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Purpose—The purpose of this study is to search for an optimal core shape that is robust against misalignment between the 
transmitting and receiving coils of the wireless power transfer (WPT) device. During the optimization process, we maximize the 
coupling coefficients while minimizing the leakage flux around the coils to ensure the safety of the WPT device. 
 
Design/methodology/approach—In this study, a novel topology optimization method for WPT devices using the geometry 
projection method is proposed to optimize the magnetic core shape. This method facilitates the generation of bar-shaped magnetic 
cores because the material distribution is represented by a set of elementary bars. 
 
Findings—It is shown that an optimized core shape, which is obtained through topology optimization, effectively increases the net 
magnetic flux interlinked with the receiving coil and outperforms the conventional core. 
 
Originality/value—In the previous topology optimization method, the material distribution is represented by a linear combination of 
Gaussian functions. However, this method does not usually result in bar-shaped cores, which are widely used in WPT. In this study, 
we propose a novel topology optimization method for WPT devices using geometry projection that is used in structural optimization, 
such as beam and cantilever shapes. 
 
Index Terms—Geometry projection method, Robust optimization, Topology optimization, Wireless power transfer (WPT). 

I. INTRODUCTION 
Wireless power transfer (WPT) has been widely used 

in various electric devices, ranging from electric vehicles 
and airplanes to smartphones [1]. WPT devices are 
required to have high efficiency, even when the 
transmitting and receiving coils are misaligned. The 
magnetic cores are placed in the vicinity of the coils to 
improve efficiency. They must be as small as possible to 
reduce the manufacturing cost and device size. In 
addition, the leakage flux around the coils must be 
reduced to limit the electromagnetic field exposure to the 
human body. For such WPT devices, parameter 
optimization methods for bar-shaped and H-shaped 
magnetic cores have been proposed [2]−[4]. These 
approaches require the setting of adequate parameters, 
which rely on the insights of experienced engineers. 
Moreover, it is difficult to find novel bar structures that 
lead to an improvement in efficiency by using this 
approach. 

In contrast to conventional parameter optimization, 
topology optimization, which does not need a pre-setting 
of the design parameters, can lead to novel structures. In 
particular, topology optimization, in which the material 
distribution is represented by a linear combination of 
Gaussian functions, has been proven to be effective for 
the design of electric motors and WPT devices [5]−[7]. 
However, this method typically does not result in bar-
shaped cores, which are widely used in WPT. This is 
because a small change in the weighting coefficients of 
Gaussian functions can separate the bar-shaped core into 
segments. 

In this study, we propose a novel topology 
optimization method for WPT devices using geometry 
projection, which is used in structural optimizations such 
as beam and cantilever shapes [8]−[10]. This method  

 
facilitates the generation of bar-shaped magnetic cores 
because the material distribution is represented by a set of 
elementary bars. In this study, we adopt a real-coded 
genetic algorithm (GA) to determine the optimal 
distribution and shape of the elementary magnetic bars. 
Moreover, we search for an optimal solution that is robust 
against misalignment between the transmitting and 
receiving coils. The proposed method is compared with 
the topology optimization method based on Gaussian 
functions. 

The remainder of this paper is organized as follows. In 
section II, we describe the topology optimization method 
based on the geometry projection method and Gaussian 
functions. In section III, we define the optimization 
problems by considering the coupling efficiency and 
leakage flux. In section IV, we discuss the optimization 
results obtained by using the two methods. Finally, 
section V concludes the paper with a concise summary of 
this study. 

II. OPTIMIZATION METHODS 

A.    Geometry Projection Method 
In topology optimization using the geometry projection 

method [8], the magnetic core shape is represented by 
elementary bars, as shown in Fig. 1. Each elementary bar 
is parameterized based on the location of the end points 
of its medial axis, 𝒙𝒙o, 𝒙𝒙f , and its radius, 𝑟𝑟b, as shown in 
Fig. 1(a). We assume that all elementary bars have the 
same 𝑟𝑟b value for simplicity, although they can be treated 
as one of the optimization variables. The material 
attribute, 𝑀𝑀𝑒𝑒 , of finite element 𝑒𝑒  in the design region, 
Ωcore , is determined by projecting the elementary bars 
onto finite element 𝑒𝑒 as follows: 
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(a) Elementary bar 

 

(b) Schematic of geometry projection 

Fig. 1. Geometry projection method 
 

𝑀𝑀𝑒𝑒 = �ferrite, 𝑙𝑙𝑒𝑒 ≤ 𝑟𝑟b
air, 𝑙𝑙𝑒𝑒 > 𝑟𝑟b

 , (1) 

where 𝑙𝑙𝑒𝑒  denotes the distance between the center of 
element 𝒙𝒙𝑒𝑒  and medial axis of the cylindrical bars. The 
geometry projection is schematically shown in Fig. 1(b). 
First, we uniformly arrange the elementary bars in the 
design region, Ωcore. Then, lengths 𝑙𝑙1 and 𝑙𝑙2 and rotation 
angle 𝜃𝜃 of each elementary bar are determined. Finally, 
the material properties are assigned to all elements 
mentioned in (1) according to the distribution of the 
elementary bars. After completing the aforementioned 
process, we solve the following magnetostatic equation to 
evaluate the objective function: 

rot 𝜈𝜈 (rot 𝑨𝑨) = 𝑱𝑱 , (2) 

where 𝜈𝜈, 𝑨𝑨, and 𝑱𝑱 denote the magnetic reluctivity, vector 
potential, and current density, respectively. The FE 
discretization of (2) leads to 

∑ 𝐴𝐴𝑗𝑗𝑗𝑗 ∫ rot 𝑵𝑵𝑖𝑖  𝜈𝜈 �rot 𝑵𝑵𝑗𝑗�Ω 𝑑𝑑Ω = ∫ 𝑵𝑵𝑖𝑖 ⋅ 𝑱𝑱Ωcoil
𝑑𝑑Ω , (3) 

where 𝑵𝑵𝑖𝑖 denotes the vector interpolation function. 
In the optimization, the geometrical parameter vector, 

𝒑𝒑 = �𝑙𝑙11, … , 𝑙𝑙1
𝑄𝑄 , 𝑙𝑙21, … , 𝑙𝑙2

𝑄𝑄 , 𝜃𝜃1, … ,𝜃𝜃𝑄𝑄�
t
∈ ℝ3𝑄𝑄is determined 

to maximize the objective function by employing the 
real-coded GA [11] subjected to given constraints, where 
the superscript in 𝒑𝒑  running from 1 to 𝑄𝑄  identifies the 
elementary bars. 

B.    On/Off Method Based on NGnet 
In the topology optimization using the normalized 

Gaussian network (NGnet) [5], which is schematically  

 

Fig. 2. On/off method using normalized Gaussians 

shown in Fig. 2, the material attribute in the design 
region, Ωcore, is determined from the value of the shape 
function defined by 

𝑦𝑦(𝒙𝒙,𝒘𝒘) = ∑ 𝑤𝑤𝑖𝑖𝑏𝑏𝑖𝑖(𝒙𝒙)𝑁𝑁
𝑖𝑖=1 , (4) 

where 𝑤𝑤𝑖𝑖  and 𝑁𝑁  denote the weighting coefficient and 
number of Gaussian functions, respectively. Moreover, 
the normalized Gaussian function, 𝑏𝑏𝑖𝑖(𝒙𝒙), is given by 

𝑏𝑏𝑖𝑖(𝒙𝒙) = 𝐺𝐺𝑖𝑖(𝒙𝒙) ∑ 𝐺𝐺𝑗𝑗(𝒙𝒙)𝑁𝑁
𝑗𝑗=1⁄ , (5) 

𝐺𝐺𝑖𝑖(𝒙𝒙) = 1
2𝜋𝜋𝜎𝜎2

exp �− 1
2𝜎𝜎2

|𝒙𝒙 − 𝒙𝒙𝑖𝑖|2�, (6) 

where 𝜎𝜎 and 𝒙𝒙𝑖𝑖 denote the standard deviation and center 
of the Gaussian basis, respectively. The material attribute, 
𝑀𝑀𝑒𝑒, of the finite element 𝑒𝑒 in the design region, Ωcore, is 
determined as 

𝑀𝑀𝑒𝑒 = �ferrite, 𝑦𝑦(𝒙𝒙,𝒘𝒘) ≥ 0
air, 𝑦𝑦(𝒙𝒙,𝒘𝒘) < 0. (7) 

The material distribution is determined by using (7), and 
(3) is solved to obtain the magnetic field and WPT 
performance. 

In the optimization, the weighting coefficient vector, 
𝒘𝒘 = [𝑤𝑤1 ,𝑤𝑤2, … ,𝑤𝑤𝑁𝑁]t ∈ ℝ𝑁𝑁 ,  is determined to maximize 
the objective function by applying the GA. 

III. OPTIMIZATION PROBLEMS 

A.    Single-Objective Optimization 
In single-objective topology optimization, we 

maximize the coupling coefficients of a WPT device for 
electric vehicles (EVs) considering misalignment 
between coils for robustness. Although the misalignment 
in the forward direction (y-axis) of EVs is easily limited 
by using a wheel stopper, it is difficult to limit the 
misalignment in the lateral direction (x-axis) [12]. For 
this reason, we focus on the lateral misalignment. 
Moreover, it is desirable to reduce the core volume to the 
maximum possible extent to reduce the cost and size. 
Thus, the optimization problem considering the 
robustness is defined by 
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Problem 1: 

max
𝒅𝒅

𝐹𝐹1(𝒅𝒅) , 𝐹𝐹1(𝒅𝒅) =
1
2

[𝑘𝑘1(𝒅𝒅) + 𝑘𝑘2(𝒅𝒅)] 

sub. to  𝑉𝑉core ≤ 𝑉𝑉ref 
(8) 

where 𝑘𝑘1(𝒅𝒅), 𝑘𝑘2(𝒅𝒅), 𝑉𝑉core , and 𝑉𝑉ref  denote the coupling 
coefficients under the alignment and misalignment 
conditions, total volume of the optimized core, and upper 
volume limit, respectively. We impose the volume 
constraint in (8) using the oracle penalty method [13]. In 
(8), 𝒅𝒅 represents the design variable of the optimization 
methods expressed by (1) and (7). Based on the 
assumption that the transmitting and receiving coils have 
the same self-inductance, the coupling coefficient, 𝑘𝑘𝑖𝑖(𝒅𝒅), 
is obtained from the FE analysis as follows [14]: 

𝑘𝑘𝑖𝑖(𝒅𝒅) =
𝛷𝛷2
𝑖𝑖

𝛷𝛷1𝑖𝑖
=
∫ 𝑨𝑨𝑖𝑖(𝒅𝒅) ⋅ 𝒋𝒋2Ωcoil2 𝑑𝑑Ω
∫ 𝑨𝑨𝑖𝑖(𝒅𝒅) ⋅ 𝒋𝒋1Ωcoil1 𝑑𝑑Ω

,   (𝑖𝑖 = 1, 2) (9) 

where 𝑨𝑨𝑖𝑖(𝒅𝒅), 𝛷𝛷𝑚𝑚𝑖𝑖 , and 𝒋𝒋𝑚𝑚  (𝑚𝑚 = 1, 2) denote the vector 
potential and magnetic flux for the alignment and 
misalignment conditions and the unit vectors parallel to 
the currents along the transmitting and receiving coils,  

 
respectively. Note that the vector potential, 𝑨𝑨𝑖𝑖(𝒅𝒅), is an 
implicit function of the design variable, 𝒅𝒅, because the 
magnetic field depends on the material distribution 
determined from 𝒅𝒅. 

B.    Multi-Objective Optimization 
In the multi-objective optimization, we maximize the 

coupling coefficients while minimizing the leakage flux 
around the coils to ensure the safety of the WPT device. 
The multi-objective optimization problem is defined as 
follows. 

Problem 2: 

max
𝒅𝒅

𝐹𝐹1(𝒅𝒅) , 𝐹𝐹1(𝒅𝒅) =
1
2

[𝑘𝑘1(𝒅𝒅) + 𝑘𝑘2(𝒅𝒅)] 

min
𝒅𝒅
𝐹𝐹2(𝒅𝒅) , 𝐹𝐹2(𝒅𝒅) =

1
2
�𝐵𝐵1leak(𝒅𝒅) + 𝐵𝐵2leak(𝒅𝒅)� 

(10) 

Here, 𝐵𝐵1leak(𝒅𝒅) and 𝐵𝐵2leak(𝒅𝒅) denote the magnitude of the 
leakage flux density at the evaluation points under the 
alignment and misalignment conditions, respectively. 
Note that 𝐵𝐵1leak(𝒅𝒅)  and 𝐵𝐵2leak(𝒅𝒅)  are the implicit 
functions of the design variable, 𝒅𝒅. 

TABLE I 
SPECIFICATIONS OF OPTIMIZATION MODEL 

Relative permeability 3300 
Driving frequency 85 kHz 

Inner radius of coils 100 mm 
Outer radius of coils 150 mm 
Number of coil turns 10 

Input current for transmitting coil 20 ARMS 

Air gap 70 mm 
Misalignment (x-direction) 200 mm 

  

(a) Coil and design region (b) Bird’s-eye view of whole system 

Fig. 3. Optimization model 

  

(a) 16 (4×4) elementary bars. (range of bar length 𝑙𝑙1 and 𝑙𝑙2: 0 to  
50 mm, bar radius 𝑟𝑟b: 7.5 mm) 

(b) 48 Gaussian functions (standard deviation 𝜎𝜎: 1.7 mm).  
Note that the spheres’ radius is standard deviation 

Fig. 4. Distribution of elementary bars and Gaussian functions for the transmitting coil 
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IV. OPTIMIZATION RESULTS 

A.    Single-Objective Optimization: Problem 1 
We solve Problem 1 in (8). The optimization model of 

a WPT device is shown in Fig. 3, and Table I summarizes 
its specifications, where the leakage flux evaluation area 
is set based on the human exposure model to magnetic 
fields [15]. A WPT device is required to maintain good 
performance against misalignment. Here, we assume a 
significantly large misalignment that has a radius of 
Ωcore,  as shown in Fig. 3 (a), to evaluate robustness. 
However, the air gap length is fixed for simplicity, even 
when a misalignment exists. To evaluate the coupling 
coefficients, we analyze two FE models with and without 
misalignment. The distributions of the elementary bars 
and Gaussian functions are shown in Fig. 4. To shape the 
transmitting and receiving coils symmetrically along the 
x, y, and z directions, 16 elementary bars are uniformly 
deployed in the quarter domain of Ωcore in the geometry 
projection method. In contrast, 48 Gaussian basis 
functions are deployed in the quarter domain such that the 
number of unknowns in the NGnet method is equal to 
that in the geometry projection method. To solve the  

 
Fig. 7. Smoothed WPT core 
(𝑘𝑘1 = 41.3 %,𝑘𝑘2 = 4.9 %,𝑉𝑉core = 0.58𝑉𝑉ref) 

optimization problem presented in (8) using real-coded 
GA, 720 individuals were generated for the first 
generation and 192 children were generated from 49 
parents in each generation. Under these conditions, 
approximately five days are required to obtain the 
optimization results using an Intel Xeon CPU (3.5 GHz, 
32 threads). 

The optimized and conventional WPT cores and their 
convergence histories are shown in Figs. 5 and 6, 
respectively. In addition, the coupling coefficients and 
core volumes are summarized in Fig. 5. The optimized 
core shapes depicted in Fig. 6 (b) plateau at 50 
generations, whereas those shown in Fig. 6 (a) continue  

   

(a) Optimized (Geometry projection) 
(𝑘𝑘1 = 41.5 %,𝑘𝑘2 = 5.0 %,𝑉𝑉core = 0.65𝑉𝑉ref) 

(b) Optimized (NGnet) 
(𝑘𝑘1 = 44.6 %,𝑘𝑘2 = 7.5 %,𝑉𝑉core = 1.3𝑉𝑉ref) 

(c) Conventional [3] 
(𝑘𝑘1 = 40.3 %,𝑘𝑘2 = 0.3 %,𝑉𝑉ref = 2.68 × 10−4 m3) 

Fig. 5. Optimized and conventional WPT cores 

 
(a) Geometry projection 

 
(b) NGnet 

Fig. 6. Convergence histories of geometry projection method and NGnet 
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to change such that the coupling coefficients increase. We 
can see that the optimized WPT cores shown in Fig. 5 (a) 
and (b) maintain relatively high coupling coefficient 
values against misalignment. However, it would be 
difficult to manufacture the optimized WPT core shown 
in Fig. 5 (b) when using the bar-shaped cores that are 
utilized in conventional WPT devices, as shown in Fig. 5 
(c). In contrast, it would not be difficult to manufacture 
the optimized WPT core shown in Fig. 5 (a) using bar-
shaped cores. The core volumes in Figs. 5 (a) and (b) are 
35 % smaller and 30 % larger than the reference core 
volume shown in Fig. 5 (c), respectively. Although the 
optimized core shape shown in Fig. 5(a) is relatively 
simple, the cores have wavy surfaces, which might result 
in certain manufacturing difficulties unless they are 
smoothed. The smoothed WPT core shapes are shown in 
Fig. 7. We can see that the simplification of Fig. 5(a) has 
no significant effect on the performance. These results 
indicate that the geometry projection method is more 
suitable for the optimal design of WPT cores compared to 
the NGnet method. 

To interpret the performance difference between the 
WPT cores depicted in Figs. 5 (a) and (c), their flux 
distributions with a 200 mm misalignment are 
comparatively shown in Fig. 8. The effective interlinkage 
flux from the transmitting coil to the receiving coil is 
shown in Fig. 8 (a). Leakage fluxes that pass through the 
magnetic cores can be observed in Fig. 8 (b). 

B.    Dependence on Optimization Parameters 
To study the dependence of the convergence of the 

proposed method on hyperparameters, we perform 
optimizations under different conditions. The 
convergence histories of the proposed method, starting 
from different random seeds and different numbers of 
elementary bars, are shown in Fig. 9. The optimized WPT 
cores for different numbers of elementary bars are shown 
in Fig. 10. Note that the optimization results in Fig. 10 
are obtained by utilizing uniformly deployed elementary 
bars in the quarter domain of  Ωcore. We can see that the 
optimization results shown in Fig. 9 (a) indicate 
approximately constant performance regardless of the 
random seed, because the standard deviation, 𝜎𝜎, among 
them is approximately 0.5 %. The number of elementary 
bars is found to have a relatively larger influence on the 
optimization results, as shown in Fig. 10. 

C.    Multi-Objective Optimization: Problem 2 
We solve Problem 2 in (10). We again consider the 

optimization model shown in Fig. 4 (a). We use NSGA-II  
[16], where the number of individuals is set to 720, and 
the evolution process is continued for 1,000 generations. 
Approximately six days are required to obtain the 
optimization results using the Intel Xeon CPU (3.5 GHz, 
32 threads). 

The Pareto front at 1,000 generations and optimized 
WPT cores at representative points are shown in Fig. 11. 
We can see that the leakage flux of the Pareto solutions to 
Problem 2 is smaller than those of the conventional 
solution to Problem 1, whereas the coupling coefficient 
for the alignment case is not improved by solving 
Problem 2. The flux distributions and magnitude of the 
leakage flux densities for a misalignment of 200 mm are 
shown in Fig. 12. We find that optimized shape 1 has a 
large leakage flux. In contrast, the leakage flux of 
optimized shape 2 is relatively smaller than that of the 
other WPT cores. Thus, the Pareto solutions around  

  

(a) Optimized solution to Problem 1 (Geometry projection) (b) Conventional 

Fig. 8. Comparison of flux distributions with misalignment of 200 mm (1/2 fraction is shown) 

  

(a) Random seed (b) Number of elementary bars 

Fig. 9. Dependence of hyperparameters on the convergence of GA 

  

(a) 9 (3×3) bars 
(𝑘𝑘1 = 34.3 %,𝑘𝑘2 = 5.5 %, 
𝑉𝑉core = 0.34𝑉𝑉ref) 

(b) 25 (5×5) bars 
(𝑘𝑘1 = 42.2 %,𝑘𝑘2 = 7.2 %, 

   𝑉𝑉core = 0.93𝑉𝑉ref) 

Fig. 10. Optimized WPT cores for different number of elementary bars, 
where Problem 1 is solved 
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optimized shape 2 have better performance than the 
conventional bar-shaped core shown in Fig. 5 (c) with 
respect to robustness and leakage flux. 

V. CONCLUSION 
In this study, we proposed a novel topology 

optimization method for the magnetic cores of WPT 
devices using the geometry projection method. We 
showed that the optimized core shape obtained by using 
the proposed method is robust against misalignment and  
more practical than that obtained by using NGnet. 
Moreover, the proposed method was applied to a multi-
objective optimization case considering the coupling 
coefficients and leakage flux. The optimized bar-shaped 
core achieved by employing the proposed method has 
better performance than the conventional bar-shaped core 
with respect to robustness and leakage flux. In the future, 
we plan to manufacture optimized cores to verify their 
performance experimentally. 
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Fig. 11. Pareto front at 1,000 generation. 

 
  

(a) Optimized shape 1 (Problem 2) 
      (𝑘𝑘2 = 5.5 %, 𝐵𝐵2leak = 15.3 μT) 

(b) Optimized shape 2 (Problem 2) 
     (𝑘𝑘2 = 4.6 %, 𝐵𝐵2leak = 14.2 μT) 

(c) Conventional 
      (𝑘𝑘2 = 0.3 %, 𝐵𝐵2leak = 14.5 μT) 

Fig. 12. Comparison of flux distributions on leakage flux evaluation area (1/2 fraction is shown) 
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