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Charging in the vortex lattice of type-II superconductors
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(Received 9 November 2020; revised 2 February 2022; accepted 3 February 2022; published 22 February 2022)

We study the magnetic-field dependence of the vortex-core charge in the Abrikosov lattice of an s-wave
superconductor based on the augmented quasiclassical equations, where we incorporate the pair-potential
gradient (PPG) terms characteristic of charging in superconductors besides the well-known Lorentz force. Our
numerical results at T = 0.2Tc and 0.5Tc reveal that periodic charge redistribution is superimposed on the
magnetic flux-line lattice with different spatial patterns at different fields. The PPG terms are dominant at weak
fields over the Lorentz force for accumulating charge in the vortex cores, whereas the Lorentz force prevails at
higher fields to give rise to a peak structure in the core charge around H ∼ 1

2 Hc2. We estimate the peak value of
the core charge at T = 0.2Tc using parameters appropriate for cuprates to obtain a large value of Q ∼ 10−2|e| in
the core region of radius 0.2ξ0 in the ab plane and length 1 nm along the c axis.

DOI: 10.1103/PhysRevB.105.064514

I. INTRODUCTION

It is well known that vortices in type-II superconductors
have the magnetic character of carrying a single flux quantum
per each of them. In contrast, much less familiar may be the
fact that they also have an electric feature with accumulation
of charge in the core region due to circulating supercurrents
and pair-potential reduction around it. The earliest studies
on the vortex-core charging were carried out based on
phenomenological approaches [1,2], which were followed by
the microscopic ones of using the Bogoliubov-de Gennes
(BdG) equations [3–5]. London included the Lorentz force
acting on supercurrents in his phenomenological equations of
superconductivity, which predict vortex-core charging due to
the Lorentz force [6,7]. Khomskii and Freimuth estimated
the vortex-core charge phenomenologically by regarding the
core region as the normal state distinguishable by a radial
step function and considering its chemical potential difference
from the outer superconducting region [1,8]. Matsumoto
and Heeb pioneered a microscopic calculation based on the
BdG equations coupled with Maxwell’s equations to predict
vortex-core charging in an isolated vortex of a chiral p-wave
superconductor [4]. The phenomenon was also studied by
using the Ginzburg-Landau (GL) Lagrangian that additionally
incorporates the Chern-Simons term [9]. On the other hand,
Eschrig et al. [10,11] calculated a dynamical dipole charge
in the vortex core under an applied AC electromagnetic field.
It was also shown that electric charge accumulates even at
the vortex core of electrically neutral p-wave superfluids,
although the magnitude is much smaller than the one around
a core of superconductors [12]. Experimentally, the vortex-
core charge in cuprate superconductors was estimated using
nuclear magnetic resonance/nuclear quadrupole resonance
(NMR/NQR) measurements [13].

The BdG approach to charging in superconductors has a
firm microscopic basis, but also suffers from a shortcoming of

being time-consuming and laborious numerically. Thus, quan-
titative studies of charging in superconductors remains yet to
be performed, especially for vortex-lattice states in magnetic
fields. To this end, augmented quasiclassical (AQC) equations
of superconductivity with quantum corrections were derived
recently by collecting next-to-leading-order contributions in
the expansion of the Gor’kov equations [14,15] in terms of
the quasiclassical parameter δ ≡ 1/kFξ0 [16], where kF and
ξ0 are the Fermi wave number and zero temperature coher-
ence length, respectively. This quasiclassical approach has
elucidated three distinct mechanisms for charging in super-
conductors: (i) the Lorentz force that acts on supercurrents
in magnetic fields [17,18]; (ii) pair-potential gradient (PPG)
terms [16,19,20]; and (iii) terms originating from the slope in
the density of states (SDOS) [1,8,16], the latter two of which
are characteristic of superconductors. The resulting AQC
equations were used to clarify charging of an isolated vortex
in s-wave superconductors with cylindrical [20] and spherical
[16] Fermi surfaces. The outcome was rather surprising in that
it is the PPG terms, not the Lorentz force, that contributes
mainly to charging of an isolated vortex core, except near
Tc with a large GL parameter κGL where the SDOS terms
become dominant [16]. Masaki also studied charging of an
isolated vortex in s- and chiral p-wave superconductors based
on the AQC equations with the Lorentz force and PPG terms
[21] to obtain results consistent with those based on the BdG
equations [4]. On the other hand, the AQC equations with
only the Lorentz force were used for vortex-lattice states of
s-wave [22] and d-wave [23] superconductors to study the
magnetic-field dependence of charging. It was thereby shown
that the charge density at the core has a large peak as a
function of the magnetic field. These results naturally raise the
question of how the field dependence is affected by including
the PPG terms in the AQC equations, i.e., an issue that should
be answered in a quantitative manner.
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The purposes of the present paper are twofold: (i) to de-
velop a numerical method for calculating charging in the
Abrikosov lattice [24] of type-II superconductors within the
AQC scheme incorporating both the Lorentz force and PPG
terms; and (ii) to elucidate magnetic-field dependence of the
vortex-core charge. To avoid numerical complexity as far
as possible, we adopt the simplest model of s-wave pairing
on a cylindrical Fermi surface with the field applied along
the cylinder, where the SDOS terms does not contribute to
charging at all due to the constant density of states [20]. We
combine the methods developed in Refs. [20] and [22] to
perform numerical calculations of charging in the Abrikosov
lattice.

This paper is organized as follows. In Sec. II, we present
our formalism to study charging in superconductors based on
the AQC equations. In Sec. III, we give numerical results on
charging in the vortex lattice to clarify field dependence and
relative magnitude of charging due to the Lorentz force and
PPG terms. Section IV gives a conclusion.

II. AUGMENTED QUASICLASSICAL EQUATIONS

We consider a clean superconductor with s-wave pairing on
a cylindrical Fermi surface in a magnetic field applied along
the cylinder, omitting spin paramagnetism for simplicity. The
corresponding AQC equations in the Matsubara formalism
with the Lorentz force and PPG terms are given by [16,20]

[iεnτ̂3 − �̂τ̂3, ĝ] + ih̄vF · ∂ĝ

+ ih̄

2
e(vF × B) · ∂

∂pF
{τ̂3, ĝ}

− ih̄

2
∂�̂τ̂3 · ∂ ĝ

∂pF
− ih̄

2

∂ ĝ

∂pF
· ∂�̂τ̂3 = 0̂. (1)

Here ĝ = ĝ(εn, pF, r) and �̂ = �̂(r) are the quasiclassi-
cal Green’s functions and the pair potential, respectively;
εn = (2n + 1)πkBT is the fermion Matsubara energy (n =
0,±1, . . .) with kB and T denoting the Boltzmann con-
stant and temperature; vF and pF are the Fermi velocity
and momentum; e < 0 is the electron charge; B = B(r) is
the magnetic-flux density; the commutators are defined by
[â, b̂] ≡ âb̂ − b̂â and {â, b̂} ≡ âb̂ + b̂â; and ∂ is the gauge-
invariant differential operator

∂ ≡

⎧⎪⎨
⎪⎩

∇ on g or ḡ,

∇ − i 2eA
h̄ on f or �,

∇ + i 2eA
h̄ on f̄ or �∗,

(2)

with A = A(r) denoting the vector potential. The first line in
Eq. (1) forms the standard Eilenberger equations [25–28], the
second line represents the Lorentz force [17,18], and the third
line is the PPG terms [16,19,20]. The matrices ĝ, �̂, and τ̂3

are expressible as [26]

ĝ =
[

g −i f

i f̄ −ḡ

]
, �̂ =

[
0 �

�∗ 0

]
, τ̂3 =

[
1 0

0 −1

]
, (3)

where the barred functions are defined generally by
X̄ (εn, pF, r) ≡ X ∗(εn,−pF, r).

Following the procedure used in Ref. [7], we expand g
and f formally in terms of δ ≡ 1/kFξ0 as g = g0 + g1 + · · ·

and f = f0 + f1 + · · · , where g0 and f0 are the solutions
of the standard Eilenberger equations, and ξ0 is defined by
ξ0 ≡ h̄vF/�0 in terms of the energy gap �0 at zero magnetic
field and zero temperature. Collecting zeroth-order terms in
Eq. (1) reproduces the standard Eilenberger equations with
the normalization condition g0 = sgn(εn)(1 − f0 f̄0)

1/2

as [25–29]

εn f0 + 1
2 h̄vF ·

(
∇ − i

2eA
h̄

)
f0 = �g0, (4a)

� = 
0πkBT
∞∑

n=−∞
〈 f0〉F, (4b)

∇ × ∇ × A = μ0j,

j = −i2πeN (0)kBT
∞∑

n=−∞
〈vFg0〉F, (4c)

where j = j(r) is the current density, 
0 � 1 is the dimen-
sionless coupling constant responsible for the Cooper pairing,
〈· · · 〉F is the Fermi-surface average normalized as 〈1〉F = 1,
μ0 is the vacuum permeability, and N (0) is the normal density
of states (DOS) per spin and unit volume at the Fermi en-
ergy. Equation (4) forms a set of self-consistent equations for
f0, �, and A.

The equation for g1 can be obtained from Eq. (1) as [16,20]

vF · ∇g1 = −e(vF × B) · ∂g0

∂pF

− i

2
∂�∗ · ∂ f0

∂pF
− i

2
∂� · ∂ f̄0

∂pF
, (5)

with g1 = −ḡ1. The electric field E = E(r) obeys [16]

− λ2
TF∇2E + E = i

πkBT

e

∞∑
n=−∞

〈∇g1〉F

− 1

e

N ′(0)

N (0)

∫ ε̃c

−ε̃c

dεn̄(ε)ε〈∇RegR
0 〉F−c

e

N ′(0)

N (0)
∇|�|2, (6)

where λTF ≡
√

ε0/2e2N (0) is the Thomas-Fermi screening
length with ε0 denoting the vacuum permittivity and the func-
tion n̄(ε) = 1/(eε/kBT + 1) is the Fermi distribution function.
The first term on the right-hand side of Eq. (6) represents
charging by the Lorentz force and PPG terms, while the
second and third terms are contributions from the SDOS
terms. The constant c is the factor introduced by Khomskii
and Freimuth [1,16]

c ≡
∫ ε̃c

−ε̃c

dε
1

2ε
tanh

ε

2kBTc
, (7)

where Tc is the superconducting transition temperature at zero
magnetic field. The cutoff energy ε̃c is determined by [16]

∫ ε̃c

−ε̃c

Ns(ε, r)dε =
∫ ε̃c

−ε̃c

N (ε)dε, Ns(±ε̃c, r) = N (±ε̃c),

(8)
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where Ns(ε, r) and N (ε) are the superconducting local and
normal DOS, respectively. These equations enable us to cal-
culate the electric field and charge density microscopically.
As already mentioned, the SDOS terms can be dropped in the
present study with a cylindrical Fermi surface [20].

III. NUMERICAL RESULTS

A. Numerical procedures

We solve Eqs. (4), (5), and (6) numerically for a triangular
vortex lattice based on the methods in Refs. [20] and [22].
The corresponding vector potential is expressible in terms of
the average flux density B̄ = (0, 0, B̄) as A(r) = (B̄ × r)/2 +
Ã(r), where Ã describes spatial variation of the flux density
that averages out. Functions Ã(r), E(r), and �(r) obey the
following periodic boundary conditions [30–32]:

Ã(r + R) = Ã(r), (9a)

E(r + R) = E(r), (9b)

�(r + R) = �(r)eiχ (r), (9c)

with

χ (r) ≡ |e|
h̄

B̄ · (r × R) + |e|
h̄

B̄ × (a1 − a2) · R + πn1n2,

(10)

where R is the translation vector of the vortex lattice given
by R = n1a1 + n2a2 in terms of integers n1 and n2, and a1 =
a2(

√
3/2, 1/2, 0) and a2 = a2(0, 1, 0) are the basic vectors

of the triangular lattice with the length a2 determined by
the flux-quantization condition (a1 × a2) · B̄ = h/2|e|. The
quasiclassical Green’s functions also satisfy the periodic
boundary conditions

g0(εn, pF, r + R) = g0(εn, pF, r), (11a)

g1(εn, pF, r + R) = g1(εn, pF, r), (11b)

f0(εn, pF, r + R) = f0(εn, pF, r)eiχ (r). (11c)

We first solve the standard Eilenberger equations (4) self-
consistently for the vortex lattice using the Riccati method
[26,33–35]. The solution is substituted into the right-hand side
of Eq. (5), which is solved by the Runge-Kutta method. We
next obtain the electric field by solving Eq. (6) in terms of the
solution of Eq. (5), and then calculate the charge density ρ us-
ing Gauss’ law ρ = ε0∇ · E. The results presented below are
for λTF = 0.03ξ0, λ0 = 5ξ0, and δ = 0.03 (i.e., λTF = k−1

F ),
where λ0 is the magnetic penetration depth at zero temper-
ature defined by λ0 ≡ [μ0N (0)e2v2

F]−1/2. The magnetic flux
density is normalized by the upper critical field Bc2 = μ0Hc2

estimated by the Helfand-Werthamer theory [36,37].

B. Results

Figure 1 plots spatial dependence of the charge density
ρ(r) due to the Lorentz force and PPG terms at tempera-
ture T = 0.2Tc for the average flux densities B̄ = 0.146Bc2,
0.4389Bc2, and 0.8778Bc2, respectively. For reference, we also
give the corresponding pair potential �(r) and flux density
B(r) in Fig. 2, which perfectly reproduces the preceding re-
sults by Ichioka et al. [32]. Specifically, Fig. 2 plots spatial

variation of the gap amplitude |�(r)| and the z-component of
the magnetic-flux density B(r), respectively, and Fig. 3 shows
the current density j(r), each calculated at T = 0.2Tc for
B̄ = 0.146Bc2, 0.4389Bc2, and 0.8778Bc2. Looking at Fig. 1
in comparison with Figs. 2 and 3, we realize that the large and
positive charges are accumulated at the vortex cores where the
pair potential vanishes. We also observe that the Lorentz force
becomes dominant from intermediate to high fields for accu-
mulating charge around vortex cores, which may naturally be
expected from its expression FL ∝ j × B; see Figs. 2 and 3
on this point. We also find in Fig. 1 that the negative charges
are accumulated at the midpoint of each vortex triangle and
also along the line connecting adjacent vortices. The negative
charges around the midpoint can be explained in terms of
the Lorentz force by looking closely at the spatial profile of
the current density in Fig. 3(c), where the current is seen to
circulate oppositely in direction to that around the vortex core.
This argument also applies to the negative charge accumula-
tion along the lines connecting adjacent vortices in Figs. 1(b)
and 1(c). Thus, charge accumulation due to the Lorentz force
can be understood based on the force picture when the current
density, magnetic field, and signs of the carriers are specified.
On the other hand, it is difficult to explain how the force due
to the PPG terms acts on electrons. This may be because the
PPG terms are complex and have off-diagonal components in
the particle-hole space. For clarity, we use “the PPG terms”
and not “the PPG force” in this paper. Whether a force picture
is also possible for the PPG terms remains a future issue,
which may be solved by calculating macroscopic forces, as
has been done recently based on the time-dependent GL equa-
tion [38,39].

Figure 4 shows the magnetic-field dependence of the
charge density at the vortex center due to the Lorentz force and
PPG terms at T = 0.2Tc and T = 0.5Tc, respectively. We can
confirm that the vortex-core charge due to the Lorentz force
has a large peak in qualitative agreement with the previous
work [22]. However, its magnitude obtained here is about
ten times larger than that given in the previous work [22].
This is because the previous work inappropriately neglected
the component in ∇g1 perpendicular to the Fermi velocity.
Specifically, the AQC equations with only the Lorentz force
yields the following equation for g1,

vF · ∇g1 = −evF ·
(

B × ∂g0

∂pF

)
. (12)

This equation was approximated previously by [22]

∇g1 = −e

(
B × ∂g0

∂pF

)
. (13)

However, ∇g1 may have a component perpendicular to vF.
Hence, we directly solved the equation for g1 obtained in
Refs. [16,20], i.e., Eq. (5) above.

We can observe in Fig. 4 that the charge due to the PPG
terms at the core center decreases monotonically as the field is
increased. We also notice an enhancement of the vortex-core
charge due to the PPG terms at T = 0.2Tc and B̄ = 0.146Bc2

compared with those at higher fields and temperatures, which
may be explained as follows. The PPG terms in Eq. (5) can be
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FIG. 1. Charge density ρ(r) due to (a)–(c) the Lorentz force and (d)–(f) the PPG terms at temperature T = 0.2Tc in units of ρ0 ≡
�0ε0/|e|ξ 2

0 on a square region of x, y ∈ [−2ξ0, +2ξ0] for the average flux densities B̄ = 0.146Bc2, 0.4389Bc2, and 0.8778Bc2 from left to
right, respectively.

written as

− i

2
∇|�| · ∂ f̃0

∂pF
− i

2
∇|�| · ∂ ¯̃f0

∂pF

− m

h̄
|�|vs · ∂ f̃0

∂pF
+ m

h̄
|�|vs · ∂ ¯̃f0

∂pF
, (14)

where f̃0 is defined by f0(εn, pF, r) = f̃0(εn, pF, r)eiϕ(r), vs is
the superfluid velocity vs ≡ (h̄/2m)(∇ϕ − 2eA/h̄), and ϕ is
the phase of the pair potential defined by �(r) = |�(r)|eiϕ(r).
At low temperatures and weak fields, the slope of the gap
amplitude increases due to the core shrinkage known as the
Kramer-Pesch effect [40], which gives rise to a large correc-
tion to the charge density at the core. Thus, the core charge
is enhanced more drastically at lower temperatures and weak
fields. On the other hand, the core charge due to the Lorentz
force has a peak formed by the competition between the
increasing magnetic field and the decreasing pair potential
[22]. Thus, the PPG terms, which is dominant for charging
at weak fields but has no explicit magnetic-field dependence,
is overwhelmed eventually by the Lorentz force as the field
is increased. We also find that the vortex-core charge at

T = 0.5Tc is much smaller than that at T = 0.2Tc in all mag-
netic fields. Moreover, since the upper critical field becomes
lower as the temperature is increased, the region where the
PPG terms become dominant also becomes relatively wider.

We finally present an order-of-magnitude estimate for the
accumulated charge Q in the core region of radius 0.2ξ0

from the core center. Figure 4(a) gives the peak value ρ(0) 
70ρ0 = 70(�0ε0/|e|2ξ 2

0 )|e| of the core-charge density at T =
0.2Tc and B̄ = 0.7315Bc2. Choosing �0 ≈ 30 meV as appro-
priate for YBa2Cu3O7−x (YBCO), we can estimate the peak
value of the vortex-core charge Q in a region of radius 0.2ξ0

from the core center and length d nm along the c axis as
Q ∼ 0.01|e|d . This value is two orders of magnitude larger
than the charge reported in Ref. [22], owing to the different
calculation method as explained around Eqs. (12) and (13).
It should be pointed out finally that, although our estimate on
the vortex-core charge in YBCO is based on an s-wave model,
one may expect that the energy-gap anisotropy does not much
affect the magnitude of the accumulated charge in the core;
see also Ref. [23] on this issue. This issue certainly needs to
be studied in more detail in the future by solving the AQC
equations for anisotropic pairings.
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FIG. 2. (a)–(c) Gap amplitude |�(r)| and (d)–(f) the magnetic-flux density B(r) at temperature T = 0.2Tc in units of the zero temperature
gap �0 and the upper critical field Bc2 on a square region of x, y ∈ [−2ξ0, +2ξ0] for the average flux densities B̄ = 0.146Bc2, 0.4389Bc2, and
0.8778Bc2 from left to right, respectively.

IV. CONCLUSION

We developed a numerical method for studying charging
in the vortex lattices of type-II superconductors based on the
AQC equations with the Lorentz force and PPG terms. Using
it, we calculated magnetic-field dependence of the vortex-core
charge and spatial profile of the charge density in the vortex

lattice of s-wave superconductors with a cylindrical Fermi
surface at T = 0.2Tc and 0.5Tc. We showed that, at both
temperatures, the vortex-core charge is dominated by the PPG
terms near the lower critical field and by the Lorentz force
near the upper critical field. Since the the upper critical field
gets larger as the temperature is lowered, the dominant region

FIG. 3. Current density j(r) at T = 0.2Tc for the average flux densities (a) B̄ = 0.146Bc2, (b) 0.4389Bc2, and (c) 0.8778Bc2 in units of
j0 ≡ h̄/2μ0|e|ξ 3

0 on a square region of x, y ∈ [−ξ0, +ξ0]. The color bar indicates the magnitude of the current density.
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FIG. 4. Charge density at the vortex center ρ(0) due to the Lorentz force (green circular points), the PPG terms (blue square points), and
their total (red triangular points), in units of ρ0 ≡ �0ε0/|e|ξ 2

0 as a function of the magnetic field, at temperatures (a) T = 0.2Tc and (b) 0.5Tc.

of the core charge due to the Lorentz force at T = 0.2Tc
becomes wider than that at T = 0.5Tc. We also showed that
the sign of accumulated charge due to the Lorentz force can
be understood in terms of the force picture, when the current
density, the magnetic field, and the signs of the carriers are
given. On the other hand, whether or not such a force picture
is possible for the charging due to the PPG terms remains an
open question.

There are other interesting problems on the physics of vor-
tex lattice systems that may be tackled by the AQC equations.
For example, the present method can be used to study the
flux-flow Hall effect in the vortex lattice state by combining
them with the AC response theory based on the standard
Eilenberger equations [10,11]. They can also be applied to
vortex lattices in superfluid 3He [41–45]. Since spin currents
may flow around the vortices in superfluid 3He, it may also be
worthwhile to calculate the rotation-speed dependence of spin
accumulation at the core and the spin flows due to the spin-
accumulated vortices moving along transport mass currents.

Kumagai et al. studied the vortex-core charge in cuprate
superconductors by the NMR/NQR measurements [13]. They
estimated the accumulated charge by the local electric-field
gradient signaled by changes in the nuclear quadrupole
resonance frequency. To the best of our knowledge, no
direct observations of the vortex-core charge have been per-
formed yet. We hope that the present study will stimulate
them, such as those using the atomic force microscopy
technique.
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