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1 Motivation

The theory of questions and answers is one of the most popular topics in speech
act theory. According to Cross and Roelofsen [4], whether-questions can be clas-
sified into at least two categories. The first category is an yes/no question like
(1):

(1) Was there a quorum at the meeting?

(1) has the following two direct answers:

(1a) Yes. There was a quorum at the meeting.
(1b) No. There was not a quorum at the meeting.

(1) presupposes that the meeting took place. (1) also has a corrective answer:

(1c) The meeting did not take place.

Although (2) can be read as an yes/no question having two direct answers, it
also has a reading on which it presents the following three direct answers:

(2) Does Jones live in Italy, in Spain, or in Germany?

(2a) Jones lives in Italy.
(2b) Jones lives in Spain.
(2c) Jones lives in Germany.

(2) falls under the second category of whether-questions. (2) presupposes that
Jones lives in Italy, in Spain, or in Germany. (2) also has a corrective answer:

(2d) Jones does not live in Italy, in Spain, or in Germany.

Whether-questions have a finite number of direct answers, whereas which-
questions like (3) and (4) may have an indefinite or infinite number of direct
answers.
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2 S. Suzuki

(3) Which Cardinal was elected Pope in 2013?
(4) Who shot J.R.?

Belnap and Steel [1] refer to wether- and which-questions like (3) and (4) as
elementary questions. Hamblin [7] takes a question to denote, in a world w, the
set of all propositions corresponding to a possible answer to the question. A
fundamental problem is that Hamblin semantics does not specify what a pos-
sible answer is. Groenendijk and Stokhof [6] take a question to denote, in each
world, a single proposition corresponding to the true exhaustive answer to the
question in that world. What the true exhaustive answer to a question in a
given world is is much clear than what all the possible answers to that question
are. Then the meaning of a question can be identified with a set of mutually
exclusive and exhaustive propositions (i.e., partition) of the logical space. In this
paper, we would like to argue about the crossroads of the theory of questions
and answers, decision theory, and information theory in terms of measurement
theory (cf. Krantz et al. [8]). The aim of this paper is to remark, in terms of
such measurement-theoretic concepts as scale types, on the reducibility of the
decision-theoretic values of questions to the their information-theoretic values
on the basis of Luce [9]’s theorems. The selling point of this paper is not giv-
ing a new linguistic (empirical) analysis of questions and answers but giving a
new measurement-theoretic (conceptual) analysis of the decision-theoretic and
information-theoretic sides of questions and answers.

2 Decision-Theoretic and Information-Theoretic Values
of Questions and Answers

According to van Rooij [10, 11], the relevance of a question and its answers can
be determined in terms of how much it contributes to solving a decision problem
that can be modeled by a decision space (W,F , P, U). When a partition R is
given, decision-theoretic value DVR(B) of a proposition B with respect to R is
defined as follows:

Definition 1 (DVR(B)).

DVR(B) := max
U

∑
A∈R

P (A|B)U(A ∩B)−max
U

∑
A∈R

P (A)U(A).

The expected decision-theoretic value EDVR(Q) of a question (partition) Q with
respect to R is defined by DVR(B):

Definition 2 (EDVR(Q)).

EDVR(Q) :=
∑
B∈Q

P (B)DVR(B).

On the other hand, the relevance of a question and its answers can be analyzed
also in terms of information theory. The informational value IVR(A) of A ∈ F
with respect to a partition R:
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Measurement-Theoretic Remarks on Reducibility 3

Definition 3 (IVR(B)).

IVR(B) := H(R)−HB(R) =
∑
A∈R

P (A|B) logP (A|B)−
∑
A∈R

P (A) logP (A),

where HB(R) is the entropy of R with respect to the probability function condi-
tionalized on B.

The expected information-theoretic value EIVR(Q) of a question (partition) Q
with respect to R that is defined by IVR(B):

Definition 4 (EIVR(Q)).

EIVR(Q) :=
∑
B∈Q

P (B)IVR(B) =
∑
B∈Q

∑
A∈R

P (A ∩B) log
P (A ∩B)

P (A)P (B)
.

3 Reducibility: Properness, Locality, and Underlying
Context

In general, the decision-theoretic values of questions and answers do not agree
with their information-theoretic values. Then when the decision-theoretic values
of questions and answers can be reduced to their information-theoretic values?
We would like to consider this problem. When this problem is considered, such
properties of U as properness and locality are often focused. Properness is defined
as follows:

Definition 5 (Properness). U is a proper iff
∑
A∈R

P (A)·U(P,A) ≥
∑
A∈R

P (A)·

U(P ′, A) for any P and P ′.

Locality is defined as follows:

Definition 6 (Locality). U is local iff U is defined only by P (A)(P ′(A)) where
A ∈ R but not by P (P ′).

Fischer [5] proves the following theorem:

Fact 1 (Logarithmic Utility Function) If U is differentiable, proper and lo-
cal utility functions (scoring rules) for probability functions, and R has more than
two cells, then U(P (A)) = α logP (A) + γ, where α > 0.

From Fact 1, van Rooij [10, p. 395] deduces the following proposition:

Fact 2 (Reducibility) If U is differentiable, proper and local utility functions
(scoring rules) for probability functions, and R has more than two cells, and
moreover α = 1 and γ = 0 in U(P (A)) = α logP (A) + γ, then both DVR(A) =
IVR(A) and EDVR(Q) = EIVR(Q) hold, that is, (E)DVR can be reduced to
(E)IVR.
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4 S. Suzuki

Although deducing itself the logarithmic utility functions from properness and
locality is clear, the statuses of these functions and conditions are not clear to us.
So we would like to consider these statuses in terms of comparing the logarithmic
utility functions with other proper utility functions. Besides the logarithmic
utility functions, there are at least two kinds of frequently-used proper utility
functions (scoring rules) for probability functions:

1. quadratic: U(P (A)) := 2P (A)−
∑
B∈R

P (B)2, and

2. spherical: U(P (A)) :=
P (A)√∑

B∈R

P (B)2
.

Both the quadratic and spherical utility functions are not local. Among these
three types of functions, the logarithmic utility functions only are both proper
and local. Which of these three utility functions should be chosen? Bickel [2]
criticizes the quadratic and spherical utility functions in the following two points:

1. The quadratic and spherical utility functions often result in extreme ranking
differences when compared to the logarithmic utility functions.

2. Because of nonlocality, the quadratic and spherical utility functions allow
for the undesirable possibility that one expert receives the highest utility
(score) when assigning to the observed proposition a probability lower than
the probabilities assigned by other experts.

On the other hand, Selten [12] criticizes the logarithmic utility functions in the
following two points:

1. Their resulting utility (score) is too sensitive to small mistakes for small
probabilities.

2. An expert’s utility (score) is −∞ when a proposition holds that she predicted
to be impossible. So the logarithmic utility functions are unbounded and
they need to be truncated, but it will be no longer be proper after such a
truncation.

According to Carvalho [3, p. 4], “the choice of the most appropriate proper
scoring rule is dependent on the desired properties, which in turn is dependent
on the underlying context.” Properness and locality can be considered to be
examples of “desired properties”. Because the statuses of the logarithmic utility
functions, properness and locality are not clear to us as we said before, we
would like to change our viewpoint from the relation between these functions and
conditions to the relation between these functions and the “underlying context”
to determine when U is a logarithmic function. Then the following problem
arises:

Problem 1 (Reducibility and Underlying Context) What is an underly-
ing context to determine when (E)DVR can be reduced to (E)IVR, that is, when
U is a logarithmic function and so both DVR(A) = IVR(A) and EDVR(Q) =
EIVR(Q) hold?
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Measurement-Theoretic Remarks on Reducibility 5

4 Luce’s Theorems: Psychophysical Laws

Now we try to cope with Problem 1 in terms of such measurement-theoretic
concepts as scale types based on the class of admissible transformations:

Definition 7 (Scale Types). A scale is a triple 〈U,V, f〉 where U is an ob-
served relational structure that is qualitative, V is a numerical relational struc-
ture that is quantitative, and f is a homomorphism from U into V. A is the
domain of U and B is the domain of V. When the admissible transformations
are all the functions ϕ : f(A) → B, where f(A) is the range of f, of the
form ϕ(x) := αx;α > 0. ϕ is called a similarity transformation, and a scale
with the similarity transformations as its class of admissible transformations is
called a ratio scale. When the admissible transformations are all the functions
ϕ : f(A) → B of the form ϕ(x) := αx + β;α > 0, ϕ is called a positive affine
transformation, and a corresponding scale is called an interval scale.

Remark 1 (Ratio and Interval Scales) The indefinite integral of a ratio
scale is an interval scale.

Indeed the concept of (underlying) context is ambiguous. But when U := ψ(P ),
ψ can be considered to be an underlying context to connect P to U and to
determine when U is a logarithmic function and so both DVR(A) = IVR(A)
and EDVR(Q) = EIVR(Q) hold. Luce [9] proves the theorems on the types
of psychophysical laws that connect the physical scales to psychological scales
in terms of measurement theory. First, Luce proves the following theorem that
connects ratio scales as physical scales to ratio scales as psychological scales:

Fact 3 (From Ratio Scale to Ratio Scale) Suppose that f : A → IR+ and
g : A → IR+ are both ratio scales and that g(a) = ψ(f(a)) for any a ∈ A and
that ψ is continuous. Then ψ(x) = αxβ, where α > 0.

Second, Luce [9] proves the following theorem that connects ratio scales as phys-
ical scales to interval scales as psychological scales:

Fact 4 (From Ratio Scale to Interval Scale) Suppose that f : A → IR+ is
a ratio scale and g : A→ IR is an interval scale and that g(a) = ψ(f(a)) for any
a ∈ A and that ψ is continuous. Then ψ(x) = αxβ + γ or ψ(x) = α log x+ γ.

5 Reducibility and Scale Types

Luce proves Fact 4 independently of Fact 3. In addition, he proves Fact 4 as a
corollary of Fact 3 on the assumption that ψ is not only continuous but also
differentiable in such a way that since the indefinite integral of a ratio scale is
an interval scale, if f is considered to be a ratio scale and g is an interval scale,
then either ψ(x) = α

β+1x
β+1 + γ if β 6= −1 or ψ(x) = α log x + γ if β = −1.

Facts 3 and 4 may be originally intended to determine the psychophysical laws
that connect the physical scales to psychological scales. But we can regard Luce’s

14



6 S. Suzuki

theorems as the theorems which have wider applicability in the sense that these
theorems can make clear connection between scales in general. Now we would
like to use these theorems in order to furnish a solution to Problem 1:

Proposition 1 (Reducibility and Scale Types). Suppose that a ratio scale
P (in a wide sense) is given, and that an underlying context ψ(x) := αxβ ;α > 0
is given connecting P to a ratio scale (stronger cardinal utility) U∗, and that
R has more than two cells. Then if β = −1 and the integral constant of∫
U∗(P )dP equals 0, then such interval scale (weaker cardinal utility) U as

U(P ) :=
∫
U∗(P )dP is a logarithmic function and, when DVR is defined by

U , both DVR(A) = IVR(A) and EDVR(Q) = EIVR(Q) hold, that is, (E)DVR
can be reduced to (E)IVR, and if β 6= −1, then U is no logarithmic function—
it may be quadratic or spherical function—and either DVR(A) = IVR(A) or
EDVR(Q) = EIVR(Q) does not always hold, that is, (E)DVR cannot be reduced
to (E)IVR.

Remark 2 (Solution to Problem 1) Proposition 1 states that such condi-
tions as especially the value of β (i.e., β = −1 or not) concerning the underlying
context ψ(x) := αxβ connecting a ratio scale P to a ratio scale U∗ determines
when the decision-theoretic value of questions and answers can be reduced to
their information-theoretic values, which furnishes a solution to Problem 1.
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Motivation

Theory of Questions and Answers

The theory of questions and answers is one of the most popular
topics in the philosophy of language (cf. Cross and Roelofsen
(2020)).

C. Cross and F. Roelofsen.
Questions, 2020.
Stanford Encyclopedia of Philosophy.
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Motivation

Hamblin Semantics

Hamblin (1973) takes a question to denote, in a world w , the
set of all propositions corresponding to a possible answer to
the question.

C. L. Hamblin.
Questions and Answers in Montague English.
Foundations of Language, 10:41–53, 1973.

A fundamental problem is that Hamblin semantics does not
specify what a possible answer is.

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Motivation

Partition Semantics

Groenendijk and Stokhof (1984) take a question to denote, in
each world, a single proposition corresponding to the true
exhaustive answer to the question in that world.

J. Groenendijk and M. Stokhof.
Studies on the Semantics of Questions and the
Pragmatics of Answers.
University of Amsterdam, 1984.

The meaning of a question can be identified with a set of
mutually exclusive and exhaustive propositions (i.e., partition)
of the logical space.

What the true exhaustive answer to a question in a given
world is much clear than what all the possible answers to that
question are.

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Motivation

Crossroads

In this talk, we would like to argue about the crossroads of the
theory of questions and answers, decision theory, and information
theory in terms of measurement theory (cf. Krantz et al. (1971)).

D. H. Krantz et al.
Foundations of Measurement, volume 1.
Academic Press, New York, 1971.
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Motivation

Aim of This Talk

The aim of this talk is to remark, in terms of such
measurement-theoretic concepts as scale types, on the
reducibility of the decision-theoretic values of questions to the
their information-theoretic values on the basis of Luce
(1959)’s theorems.

R. D. Luce.
On the possible psychophysical laws.
The Psychological Review, 66:81–95, 1959.

The selling point of this talk is not giving a new linguistic
(empirical) analysis of questions and answers but giving a new
measurement-theoretic (conceptual) analysis of the
decision-theoretic and information-theoretic sides of questions
and answers.
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Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Relevance of Question to Decision Problem: Two Scales

According to van Rooij (2004, 2009), the relevance of a question
to a decision problem can be scaled in terms of decision theory and
information theory.

van Rooij, R.:
Utility, informativity and protocols.
Journal of Philosophical Logic, 33:389–419, 2004.

van Rooij, R.:
Comparing questions and answers: A bit of logic, a bit of
language, and some bits of information.
In: Sommaruga, G. (ed.) Formal Theories of Information: from
Shannon to Semantic Information Theory and General
Concepts of Information, LNCS 5363, pp. 161–192. Springer,
Heidelberg, 2009.

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Decision-Theoretic Value

First, the relevance of a question to a decision problem can be scaled in terms
of decision theory:

Definition (DVR)

When a partition R is given, we define the decision-theoretic value DVR(B) of
a proposition B with respect to R:

DVR(B) := max
U∈U

EU(A ∩ B)− max
U∈U

EU(A)

= max
U∈U

∑

A∈R
P(A|B)U(A ∩ B)− max

U∈U

∑

A∈R
P(A)U(A),

where U is a variable and U is the class of all utility functions.

Definition (EDVR)

The expected decision-theoretic value EDVR(Q) of a question (partition) Q
with respect to R is defined by DVR(B):

EDVR(Q) :=
∑

B∈Q
P(B)DVR(B).

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Information-Theoretic Value

Second, the relevance of a question to a decision problem can be scaled also in
terms of information theory:

Definition (IVR)

The information-theoretic value IVR(A) of A ∈ F with respect to a partition R:

IVR(B) := H(R)− HB(R) =
∑

A∈R
P(A|B) logP(A|B)−

∑

A∈R
P(A) logP(A),

where H(R) is the entropy of R, and HB(R) is the entropy of R with respect
to the probability function conditionalized on B.

Definition (EIVR)

The expected information-theoretic value EIVR(Q) of a question (partition) Q
with respect to R that is defined by IVR(B):

EIVR(Q) :=
∑

B∈Q
P(B)IVR(B) =

∑

B∈Q

∑

A∈R
P(A ∩ B) log

P(A ∩ B)

P(A)P(B)
.
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Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Example

In general, the decision-theoretic values of questions and answers do not agree with
their information-theoretic values. The following example by van Rooij (2009)
illustrates this fact:

Example (Discrepancy)

John considers the decision problem of whether he should go to the party
tonight.
This decision problem depends almost entirely on whether Mary will go,
because he is secretly in love with Mary, and believes that going to the party is
his only chance to meet her.
He prefers meeting her tonight to not meeting her, but if Mary wont go, he
prefers to stay home.
But going to the party when Mary comes too obviously involves a risk: Mary
might turn him down when he makes his advances.
In this situation 4 different worlds are involved:

w1: Mary goes to the party, John will go, too, he will try his luck, and is
successful.
w2: Mary goes, John goes, he tries his luck, and is unsuccessful.
w3: Mary won’t go to the party, and thus neither does John, and if John tried his
luck, he would be successful.
w4: similar to w3 except that in this world if John tried his luck, he would be
unsuccessful.

Then the partition is R := {{w1,w2}, {w3,w4}}.

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Example (Continued)

Example (Discrepancy (Continued))

John thinks all worlds are equally likely to come out true.
He has a negative attitude towards taking risks.
He doesn’t care about what Mary would do if they don’t go to the party.
His decision problem might be represented by the following table:

World Probability Utility

w1
1
4 12

w2
1
4 2

w3
1
4 8

w4
1
4 8

Suppose that John considers the question of whether he will be successful if he
tries the luck.
Then the semantic value of the question is Q := {{w1,w3}, {w2,w4}}.
When the semantic value of the positive answer (to the question) that he will
be successful is B := {w1,w3}, that of the negative answer that he will not be
successful is BC = {w2,w4}.

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Example (Continued)

Example (Discrepancy (Continued))

DVR(B) = maxU∈U EU(A∩B)−maxU∈U EU(A) = EU(A∩B)−EU(A) = 5
2 .

On the other hand, neither learning B nor learning BC changes the entropy of
the partition R, that is,

IVR(B) = H(R)− HB(R) = IVR(BC ) = H(R)− HBC (R) = 0,

because neither learning B nor learning BC changes the probability distribution
of the elements of R, that is, H(R), HB(R) and HBC (R) each have a value of 1.

EDVR(Q) := P(B)DVR(B) + P(BC )DVR(BC )

= P(B)(EU(A ∩ B)− EU(A)) + P(BC )(EU(A ∩ BC )− EU(A)) = 0

Because not only the positive answer B to the question, but also the negative
answer BC has no effect on the probability distribution of the elements of Q,
EIVR(Q) = H(R)− HQ(R) = 0.
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Reducibility of Decision-Theoretic Values to Information-Theoretic Values

In general, the decision-theoretic values of questions and
answers do not agree with their information-theoretic values.

Then when the decision-theoretic values of questions and
answers can be reduced to their information-theoretic values?

We would like to consider this problem.

When this problem is considered, such properties of U as
properness and locality are often focused.
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Reducibility of Decision-Theoretic Values to Information-Theoretic Values

Properness and Locality

A score rule is defined as follows:

Definition (Scoring Rule)

We call a utility function U for probability functions P defined on a partition R
a scoring rule for P. For any A,B, . . . ∈ R, we abbreviate U(P(A),P(B), . . .)
as U(P).

Properness is defined as follows:

Definition (Properness)

A scoring rule U for P is proper iff
∑

A∈R
P(A) · U(P) = sup

P′∈P

∑

A∈R
P(A) · U(P ′)

for any P ∈P that is the class of all probability functions defined on a
partition R.

Locality is defined as follows:

Definition (Locality)

A scoring rule U for P is local iff, for any P ∈P, there exist such U ′ that
U(P) = U ′(P(A)) for any A ∈ R.
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Reducibility of Decision-Theoretic Values to Information-Theoretic Values

Fisher’s Theorem

Fischer (1972) proves the following theorem:

Fact (Logarithmic Scoring Rule)

If U is differentiable, proper and local scoring rules for probability functions P,
and R has more than two cells, then U(P(A)) = α logP(A) + γ, where α > 0.

Fisher, P.:
On the inequality

∑
pi f (pi ) ≥

∑
pi f (qi ). Metrika 18, 199–208 (1972)

From Fact (Logarithmic Scoring Rule), van Rooij (2004) deduces the following
proposition:

Fact (Reducibility)

If U is differentiable, proper and local scoring rules for probability functions P,
and R has more than two cells, and moreover α = 1 and γ = 0 in
U(P(A)) = α logP(A) + γ, then both DVR(A) = IVR(A) and
EDVR(Q) = EIVR(Q) hold, that is, (E )DVR can be reduced to (E )IVR .
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Proper Scoring Rules

Although deducing itself the logarithmic scoring rules from
properness and locality is clear, the statuses of properness and
locality are not clear to us.

So we would like to consider these statuses in terms of
comparing the logarithmic scoring rules with other proper
scoring rules.

Besides the logarithmic scoring rules, there are at least two
kinds of frequently-used proper scoring rules for probability
functions:

1 quadratic: U(P(A)) := 2P(A)−
∑

B∈R
P(B)2, and

2 spherical: U(P(A)) :=
P(A)√∑

B∈R
P(B)2

.
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Both the quadratic and spherical scoring rules are not local.

Among these three types of functions, the logarithmic scoring
rules only are both proper and local.

Which of these three utility functions should be chosen?
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Bickel (2007) criticizes the quadratic and spherical scoring rule,
whereas Selten (1998) criticizes the logarithmic scoring rules.

J. E. Bickel.
Some comparisons among quadratic, spherical, and logarithmic
scoring rules.
Decision Analysis, 4:49–65, 2007.

R. Selten.
Axiomatic characterization of the quadratic scoring rule.
Experimental Economics, 1:43–62, 1998.
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Problem

According to Carvalho (2016, p.4), “the choice of the most appropriate
proper scoring rule is dependent on the desired properties, which in turn is
dependent on the underlying context.”

A. Carvalho.
An overview of applications of proper scoring rules.
Decision Analysis, Articles in Advance, 2016.

Properness and locality can be considered to be examples of “desired
properties”.
Because the statuses of properness and locality are not clear to us as we
said before, we would like to change our viewpoint from properness and
locality to the “underlying context” to determine when U is a logarithmic
function.
Then the following problem arises:

Problem (Reducibility and Underlying Context)

What is an underlying context to determine when (E )DVR can be reduced to
(E )IVR , that is, when U is a logarithmic scoring rule and so both
DVR(A) = IVR(A) and EDVR(Q) = EIVR(Q) hold?
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Measurement Theory

In this talk, we try to cope with this problem in terms of
measurement theory.

Measurement theory includes such important concepts as
1 scale types,
2 representation and uniqueness theorems, and
3 measurement types.
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Scale Types

In this talk, we resort to scale types.

Scale types have such categories as

ratio scale (unique up to ϕ(x) = αx(α > 0)), and
interval scale (unique up to ϕ(x) = αx + β(α > 0)).
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Luce’s Theorems (1)

Indeed the concept of (underlying) context is ambiguous.

But when U := ψ(P), ψ can be considered to be an
underlying context to connect P to U and to determine when
U is a logarithmic scoring rule and so both DVR(A) = IVR(A)
and EDVR(Q) = EIVR(Q) hold.

Luce (1959) proves the theorems on the types of
psychophysical laws that connect the physical scales to
psychological scales in terms of measurement theory.

First, Luce proves the following theorem that connects ratio
scales as physical scales to ratio scales as psychological scales:

Fact (From Ratio Scale to Ratio Scale)

Suppose that f : A→ R+ and g : A→ R+ are both ratio scales
and that g(a) = ψ(f (a)) for any a ∈ A and that ψ is continuous.
Then ψ(x) = αxβ, where α > 0.
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Luce’s Theorems (2)

Second, Luce proves the following theorem that connects ratio
scales as physical scales to interval scales as psychological scales:

Fact (From Ratio Scale to Interval Scale)

Suppose that f : A→ R+ is a ratio scale and g : A→ R is an
interval scale and that g(a) = ψ(f (a)) for any a ∈ A and that ψ is
continuous. Then ψ(x) = αxβ + γ or ψ(x) = α log x + γ.
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Luce proves Fact (From Ratio Scale to Interval Scale)
independently of Fact (From Ratio Scale to Ratio Scale).

In addition, he proves Fact (From Ratio Scale to Interval
Scale) as a corollary of Fact (From Ratio Scale to Ratio
Scale) on the assumption that ψ is not only continuous but
also differentiable in such a way that since the indefinite
integral of a ratio scale is an interval scale, if f is considered
to be a ratio scale and g is an interval scale, then either
ψ(x) = α

β+1x
β+1 + γ if β 6= −1 or ψ(x) = α log x + γ if

β = −1.

Facts (From Ratio Scale to Ratio Scale) and (From Ratio
Scale to Interval Scale) may be originally intended to
determine the psychophysical laws that connect the physical
scales to psychological scales.

But we can regard Luce’s theorems as the theorems which
have wider applicability in the sense that these theorems can
make clear connection between scales in general.
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Now we would like to use these theorems in order to furnish a solution to
Problem (Reducibility and Underlying Context):

Proposition (Reducibility and Scale Types)

Suppose

that a ratio scale P (in a wide sense) is given, and
that an underlying context ψ(x) := αxβ;α > 0 is given connecting P to a
ratio scale (stronger cardinal utility) U∗, and
that R has more than two cells.

Then

if β = −1 and the integral constant of

∫
U∗(P)dP equals 0, then

such interval scale (weaker cardinal utility) U as U(P) :=

∫
U∗(P)dP is a

logarithmic function and,
when DVR is defined by U, both DVR(A) = IVR(A) and
EDVR(Q) = EIVR(Q) hold, that is, (E )DVR can be reduced to (E )IVR , and

if β 6= −1, then U is no logarithmic function—it may be quadratic or
spherical function—and either DVR(A) = IVR(A) or
EDVR(Q) = EIVR(Q) does not always hold, that is, (E )DVR cannot be
reduced to (E )IVR .
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Remark (Solution to Problem (Reducibility and Underlying
Context))

Proposition (Reducibility and Scale Types) states that such
conditions as especially the value of β (i.e., β = −1 or not)
concerning the underlying context ψ(x) := αxβ connecting a
ratio scale P to a ratio scale U∗ determines when the
decision-theoretic value of questions and answers can be reduced
to their information-theoretic values, which furnishes a solution to
Problem (Reducibility and Underlying Context).
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Concluding Remarks

Van Rooij observes on the reducibility of the decision-theoretic
values of questions and answers to their information-theoretic
values in terms of rather unclear concepts of properness and
locality on the basis of Fischer’s theorem.

On the other hand, in this talk, we have remarked in terms of
measurement-theoretic concepts, particularly, scale types on
the reducibility of the decision-theoretic values of questions
and answers to their information-theoretic values on the basis
of Luce’s theorems.
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Thank You for Your Attention!
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