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1 Introduction
This paper establishes the Craig interpolation for a multi-succedent sequent calculus for a combination
of intuitionistic and classical propositional logic, denoted by G(C + J). The calculus was provided
in [16] and is based on the semantics offered in [4, 5]. The logic, called C+ J, has two implications:
intuitionistic and classical one1. They are interpreted in the Kripke semantics as follows (cf. [4, 5]):

w |=M A→i B iff for all v ∈ W, (wRv and v |=M A jointly imply v |=M B),
w |=M A→c B iff w |=M A implies w |=M B,

where M is an intuitionistic Kripke model, w is a possible world in M , and R is a preorder equipped in
M . However this semantic treatment breaks one feature of intuitionistic logic called heredity, which is
defined as: w |= A and wRv jointly imply v |= A for all Kripke models M and all states w and v in M .
It is a well-known fact that this feature corresponds to an intuitionistically valid formula A→i(B→iA).
Therefore, the formula is not valid in the Kripke semantics of C+ J. In order to avoid the formula being
derivable in G(C+ J), the right rule for the intuitionistic implication should be restricted as follows:

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B
(⇒ →i).

The resulting calculus is sound and complete and a conservative extension of both an intuitionistic and
a classical propositional sequent calculus (see [16]).

It is well-known that classical propositional logic and intuitionistic propositional logic enjoy the
Craig interpolation theorem:

If A→B is derivable, then there exists a formula C such that both ⇒ A→C and ⇒ C→B
are also derivable and that Prop(C) ⊆ Prop(A) ∩ Prop(B),

where Prop(D) denotes the set of all propositional variables in a formula D. The theorem can be
shown in terms of a classical sequent calculus LK by Maehara’s method in [9]. In multi-succedent
intuitionistic sequent calculus mLJ, the theorem can also be shown, though some modification of the
ways is needed, as is noted in [10]. Since C+ J contains the two kinds of implication, the two types of
Craig interpolation theorem can be considered in G(C+ J).

1In addition to C+ J, other attempts to combine intuitionistic and classical logic are displayed in [1, 2, 3, 6, 7, 11, 12, 13, 14].
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2 Syntax, Kripke Semantics and Sequent Calculus

2.1 Syntax and Kripke Semantics
This section reviews the syntax and the Kripke semantics of C+ J. The syntax is defined in [16], and
the Kripke semantics is based on the ones in [4, 5]. The syntax L consists of a countably infinite set Prop
of propositional variables and the following logical connectives: falsum ⊥, disjunction ∨, conjunction
∧, intuitionistic implication →i, and classical implication →c. The set Form of all formulas in our
syntax is defined inductively as follows:

A ::= p | ⊥ |A ∨A |A ∧A |A→i A |A→c A,

where p ∈ Prop. We define ⊤ := ⊥→i ⊥, ¬cA := A→c ⊥ and ¬iA := A→i ⊥.
Let us move to the semantics for the syntax L.

Definition 1. A model is a tuple M = (W,R, V ) where

• W is a non-empty set of possible worlds,

• R is a preorder on W , i.e., R satisfies reflexivity and transitivity,

• V : Prop → P(W ) is a valuation function satisfying the following heredity condition: w ∈ V (p)
and wRv jointly imply v ∈ V (p) for all worlds w, v ∈ W .

Definition 2. Given a model M = (W,R, V ), a world w ∈ W and a formula A, the satisfaction relation
w |=M A is inductively defined as follows:

w |=M p iff w ∈ V (p),
w ̸|=M ⊥,
w |=M A ∧B iff w |=M A and w |=M B,
w |=M A ∨B iff w |=M A or w |=M B,
w |=M A→i B iff for all v ∈ W, (wRv and v |=M A jointly imply v |=M B).
w |=M A→c B iff w |=M A implies w |=M B.

Let us say that a formula A is a semantic consequence of a set of formulas Γ, represented as Γ |= A, if
w |=M C for any formula C ∈ Γ, then w |=M A for all models M = (W,R, V ) and all worlds w ∈ W .
We use Γ |= ∆ if Γ |= A for some formula A ∈ ∆. We say that A is valid if ∅ |= A holds. We say a
formula A satisfies heredity if the following holds: w |= A and wRv jointly imply v |= A for all Kripke
models M and all states w and v in M .

Proposition 1. A formula ¬cp does not satisfy heredity.

Proposition 2. Neither ¬cp→i (⊤→i ¬cp) nor ¬cp→c (⊤→i ¬cp) is valid.

Proposition 2 implies that an intuitionistic tautology A →i (B →i A), which is known for the corre-
spondence to heredity in intuitionistic logic, is no longer valid.

2.2 Multi-succedent sequent calculus G(C+ J)

This section reviews the sequent calculus G(C + J) provided in [16]. In what follows, we use the
ordinary notion of multi-succedent sequent. A sequent is a pair of finite multisets denoted by Γ ⇒ ∆,
which is read as “if all formulas in Γ hold then some formulas in ∆ hold.” Table 1 provides our multi-
succedent sequent calculus G(C + J), where the notion of derivability is defined as an existence of a

2
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Table 1: Sequent Calculus G(C+ J)
Axioms

A ⇒ A
(Id) ⊥ ⇒ (⊥)

Structural Rules

Γ ⇒ ∆
Γ ⇒ ∆, A

(⇒ w) Γ ⇒ ∆
A,Γ ⇒ ∆

(w ⇒)
Γ ⇒ ∆, A,A

Γ ⇒ ∆, A
(⇒ c)

A,A,Γ ⇒ ∆

A,Γ ⇒ ∆
(c ⇒)

Γ ⇒ ∆, A A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(Cut)

Propositional Logical Rules

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B
(⇒ →i)

Γ1 ⇒ ∆1, A B,Γ2 ⇒ ∆2

A→i B,Γ1,Γ2 ⇒ ∆1,∆2
(→i ⇒)

A,Γ ⇒ ∆, B

Γ ⇒ ∆, A→c B
(⇒ →c)

Γ1 ⇒ ∆1, A B,Γ2 ⇒ ∆2

A→c B,Γ1,Γ2 ⇒ ∆1,∆2
(→c ⇒)

Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧B
(⇒ ∧)

A,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
(∧ ⇒1)

B,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
(∧ ⇒2)

Γ ⇒ ∆, A

Γ ⇒ ∆, A ∨B
(⇒ ∨1)

Γ ⇒ ∆, B

Γ ⇒ ∆, A ∨B
(⇒ ∨2)

A,Γ ⇒ ∆ B,Γ ⇒ ∆

A ∨B,Γ ⇒ ∆
(∨ ⇒)

finite tree, which is called a derivation, generated by inference rules of Table 1 from initial sequents
(Id) and (⊥) of Table 1.

Our basic strategy of constructing G(C + J) is to add classical implication to the propositional
fragment of multi-succedent sequent calculus mLJ of intuitionistic propositional logic, proposed by
Maehara [8]. However, if the ordinary left and right rules of classical implication were added, the
soundness of the resulting calculus would fail, because a formula ¬cp →c (⊤ →i ¬cp), which is not
valid by Proposition 2, would be derivable. This is the reason why the original right rule

A,Γ ⇒ B

Γ ⇒ A→i B

of intuitionistic implication of mLJ is restricted to the right rule given in Table 1. Based on the abbre-
viation defined in Section 2.1, the following rules for negations are obtained respectively:

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒
C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ ¬iA

(⇒ ¬i)
Γ ⇒ ∆, A

¬iA,Γ ⇒ ∆
(¬i ⇒)

Γ, A ⇒ ∆

Γ ⇒ ¬cA,∆
(⇒ ¬c)

Γ ⇒ ∆, A

¬cA,Γ ⇒ ∆
(¬c ⇒)

.

Proposition 3. For any Γ ∪∆ ⊆ Form, Γ ⇒ ∆ is derivable in G(C+ J) iff Γ |= ∆ holds.

Proposition 4. If Γ ⇒ ∆ is derivable in G(C + J), then Γ ⇒ ∆ is derivable in G−(C + J), where
G−(C+ J) is the calculus obtained by removing the rule (Cut) from G(C+ J).

By Proposition 4, the subformula property is obtained, which ensures the calculus is a conservative
extension of both intuitionistic and classical propositional logic.

3
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3 Craig Interpolation
In this section, we establishes two types of Craig interpolation theorem for G(C + J), based on Mae-
hara’s partition argument in [9]. This argument is originally for classical sequent calculus LK, and is
dependent on the fact that the cut elimination holds in the calculus. Since cut elimination holds also in
G(C + J), as is guaranteed by Proposition 4, this method can be employed. In the following part of
this section, Prop(D) denotes the set of all propositional variables in a formula D. And if Γ is a finite
multiset of formulas, we define Prop(Γ) =

⋃
{Prop(D) | D ∈ Γ}. Especially, we have Prop(⊥) = ∅.

We call ⟨(Γ1 : ∆1); (Γ2 : ∆2)⟩ a partition of a sequent Γ ⇒ ∆, if Γ is Γ1,Γ2 and ∆ is ∆1,∆2. Let us
say that C is an interpolant of ⟨(Γ1 : ∆1); (Γ2 : ∆2)⟩ if Γ1 ⇒ ∆1, C and C,Γ2 ⇒ ∆2 are derivable
and Prop(C) ⊆ Prop(Γ1,∆1) ∩ Prop(Γ2,∆2).

Although the main idea of giving G(C+J) is adding classical implication to intuitionistic logic, our
proof is similar to that in classical logic. For establishing the Craig interpolation theorem for mLJ, we
cannot employ the notion of partition of the form ⟨(Γ1 : ∆1); (Γ2 : ∆2)⟩. This is because we cannot find
an interpolant for ⟨(∅ : A); (A : ∅)⟩ as noted in [10]. Therefore, in order to show the theorem for mLJ,
the form of a partition should be restricted to ⟨(Γ1 : ∅); (Γ2 : ∆)⟩. However, this restriction makes it
possible to show neither of the two types of theorem in G(C + J). Considering this situation, it seems
difficult to establish the theorem for G(C+J). However, the classical negation (or implication) enables
us to use partitions of the form ⟨(Γ1 : ∆1); (Γ2 : ∆2)⟩ without any restriction to calculate an interpolant
by Maehara method. This fact about the way of showing Craig interpolation theorem implies that C+ J
can be regarded as the logic obtained by adding the special (intuitionistic) implication to classical logic2.

Lemma 1. Suppose that Γ ⇒ ∆ is derivable in G(C + J). Then for any partition ⟨(Γ1 : ∆1); (Γ2 :
∆2)⟩ of the sequent, there exits an interpolant C in G(C + J), i.e., such that both Γ1 ⇒ ∆1, C and
C,Γ2 ⇒ ∆2 are also derivable in G(C+ J), and Prop(C) ⊆ Prop(Γ1,∆1) ∩ Prop(Γ2,∆2).

With Lemma 1, which is the core of the proof, we can easily show the following two types of Craig
interpolation theorem.

Theorem 1. (Intuitionistic Craig Interpolation Theorem of G(C + J)). If ⇒ A →i B is derivable in
G(C + J), then there exists a formula C such that ⇒ A →i C and ⇒ C →i B are also derivable in
G(C+ J) and that Prop(C) ⊆ Prop(A) ∩ Prop(B).

Theorem 2. (Classical Craig Interpolation Theorem of G(C + J)). If ⇒ A →c B is derivable in
G(C + J), then there exists a formula C such that ⇒ A →c C and ⇒ C →c B are also derivable in
G(C+ J) and that Prop(C) ⊆ Prop(A) ∩ Prop(B).

4 Further Direction
In [15], the first-order expansion G(FOC+ J) of G(C + J) can be given by adding classical univer-
sal quantifier to first-order multi-succedent intuitionistic sequent calculus mLJ, although the similar
restriction on the right rule for the intuitionistic universal quantifier is needed. Whether Craig interpo-
lation holds in this expansion is an open question, which deserves being inquired.
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