1/2 + cos2 (θ2δm)

2 sin (θ2δm)

]
.

We have

det
[
γ1n−1, γ

1
n

]
= 2 (3 + 2 sin (θ1ϵn) sin (θ1ϵ (n− 1))) sin (θ1ϵ/2)

· cos (θ1ϵn) cos (θ1ϵ (n− 1/2)) cos (θ1ϵ (n− 1)) ,

and hence∑n

k
det
[
γ1k−1, γ

1
k

]
= c1 (θ1ϵ) sin (θ1ϵn) + c2 (θ1ϵ) sin (3θ1ϵn)

+ c3 (θ1ϵ) sin (5θ1ϵn) .

Here the coefficients are given as

c1 (t) =
3 + 6 cos t+ cos 2t

4
,

c2 (t) =
5

8 (1 + 2 cos t)
,

c3 (t) = − 1

8 (1 + 2 cos t+ 2 cos 2t)
.
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This should be compared with (1.38). We have

fmn =

(1 + (1/2) cos (2θ1ϵn)) cos (θ1ϵn) + (1 + (1/2) cos (2θ2δm)) cos (θ2δm)
sin (2θ1ϵn) + sin (2θ2δm)

zmn

 ,
where

zmn = − cos (θ1ϵn) cos (θ2δm) (sin (θ1ϵn)− sin (θ2δm))

· (3 + 2 sin (θ1ϵn) sin (θ2δm))

+ c1 (θ1ϵ) sin (θ1ϵn)− c1 (θ2δ) sin (θ2δm)

+ c2 (θ1ϵ) sin (3θ1ϵn)− c2 (θ2δ) sin (3θ2δm)

+ c3 (θ1ϵ) sin (5θ1ϵn)− c3 (θ2δ) sin (5θ2δm) .

Its data is given as

An = 4ϵ−3 sin3 (θ1ϵ/2) cos (θ1ϵ/2)
(
a1 (θ1ϵ/2)

+ a2 (θ1ϵ/2) cos (2θ1ϵn)

+ a3 (θ1ϵ/2) cos (4θ1ϵn)
)
cos (θ1ϵn) ,

Bm = − 4δ−3 sin3 (θ2δ/2) cos (θ2δ/2)
(
a1 (θ2δ/2)

+ a2 (θ2δ/2) cos (2θ2δm)

+ a3 (θ2δ/2) cos (4θ2δm)
)
cos (θ2δm) ,

ωm
n = − 4ϵ−1δ−1 sin (θ1ϵ/2) sin (θ2δ/2)

(
4D1

n,m

+ 8D2
n,m sin (θ1ϵ (n+ 1/2)) sin (θ2δ (m+ 1/2))

+ 3D3
n,m cos (θ1ϵ (2n+ 1)) cos (θ2δ (2m+ 1))

)
,

where

a1 (t) = 7 + 9 cos 2t+ 2 cos 4t+ cos 6t,

a2 (t) = −6− 2 cos 2t,

a3 (t) = 1 + 2 cos 2t

and

D1
n,m = 3+cos(θ1ϵ)

4 cos θ2δ
2 sin θ1ϵ(2n+1)

2 − 3+cos(θ2δ)
4 cos θ1ϵ

2 sin θ2δ(2m+1)
2 ,

D2
n,m = 3+cos(θ2δ)

4 cos θ1ϵ
2 sin θ1ϵ(2n+1)

2 − 3+cos(θ1ϵ)
4 cos θ2δ

2 sin θ2δ(2m+1)
2 ,

D3
n,m = 1+2 cos(θ1ϵ)

3 cos θ2δ
2 sin θ1ϵ(2n+1)

2 − 1+2 cos(θ2δ)
3 cos θ1ϵ

2 sin θ2δ(2m+1)
2 .

Especially if we choose the parameters q1, q2 so as to be

θ1ϵ = θ2δ =
π

N

with a positive integer N , then ω is factorized as

ωm
n = − 4

ϵδ sin
2 π
2N cos π

2N

(
sin π(2n+1)

2N − sin π(2m+1)
2N

)
Wm

n ,

Wm
n =

(
3 + cos π

N

) (
1 + 2 sin π(2n+1)

2N sin π(2m+1)
2N

)
+
(
1 + 2 cos π

N

)
cos π(2n+1)

N cos π(2m+1)
N .
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The singular set S = S1 ∪ S2 is given by

S1 =
{
(n,m) ∈ Z2

∣∣ m ≡ n (mod 2N) , m ≡ −n+N − 1 (mod 2N)
}
,

S2 =
{
(n,m) ∈ Z2

∣∣Wm
n = 0

}
.

(a) N = 4 (b) N = 6 (c) N = 12

Figure 7. Discrete indefinite improper affine spheres fmn with ϵ = δ = 1.
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